251
|
Heath JM, Sun Y, Yuan K, Bradley WE, Litovsky S, Dell'Italia LJ, Chatham JC, Wu H, Chen Y. Activation of AKT by O-linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circ Res 2014; 114:1094-102. [PMID: 24526702 DOI: 10.1161/circresaha.114.302968] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Vascular calcification is a serious cardiovascular complication that contributes to the increased morbidity and mortality of patients with diabetes mellitus. Hyperglycemia, a hallmark of diabetes mellitus, is associated with increased vascular calcification and increased modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation). OBJECTIVE We sought to determine the role of protein O-GlcNAcylation in regulating vascular calcification and the underlying mechanisms. METHODS AND RESULTS Low-dose streptozotocin-induced diabetic mice exhibited increased aortic O-GlcNAcylation and vascular calcification, which was also associated with impaired aortic compliance in mice. Elevation of O-GlcNAcylation by administration of Thiamet-G, a potent inhibitor for O-GlcNAcase that removes O-GlcNAcylation, further accelerated vascular calcification and worsened aortic compliance of diabetic mice in vivo. Increased O-GlcNAcylation, either by Thiamet-G or O-GlcNAcase knockdown, promoted calcification of primary mouse vascular smooth muscle cells. Increased O-GlcNAcylation in diabetic arteries or in the O-GlcNAcase knockdown vascular smooth muscle cell upregulated expression of the osteogenic transcription factor Runx2 and enhanced activation of AKT. O-GlcNAcylation of AKT at two new sites, T430 and T479, promoted AKT phosphorylation, which in turn enhanced vascular smooth muscle cell calcification. Site-directed mutation of AKT at T430 and T479 decreased O-GlcNAcylation, inhibited phosphorylation of AKT at S473 and binding of mammalian target of rapamycin complex 2 to AKT, and subsequently blocked Runx2 transactivity and vascular smooth muscle cell calcification. CONCLUSIONS O-GlcNAcylation of AKT at 2 new sites enhanced AKT phosphorylation and activation, thus promoting vascular calcification. Our studies have identified a novel causative effect of O-GlcNAcylation in regulating vascular calcification in diabetes mellitus and uncovered a key molecular mechanism underlying O-GlcNAcylation-mediated activation of AKT.
Collapse
Affiliation(s)
- Jack M Heath
- From the Departments of Pathology (J.M.H., Y.S., K.Y., S.L., J.C.C., Y.C.), Medicine (W.E.B., L.J.D'I.), and Pediatric Dentistry (H.W.), University of Alabama at Birmingham; and Veterans Affairs, Department of Research Service, Birmingham, AL (L.J.D'I., Y.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Han MS, Che X, Cho GH, Park HR, Lim KE, Park NR, Jin JS, Jung YK, Jeong JH, Lee IK, Kato S, Choi JY. Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification. PLoS One 2013; 8:e83584. [PMID: 24349534 PMCID: PMC3861528 DOI: 10.1371/journal.pone.0083584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/06/2013] [Indexed: 01/25/2023] Open
Abstract
The transdifferentiation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells has been implicated in the context of vascular calcification. We investigated the roles of vitamin D receptor (Vdr) and runt-related transcription factor 2 (Runx2) in the osteoblastic differentiation of VSMCs in response to vitamin D3 using in vitro VSMCs cultures and in vivo in Vdr knockout (Vdr-/-) and Runx2 carboxy-terminus truncated heterozygous (Runx2+/ΔC) mice. Treatment of VSMCs with active vitamin D3 promoted matrix mineral deposition, and increased the expressions of Vdr, Runx2, and of osteoblastic genes but decreased the expression of smooth muscle myosin heavy chain in primary VSMCs cultures. Immunoprecipitation experiments suggested an interaction between Vdr and Runx2. Furthermore, silencing Vdr or Runx2 attenuated the procalcific effects of vitamin D3. Functional cooperation between Vdr and Runx2 in vascular calcification was also confirmed in in vivo mouse models. Vascular calcification induced by high-dose vitamin D3 was completely inhibited in Vdr-/- or Runx2+/ΔC mice, despite elevated levels of serum calcium or alkaline phosphatase. Collectively, these findings suggest that functional cooperation between Vdr and Runx2 is necessary for vascular calcification in response to vitamin D3.
