251
|
Ambika Rajendran M. Ultrasound-guided Microbubble in the Treatment of Cancer: A Mini Narrative Review. Cureus 2018; 10:e3256. [PMID: 30416906 PMCID: PMC6217872 DOI: 10.7759/cureus.3256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbubble is an emerging modality in the field of Medicine for treatment and imaging. Ultrasound-guided microbubble is an effective diagnosing and treatment technique as it can reduce the systemic toxicity of chemotherapeutic drugs. It is also used in targeted gene delivery in gene therapy. The objective of the review article is to formulate a narrative review on the emerging importance of microbubbles in the diagnosis and treatment of cancer and its future in cancer management. The article focuses on the effectiveness of ultrasound-targeted microbubble in the treatment of malignancy.
Collapse
|
252
|
Mariglia J, Momin S, Coe IR, Karshafian R. Analysis of the cytotoxic effects of combined ultrasound, microbubble and nucleoside analog combinations on pancreatic cells in vitro. ULTRASONICS 2018; 89:110-117. [PMID: 29775835 DOI: 10.1016/j.ultras.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Ultrasonically-stimulated microbubbles enhance the therapeutic effects of various chemotherapy drugs. However, the application of ultrasound and microbubbles (USMB) for enhancing the therapeutic effect of nucleoside analogs, which are used as front-line treatments in a range of cancers, and its underlying mechanism is not well understood. This study investigated the effect of gemcitabine, a nucleoside analog drug, in combination with USMB in increasing cell cytotoxicity relative to either treatment alone in BxPC3 pancreatic cancer cells. Cells were sonicated using low frequency (0.5 MHz) ultrasound in combination with Definity® microbubbles (1.7% v/v) in the presence of 1 µM of gemcitabine for a total of 2 h. USMB in combination with gemcitabine decreased cell viability (48 h) to 44.7 ± 5.2%, 27.7 ± 4.3%, and 12.5 ± 3.4% with increasing ultrasound peak negative pressures (220, 360, 530 kPa) from 84.7 ± 3.6%, 54.2 ± 3.8%, and 26.8 ± 3.0%, respectively, when USMB was applied in the absence of drug. We further confirmed that USMB did not enhance the internalization of 1 µM of a radiolabeled nucleoside analog (2-chloroadenosine) at each of the three chosen ultrasound PNPs, determined by radiolabeled scintillation counting. These data suggest that USMB in combination with nucleoside analog drugs leads to an additive effect on cell toxicity and that USMB does not impair transporter-mediated uptake of nucleoside analogs.
Collapse
Affiliation(s)
- Julia Mariglia
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Shadab Momin
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
253
|
Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, Hong JW, Choi J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018; 23:E2210. [PMID: 30200336 PMCID: PMC6225314 DOI: 10.3390/molecules23092210] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Microbubbles and nanobubbles (MNBs) can be prepared using various shells, such as phospholipids, polymers, proteins, and surfactants. MNBs contain gas cores due to which they are echogenic and can be used as contrast agents for ultrasonic and photoacoustic imaging. These bubbles can be engineered in various sizes as vehicles for gas and drug delivery applications with novel properties and flexible structures. Hypoxic areas in tumors develop owing to an imbalance of oxygen supply and demand. In tumors, hypoxic regions have shown more resistance to chemotherapy, radiotherapy, and photodynamic therapies. The efficacy of photodynamic therapy depends on the effective accumulation of photosensitizer drug in tumors and the availability of oxygen in the tumor to generate reactive oxygen species. MNBs have been shown to reverse hypoxic conditions, degradation of hypoxia inducible factor 1α protein, and increase tissue oxygen levels. This review summarizes the synthesis methods and shell compositions of micro/nanobubbles and methods deployed for oxygen delivery. Methods of functionalization of MNBs, their ability to deliver oxygen and drugs, incorporation of photosensitizers and potential application of photo-triggered theranostics, have also been discussed.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyobum Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul 04763, Korea.
