251
|
From cachexia to obesity: the role of host metabolism in cancer immunotherapy. Curr Opin Support Palliat Care 2020; 13:305-310. [PMID: 31389842 DOI: 10.1097/spc.0000000000000457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Currently, several clinical trials in cancer therapy have demonstrated the success of immunomodulatory therapies. However, only a variable fraction of patients actually benefit from these treatments. The understanding of key mechanisms behind this response heterogeneity is one of the major unmet need and intense research field in immuno-oncology. This review will discuss the host metabolic dysfunctions derived from cachexia or obesity that can affect the response to cancer immunotherapy. RECENT FINDINGS Preclinical studies demonstrated that chronic inflammation, nutritional intake impairment and endocrine dysfunction may affect anticancer innate and adaptive immunity, both in cachexia and obesity. New emerging clinical findings have highlighted the impact of metabolic biomarkers in predicting response to immune checkpoint inhibitors in cancer patients. SUMMARY Patient's weight and inflammatory status could be relevant in the clinical decision-making process before starting cancer immunotherapy and for an effective patient selection and stratification in future clinical trials employing this class of anticancer agents.
Collapse
|
252
|
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer 2020; 19:145. [PMID: 32972405 PMCID: PMC7513516 DOI: 10.1186/s12943-020-01258-7] [Citation(s) in RCA: 620] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
As a point of convergence for numerous oncogenic signaling pathways, signal transducer and activator of transcription 3 (STAT3) is central in regulating the anti-tumor immune response. STAT3 is broadly hyperactivated both in cancer and non-cancerous cells within the tumor ecosystem and plays important roles in inhibiting the expression of crucial immune activation regulators and promoting the production of immunosuppressive factors. Therefore, targeting the STAT3 signaling pathway has emerged as a promising therapeutic strategy for numerous cancers. In this review, we outline the importance of STAT3 signaling pathway in tumorigenesis and its immune regulation, and highlight the current status for the development of STAT3-targeting therapeutic approaches. We also summarize and discuss recent advances in STAT3-based combination immunotherapy in detail. These endeavors provide new insights into the translational application of STAT3 in cancer and may contribute to the promotion of more effective treatments toward malignancies.
Collapse
Affiliation(s)
- Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Qiyu Tong
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Bowen Liu
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
253
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
254
|
Høgdall D, O'Rourke CJ, Dehlendorff C, Larsen OF, Jensen LH, Johansen AZ, Dang H, Factor VM, Grunnet M, Mau-Sørensen M, Oliveira DVNP, Linnemann D, Boisen MK, Wang XW, Johansen JS, Andersen JB. Serum IL6 as a Prognostic Biomarker and IL6R as a Therapeutic Target in Biliary Tract Cancers. Clin Cancer Res 2020; 26:5655-5667. [PMID: 32933994 DOI: 10.1158/1078-0432.ccr-19-2700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/23/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Biliary tract cancer (BTC) is a heterogeneous group of rare gastrointestinal malignancies with dismal prognosis often associated with inflammation. We assessed the prognostic value of IL6 and YKL-40 compared with CA19-9 before and during palliative chemotherapy. We also investigated in mice whether IL6R inhibition in combination with gemcitabine could prolong chemosensitivity. EXPERIMENTAL DESIGN A total of 452 Danish participants with advanced (locally advanced and metastatic) BTC were included from six clinical trials (February 2004 to March 2017). Serum CA19-9, IL6, and YKL-40 were measured before and during palliative treatment. Associations between candidate biomarkers and progression-free survival (PFS) and overall survival (OS) were analyzed by univariate and multivariate Cox regression. Effects of inhibiting IL6R and YKL-40 were assessed in vitro, and of IL6R inhibition in vivo. RESULTS High pretreatment levels of CA19-9, IL6, and YKL-40, and increasing levels during treatment, were associated with short PFS and OS in patients with advanced BTC. IL6 provided independent prognostic information, independent of tumor location and in patients with normal serum CA19-9. ROC analyses showed that IL6 and YKL-40 were predictive of very short OS (OS < 6 months), whereas CA19-9 was best to predict OS > 1.5 years. Treatment with anti-IL6R and gemcitabine significantly diminished tumor growth when compared with gemcitabine monotherapy in an in vivo transplant model of BTC. CONCLUSIONS Serum IL6 and YKL-40 are potential new prognostic biomarkers in BTC. IL6 provides independent prognostic information and may be superior to CA19-9 in certain contexts. Moreover, anti-IL6R should be considered as a new treatment option to sustain gemcitabine response in patients with BTC.
Collapse
Affiliation(s)
- Dan Høgdall
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark. .,Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole F Larsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lars H Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hien Dang
- Division of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Mie Grunnet
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Mau-Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Linnemann
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Xin W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
255
|
IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun 2020; 11:4611. [PMID: 32929072 PMCID: PMC7490368 DOI: 10.1038/s41467-020-18244-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression. The pro-inflammatory cytokine IL-20 promotes tumor growth in several cancer types. Here, the authors show that high levels of IL-20 are associated with poor survival in patients with pancreatic ductal adenocarcinoma (PDAC) and that IL-20 blockade reduces tumor growth and alleviates cachexia symptoms in mouse models of PDAC.
Collapse
|
256
|
Song X, Lu Z, Xu J. Targeting cluster of differentiation 47 improves the efficacy of anti-cytotoxic T-lymphocyte associated protein 4 treatment via antigen presentation enhancement in pancreatic ductal adenocarcinoma. Exp Ther Med 2020; 20:3301-3309. [PMID: 32855701 DOI: 10.3892/etm.2020.9054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
Treatment with cluster of differentiation 47 (CD47) monoclonal antibody has exhibited promising antitumor effects in various preclinical cancer models. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the present study, the CD47 expression level was measured in PDAC patient samples. The effects of CD47 on antigen presentation and anti-tumor immunity were evaluated using phagocytotic assays and animal models. The results indicated that CD47 was overexpressed in the tumor tissue of PDAC patients compared with that in normal adjacent tissues. In the human samples, antigen-presenting cells (macrophages and dendritic cells) in tumors with high CD47 expression demonstrated low CD80 and CD86 expression levels. In an in vitro co-culture tumor cell system, CD47 overexpression was observed to inhibit the function of phagocytic cells. Furthermore, in a PDAC mouse model, CD47 overexpression was indicated to reduce antigen-presenting cell tumor infiltration and T-cell priming in tumor-draining lymph nodes. Anti-CD47 treatment appeared to enhance the efficacy of the approved immune checkpoint blockade agent anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA4) in suppressing PDAC development in a mouse model. Therefore, it was concluded that CD47 overexpression suppressed antigen presentation and T-cell priming in PDAC. Anti-CD47 treatment may enhance the efficacy of anti-CTLA4 therapy and may therefore be a potential strategy for the treatment of PDAC patients in the future.
Collapse
Affiliation(s)
- Xifu Song
- Department of General Surgery, People's Hospital of Jiyang County, Jinan, Shandong 250000, P.R. China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianqing Xu
- Department of General Surgery, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, P.R. China
| |
Collapse
|
257
|
Zhao J, Li Q, Muktiali M, Ren B, Hu Y, Li D, Li Z, Li D, Xie Y, Tao M, Liang R. Effect of microwave ablation treatment of hepatic malignancies on serum cytokine levels. BMC Cancer 2020; 20:812. [PMID: 32847533 PMCID: PMC7448515 DOI: 10.1186/s12885-020-07326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background Microwave ablation (MWA) is widely used to treat unresectable primary and secondary malignancies of the liver, and a limited number of studies indicate that ablation can cause not only necrosis at the in situ site but also an immunoreaction of the whole body. This study aimed to investigate the effects of MWA on cytokines in patients who underwent MWA for a hepatic malignancy. Methods Patients admitted to the Oncology Department in the First Affiliated Hospital of Soochow University between June 2015 and February 2019 were selected. Peripheral blood was collected from patients with a hepatic malignancy treated with MWA. The levels of cytokines (IL-2, IFN-γ, TNF-α, IL-12 p40, IL-12 p70, IL-4, IL-6, IL-8, IL-10, and vascular endothelial growth factor (VEGF)) were detected with a Milliplex® MAP Kit. The comparison times were as follows: before ablation, 24 h after ablation, 15 days after ablation, and 30 days after ablation. Data were analyzed using a paired sample t-tests and Spearman’s correlation analysis. Results A total of 43 patients with hepatic malignancies were assessed. There were significant differences in IL-2, IL-12 p40, IL-12 p70, IL-1β, IL-8, and TNF-α at 24 h after MWA. Significant increases (> 2-fold vs. before ablation) were observed in IL-2, IL-1β, IL-6, IL-8, IL-10, and TNF-α after MWA. Elevated IL-2 and IL-6 levels after ablation were positively correlated with energy output during the MWA procedure. Conclusions WA treatment for hepatic malignancies can alter the serum levels of several cytokines such as IL-2 and IL-6.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Lymphatic Hematologic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Merlin Muktiali
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingjie Ren
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingxi Hu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dapeng Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Li
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daoming Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Xie
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongrui Liang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China. .,Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA.
| |
Collapse
|
258
|
Hegde S. Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian J Surg Oncol 2020; 12:118-127. [PMID: 33994737 DOI: 10.1007/s13193-020-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
Pancreatic malignancies carry a dismal prognosis globally, with pancreatic adenocarcinomas (PDAC) being particularly aggressive and stubborn. Unfortunately, several therapeutic strategies that show promise in other cancers have failed to make sizeable impact on pancreatic tumor outcomes. Responses to immunotherapies are especially rare in pancreatic cancer, and patients are in need of innovative approaches that can result in more durable responses. Current research in preclinical models and humans has suggested this resistance is due to a uniquely inflammatory and dysfunctional tumor microenvironment; these findings lay the groundwork for targeting these barriers and improving outcomes. Clinical analyses have also revealed unprecedented heterogeneity in tumor and stromal biology of PDAC, underscoring the need for more personalized approaches and combinatorial therapies. This review will highlight the current state of translational research focusing on PDAC immunity, summarize ongoing clinical efforts to tackle PDAC vulnerabilities, and underscore some unresolved challenges in implementing therapies more broadly. A better understanding of immune contexture and tumor heterogeneity in this disease will greatly accelerate drug discovery and implementation of precision medicine for PDAC.