Collapse
MESH Headings
- Animals
- Bone Density Conservation Agents/adverse effects
- Bone Density Conservation Agents/pharmacology
- Cells, Cultured
- Cholecalciferol/adverse effects
- Cholecalciferol/pharmacology
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Vascular Calcification/chemically induced
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Min-Su Han
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyoung-ho Cho
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ri Park
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Eun Lim
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Na-Rae Park
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Sook Jin
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youn-Kwan Jung
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hwan Jeong
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, WCU and BK21 plus programs, CMRC, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
253
|
Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med 2013; 65:693-703. [PMID: 23938401 PMCID: PMC3859773 DOI: 10.1016/j.freeradbiomed.2013.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 12/14/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are fundamental in regulating blood pressure and distributing oxygen and nutrients to peripheral tissues. They also possess remarkable plasticity, with the capacity to switch to synthetic, macrophage-like, or osteochondrogenic phenotypes when cued by external stimuli. In arterial diseases such as atherosclerosis and restenosis, this plasticity seems to be critical and, depending on the disease context, can be deleterious or beneficial. Therefore, understanding the mechanisms regulating VSMC phenotype and survival is essential for developing new therapies for vascular disease as well as understanding how secondary complications due to surgical interventions develop. In this regard, the cellular process of autophagy is increasingly being recognized as a major player in vascular biology and a critical determinant of VSMC phenotype and survival. Although autophagy was identified in lesional VSMCs in the 1960s, our understanding of the implications of autophagy in arterial diseases and the stimuli promoting its activation in VSMCs is only now being elucidated. In this review, we highlight the evidence for autophagy occurring in VSMCs in vivo, elaborate on the stimuli and processes regulating autophagy, and discuss the current understanding of the role of autophagy in vascular disease.
Collapse
Affiliation(s)
- Joshua K Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
254
|
Abstract
Ageing is a potent, independent risk factor for cardiovascular disease. Calcification of the vascular smooth muscle cell (VSMC) layer of the vessel media is a hallmark of vascular ageing. Young patients with chronic kidney disease (CKD) exhibit an extremely high cardiovascular mortality, equivalent to that seen in octogenarians in the general population. Even children on dialysis develop accelerated medial vascular calcification and arterial stiffening, leading to the suggestion that patients with CKD exhibit a 'premature ageing' phenotype. It is now well documented that uraemic toxins, particularly those associated with dysregulated mineral metabolism, can drive VSMC damage and phenotypic changes that promote vascular calcification; epidemiological data suggest that some of these same risk factors associate with cardiovascular mortality in the aged general population. Importantly, emerging evidence suggests that uraemic toxins may promote DNA damage, a key factor driving cellular ageing, and moreover, that these ageing mechanisms may reiterate some of those seen in patients with genetically induced progeric syndromes caused by nuclear lamina disruption. This new knowledge should pave the way for the development of novel therapies that target tissue-specific ageing mechanisms to treat vascular decline in CKD.
Collapse
|
255
|
Abstract