- Department of Bionano Engingeering, Hanyang University, Ansan 15588, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
254
|
van den Brand D, Mertens V, Massuger LF, Brock R. siRNA in ovarian cancer – Delivery strategies and targets for therapy. J Control Release 2018; 283:45-58. [DOI: 10.1016/j.jconrel.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
255
|
Khan MS, Hwang J, Seo Y, Shin K, Lee K, Park C, Choi Y, Hong JW, Choi J. Engineering oxygen nanobubbles for the effective reversal of hypoxia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S318-S327. [PMID: 30032670 DOI: 10.1080/21691401.2018.1492420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypoxia, which results from an inadequate supply of oxygen, is a major cause of concern in cancer therapy as it is associated with a reduction in the effectiveness of chemotherapy and radiotherapy in cancer treatment. Overexpression and stabilization of hypoxia-inducible factor 1α (HIF-1α) protein in tumours, due to hypoxia, results in poor prognosis and increased patient mortality. To increase oxygen tension in hypoxic areas, micro- and nanobubbles have been investigated by various researchers. In the present research, lipid-shelled oxygen nanobubbles (ONBs) were synthesized through a sonication method to reverse hypoxic conditions created in a custom-made hypoxic chamber. Release of oxygen gas from ONBs in deoxygenated water was evaluated by measuring dissolved oxygen. Hypoxic conditions were evaluated by performing in vitro experiments on MDA-MB231 breast cancer cells through the expression of HIF-1α and the fluorescence of image-iT™ hypoxia reagent. The results indicated the degradation of HIF-1α after the introduction of ONBs. We propose that ONBs are successful in reversing hypoxia, downregulating HIF-1α, and improving cellular conditions, leading to further medical applications.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| | - Jangsun Hwang
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| | - Youngmin Seo
- b Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Kyusoon Shin
- c Department of Nanobiotechnology, Graduate School , Hanyang University , Seoul , Republic of Korea
| | - Kyungwoo Lee
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| | - Chanhwi Park
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| | - Yonghyun Choi
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| | - Jong Wook Hong
- c Department of Nanobiotechnology, Graduate School , Hanyang University , Seoul , Republic of Korea.,d Department of Bionano Engineering , Hanyang University , Ansan , Republic of Korea
| | - Jonghoon Choi
- a School of Integrative Engineering , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
256
|
Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 2018; 38:2110-2136. [DOI: 10.1002/med.21506] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sima Majidi
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
257
|
Bing C, Hong Y, Hernandez C, Rich M, Cheng B, Munaweera I, Szczepanski D, Xi Y, Bolding M, Exner A, Chopra R. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci Rep 2018; 8:7986. [PMID: 29789589 PMCID: PMC5964106 DOI: 10.1038/s41598-018-26330-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Hong
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Megan Rich
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Imalka Munaweera
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Bolding
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
258
|
López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018; 26-27:1-38. [PMID: 29685859 DOI: 10.1016/j.plrev.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Controlled permeabilization of mammalian cell membranes is fundamental to develop gene and cell therapies based on macromolecular cargo delivery, a process that emerged against an increasing number of health afflictions, including genetic disorders, cancer and infections. Viral vectors have been successfully used for macromolecular delivery; however, they may have unpredictable side effects and have been limited to life-threatening cases. Thus, several chemical and physical methods have been explored to introduce drugs, vaccines, and nucleic acids into cells. One of the most appealing physical methods to deliver genes into cells is shock wave-induced poration. High-speed microjets of fluid, emitted due to the collapse of microbubbles after shock wave passage, represent the most significant mechanism that contributes to cell membrane poration by this technique. Herein, progress in shock wave-induced permeabilization of mammalian cells is presented. After covering the main concepts related to molecular strategies whose applications depend on safer drug delivery methods, the physics behind shock wave phenomena is described. Insights into the use of shock waves for cell membrane permeation are discussed, along with an overview of the two major biomedical applications thereof-i.e., genetic modification and anti-cancer shock wave-assisted chemotherapy. The aim of this review is to summarize 30 years of data showing underwater shock waves as a safe, noninvasive method for macromolecular delivery into mammalian cells, encouraging the development of further research, which is still required before the introduction of this promising tool into clinical practice.