Collapse
Affiliation(s)
- Samarth Hegde
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
259
|
Fu J, Wu Z, Liu J, Wu T. Vitamin C: A stem cell promoter in cancer metastasis and immunotherapy. Biomed Pharmacother 2020; 131:110588. [PMID: 32836076 DOI: 10.1016/j.biopha.2020.110588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin C is an electron donor and is involved in a variety of biochemical reactions in stem cell and cancer stem cell, as well as collagen synthesis and the regulation of hypoxia-inducible factor synthesis, which two affect extracellular matrix remodelling and hence cancer metastasis. Specific doses of vitamin C can stop cancer cell glycolysis and block nitroso synthesis, indicating the potential of vitamin C in cancer treatment. Recent studies preliminary revealed Vitamin C enhance the cancer's immune response to anti PD-L1 therapy through multiple indirect approaches. Herein we reviewed the recent function of vitamin C for further research in sequential aspects of cancer stem cell, extracellular matrix remodeling, cancer metastasis and cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Zhaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Jianfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| | - Tianfu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| |
Collapse
|
260
|
Miyata T, Hayashi H, Yamashita YI, Matsumura K, Nakao Y, Itoyama R, Yamao T, Tsukamoto M, Okabe H, Imai K, Chikamoto A, Ishiko T, Baba H. Prognostic Value of the Preoperative Tumor Marker Index in Resected Pancreatic Ductal Adenocarcinoma: A Retrospective Single-Institution Study. Ann Surg Oncol 2020; 28:1572-1580. [PMID: 32804325 DOI: 10.1245/s10434-020-09022-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The prediction of prognostic outcomes can provide the most suitable strategy for patients with pancreatic ductal adenocarcinoma (PDAC). This study aimed to evaluate the clinical value of the preoperative tumor marker index (pre-TI) in predicting prognostic outcomes after resection for PDAC. METHODS For 183 patients who underwent pancreatic resection of PDAC, adjusted carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), pancreatic cancer-associated antigen-2 (DUpan-2), and s-pancreas-1 antigen (SPan-1) were retrospectively evaluated, and the positive number of these markers was scored as the pre-TI. RESULTS A high pre-TI (≥ 2) was significantly associated with a larger tumor and lymph node metastases, and the patients with a high pre-TI had worse prognostic outcomes in terms of both relapse-free survival (RFS) (P < 0.0001, log-rank) and overall survival (OS) (P < 0.0001, Λlog-rank) than the patients with a low pre-TI. The pre-TI was one of the independent factors of a poor prognosis for RFS (hazard ratio [HR], 2.36; P < 0.0001) and OS (HR, 2.27; P < 0.0001). In addition, even for the patients with normal adjusted CA19-9 values (n = 74, 40.4%), those with the high pre-TI had a significantly poorer prognosis than those with a low pre-TI (RFS: P = 0.002, log-rank; OS: P = 0.031, log-rank). CONCLUSIONS The pre-TI could be a potent predictive marker of prognostic outcomes for patients with resections for PDAC. Patients with a high pre-TI may need additional strategies to improve their prognosis.
Collapse
Affiliation(s)
- Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Yamao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
261
|
You W, Liu X, Yu Y, Chen C, Xiong Y, Liu Y, Sun Y, Tan C, Zhang H, Wang Y, Li R. miR-502-5p affects gastric cancer progression by targeting PD-L1. Cancer Cell Int 2020; 20:395. [PMID: 32821248 PMCID: PMC7429713 DOI: 10.1186/s12935-020-01479-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Studies have shown that miR-502-5p functions as a tumor suppressor and is associated with tumor growth and metastasis. This study intends to uncover the potential mechanism of miR-502-5p functioning as a tumor suppressor in gastric cancer. Methods Expression levels of miR-502-5p and PD-L1 were measured by using qRT-PCR. Cell proliferation abilities were examined by EDU incorporation assay. Cell migration, invasion and cell cycle analysis of cells were determined by transwell assay, transwell-matrigel assay and flow cytometry, respectively. The relationship between miR-502-5p expression and the overall survival of xenograft tumor mice was statistically analyzed. Bioinformatics analysis and luciferase reporter assays were applied to analyze the relationship between miR-502-5p and CD40, STAT3 or PD-L1. Expressions of CD40, STAT3 and PD-L1 at protein level were detected by western blot. Results The results showed that miR-502-5p was significantly downregulated in gastric cancer tumor tissues compared with adjacent normal tissues. Overexpression of miR-502-5p significantly attenuated the proliferation, migration/invasion and induced the G1 phase arrest of gastric cancer cells. Consistently, miR-502-5p suppressed tumor growth and metastasis in vivo. Mechanically, we demonstrated that miR-502-5p had inhibited the malignant behaviour of gastric cancer by down-regulating PD-L1 expression at transcriptional level and post-transcriptional levels. Conclusions These findings suggest that miR-502-5p acts as a tumor suppressor in gastric cancer (GC). MiR-502-5p/PD-L1 may be a novel therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Wendao You
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiaoyu Liu
- Yulin No.2 Hospital, Yulin, 719000 China
| | - Yang Yu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Chen Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yujia Xiong
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yiting Liu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yibin Sun
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Chenhuan Tan
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | | | | | - Rui Li
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| |
Collapse
|
262
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
263
|
Gonda TA, Fang J, Salas M, Do C, Hsu E, Zhukovskaya A, Siegel A, Takahashi R, Lopez-Bujanda ZA, Drake CG, Manji GA, Wang TC, Olive KP, Tycko B. A DNA Hypomethylating Drug Alters the Tumor Microenvironment and Improves the Effectiveness of Immune Checkpoint Inhibitors in a Mouse Model of Pancreatic Cancer. Cancer Res 2020; 80:4754-4767. [PMID: 32816859 DOI: 10.1158/0008-5472.can-20-0285] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that has proven refractory to immunotherapy. Previously, treatment with the DNA hypomethylating drug decitabine (5-aza-dC; DAC) extended survival in the KPC-Brca1 mouse model of PDAC. Here we investigated the effects of DAC in the original KPC model and tested combination therapy with DAC followed by immune checkpoint inhibitors (ICI). Four protocols were tested: PBS vehicle, DAC, ICI (anti-PD-1 or anti-VISTA), and DAC followed by ICI. For each single-agent and combination treatment, tumor growth was measured by serial ultrasound, tumor-infiltrating lymphoid and myeloid cells were characterized, and overall survival was assessed. Single-agent DAC led to increased CD4+ and CD8+ tumor-infiltrating lymphocytes (TIL), PD1 expression, and tumor necrosis while slowing tumor growth and modestly increasing mouse survival without systemic toxicity. RNA-sequencing of DAC-treated tumors revealed increased expression of Chi3l3 (Ym1), reflecting an increase in a subset of tumor-infiltrating M2-polarized macrophages. While ICI alone had modest effects, DAC followed by either of ICI therapies additively inhibited tumor growth and prolonged mouse survival. The best results were obtained using DAC followed by anti-PD-1, which extended mean survival from 26 to 54 days (P < 0.0001). In summary, low-dose DAC inhibits tumor growth and increases both TILs and a subset of tumor-infiltrating M2-polarized macrophages in the KPC model of PDAC, and DAC followed by anti-PD-1 substantially prolongs survival. Because M2-polarized macrophages are predicted to antagonize antitumor effects, targeting these cells may be important to enhance the efficacy of combination therapy with DAC plus ICI. SIGNIFICANCE: In a pancreatic cancer model, a DNA hypomethylating drug increases tumor-infiltrating effector T cells, increases a subset of M2 macrophages, and significantly prolongs survival in combination with immune checkpoint inhibitors.See related commentary by Nephew, p. 4610.