RATIONALE Vascular calcification is a regulated process that involves osteoprogenitor cells and frequently complicates common vascular disease, such as atherosclerosis and diabetic vasculopathy. However, it is not clear whether the vascular endothelium has a role in contributing osteoprogenitor cells to the calcific lesions. OBJECTIVE To determine whether the vascular endothelium contributes osteoprogenitor cells to vascular calcification. METHODS AND RESULTS In this study, we use 2 mouse models of vascular calcification, mice with gene deletion of matrix Gla protein, a bone morphogenetic protein (BMP)-inhibitor, and Ins2Akita/+ mice, a diabetes model. We show that enhanced BMP signaling in both types of mice stimulates the vascular endothelium to contribute osteoprogenitor cells to the vascular calcification. The enhanced BMP signaling results in endothelial-mesenchymal transitions and the emergence of multipotent cells, followed by osteoinduction. Endothelial markers colocalize with multipotent and osteogenic markers in calcified arteries by immunostaining and fluorescence-activated cell sorting. Lineage tracing using Tie2-Gfp transgenic mice supports an endothelial origin of the osteogenic cells. Enhancement of matrix Gla protein expression in Ins2Akita/+ mice, as mediated by an Mgp transgene, limits the generation of multipotent cells. Moreover, matrix Gla protein-depleted human aortic endothelial cells in vitro acquire multipotency rendering the cells susceptible to osteoinduction by BMP and high glucose. CONCLUSIONS Our data suggest that the endothelium is a source of osteoprogenitor cells in vascular calcification that occurs in disorders with high BMP activation, such as deficiency of BMP-inhibitors and diabetes mellitus.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Calcinosis/physiopathology
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/physiology
- Cell Lineage
- Cell Transdifferentiation/physiology
- Cells, Cultured/drug effects
- Diabetes Mellitus, Type 2/genetics
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Disease Models, Animal
- Endothelial Cells/pathology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Glucose/pharmacology
- Heterozygote
- Humans
- Insulin/genetics
- Insulin/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/physiology
- Multipotent Stem Cells/pathology
- Muscle Proteins/physiology
- RNA, Small Interfering/pharmacology
- Receptor, TIE-2/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Vascular Diseases/physiopathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Albert Ly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Melina Radparvar
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Mark R. Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA
| |
Collapse
|
256
|
Aherrahrou Z, Schunkert H. Genetics of atherosclerosis and vascular calcification go hand-in-hand. Atherosclerosis 2013; 228:325-6. [DOI: 10.1016/j.atherosclerosis.2012.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
257
|
Circulation Research
Thematic Synopsis. Circ Res 2013. [DOI: 10.1161/circresaha.113.301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
258
|
Sowa AK, Kaiser FJ, Eckhold J, Kessler T, Aherrahrou R, Wrobel S, Kaczmarek PM, Doehring L, Schunkert H, Erdmann J, Aherrahrou Z. Functional interaction of osteogenic transcription factors Runx2 and Vdr in transcriptional regulation of Opn during soft tissue calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:60-8. [PMID: 23644099 DOI: 10.1016/j.ajpath.2013.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/31/2023]
Abstract
Loss of Abcc6 gene expression was identified to be responsible for dystrophic calcification of the heart (DCC) or vessels after acute injury in several strains of laboratory mice. This calcification shares features with osteogenesis and may involve osteogenic factors. Tissue expression of osteopontin (Opn) and 11 osteogenic transcription factors were studied in vivo in mouse models for DCC and in vitro using luciferase reporter gene assays. Compared with DCC-resistant C57BL/6 mice, a significant increase in Opn transcription was demonstrated in necrotic lesions of both DCC-susceptible C3H/He and B6.C3H(Dyscalc1) congenic mice at day 3 after injury. Significant increases in gene expression were also demonstrated for the transcription factors runt domain-containing transcription factor 2 (Runx2), vitamin D receptor (Vdr), SRY (sex-determining region Y)-box 9 protein, and Nfkb1 in C3H/He mice versus C57BL/6 controls. However, only Runx2 remained significantly increased in the B6.C3H(Dyscalc1) congenic mice, which carry only the Dyscalc1 locus with functional Abcc6 deletion on a C57BL/6 genetic background. Luciferase assay use increased Opn promoter activity, which was demonstrated after overexpression of Runx2. A poly-T stretch insertion was identified to stabilize the binding of Runx2, thus significantly enhancing Opn promoter activity. This Runx2-mediated activation was further enhanced by cotransfection with Vdr. Our data suggest a key role of Runx2 in the regulation of Opn in a model of cardiovascular calcification and demonstrate a synergistic cooperation of Runx2 and Vdr.