Collapse
Affiliation(s)
- Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares & Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| |
Collapse
|
259
|
Damiati S, Kompella UB, Damiati SA, Kodzius R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes (Basel) 2018; 9:E103. [PMID: 29462948 PMCID: PMC5852599 DOI: 10.3390/genes9020103] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Safa A Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
260
|
Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018; 8:2624. [PMID: 29422676 PMCID: PMC5805674 DOI: 10.1038/s41598-018-21084-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 01/02/2023] Open
Abstract
Recently, liposomes-microbubble conjugates have emerged as a promising ultrasound (US)-responsive platform for cancer therapeutics. However, these are limited by their size in terms of tumor penetration. Additionally, there have been no attempts to enhance the smartness of such conjugates which have been used only as passive carriers. The present study explores submicron sized (756 ± 180.0 nm), US-responsive, phosphatidylserine (PS)-based paclitaxel-liposomes-nanobubble conjugates (PSPLBC) with an additional pro-apoptotic effect towards enhanced anti-cancer efficacy and image-guidance. The developed PSPLBC underwent cavitation in response to US-trigger, exhibiting in vitro pulsatile release with a 10-fold increase in cellular internalization as compared to control. The PS-containing formulations were found to be pro-apoptotic and exhibited strong synergism between PS and paclitaxel (Combination Index, CI < 0.1). This resulted in significantly high anti-tumor efficacy both in vitro and in vivo conditions (98.3 ± 0.8% tumor growth inhibition, TGI). Significant reduction in tumor proliferation index and MVD, as well as significant increase in apoptosis, were observed for the treated tumor sections. Further, the intravenous (i.v.) administration of PSPLBC enhanced the tumor US-contrast by 2-fold as compared to SonoVue. These results, show the potential of PSPLBC as a promising non-invasive, pro-apoptotic, smart DDS for US-responsive, image-guided cancer therapeutics.
Collapse
|
261
|
Leinenga G, Götz J. Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Front Neurosci 2018; 12:55. [PMID: 29467614 PMCID: PMC5808306 DOI: 10.3389/fnins.2018.00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Deposition of amyloid-β (Aβ) peptide leads to amyloid plaques that together with tau deposits characterize the brains of patients with Alzheimer's disease (AD). In modeling this pathology, transgenic animals such as the APP23 strain, that expresses a mutant form of the amyloid precursor protein found in familial cases of AD, have been instrumental. In previous studies, we have shown that repeated treatments with ultrasound in a scanning mode (termed scanning ultrasound or SUS) were effective in removing Aβ and restoring memory functions, without the need for a therapeutic agent such as an Aβ antibody. Considering that age is the most important risk factor for AD, we extended this study in which the mice were only 12 months old at the time of treatment by assessing a cohort of 2 year-old mice. Interestingly, at this age, APP23 mice are characterized by cerebral amyloid angiopathy (CAA) and the presence of occasional microbleeds. We found that SUS in aged mice that have been exposed to four SUS sessions that were spread out over 8 weeks and analyzed 4 weeks later did not show evidence of increased CAA or microbleeds. Furthermore, amyloid was reduced as assessed by methoxy-XO4 fluorescence. In addition, plaque-associated microglia were more numerous in SUS treated mice. Together this adds to the notion that SUS may be a treatment modality for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
262
|
Slenders E, Seneca S, Pramanik SK, Smisdom N, Adriaensens P, vandeVen M, Ethirajan A, Ameloot M. Dynamics of the phospholipid shell of microbubbles: a fluorescence photoselection and spectral phasor approach. Chem Commun (Camb) 2018; 54:4854-4857. [DOI: 10.1039/c8cc01012a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lipid organization of microbubbles is important in many applications.