Collapse
Affiliation(s)
- Tamas A Gonda
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University, New York, New York
| | - Jarwei Fang
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Martha Salas
- Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Catherine Do
- Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Emily Hsu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Zhukovskaya
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Ariel Siegel
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Ryota Takahashi
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Zoila A Lopez-Bujanda
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Gulam A Manji
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Benjamin Tycko
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University, New York, New York. .,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| |
Collapse
|
264
|
Weber R, Riester Z, Hüser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer 2020; 8:jitc-2020-000949. [PMID: 32788238 PMCID: PMC7422659 DOI: 10.1136/jitc-2020-000949] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSC) play a major role in the immunosuppressive melanoma microenvironment. They are generated under chronic inflammatory conditions characterized by the constant production of inflammatory cytokines, chemokines and growth factors, including IL-6. Recruitment of MDSC to the tumor is mediated by the interaction between chemokines and chemokine receptors, in particular C–C chemokine receptor (CCR)5. Here, we studied the mechanisms of CCR5 upregulation and increased immunosuppressive function of CCR5+ MDSC. Methods The immortalized myeloid suppressor cell line MSC-2, primary immature myeloid cells and in vitro differentiated MDSC were used to determine factors and molecular mechanisms regulating CCR5 expression and immunosuppressive markers at the mRNA and protein levels. The relevance of the identified pathways was validated on the RET transgenic mouse melanoma model, which was also used to target the identified pathways in vivo. Results IL-6 upregulated the expression of CCR5 and arginase 1 in MDSC by a STAT3-dependent mechanism. MDSC differentiated in the presence of IL-6 strongly inhibited CD8+ T cell functions compared with MDSC differentiated without IL-6. A correlation between IL-6 levels, phosphorylated STAT3 and CCR5 expression in tumor-infiltrating MDSC was demonstrated in the RET transgenic melanoma mouse model. Surprisingly, IL-6 overexpressing tumors grew significantly slower in mice accompanied by CD8+ T cell activation. Moreover, transgenic melanoma-bearing mice treated with IL-6 blocking antibodies showed significantly accelerated tumor development. Conclusion Our in vitro and ex vivo findings demonstrated that IL-6 induced CCR5 expression and a strong immunosuppressive activity of MDSC, highlighting this cytokine as a promising target for melanoma immunotherapy. However, IL-6 blocking therapy did not prove to be effective in RET transgenic melanoma-bearing mice but rather aggravated tumor progression. Further studies are needed to identify particular combination therapies, cancer entities or patient subsets to benefit from the anti-IL-6 treatment.
Collapse
Affiliation(s)
- Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Zeno Riester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Carsten Sticht
- Medical Research Center (ZMF), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Alina Siebenmorgen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Jochen S Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| |
Collapse
|
265
|
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol 2020; 17:487-505. [PMID: 32393771 PMCID: PMC8284850 DOI: 10.1038/s41575-020-0300-1] [Citation(s) in RCA: 563] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the Western world with limited therapeutic options and dismal long-term survival. The neoplastic epithelium exists within a dense stroma, which is recognized as a critical mediator of disease progression through direct effects on cancer cells and indirect effects on the tumour immune microenvironment. The three dominant entities in the PDAC stroma are extracellular matrix (ECM), vasculature and cancer-associated fibroblasts (CAFs). The ECM can function as a barrier to effective drug delivery to PDAC cancer cells, and a multitude of strategies to target the ECM have been attempted in the past decade. The tumour vasculature is a complex system and, although multiple anti-angiogenesis agents have already failed late-stage clinical trials in PDAC, other vasculature-targeting approaches aimed at vessel normalization and tumour immunosensitization have shown promise in preclinical models. Lastly, PDAC CAFs participate in active cross-talk with cancer cells within the tumour microenvironment. The existence of intratumoural CAF heterogeneity represents a paradigm shift in PDAC CAF biology, with myofibroblastic and inflammatory CAF subtypes that likely make distinct contributions to PDAC progression. In this Review, we discuss our current understanding of the three principal constituents of PDAC stroma, their effect on the prevalent immune landscape and promising therapeutic targets within this compartment.
Collapse
Affiliation(s)
- Abdel N Hosein
- Department of Internal Medicine, Division of Hematology & Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Therapeutic Oncology Research and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
266
|
Xiao F, Liu Y, Zhang Z, Wang L, Wang T, Wang X. Tobacco extracts promote PD-L1 expression and enhance malignant biological differences via mTOR in gefitinib-resistant cell lines. Thorac Cancer 2020; 11:2237-2251. [PMID: 32558328 PMCID: PMC7396363 DOI: 10.1111/1759-7714.13533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether tobacco extracts could regulate PD-L1 expression and enhance malignant biological differences in gefitinib-resistant cell lines. METHODS We constructed gefitinib-resistant cells and observed the biological differences in gefitinib-resistant cells. The cells were stimulated with medium containing 5% volume of tobacco extract, and the change in PD-L1 expression and the mammalian target of rapamycin (mTOR) and p-mTOR expression in gefitinib-resistant cells treated with tobacco extracts was observed. We discussed the relationship between PD-L1 and mTOR. RESULTS Tobacco extracts could promote PD-L1 expression in the cell line. Western blot analysis showed that mTOR and p-mTOR were significantly enhanced in gefitinib-resistant cell lines cultured in the tobacco extracts. The mTOR signaling pathway was involved in PD-L1 expression and in regulating the expression of cytokines IL-6 and IL-23. In addition, the tobacco extracts could promote macrophage migration via mTOR/IL-6. CONCLUSIONS PD-L1 can transmit inhibitory signals and reduce the proliferation of CD8 + T cells in lymph nodes. Tobacco extracts upregulate PD-L1 expression via mTOR/IL-6. These results imply that lung cancer patients should not smoke and stay away from a smoke environment.
Collapse
Affiliation(s)
- Fengqi Xiao
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Yanguo Liu
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Zhihui Zhang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Luojia Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Ting Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Xiuwen Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| |
Collapse
|
267
|
Tanaka HY, Kurihara T, Nakazawa T, Matsusaki M, Masamune A, Kano MR. Heterotypic 3D pancreatic cancer model with tunable proportion of fibrotic elements. Biomaterials 2020; 251:120077. [PMID: 32388166 DOI: 10.1016/j.biomaterials.2020.120077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an often lethal disease characterized by a dense, fibrotic stroma. However, the lack of relevant preclinical models that recapitulate the characteristic histopathology of human PDAC in vitro impedes the development of novel therapies. The amount of stromal elements differ largely within and between patients, but in vitro models of human PDAC often do not account for this heterogeneity. Indeed, analyses of human PDAC histopathology revealed that the proportion of stroma ranged from 40 to 80% across patients. We, therefore, generated a novel 3D model of human PDAC, consisting of co-cultured human PDAC tumor cells and fibroblasts/pancreatic stellate cells, in which the proportion of fibrotic elements can be tuned across the clinically observed range. Using this model, we analyzed the signaling pathways involved in the differentiation of myofibroblasts, a characteristic subpopulation of fibroblasts seen in PDAC. We show that both YAP and SMAD2/3 in fibroblasts are required for myofibroblastic differentiation and that both shared and distinct signaling pathways regulate the nuclear localization of these factors during this process. Our novel model will be useful in promoting the understanding of the complex mechanisms by which the fibrotic stroma develops and how it might be therapeutically targeted.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Tsuyoshi Kurihara
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan; Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan.