Collapse
Affiliation(s)
- Ann-Kathrin Sowa
- Institute for Integrative and Experimental Genomics and DZHK-German Centre for Cardiovascular Research, partner site Lübeck/Hamburg/Kiel, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Kim JI, Jang HS, Jeong JH, Noh MR, Choi JY, Park KM. Defect in Runx2 gene accelerates ureteral obstruction-induced kidney fibrosis via increased TGF-β signaling pathway. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1520-7. [PMID: 23639629 DOI: 10.1016/j.bbadis.2013.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 2 (Runx2) plays an important role in bone formation and de novo synthesis of proteins, including type 1 collagen. Runx2 has a potent effect on signaling of transforming growth factor (TGF)-β and vice versa, implicating its significant role in fibrosis. Chronic renal failure comprises fibrosis, characterized as an increase in TGF-β signaling, and expression of α-smooth muscle actin (α-SMA), and extracellular matrix proteins. Here, we evaluated the role of Runx2 in ureteral obstruction (UO)-induced kidney fibrosis using mice whose Runx2 gene expression is genetically down-regulated. UO caused tubular atrophy and dilation, expansion of interstitium, and increased expression of collagens and α-SMA with a concomitant decrease in expression of Runx2. Deficiency of Runx2 gene (Runx2(+/-) mice) showed higher expression of collagens and α-SMA in the kidney following UO compared to wild type (Runx2(+/+)) mice. UO-induced activation of TGF-β signaling was higher in the Runx2(+/-) kidney than Runx2(+/+) kidney, suggesting an inhibitory effect of Runx2 on TGF-β signaling in kidney fibrosis. Besides, overexpression of the Runx2 gene using an adenoviral vector in kidney tubule cells resulted in attenuated TGF-β-induced Smad3 phosphorylation and expressions of α-SMA and collagen I. Furthermore, Runx2 gene deficient mouse embryonic fibroblasts induced greater activation of Smad3 and expression of α-SMA in response to TGF-β. Collectively, Runx2 plays a protective role in UO-induced kidney fibrosis by inhibition of TGF-β signaling, suggesting Runx2 as a novel target for protection against fibrosis-related diseases such as chronic renal failure.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy and BK21, Kyungpook National University School of Medicine, Republic of Korea
| | | | | | | | | | | |
Collapse
|
260
|
Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med 2013; 19:217-26. [PMID: 23375872 DOI: 10.1016/j.molmed.2012.12.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/30/2012] [Accepted: 12/28/2012] [Indexed: 01/13/2023]
Abstract
Vascular mineralization has recently emerged as a risk factor for cardiovascular morbidity and mortality. Previously regarded as a passive end-stage process, vascular mineralization is currently recognized as an actively regulated process with cellular and humoral contributions. The discovery that the vitamin K-dependent matrix Gla-protein (MGP) is a strong inhibitor of vascular calcification has propelled our mechanistic understanding of this process and opened novel avenues for diagnosis and treatment. This review focuses on molecular mechanisms of vascular mineralization involving MGP and discusses the potential for treatments and biomarkers to monitor patients at risk for vascular mineralization.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
261
|
Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res 2013; 112:1073-84. [PMID: 23538277 PMCID: PMC3668680 DOI: 10.1161/circresaha.113.300937] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular calcification is a prominent feature of chronic inflammatory disorders-such as chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis-that associate with significant morbidity and mortality. The concept that similar pathways control both bone remodeling and vascular calcification is widely accepted, but the precise mechanisms of calcification remain largely unknown. The central role of microRNAs (miRNA) as fine-tune regulators in the cardiovascular system and bone biology has gained acceptance and has raised the possibility for novel therapeutic targets. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of miRNA biology in cardiovascular calcification is very limited. This review focuses on the role of miRNAs in cardiovascular disease, with emphasis on osteogenic processes. Herein, we discuss the current understanding of miRNAs in cardiovascular calcification. Furthermore, we identify a set of miRNAs common to diseases associated with cardiovascular calcification (chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis), and we hypothesize that these miRNAs may provide a molecular signature for calcification. Finally, we discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). The aim of this review is to provide an organized discussion of the known links between miRNA and calcification that provide emerging concepts for future studies on miRNA biology in cardiovascular calcification, which will be critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Goettsch
- Harvard Medical School, Cardiovascular Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-741, Boston, MA 02115, USA.