Collapse
Affiliation(s)
- Eli Slenders
- Biomedical Research Institute (BIOMED)
- Hasselt University
- Agoralaan Bldg. C
- 3590 Diepenbeek
- Belgium
| | - Senne Seneca
- Institute for Materials Research (IMO)
- Hasselt University
- Wetenschapspark 1 and Agoralaan Bldg. D
- 3590 Diepenbeek
- Belgium
| | - Sumit Kumar Pramanik
- Institute for Materials Research (IMO)
- Hasselt University
- Wetenschapspark 1 and Agoralaan Bldg. D
- 3590 Diepenbeek
- Belgium
| | - Nick Smisdom
- Biomedical Research Institute (BIOMED)
- Hasselt University
- Agoralaan Bldg. C
- 3590 Diepenbeek
- Belgium
| | - Peter Adriaensens
- Institute for Materials Research (IMO)
- Hasselt University
- Wetenschapspark 1 and Agoralaan Bldg. D
- 3590 Diepenbeek
- Belgium
| | - Martin vandeVen
- Biomedical Research Institute (BIOMED)
- Hasselt University
- Agoralaan Bldg. C
- 3590 Diepenbeek
- Belgium
| | - Anitha Ethirajan
- Institute for Materials Research (IMO)
- Hasselt University
- Wetenschapspark 1 and Agoralaan Bldg. D
- 3590 Diepenbeek
- Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED)
- Hasselt University
- Agoralaan Bldg. C
- 3590 Diepenbeek
- Belgium
| |
Collapse
|
263
|
Chertok B, Langer R. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Am J Cancer Res 2018; 8:341-357. [PMID: 29290812 PMCID: PMC5743552 DOI: 10.7150/thno.20781] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally-invasive control over drug delivery to target tissues.
Collapse
|
264
|
Salari A, Gnyawali V, Griffiths IM, Karshafian R, Kolios MC, Tsai SSH. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes. SOFT MATTER 2017; 13:8796-8806. [PMID: 29135012 DOI: 10.1039/c7sm01418j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.
Collapse
Affiliation(s)
- A Salari
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
265
|
Lv W, Fan F, Wang Y, Gonzalez-Fernandez E, Wang C, Yang L, Booz GW, Roman RJ. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 2017; 50:20-34. [PMID: 29127220 DOI: 10.1152/physiolgenomics.00039.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD), defined as reduced glomerular filtration rate, is increasingly becoming a major public health issue. At the histological level, renal fibrosis is the final common pathway leading to end-stage renal disease, irrespective of the initial injury. According to this view, antifibrotic agents should slow or halt the progression of CKD. However, due to multiple overlapping pathways stimulating fibrosis, it has been difficult to develop antifibrotic drugs that delay or reverse the progression of CKD. MicroRNAs (miRNAs) are small noncoding RNA molecules, 18-22 nucleotides in length, that control many developmental and cellular processes as posttranscriptional regulators of gene expression. Emerging evidence suggests that miRNAs targeted against genes involved in renal fibrosis might be potential candidates for the development of antifibrotic therapies for CKD. This review will discuss some of the miRNAs, such as Let-7, miR-21,-29, -192, -200,-324, -132, -212, -30, -126, -433, -214, and -199a, that are implicated in renal fibrosis and the potential to exploit these molecular targets for the treatment of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Chen Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Lili Yang
- West Coast Clinic of Affiliated Hospital of Qingdao University , Qingdao , China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | | |
Collapse
|
266
|
Xiong F, Nirupama S, Sirsi SR, Lacko A, Hoyt K. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles. Nanotheranostics 2017; 1:440-449. [PMID: 29188177 PMCID: PMC5704009 DOI: 10.7150/ntno.21905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
The abnormal tumor vasculature and the resulting abnormal microenvironment are major barriers to optimal chemotherapeutic drug delivery. It is well known that ultrasound (US) can increase the permeability of the tumor vessel walls and enhance the accumulation of anticancer agents. Reconstituted high-density lipoproteins (rHDL) nanoparticles (NPs) allow selective delivery of anticancer agents to tumor cells via their overexpressed scavenger receptor type B1 (SR-B1) receptor. The goal of this study is to investigate the potential of noninvasive US therapy to further improve delivery and tumor uptake of the payload from rHDL NPs, preloaded with an infrared dye (IR-780), aimed to establish a surrogate chemotherapeutic model with optical localization. Athymic nude mice were implanted orthotopically with one million breast cancer cells (MDA-MB-231/Luc). Three weeks later, animals were divided into seven groups with comparable mean tumor size: control, low, moderate, and high concentration of rHDL NPs alone groups, as well as these three levels of rHDL