| |
Collapse
|
268
|
Smith AD, Lu C, Payne D, Paschall AV, Klement JD, Redd PS, Ibrahim ML, Yang D, Han Q, Liu Z, Shi H, Hartney TJ, Nayak-Kapoor A, Liu K. Autocrine IL6-Mediated Activation of the STAT3-DNMT Axis Silences the TNFα-RIP1 Necroptosis Pathway to Sustain Survival and Accumulation of Myeloid-Derived Suppressor Cells. Cancer Res 2020; 80:3145-3156. [PMID: 32554751 PMCID: PMC7416440 DOI: 10.1158/0008-5472.can-19-3670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Although accumulation of myeloid-derived suppressor cells (MDSC) is a hallmark of cancer, the underlying mechanism of this accumulation within the tumor microenvironment remains incompletely understood. We report here that TNFα-RIP1-mediated necroptosis regulates accumulation of MDSCs. In tumor-bearing mice, pharmacologic inhibition of DNMT with the DNA methyltransferease inhibitor decitabine (DAC) decreased MDSC accumulation and increased activation of antigen-specific cytotoxic T lymphocytes. DAC-induced decreases in MDSC accumulation correlated with increased expression of the myeloid cell lineage-specific transcription factor IRF8 in MDSCs. However, DAC also suppressed MDSC-like cell accumulation in IRF8-deficient mice, indicating that DNA methylation may regulate MDSC survival through an IRF8-independent mechanism. Instead, DAC decreased MDSC accumulation by increasing cell death via disrupting DNA methylation of RIP1-dependent targets of necroptosis. Genome-wide DNA bisulfite sequencing revealed that the Tnf promoter was hypermethylated in tumor-induced MDSCs in vivo. DAC treatment dramatically increased TNFα levels in MDSC in vitro, and neutralizing TNFα significantly increased MDSC accumulation and tumor growth in tumor-bearing mice in vivo. Recombinant TNFα induced MDSC cell death in a dose- and RIP1-dependent manner. IL6 was abundantly expressed in MDSCs in tumor-bearing mice and patients with human colorectal cancer. In vitro, IL6 treatment of MDSC-like cells activated STAT3, increased expression of DNMT1 and DNMT3b, and enhanced survival. Overall, our findings reveal that MDSCs establish a STAT3-DNMT epigenetic axis, regulated by autocrine IL6, to silence TNFα expression. This results in decreased TNFα-induced and RIP1-dependent necroptosis to sustain survival and accumulation. SIGNIFICANCE: These findings demonstrate that targeting IL6 expression or function represent potentially effective approaches to suppress MDSC survival and accumulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Daniela Payne
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Qimei Han
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | | | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
269
|
Zheng NN, Zhou M, Sun F, Huai MX, Zhang Y, Qu CY, Shen F, Xu LM. Combining protein arginine methyltransferase inhibitor and anti-programmed death-ligand-1 inhibits pancreatic cancer progression. World J Gastroenterol 2020; 26:3737-3749. [PMID: 32774054 PMCID: PMC7383845 DOI: 10.3748/wjg.v26.i26.3737] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy targeting programmed death-1 (PD-1) or programmed death-ligand-1 (PD-L1) has been shown to be effective in a variety of malignancies but has poor efficacy in pancreatic ductal adenocarcinoma (PDAC). Studies have shown that PD-L1 expression in tumors is an important indicator of the efficacy of immunotherapy. Tumor cells usually evade chemotherapy and host immune surveillance by epigenetic changes. Protein arginine methylation is a common posttranslational modification. Protein arginine methyltransferase (PRMT) 1 is deregulated in a wide variety of cancer types, whose biological role in tumor immunity is undefined.
AIM To investigate the combined effects and underlying mechanisms of anti-PD-L1 and type I PRMT inhibitor in pancreatic cancer in vivo.
METHODS PT1001B is a novel type I PRMT inhibitor with strong activity and good selectivity. A mouse model of subcutaneous Panc02-derived tumors was used to evaluate drug efficacy, toxic and side effects, and tumor growth in vivo. By flow cytometry, we determined the expression of key immune checkpoint proteins, detected the apoptosis in tumor tissues, and analyzed the immune cells. Immunohistochemistry staining for cellular proliferation-associated nuclear protein Ki67, TUNEL assay, and PRMT1/PD-L1 immunofluorescence were used to elucidate the underlying molecular mechanism of the antitumor effect.
RESULTS Cultured Panc02 cells did not express PD-L1 in vitro, but tumor cells derived from Panc02 transplanted tumors expressed PD-L1. The therapeutic efficacy of anti-PD-L1 mAb was significantly enhanced by the addition of PT1001B as measured by tumor volume (1054.00 ± 61.37 mm3vs 555.80 ± 74.42 mm3, P < 0.01) and tumor weight (0.83 ± 0.06 g vs 0.38 ± 0.02 g, P < 0.05). PT1001B improved antitumor immunity by inhibiting PD-L1 expression on tumor cells (32.74% ± 5.89% vs 17.95% ± 1.92%, P < 0.05). The combination therapy upregulated tumor-infiltrating CD8+ T lymphocytes (23.75% ± 3.20% vs 73.34% ± 4.35%, P < 0.01) and decreased PD-1+ leukocytes (35.77% ± 3.30% vs 6.48% ± 1.08%, P < 0.001) in tumor tissue compared to the control. In addition, PT1001B amplified the inhibitory effect of anti-PD-L1 on tumor cell proliferation and enhanced the induction of tumor cell apoptosis. PRMT1 downregulation was correlated with PD-L1 downregulation.
CONCLUSION PT1001B enhances antitumor immunity and combining it with anti-PD-L1 checkpoint inhibitors provides a potential strategy to overcome anti-PD-L1 resistance in PDAC.
Collapse
Affiliation(s)
- Nan-Nan Zheng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Min Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Man-Xiu Huai
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chun-Ying Qu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
270
|
Zhu H, Du C, Yuan M, Fu P, He Q, Yang B, Cao J. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov Today 2020; 25:1762-1771. [PMID: 32663441 DOI: 10.1016/j.drudis.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
Despite extensive research into adjuvant and neoadjuvant chemotherapy, triple-negative breast cancer (TNBC) remains a common breast cancer (BC) subtype with poor prognosis. Given that it has higher immune cell infiltration, theoretically, it should be a protagonist of potential BC immunotherapies. However, only mild responses have been observed in monotherapy with anti-programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) antibodies. In this review, we reappraise PD-1/PD-L1 inhibitor combination immunotherapy and effective experimental compounds, focusing the level of PD-L1 expression, neoantigens, abnormal signaling pathways, and tumor microenvironment signatures, to provide guidance for future clinical trials based on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
271
|
The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020; 12:cancers12071849. [PMID: 32659999 PMCID: PMC7408631 DOI: 10.3390/cancers12071849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy with rising incidence and limited therapeutic options. Obesity is a well-established risk factor for PC development. Moreover, it negatively affects outcome in PC patients. Excessive fat accumulation in obese, over- and normal-weight individuals induces metabolic and inflammatory changes of adipose tissue microenvironment leading to a dysfunctional adipose “organ”. This may drive the association between abnormal fat accumulation and pancreatic cancer. In this review, we describe several molecular mechanisms that underpin this association at both local and systemic levels. We focus on the role of adipose tissue-derived circulating factors including adipokines, hormones and pro-inflammatory cytokines, as well as on the impact of the local adipose tissue in promoting PC. A discussion on potential therapeutic interventions, interfering with pro-tumorigenic effects of dysfunctional adipose tissue in PC, is included. Considering the raise of global obesity, research efforts to uncover the molecular basis of the relationship between pancreatic cancer and adipose tissue dysfunction may provide novel insights for the prevention of this deadly disease. In addition, these efforts may uncover novel targets for personalized interventional strategies aimed at improving the currently unsatisfactory PC therapeutic options.
Collapse
|
272
|
Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, You L, Dai M, Zhao Y. Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. Am J Cancer Res 2020; 10:1937-1953. [PMID: 32774994 PMCID: PMC7407356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal disease with high malignancy and difficult for early diagnosis. PC causes more than 400,000 patient deaths world widely and becomes the severe health problems. The tumor microenvironment (TME) is comprised of acellular stroma, pancreatic stellate cells, immune cells, and soluble factors. TME is maintained by continuous cell-matrix and cell-cell interactions. TME induced by the interaction among pancreatic cancer cells, epithelial cells and stromal cells is essential for the progression of PC and leads to resistance to chemotherapy. Components in the microenvironment can also promote the formation of connective tissue in the primary or metastatic site, or promote the metastatic ability of PC by enhancing angiogenesis, epithelial-mesenchymal transformation, and lymph angiogenesis. In addition, the TME also leaves pancreatic cancer unsusceptible to different immunotherapeutic strategies. In this review, we summarized the current knowledge about TME in PC. And the focus was placed on the role of TME in chemotherapeutic resistance and metastasis in the field of PC. And we also paid attention to the immunological therapy targeting the TME, aiming to provide the novel therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| |
Collapse
|
273
|
Defining Parallels between the Salivary Glands and Pancreas to Better Understand Pancreatic Carcinogenesis. Biomedicines 2020; 8:biomedicines8060178. [PMID: 32604970 PMCID: PMC7345998 DOI: 10.3390/biomedicines8060178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a dismal prognosis, largely due to its late presentation. Methods for early detection, the development of reliable screening tools, and the identification of sensitive and specific biomarkers have remained essential research priorities to improve early patient management and outcomes. The pancreas and salivary glands share histological and functional similarities, and the salivary glands have demonstrated a role in oral and systemic health. This review focuses on the similarities and differences between the pancreas and salivary glands and how these can inform our understanding of PDAC genesis and early diagnosis. In particular, chemical exposure, which alters salivary gland gene transcription and morphogenesis, may not only directly impact salivary gland regulation but alter pancreatic function via the systemic secretion of growth hormones. Diabetes and obesity are associated with an increased risk of pancreatic cancer, and a link between chemical exposure and the development of diabetes, obesity, and consequently PDAC genesis is proposed. Possible mechanisms include altering salivary or pancreatic morphology and organ function, disrupting endocrine signaling, or altering pro-inflammatory homeostasis. Finally, saliva contains putative specific biomarkers that show promise as non-invasive diagnostic tools for PDAC.