| | | | | |
Collapse
|
262
|
Lang F, Ritz E, Voelkl J, Alesutan I. Vascular calcification--is aldosterone a culprit? Nephrol Dial Transplant 2013; 28:1080-4. [PMID: 23476041 DOI: 10.1093/ndt/gft041] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In chronic kidney disease (CKD), increased plasma phosphate concentrations cause vascular calcification which substantially contribute to cardiovascular events and increased mortality of CKD patients. Similar to CKD patients, klotho-hypomorphic mice (kl/kl) also suffer from excessive vascular calcification leading to growth deficit, rapid ageing and early death. The hyperphosphataemia of kl/kl mice results from excessive formation of 1,25(OH)2D3 causing excessive intestinal phosphate absorption. Further, kl/kl mice further suffer from hyperaldosteronism and compelling evidence points to an active role of mineralocorticoids in triggering osteoinductive programmes in the vasculature, thus further contributing to the development of vascular calcification. Conversely, in kl/kl mice, the mineralocorticoid receptor antagonist spironolactone decreased the vascular osteoinductive processes and reversed the excessive expression of osteogenic programmes, i.e. type III sodium-dependent phosphate transporter Pit1, tumour necrosis factor α (Tnfα), transcription factors Msx2, Cbfa1/Runx2 and osterix as well as alkaline phosphatase (Alp). In human aortic vascular smooth muscle cells (HAoSMCs), aldosterone alone similarly triggered an 'osteogenic' programme, thus increasing PIT1, TNFα, MSX2, CBFA1/RUNX2 and ALP expression as well as ALP activity and potentiated the effects of phosphate treatment. These effects were again reversed by spironolactone and in addition by PIT1 silencing. The above observations reveal that the severe vascular calcification is not only the result of high plasma phosphate concentrations, but also promoted by aldosterone-driven osteoinductive signalling. Future studies in CKD patients will be required to define the role of aldosterone and the potential impact of its inhibition by spironolactone in the pathophysiology of vascular calcification.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
263
|
α-Lipoic acid attenuates coxsackievirus B3-induced ectopic calcification in heart, pancreas, and lung. Biochem Biophys Res Commun 2013; 432:378-83. [PMID: 23357417 DOI: 10.1016/j.bbrc.2013.01.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Ectopic mineralization of soft tissues is known to be a typical response to systemic imbalance of various metabolic factors as well as tissue injury, leading to severe clinical consequences. In this study, coxsackievirus B3 (CVB3) infection in mice resulted in significant tissue injury, especially in the heart and pancreas. Inflammatory damage and apoptotic cell death were observed in CVB3-infected heart and pancreas tissues. Along with tissue damage, substantial ectopic calcification was detected in CVB3-infected heart, pancreas, and lung tissues, as determined by von Kossa staining and calcium content quantification. In addition, CVB3 infection induced upregulation of osteogenic signals, including six genes (BMP2, SPARC, Runx2, osteopontin, collagen type I, and osterix) in the heart, three genes (SPARC, osteopontin, and collagen type I) in the pancreas, and two genes (BMP2 and alkaline phosphatase) in the lung, as determined by quantitative real-time PCR analysis. Intriguingly, we showed that α-lipoic acid diminished CVB3-mediated inflammatory and apoptotic tissue damage, subsequently ameliorating ectopic calcification via the suppression of osteogenic signals. Collectively, our data provide evidence that ectopic calcification induced by CVB3 infection is implicated in the induction of osteogenic propensity, and α-lipoic acid may be a potential therapeutic agent to ameliorate pathologic calcification.
Collapse
|
264
|
Voelkl J, Alesutan I, Leibrock CB, Quintanilla-Martinez L, Kuhn V, Feger M, Mia S, Ahmed MSE, Rosenblatt KP, Kuro-O M, Lang F. Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. J Clin Invest 2013; 123:812-22. [PMID: 23298834 DOI: 10.1172/jci64093] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022] Open
Abstract
Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Journal Club. Kidney Int 2012. [DOI: 10.1038/ki.2012.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
266
|
Yamanouchi D, Takei Y, Komori K. Balanced mineralization in the arterial system: possible role of osteoclastogenesis/osteoblastogenesis in abdominal aortic aneurysm and stenotic disease. Circ J 2012; 76:2732-7. [PMID: 23117745 DOI: 10.1253/circj.cj-12-1240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arterial calcification is the result of the same highly organized processes as seen in bone, which rely on a delicate balance between osteoblasts and osteoclasts. Although previously understood as passive precipitation, evidence has accumulated to suggest that arterial calcification is the result of organized, regulated processes bearing many similarities to osteogenesis in bone, including the presence of subpopulations of arterial wall cells that retain osteoblastic lineage potential. These cells have the potential to form mineralized nodules and express osteoblast markers, including bone morphogenetic protein-2, osteocalcin, osteopontin, and alkaline phosphatase. By contrast, osteoclast-like cells mediate the catabolic process of mineral resorption. Recent data shows that cells positive for tartrate-resistant acid phosphatase, a major marker for osteoclasts, have been histologically identified in atherosclerotic lesions and are referred to as osteoclast-like cells. Evidence has accumulated to suggest that initial arterial calcification through passive precipitation of calcium phosphate initiates balanced mineralization regulated by osteoclast-like and osteoblast-like cells. Subsequently, various pathogenic conditions may trigger an imbalance between osteoblastogenesis and osteoclastogenesis, leading to either calcification in stenotic/occlusive disease or destruction of the extracellular matrix in aneurysmal disease. Further elucidation of these newly emerging concepts could lead to a novel therapeutic approach to arterial stenotic/occlusive disease and/or abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | |
Collapse
|