NPs plus US therapy groups (N = 7 to 12 animals per group), where low, moderate and high denote 5, 10, and 50 µg of the IR-780 dye payload per rHDL NP injection, respectively. The US therapy system included a single element focused transducer connected in series with a function generator and power amplifier. A custom 3D printed cone with an acoustically transparent aperture and filled with degassed water allowed delivery of focused US energy to the tumor tissue. US exposure involved a pulsed sequence applied for a duration of 5 min. Each animal in the US therapy groups received a slow bolus co-injection of MB contrast agent and rHDL NPs. Animals were imaged using a whole-body optical system to quantify intratumoral rHDL NP accumulation at baseline and again at 1 min, 30 min, 24 h, and 48 h. At 48 h, all animals were euthanized and tumors were excised for ex vivo analysis. We investigated a noninvasive optical imaging method for monitoring the effects of US-stimulated drug delivery of IR-780 dye-loaded rHDL NPs in living animals. No change in optical imaging data was found in the control animals. However, there was considerable dye accumulation (surrogate drug) within 48 h in the low (5 µg), moderate (10 µg), and high (50 µg) rHDL NP concentration-dosed group animals (p < 0.09). With US therapy added to the experimental protocol, there was an additional and significant increase in local tumor drug uptake at 48 h (p < 0.02). Optical image data collected from ex vivo tumor samples confirmed tumor retention of the IR-780 dye-loaded rHDL NPs and correlated positively with in vivo optical imaging results (R2 > 0.69, p < 0.003). IR-780 dye extraction from the tumor tissue samples confirmed the in vivo and ex vivo US therapy findings. Overall, the addition of US therapy considerably improved local rHDL NP accumulation in tumor tissue. This study concludes that US-mediated drug delivery can facilitate tumor uptake of rHDL NPs and more research is warranted to optimize the drug dosing schedule and the respective therapeutic protocols.
Collapse
Affiliation(s)
- Fangyuan Xiong
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sabnis Nirupama
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth TX 76107 USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Andras Lacko
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth TX 76107 USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
267
|
Ghosh D, Xiong F, Sirsi SR, Shaul PW, Mattrey RF, Hoyt K. Toward optimization of in vivo super-resolution ultrasound imaging using size-selected microbubble contrast agents. Med Phys 2017; 44:6304-6313. [PMID: 28975635 DOI: 10.1002/mp.12606] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Microvascular processes play key roles in many diseases including diabetes. Improved understanding of the microvascular changes involved in disease development could offer crucial insight into the relationship of these changes to disease pathogenesis. Super-resolution ultrasound (SR-US) imaging has showed the potential to visualize microvascular detail down to the capillary level (i.e., subwavelength resolution), but optimization is still necessary. The purpose of this study was to investigate in vivo SR-US imaging of skeletal muscle microvascularity using microbubble (MB) contrast agents of various size and concentration while evaluating different ultrasound (US) system level parameters such as imaging frame rate and image acquisition length. METHODS An US system equipped with a linear array transducer was used in a harmonic imaging mode at low transmit power. C57BL/6J mice fed a normal diet were used in this study. An assortment of size-selected MB contrast agents (1-2 μm, 3-4 μm, and 5-8 μm in diameter) were slowly infused in the tail vein at various doses (1.25 × 107 , 2.5 × 107 , or 5 × 107 MBs). US image data were collected before MB injection and thereafter for 10 min at 30 frames per s (fps). The US transducer was fixed throughout and between each imaging period to help capture microvascular patterns along the same image plane. An adaptive SR-US image processing technique was implemented using custom Matlab software. RESULTS Experimental findings illustrate the use of larger MB results in better SR-US images in terms of skeletal muscle microvascular detail. A dose of 2.5 × 107 MBs resulted in SR-US images with optimal spatial resolution. An US imaging rate of at least 20 fps and image acquisition length of at least 8 min also resulted in SR-US images with pronounced microvascular detail. CONCLUSIONS This study indicates that MB size and dose and US system imaging rate and data acquisition length have significant impact on the quality of in vivo SR-US images of skeletal muscle microvascularity.