Collapse
|
274
|
Laino AS, Woods D, Vassallo M, Qian X, Tang H, Wind-Rotolo M, Weber J. Serum interleukin-6 and C-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition. J Immunother Cancer 2020; 8:jitc-2020-000842. [PMID: 32581042 PMCID: PMC7312339 DOI: 10.1136/jitc-2020-000842] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Inflammatory mediators, including acute phase reactants and cytokines, have been reported to be associated with clinical efficacy in patients with melanoma and other cancers receiving immune checkpoint inhibitors (ICI). Analyses of patient sera from three large phase II/III randomized ICI trials, one of which included a chemotherapy arm, were performed to assess whether baseline levels of C-reactive protein (CRP), interleukin-6 (IL-6) or neutrophil/lymphocyte (N/L) ratios were prognostic or predictive. PATIENTS AND METHODS Baseline and on-treatment sera were analyzed by multiplex protein assays from immunotherapy-naïve patients with metastatic melanoma randomized 1:1 on the Checkmate-064 phase II trial of sequential administration of nivolumab followed by ipilimumab or the reverse sequence. Baseline sera, and peripheral blood mononuclear cells using automated cell counting, were analyzed from treatment-naïve patients who were BRAF wild-type and randomly allocated 1:1 to receive nivolumab or dacarbazine on the phase III Checkmate-066 trial, and from treatment-naïve patients allocated 1:1:1 to receive nivolumab, ipilimumab or both ipilimumab and nivolumab on the phase III Checkmate-067 trial. RESULTS Higher baseline levels of IL-6 and the N/L ratio, and to a lesser degree, CRP were associated with shorter survival in patients receiving ICI or chemotherapy. Increased on-treatment levels of IL-6 in patients on the Checkmate-064 study were also associated with shorter survival. IL-6 levels from patients on Checkmate-064, Checkmate-066 and Checkmate-067 were highly correlated with levels of CRP and the N/L ratio. CONCLUSION IL-6, CRP and the N/L ratio are prognostic factors with higher levels associated with shorter overall survival in patients with metastatic melanoma receiving ICI or chemotherapy in large randomized trials. In a multi-variable analysis of the randomized phase III Checkmate-067 study, IL-6 was a significant prognostic factor for survival.
Collapse
Affiliation(s)
- Andressa S Laino
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David Woods
- Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melinda Vassallo
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | - Hao Tang
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | - Jeffrey Weber
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
275
|
Knochelmann HM, Dwyer CJ, Smith AS, Bowers JS, Wyatt MM, Nelson MH, Rangel Rivera GO, Horton JD, Krieg C, Armeson K, Lesinski GB, Rubinstein MP, Li Z, Paulos CM. IL6 Fuels Durable Memory for Th17 Cell-Mediated Responses to Tumors. Cancer Res 2020; 80:3920-3932. [PMID: 32561531 DOI: 10.1158/0008-5472.can-19-3685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
The accessibility of adoptive T-cell transfer therapies (ACT) is hindered by the cost and time required for product development. Here we describe a streamlined ACT protocol using Th17 cells expanded only 4 days ex vivo. While shortening expansion compromised cell yield, this method licensed Th17 cells to eradicate large tumors to a greater extent than cells expanded longer term. Day 4 Th17 cells engrafted, induced release of multiple cytokines including IL6, IL17, MCP-1, and GM-CSF in the tumor-bearing host, and persisted as memory cells. IL6 was a critical component for efficacy of these therapies via its promotion of long-term immunity and resistance to tumor relapse. Mechanistically, IL6 diminished engraftment of FoxP3+ donor T cells, corresponding with robust tumor infiltration by donor effector over regulatory cells for the Day 4 Th17 cell product relative to cell products expanded longer durations ex vivo. Collectively, this work describes a method to rapidly generate therapeutic T-cell products for ACT and implicates IL6 in promoting durable immunity of Th17 cells against large, established solid tumors. SIGNIFICANCE: An abbreviated, 4-day ex vivo expansion method licenses Th17 cells to confer long-lived immunity against solid malignancies via induction of systemic IL6 in the host.See related commentary by Fiering and Ho, p. 3795.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina. .,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Connor J Dwyer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Aubrey S Smith
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jacob S Bowers
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M Wyatt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Michelle H Nelson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guillermo O Rangel Rivera
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua D Horton
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Carsten Krieg
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Kent Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mark P Rubinstein
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.,Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio
| | - Chrystal M Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina. .,Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
276
|
Yang Y, Wang C, Sun H, Jiang Z, Zhang Y, Pan Z. Apatinib prevents natural killer cell dysfunction to enhance the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Gene Ther 2020; 28:89-97. [PMID: 32533100 DOI: 10.1038/s41417-020-0186-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/09/2022]
Abstract
Apatinib, a selective vascular endothelial growth factor receptor 2-tyrosine kinase inhibitor, has demonstrated activity against a wide range of solid tumors, including advanced hepatocellular carcinoma (HCC). Preclinical and preliminary clinical results have confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) blockade. However, the immunologic mechanism of this combination therapy remains unclear. Here, using a syngeneic HCC mouse model, we demonstrated that treatment with apatinib resulted in attenuation of tumor growth and increased tumor vessel normalization. Moreover, our results indicated that natural killer cells, but not CD4+ or CD8+ T cells mediated the therapeutic efficacy of apatinib in HCC mouse models. As expected, the combined administration of apatinib and anti-PD-1 antibody into tumor-bearing mice generated potent immune responses resulting in a remarkable reduction of tumor growth. Furthermore, increased interferon-γ and decreased tumor necrosis factor-α and interleukin-6 levels were observed, suggesting the potential benefits of combination therapy with PD-1 blockade and apatinib in HCC.
Collapse
Affiliation(s)
- Yinli Yang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Cong Wang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Haiyan Sun
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhanyu Pan
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
277
|
Tan Y, Li X, Tian Z, Chen S, Zou J, Lian G, Chen S, Huang K, Chen Y. TIMP1 down-regulation enhances gemcitabine sensitivity and reverses chemoresistance in pancreatic cancer. Biochem Pharmacol 2020; 189:114085. [PMID: 32522594 DOI: 10.1016/j.bcp.2020.114085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
The therapeutic effect of gemcitabine (GEM) in pancreatic ductal adenocarcinoma (PDAC) is limited due to low drug sensitivity and high drug resistance. Tissue inhibitor of matrix metalloprotease 1 (TIMP1) is reportedly associated with GEM resistance in PDAC. However, the effect of TIMP1 down-regulation in combination with GEM treatment is unknown. We analyzed the expression of TIMP1 in human PDAC tissue using western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry. TIMP1 was highly expressed in PDAC specimens. Kaplan-Meier survival analysis suggested that a higher level of TIMP1 was correlated with poorer overall survival in 103 PDAC patients. The mRNA and protein expression profiles of TIMP1 were explored in the HTERT-HPNE human pancreatic ductal epithelium cell line, five PDAC cell lines (MIA PaCa-2, PANC-1, BxPC-3, Capan2, and SW1990), and two GEM-resistant PDAC cell lines (MIA PaCa-2R and PANC-1R). Compared with HTERT-HPNE, TIMP1 was highly expressed in the PDAC cell lines. In addition, TIMP1 was upregulated in GEM-resistant PDAC cell lines compared with their parental cells. When TIMP1 was knocked-down using short hairpin RNA, GEM-induced cytotoxicity and apoptosis were increased, while colony formation was repressed in MIA PaCa-2, PANC-1, and their GEM-resistant cells. When Bax was activated by BAM7 or Bcl-2 was inhibited by venetoclax, CCK-8 assays demonstrated that GEM sensitivity was restored in GEM-resistant cells. When Bax was down-regulated by siRNA, CCK-8 assays verified that GEM sensitivity was decreased in PDAC cells. The observations that TIMP1 knockdown enhanced GEM sensitivity and reversed chemoresistance by inducing cells apoptosis indicated cooperative antitumor effects of shTIMP1 and GEM therapy on PDAC cells. The combination may be a potential strategy for PDAC therapy.