Collapse
Affiliation(s)
- Debabrata Ghosh
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fangyuan Xiong
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.,Department of Medical Ultrasound, Huazhong University of Science and Technology, Wuhan, China
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert F Mattrey
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
268
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
269
|
Anupindi SA, Biko DM, Ntoulia A, Poznick L, Morgan TA, Darge K, Back SJ. Contrast-enhanced US Assessment of Focal Liver Lesions in Children. Radiographics 2017; 37:1632-1647. [DOI: 10.1148/rg.2017170073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sudha A. Anupindi
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - David M. Biko
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Aikaterini Ntoulia
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Laura Poznick
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Trudy A. Morgan
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Kassa Darge
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Susan J. Back
- From the Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104
| |
Collapse
|
270
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Molecular Ultrasound Imaging of the Spinal Cord for the Detection of Acute Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317729671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes non-invasively by targeting a wide variety of biological markers in vivo. The current study investigates the novel application of molecular ultrasound imaging for the detection of neural inflammation. Using a murine model with acutely injured spinal cords (n=31), subjects were divided into four groups, each being administered ultrasound contrast microbubbles bearing antibodies against various known inflammatory molecules (P-selectin, vascular cell adhesion protein 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and isotype control) during molecular ultrasound imaging. Upon administration of the targeted contrast agent, ultrasound imaging of the injured spinal cord was performed at 40MHz for seven minutes, followed by a bursting pulse. We observed significantly enhanced signals from contrast targeted to P-selectin and VCAM-1, using a variety of outcome measures. These findings provide preclinical evidence that molecular ultrasound imaging could be a useful tool in the detection of neural inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
271
|
Hull TD, Agarwal A, Hoyt K. New Ultrasound Techniques Promise Further Advances in AKI and CKD. J Am Soc Nephrol 2017; 28:3452-3460. [PMID: 28923914 DOI: 10.1681/asn.2017060647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AKI and CKD are important clinical problems because they affect many patients and the associated diagnostic and treatment paradigms are imperfect. Ultrasound is a cost-effective, noninvasive, and simple imaging modality that offers a multitude of means to improve the diagnosis, monitoring, and treatment of both AKI and CKD, especially considering recent advances in this technique. Ultrasound alone can attenuate AKI and prevent CKD by stimulating the splenic cholinergic anti-inflammatory pathway. Additionally, microbubble contrast agents are improving the sensitivity and specificity of ultrasound for diagnosing kidney disease, especially when these agents are conjugated to ligand-specific mAbs or peptides, which make the dynamic assessment of disease progression and response to treatment possible. More recently, drug-loaded microbubbles have been developed and the load release by ultrasound exposure has been shown to be a highly specific treatment modality, making the potential applications of ultrasound even more promising. This review focuses on the multiple strategies for using ultrasound with and without microbubble technology for enhancing our understanding of the pathophysiology of AKI and CKD.
Collapse
Affiliation(s)
- Travis D Hull
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; and .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
272
|
Sheng Y, Beguin E, Nesbitt H, Kamila S, Owen J, Barnsley LC, Callan B, O'Kane C, Nomikou N, Hamoudi R, Taylor MA, Love M, Kelly P, O'Rourke D, Stride E, McHale AP, Callan JF. Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. J Control Release 2017; 262:192-200. [DOI: 10.1016/j.jconrel.2017.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
|
273
|
Black KJ, Lock AT, Thomson LM, Cole AR, Tang X, Polizzotti BD, Kheir JN. Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents. Pharm Res 2017; 34:2156-2162. [DOI: 10.1007/s11095-017-2222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
|
274
|
Yao ZC, Yuan Q, Ahmad Z, Huang J, Li JS, Chang MW. Controlled Morphing of Microbubbles to Beaded Nanofibers via Electrically Forced Thin Film Stretching. Polymers (Basel) 2017; 9:E265. [PMID: 30970941 PMCID: PMC6432371 DOI: 10.3390/polym9070265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
Topography and microstructure engineering are rapidly evolving areas of importance for biomedical and pharmaceutical remits. Here, PVA (Polyvinyl alcohol) microbubbles (diameter range ~126 to 414 μm) were used to fabricate beaded (beads-on) nanofibers using an electrohydrodynamic atomization (EHDA) technique. Mean fiber diameter, inter-bead distance, and aspect ratio (AR) were investigated by regulating EHDA process parameters. PVA fibers (diameter range ~233 to 737 nm) were obtained possessing bead ARs in the range of ~10 to 56%. AR was used to modulate hydrophilicity and active release.
Collapse
Affiliation(s)
- Zhi-Cheng Yao
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Qiantailang Yuan
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Jing-Song Li
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
275
|
Gnyawali V, Moon BU, Kieda J, Karshafian R, Kolios MC, Tsai SSH. Honey, I shrunk the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles. SOFT MATTER 2017; 13:4011-4016. [PMID: 28379267 DOI: 10.1039/c7sm00128b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a microfluidic technique that shrinks lipid-stabilized microbubbles from O(100) to O(1) μm in diameter - the size that is desirable in applications as ultrasound contrast agents. We achieve microbubble shrinkage by utilizing vacuum channels that are adjacent to the microfluidic flow channels to extract air from the microbubbles. We tune a single parameter, the vacuum pressure, to accurately control the final microbubble size. Finally, we demonstrate that the resulting O(1) μm diameter microbubbles have similar stability to microfluidically generated microbubbles that are not exposed to vacuum shrinkage. We anticipate that, with additional scale-up, this simple approach to shrink microbubbles generated microfluidically will be desirable in ultrasound imaging and therapeutic applications.
Collapse
Affiliation(s)
- Vaskar Gnyawali
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
276
|
Cicatiello P, Dardano P, Pirozzi M, Gravagnuolo AM, De Stefano L, Giardina P. Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnol Bioeng 2017; 114:2173-2186. [PMID: 28543036 DOI: 10.1002/bit.26344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 01/09/2023]
Abstract
Hydrophobins are amphiphilic fungal proteins endowed with peculiar characteristics, such as a high surface activity and an interface triggered self-assembly. Several applications of these proteins have been proposed in the food, cosmetics and biomedical fields. Moreover, their use as proteinaceous coatings can be effective for materials and nanomaterials applications. The discovery of novel hydrophobins with diverse properties may be advantageous from both the scientific and industrial points of view. Stressful environmental conditions of fungal growth may induce the production of proteins with peculiar features. Two Class I hydrophobins from fungi isolated from marine environment have been recently purified. Herein, their propensity to aggregate forming nanometric fibrillar structures has been compared, using different techniques, such as circular dichroism, dynamic light scattering and Thioflavin T fluorescence assay. Furthermore, TEM and AFM images indicate that the interaction of these proteins with specific surfaces, are crucial in the formation of amyloid fibrils and in the assembly morphologies. These self-assembling proteins show promising properties as bio-coating for different materials via a green process. Biotechnol. Bioeng. 2017;114: 2173-2186. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Naples, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry, Unit of Naples-National Research Council, Naples, Italy