Collapse
Affiliation(s)
- Ying Tan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xuanna Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhenfeng Tian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shangxiang Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yinting Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
278
|
Choueiry F, Torok M, Shakya R, Agrawal K, Deems A, Benner B, Hinton A, Shaffer J, Blaser BW, Noonan AM, Williams TM, Dillhoff M, Conwell DL, Hart PA, Cruz-Monserrate Z, Bai XF, Carson WE, Mace TA. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer 2020; 8:e000189. [PMID: 32581043 PMCID: PMC7312341 DOI: 10.1136/jitc-2019-000189] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A significant challenge to overcome in pancreatic ductal adenocarcinoma (PDAC) is the profound systemic immunosuppression that renders this disease non-responsive to immunotherapy. Our supporting data provide evidence that CD200, a regulator of myeloid cell activity, is expressed in the PDAC microenvironment. Additionally, myeloid-derived suppressor cells (MDSC) isolated from patients with PDAC express elevated levels of the CD200 receptor (CD200R). Thus, we hypothesize that CD200 expression in the PDAC microenvironment limits responses to immunotherapy by promoting expansion and activity of MDSC. METHODS Immunofluorescent staining was used to determine expression of CD200 in murine and human PDAC tissue. Flow cytometry was utilized to test for CD200R expression by immune populations in patient blood samples. In vivo antibody blocking of CD200 was conducted in subcutaneous MT-5 tumor-bearing mice and in a genetically engineered PDAC model (KPC-Brca2 mice). Peripheral blood mononuclear cells (PBMC) from patients with PDAC were analyzed by single-cell RNA sequencing. MDSC expansion assays were completed using healthy donor PBMC stimulated with IL-6/GM-CSF in the presence of recombinant CD200 protein. RESULTS We found expression of CD200 by human pancreatic cell lines (BxPC3, MiaPaca2, and PANC-1) as well as on primary epithelial pancreatic tumor cells and smooth muscle actin+ stromal cells. CD200R expression was found to be elevated on CD11b+CD33+HLA-DRlo/- MDSC immune populations from patients with PDAC (p=0.0106). Higher expression levels of CD200R were observed in CD15+ MDSC compared with CD14+ MDSC (p<0.001). In vivo studies demonstrated that CD200 antibody blockade limited tumor progression in MT-5 subcutaneous tumor-bearing and in KPC-Brca2 mice (p<0.05). The percentage of intratumoral MDSC was significantly reduced in anti-CD200 treated mice compared with controls. Additionally, in vivo blockade of CD200 can also significantly enhance the efficacy of PD-1 checkpoint antibodies compared with single antibody therapies (p<0.05). Single-cell RNA sequencing of PBMC from patients revealed that CD200R+ MDSC expressed genes involved in cytokine signaling and MDSC expansion. Further, in vitro cytokine-driven expansion and the suppressive activity of human MDSC was enhanced when cocultured with recombinant CD200 protein. CONCLUSIONS These results indicate that CD200 expression in the PDAC microenvironment may regulate MDSC expansion and that targeting CD200 may enhance activity of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Fouad Choueiry
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Molly Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Reena Shakya
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Kriti Agrawal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Undergaduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Anna Deems
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Brooke Benner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Jami Shaffer
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Bradley W Blaser
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Anne M Noonan
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Mary Dillhoff
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - William E Carson
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
279
|
Matsuki T, Okamoto I, Fushimi C, Sawabe M, Kawakita D, Sato H, Tsukahara K, Kondo T, Okada T, Tada Y, Miura K, Omura G, Yamashita T. Hematological predictive markers for recurrent or metastatic squamous cell carcinomas of the head and neck treated with nivolumab: A multicenter study of 88 patients. Cancer Med 2020; 9:5015-5024. [PMID: 32441463 PMCID: PMC7367642 DOI: 10.1002/cam4.3124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/29/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is increasing evidence that immunotherapy with nivolumab, an anti‐programmed death 1 monoclonal antibody, is effective in the treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). However, the predictive role of hematological inflammatory markers such as neutrophil‐to‐lymphocyte ratio (NLR) and the modified Glasgow prognostic score (mGPS) in patients with R/M SCCHN treated with nivolumab remains unclear. Methods We conducted a multi‐institutional cohort study to evaluate the impact of pretreatment NLR and mGPS on overall survival (OS) and progression‐free survival (PFS) in patients with R/M SCCHN treated with nivolumab in Japan. From 2012 to 2013, 102 patients were eligible, of whom 88 were finally included in the analysis. mGPS was calculated as follows: mGPS of 0, C‐reactive protein (CRP) ≤1.0 mg/dL; 1, CRP > 1.0 mg/dL; and 2, CRP > 1.0 mg/dL and albumin < 3.5 mg/dL. Optimal cutoff point of dichotomized NLR was calculated using the area under the receiver operating characteristic curve (AUROC). Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated by Cox proportional hazard models adjusted by potential confounders. Results Higher NLR was significantly associated with worse survival (1‐year OS: 45.3% vs 16.3%, log‐rank P‐value < .001, adjusted HR: 4.40 (95% CIs: 1.78‐10.88); one‐year PFS: 39.1% vs 9.0%, P‐value = .001, adjusted HR: 3.37 (95% CI: 1.64‐6.92)). In addition, high mGPS (=2) was significantly associated with worse survival compared to low mGPS (=0) (1‐year OS: 37.4% vs 26.1%, P‐value = .004, adjusted HR: 4.20 (95% CI:1.54‐11.49); 1‐year PFS: 41.5% vs 24.8%, P‐value = .007, adjusted HR: 2.01 (95% CI: 0.87‐4.68)). These associations were consistent with subgroup analyses stratified by potential confounders. Conclusions Pretreatment NLR and mGPS might be predictive markers of survival in patients with R/M SCCHN treated with nivolumab.
Collapse
Affiliation(s)
- Takashi Matsuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Isaku Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Chihiro Fushimi
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Michi Sawabe
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroki Sato
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Takahito Kondo
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, Japan
| | - Takuro Okada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Kouki Miura
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Go Omura
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
280
|
Kang DH, Park CK, Chung C, Oh IJ, Kim YC, Park D, Kim J, Kwon GC, Kwon I, Sun P, Shin EC, Lee JE. Baseline Serum Interleukin-6 Levels Predict the Response of Patients with Advanced Non-small Cell Lung Cancer to PD-1/PD-L1 Inhibitors. Immune Netw 2020; 20:e27. [PMID: 32655975 PMCID: PMC7327149 DOI: 10.4110/in.2020.20.e27] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although various studies on predictive markers in the use of PD-1/PD-L1 inhibitors are in progress, only PD-L1 expression levels in tumor tissues are currently used. In the present study, we investigated whether baseline serum levels of IL-6 can predict the treatment response of patients with advanced non-small cell lung cancer (NSCLC) treated with PD-1/PD-L1 inhibitors. In our cohort of 125 NSCLC patients, the objective response rate (ORR) and disease control rate (DCR) were significantly higher in those with low IL-6 (<13.1 pg/ml) than those with high IL-6 (ORR 33.9% vs. 11.1%, p=0.003; DCR 80.6% vs. 34.9%, p<0.001). The median progression-free survival was 6.3 months (95% confidence interval [CI], 3.9–8.7) in the low IL-6 group, significantly longer than in the high IL-6 group (1.9 months, 95% CI, 1.6–2.2, p<0.001). The median overall survival in the low IL-6 group was significantly longer than in the high IL-6 group (not reached vs. 7.4 months, 95% CI, 4.8–10.0). Thus, baseline serum IL-6 levels could be a potential biomarker for predicting the efficacy and survival benefit of PD-1/PD-L1 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Da Hyun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Cheol-Kyu Park
- Lung Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Chaeuk Chung
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - In-Jae Oh
- Lung Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young-Chul Kim
- Lung Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Dongil Park
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jinhyun Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Gye Cheol Kwon
- Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Insun Kwon
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
| | - Pureum Sun
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
281
|
Huang H, Brekken RA. Recent advances in understanding cancer-associated fibroblasts in pancreatic cancer. Am J Physiol Cell Physiol 2020; 319:C233-C243. [PMID: 32432930 DOI: 10.1152/ajpcell.00079.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating disease with a poor survival rate. It is resistant to therapy in part due to its unique tumor microenvironment, characterized by a desmoplastic reaction resulting in a dense stroma that constitutes a large fraction of the tumor volume. A major contributor to the desmoplastic reaction are cancer-associated fibroblasts (CAFs). CAFs actively interact with cancer cells and promote tumor progression by different mechanisms, including extracellular matrix deposition, remodeling, and secretion of tumor promoting factors, making CAFs an attractive target for PDA. However, emerging evidences indicate significant tumor-suppressive functions of CAFs, highlighting the complexity of CAF biology. CAFs were once considered as a uniform cell type within the cancer stroma. Recently, the existence of CAF heterogeneity in PDA has become appreciated. Due to advances in single cell technology, distinct subtypes of CAFs have been identified in PDA. Here we review recent updates in CAF biology in PDA, which may help develop effective CAF-targeted therapies in the future.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
282
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
283
|
Tocilizumab for refractory severe immune checkpoint inhibitor-associated myocarditis. Ann Oncol 2020; 31:1273-1275. [PMID: 32425357 PMCID: PMC7229714 DOI: 10.1016/j.annonc.2020.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
|
284
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
285
|
Principe DR, Rana A. Updated risk factors to inform early pancreatic cancer screening and identify high risk patients. Cancer Lett 2020; 485:56-65. [PMID: 32389710 DOI: 10.1016/j.canlet.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is associated with poor clinical outcomes and incomplete responses to conventional therapy. Therefore, there is an unmet clinical need to better understand the predisposing factors for pancreatic cancer in hopes of providing early screening to high-risk patients. While select risk factors such as age, race, and family history, or predisposing syndromes are unavoidable, there are several new and established risk factors that allow for intervention, namely by counseling patients to make the appropriate lifestyle modifications. Here, we discuss the best-studied risk factors for PDAC such as tobacco use and chronic pancreatitis, as well as newly emerging risk factors including select nutritional deficits, bacterial infections, and psychosocial factors. As several of these risk factors appear to be additive or synergistic, by understanding their relationships and offering coordinated, multidisciplinary care to high-risk patients, it may be possible to reduce pancreatic cancer incidence and improve clinical outcomes through early detection.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
286
|
Shek D, Read SA, Akhuba L, Qiao L, Gao B, Nagrial A, Carlino MS, Ahlenstiel G. Non-coding RNA and immune-checkpoint inhibitors: friends or foes? Immunotherapy 2020; 12:513-529. [DOI: 10.2217/imt-2019-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant component of the human transcriptome. Their biological role, however, remains incompletely understood. Nevertheless, ncRNAs are highly associated with cancer development and progression due to their ability to modulate gene expression, protein translation and growth pathways. Immune-checkpoint inhibitors (ICIs) are considered one of the most promising and highly effective therapeutic approaches for cancer treatment. ICIs are monoclonal antibodies targeting immune checkpoints such as CTLA-4, PD-1 and PD-L1 signalling pathways that stimulate T cell cytotoxicity and can result in tumor growth suppression. This Review will summarize existing knowledge regarding ncRNAs and their role in cancer and ICI therapy. In addition, we will discuss potential mechanisms by which ncRNAs may influence ICI treatment outcomes.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Scott A Read
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Liia Akhuba
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Bo Gao
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Adnan Nagrial
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| |
Collapse
|
287
|
Wang X, Li X, Wei X, Jiang H, Lan C, Yang S, Wang H, Yang Y, Tian C, Xu Z, Zhang J, Hao J, Ren H. PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC. Signal Transduct Target Ther 2020; 5:38. [PMID: 32300119 PMCID: PMC7162990 DOI: 10.1038/s41392-020-0144-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/23/2022] Open
Abstract
High expression of PD-L1 marks the poor prognosis of pancreatic ductal adenocarcinomas (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. We recently reported that cancer Forkhead box protein 3 (Cancer-FOXP3 or C-FOXP3) promoted immune evasion of PDAC by recruiting Treg cells into PDAC via upregulation of CCL5. In this study, we confirmed that PD-L1 was overexpressed in PDAC samples from two independent cohorts of patients with radical resection. Moreover, C-FOXP3 was colocalized and correlated with the expression of PD-L1 in tumor cells at the mRNA and protein levels, and this finding was confirmed by the The Cancer Genome Atlas (TCGA) database. Chromatin immunoprecipitation (ChIP) revealed that C-FOXP3 directly bound to the promoter region of PD-L1 in pancreatic cancer cells. Furthermore, overexpression of C-FOXP3 activated the luciferase reporter gene under the control of the PD-L1 promoter. However, mutation of the binding motif-a completely reversed the luciferase activity. In addition, C-FOXP3-induced upregulation of PD-L1 effectively inhibited the activity of CD8+ T cells. Based on our recent finding that the CCL-5 antibody achieved a better response to PDAC models with high C-FOXP3 levels, we further demonstrated that the PD-L1 antibody strengthened the antitumor effect of CCL-5 blockade in xenograft and orthotopic mouse models with high C-FOXP3 levels. In conclusion, C-FOXP3 directly activates PD-L1 and represents a core transcription factor that mediates the immune escape of PDAC. Combined blockade of PD-L1 and CCL-5 may provide an effective therapy for patients with PDAC that have high C-FOXP3 levels.
Collapse
Affiliation(s)
- Xiuchao Wang
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA.,Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Xin Li
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China.,Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Xunbin Wei
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, and Biomedical Engineering Department, Peking University, 100081, Beijing, China
| | - Haiping Jiang
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Chungen Lan
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Han Wang
- Department of Applied Statistics, College of Science, Hebei University of Technology, 300401, Tianjin, China
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, 300134, Tianjin, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, 300381, Tianjin, China
| | - Zanmei Xu
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, 300381, Tianjin, China
| | - Jiangyan Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, 300381, Tianjin, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - He Ren
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China. .,Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
288
|
Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol 2020; 17:504-515. [DOI: 10.1038/s41571-020-0352-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
|
289
|
Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, Larkin J, Peters S, Thompson JA, Obeid M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol 2020; 31:724-744. [PMID: 32194150 DOI: 10.1016/j.annonc.2020.03.285] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with cancer and with preexisting active autoimmune diseases (ADs) have been excluded from immunotherapy clinical trials because of concerns for high susceptibility to the development of severe adverse events resulting from exacerbation of their preexisting ADs. However, a growing body of evidence indicates that immune-checkpoint inhibitors (ICIs) may be safe and effective in this patient population. However, baseline corticosteroids and other nonselective immunosuppressants appear to negatively impact drug efficacy, whereas retrospective and case report data suggest that use of specific immunosuppressants may not have the same consequences. Therefore, we propose here a two-step strategy. First, to lower the risk of compromising ICI efficacy before their initiation, nonselective immunosuppressants could be replaced by specific selective immunosuppressant drugs following a short rotation phase. Subsequently, combining ICI with the selective immunosuppressant could prevent exacerbation of the AD. For the most common active ADs encountered in the context of cancer, we propose specific algorithms to optimize ICI therapy. These preventive strategies go beyond current practices and recommendations, and should be practiced in ICI-specialized clinics, as these require multidisciplinary teams with extensive knowledge in the field of clinical immunology and oncology. In addition, we challenge the exclusion from ICI therapy for patients with cancer and active ADs and propose the implementation of an international registry to study such novel strategies in a prospective fashion.
Collapse
Affiliation(s)
- J Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands
| | - M S Ernstoff
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Y Wang
- Department of Gastroenterology, Hepatology & Nutrition, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - I Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - P Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - J Larkin
- Royal Marsden NHS Foundation Trust, London, UK
| | - S Peters
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and Lausanne University, Lausanne, Switzerland
| | - J A Thompson
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA; National Cancer Institute/NIH, Bethesda, USA
| | - M Obeid
- Department of Medicine, Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Vaccine and Immunotherapy Center, Centre Hospitalier Universitaire Vaudois (CHUV), Centre d'Immunothérapie et de Vaccinologie, Lausanne, Switzerland.
| |
Collapse
|
290
|
A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat Chem 2020; 12:381-390. [DOI: 10.1038/s41557-020-0426-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
291
|
Gleeson FC, Levy MJ, Jackson RA, Murphy SJ, Halling KC, Kipp BR, Graham RP, Zhang L. Endoscopic ultrasound may be used to deliver gene expression signatures using digital mRNA detection methods to immunophenotype pancreatic ductal adenocarcinoma to facilitate personalized immunotherapy. Pancreatology 2020; 20:229-238. [PMID: 31831392 DOI: 10.1016/j.pan.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & OBJECTIVES Biomarkers are increasingly required to molecularly characterize pancreatic ductal adenocarcinoma (PDAC) subgroup populations, to determine who may benefit from immune based targeted therapy. We evaluated the feasibility of gene expression signature detection and the respective landscape of specific tumor infiltrating lymphocytes (TILs), cancer/testis (CT) antigens, and immune checkpoints for possible future personalized immunotherapy eligibility. METHODS Dedicated digital mRNA oncologic immune profiling of 770 genes using a Nanostring nCounter® PanCancer Immune Profiling Panel was performed using archived endoscopic ultrasound fine needle biopsy (EUS FNB) PDAC specimens as a case series in a tertiary care setting. RESULTS The spectrum of mRNA gene expression within the tumor specimens revealed that 44.8%, 10.0% and 50.7% of evaluated genes had a ≥ 2-fold increase, a ≤ 2-fold reduction or between <2 and >2 change of mRNA expression, when compared to normal controls. The corresponding landscape of TILs, CT antigens, and immune checkpoints highlighted several possibilities that could potentially be amenable to targeted personalized immunotherapy. This includes members of the Tumor Associated Macrophage family (CD68, CXCL5, and MARCO), members of the CT antigen family (PRAME, TTK and PBK) and the "second generation" checkpoints TIM3 and BTLA. CONCLUSIONS Our study represents the ability to successfully perform digital mRNA expression profile analyses to immunophenotype PDAC EUS FNB specimens by evaluating the expression of >730 genes within the tumor immune microenvironment. This may facilitate the search for novel therapeutic targets, offering the opportunity to go beyond immune monotherapy, but perhaps to use combined immunomodulatory agents.
Collapse
Affiliation(s)
- Ferga C Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| | - Michael J Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rory A Jackson
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Murphy
- Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | | | - Lizhi Zhang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
292
|
Wachowska M, Stachura J, Tonecka K, Fidyt K, Braniewska A, Sas Z, Kotula I, Rygiel TP, Boon L, Golab J, Muchowicz A. Inhibition of IDO leads to IL-6-dependent systemic inflammation in mice when combined with photodynamic therapy. Cancer Immunol Immunother 2020; 69:1101-1112. [PMID: 32107566 PMCID: PMC7230067 DOI: 10.1007/s00262-020-02528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
It was previously reported that the activation of antitumor immune response by photodynamic therapy (PDT) is crucial for its therapeutic outcome. Excessive PDT-mediated inflammation is accompanied by immunosuppressive mechanisms that protect tissues from destruction. Thus, the final effect of PDT strongly depends on the balance between the activation of an adoptive arm of immune response and a range of activated immunosuppressive mechanisms. Here, with flow cytometry and functional tests, we evaluate the immunosuppressive activity of tumor-associated myeloid cells after PDT. We investigate the antitumor potential of PDT combined with indoleamine 2,3-dioxygenase 1 (IDO) inhibitor in the murine 4T1 and E0771 orthotopic breast cancer models. We found that the expression of IDO, elevated after PDT, affects the polarization of T regulatory cells and influences the innate immune response. Our results indicate that, depending on a therapeutic scheme, overcoming IDO-induced immunosuppressive mechanisms after PDT can be beneficial or can lead to a systemic toxic reaction. The inhibition of IDO, shortly after PDT, activates IL-6-dependent toxic reactions that can be diminished by the use of anti-IL-6 antibodies. Our results emphasize that deeper investigation of the physiological role of IDO, an attractive target for immunotherapies of cancer, is of great importance.
Collapse
Affiliation(s)
- Malgorzata Wachowska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Tonecka
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Braniewska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotula
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Tomasz Piotr Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland. .,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.
| |
Collapse
|
293
|
Qu Y, He Y, Yang Y, Li S, An W, Li Z, Wang X, Han Z, Qin L. ALDH3A1 acts as a prognostic biomarker and inhibits the epithelial mesenchymal transition of oral squamous cell carcinoma through IL-6/STAT3 signaling pathway. J Cancer 2020; 11:2621-2631. [PMID: 32201532 PMCID: PMC7066020 DOI: 10.7150/jca.40171] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives: Aldehyde dehydrogenase 3A1 (ALDH3A1) is a member of the ALDH superfamily and its relationship with oral squamous cell carcinoma (OSCC) still unknown. In our subject, we aimed to reveal the expression pattern and clinical value of ALDH3A1 in OSCC and its biological function in OSCC cell lines. Materials and methods: The expression level of ALDH3A1 in paired OSCC tissues and adjacent noncancerous tissues were detected by quantitative real-time PCR, Western blot and immunohistochemistry. The relationship between ALDH3A1 expression and clinical characteristics was analyzed. Besides, cell-counting kit 8, colony formation, wound healing, transwell invasion, apoptosis and cell cycle assays were employed to assess the role of ALDH3A1 in OSCC cells. To explore the influence of ALDH3A1 on OSCC epithelial-to-mesenchymal transition (EMT), the expression of EMT markers (E-cadherin, vimentin, snail, MMP3) on OSCC cells were detected, and possible mechanisms were analyzed. Results: In OSCC tissues, ALDH3A1 was significantly decreased compared to the adjacent normal tissues. Lower ALDH3A1 expression in OSCC tissues was associated with a higher incidence of lymph node metastasis (LNM). Moreover, the overall survival of OSCC with low ALDH3A1 expression was significantly worse compared to that of OSCC with high ALDH3A1 expression. Restored expression of ALDH3A1 suppressed cell proliferation, migration and invasion in OSCC cells. Further experiments showed that ALDH3A1 might inhibit EMT in OSCC via a regulation of the IL-6/STAT3 signal pathway. Conclusion: These data indicate that ALDH3A1 may serve as a biomarker and may be developed into a novel treatment for OSCC.
Collapse
Affiliation(s)
- Yi Qu
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Ying He
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Yang Yang
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Shaoqing Li
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Wei An
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Zhilin Li
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Xue Wang
- Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Zhengxue Han
- Professor and Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| | - Lizheng Qin
- Professor and Medical Doctor, Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China, 100050
| |
Collapse
|
294
|
Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19:32. [PMID: 32061257 PMCID: PMC7023714 DOI: 10.1186/s12943-020-01151-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.
Collapse
Affiliation(s)
- Jia-qiao Fan
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Fei Wang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Long Chen
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jugal K. Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| |
Collapse
|
295
|
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, Ma C, Xu L, Gao L. IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif 2020; 53:e12776. [PMID: 32020709 PMCID: PMC7106962 DOI: 10.1111/cpr.12776] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Interleukin-6 (IL-6) is critical for the development of non-small-cell lung cancer (NSCLC). Recently, we identified T-cell immunoglobulin domain and mucin domain 4 (TIM-4) as a new pro-growth player in NSCLC progression. However, the role of TIM-4 in IL-6-promoted NSCLC migration, invasion and epithelial-to-mesenchymal transition (EMT) remains unclear. MATERIALS AND METHODS Expressions of TIM-4 and IL-6 were both evaluated by immunohistochemical staining in NSCLC tissues. Real-time quantitative PCR (qPCR), Western blot, flow cytometry and RT-PCR were performed to detect TIM-4 expression in NSCLC cells with IL-6 stimulation. The roles of TIM-4 in IL-6 promoting migration and invasion of NSCLC were detected by transwell assay. EMT-related markers were analysed by qPCR and Western blot in vitro, and metastasis was evaluated in BALB/c nude mice using lung cancer metastasis mouse model in vivo. RESULTS High IL-6 expression was identified as an independent predictive factor for TIM-4 expression in NSCLC tissues. NSCLC patients with TIM-4 and IL-6 double high expression showed the worst prognosis. IL-6 promoted TIM-4 expression in NSCLC cells depending on NF-κB signal pathway. Both TIM-4 and IL-6 promoted migration, invasion and EMT of NSCLC cells. Interestingly, TIM-4 knockdown reversed the role of IL-6 in NSCLC and IL-6 promoted metastasis of NSCLC by up-regulating TIM-4 via NF-κB. CONCLUSIONS TIM-4 involves in IL-6 promoted migration, invasion and EMT of NSCLC.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Hongxing Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fuxiang Bai
- Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yanyan Huang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Changchang Lu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Siyuan Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
296
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
297
|
Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020; 232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/09/2023]
|
298
|
Farren MR, Sayegh L, Ware MB, Chen HR, Gong J, Liang Y, Krasinskas A, Maithel SK, Zaidi M, Sarmiento JM, Kooby D, Patel P, El-Rayes B, Shaib W, Lesinski GB. Immunologic alterations in the pancreatic cancer microenvironment of patients treated with neoadjuvant chemotherapy and radiotherapy. JCI Insight 2020; 5:130362. [PMID: 31830001 PMCID: PMC7030821 DOI: 10.1172/jci.insight.130362] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has dismal 5-year survival (<9%). We hypothesize that exposure of tumors to conventional therapies may preferentially modulate immune biomarkers in the tumor microenvironment in PDAC. PDAC patients who underwent upfront surgical resection or who received neoadjuvant FOLFIRINOX with or without neoadjuvant radiotherapy followed by surgical resection were selected for study. Total expression of immunologically relevant transcripts and spatially resolved expression of immunologically relevant proteins was quantitated using multiplexed methods (NanoString nCounter and GeoMX platforms). This analysis identified numerous differentially expressed transcripts associated with the type of neoadjuvant therapy received. Moreover, we identified significant alterations in the expression and/or spatial distribution of immunologically relevant proteins in different regions (tumor cell rich, immune cell rich, stromal cell rich) of the tumor microenvironment. These data provide insight into the immunological effects of clinically relevant neoadjuvant therapy for resectable/borderline-resectable PDAC by describing significant differences in the expression of key immunologic biomarkers within the PDAC microenvironment that were associated with the type of treatment patients received prior to surgical resection. This represents a comprehensive analysis of numerous biomarkers conducted on the PDAC microenvironment. This work may guide strategic new combination therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Matthew R. Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Layal Sayegh
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Brandon Ware
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Hsiao-Rong Chen
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jingjing Gong
- Pathology Department, NanoString Inc., Seattle, Washington, USA
| | - Yan Liang
- Pathology Department, NanoString Inc., Seattle, Washington, USA
| | | | | | | | | | | | - Pretesh Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Walid Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
299
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
300
|
Hu G, Tu W, Yang L, Peng G, Yang L. ARID1A deficiency and immune checkpoint blockade therapy: From mechanisms to clinical application. Cancer Lett 2020; 473:148-155. [PMID: 31911080 DOI: 10.1016/j.canlet.2020.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
The AT-rich interaction domain 1A (ARID1A, also known as BAF250a) is a chromatin remodeling gene, which frequently mutates across a broad spectrum of cancers with loss expression of the ARID1A protein. Recently, the association between ARID1A deficiency and immune checkpoint blockade (ICB) therapy has been reported. ARID1A deficiency contributes to the high microsatellite instability phenotype, increases tumor mutation burden, elevates expression of programmed cell death ligand 1 (PD-L1), and modulates the immune microenvironment, supporting the view that ARID1A loss might serve as a predictive biomarker for ICB. Furthermore, the therapeutic targeting strategies, which show "synthetic lethality" with ARID1A deficiency, exhibit potential synergy with ICB. We collectively reviewed the mechanisms underlying the correlation between ARID1A deficiency and ICB, the predictive function of ARID1A deficiency for ICB, and potential combined strategies of targeting agents, vulnerable for ARID1A deficiency, with ICB in cancer treatment.
Collapse
Affiliation(s)
- Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Tu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Liu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|