| | - Alfredo M Gravagnuolo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, Naples, I-80126, Italy
| |
Collapse
|
277
|
Lee H, Kim H, Han H, Lee M, Lee S, Yoo H, Chang JH, Kim H. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed Eng Lett 2017; 7:59-69. [PMID: 30603152 PMCID: PMC6208473 DOI: 10.1007/s13534-017-0016-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
Ultrasound was developed several decades ago as a useful imaging modality, and it became the second most popular diagnostic tool due to its non-invasiveness, real-time capabilities, and safety. Additionally, ultrasound has been used as a therapeutic tool with several therapeutic agents and in nanomedicine. Ultrasound imaging is often used to diagnose many types of cancers, including breast, stomach, and thyroid cancers. In addition, ultrasound-mediated therapy is used in cases of joint inflammation, rheumatoid arthritis, and osteoarthritis. Microbubbles, when used as ultrasound contrast agents, can act as echo-enhancers and therapeutic agents, and they can play an essential role in ultrasound imaging and ultrasound-mediated therapy. Recently, various types of ultrasound contrast agents made of lipid, polymer, and protein shells have been used. Air, nitrogen, and perfluorocarbon are usually included in the core of the microbubbles to enhance ultrasound imaging, and therapeutic drugs are conjugated and loaded onto the surface or into the core of the microbubbles, depending on the purpose and properties of the substance. Many research groups have utilized ultrasound contrast agents to enhance the imaging signal in blood vessels or tissues and to overcome the blood-brain barrier or blood-retina barrier. These agents are also used to help treat diseases in various regions or systems of the body, such as the cardiovascular system, or as a cancer treatment. In addition, with the introduction of targeted moiety and multiple functional groups, ultrasound contrast agents are expected to have a potential future in ultrasound imaging and therapy. In this paper, we briefly review the principles of ultrasound and introduce the underlying theory, applications, limitations, and future perspectives of ultrasound contrast agents.
Collapse
Affiliation(s)
- Hohyeon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Haemin Kim
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hyounkoo Han
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Minji Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Sunho Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hongkeun Yoo
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Jin Ho Chang
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
- Sogang Institute of Advanced Technology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| |
Collapse
|
278
|
Yan WC, Chua QW, Ong XJ, Sharma VK, Tong YW, Wang CH. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J Colloid Interface Sci 2017; 501:282-293. [PMID: 28460221 DOI: 10.1016/j.jcis.2017.04.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
A single-step fabrication method, coaxial electrohydrodynamic atomization (CEHDA), was developed to synthesize drug-loaded microbubbles (MBs) for combination treatment of ischemic stroke. The bioactivity of therapeutic agent (tPA, tissue plasminogen activator) after preparation was evaluated, showing that CEHDA could be very promising method for producing MBs with therapeutic functions. The bubble performance and tPA release profiles were also examined by exposing the bubbles to 2MHz ultrasound of various intensities. The results showed that the mean diameter of tPA-loaded MBs was found to fluctuate about its original diameter when exposed to ultrasound and higher intensity ultrasound was more effective in triggering the burst of CEHDA MBs. High ultrasound-triggered bubble disintegration effectiveness in a short period (first 5min) fits well with the requirement of short ultrasound exposure time for human brain. Moreover, a numerical model was also applied to investigate the stability of the fabricated MBs in the bloodstream. It was found that MB dissolution time increased with initial radius, decreased with initial surface tension and increased with initial shell resistance but it was barely affected by the average excessive bloodstream pressure.
Collapse
Affiliation(s)
- Wei-Cheng Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qing Wei Chua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiu Jing Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
279
|
Abstract
Access to the CNS and delivery of therapeutics across the blood-brain barrier remains a challenge for most treatments of major neurological diseases such as AD or PD. Focused ultrasound represents a potential approach for overcoming these barriers to treating AD and PD and perhaps other neurological diseases. Ultrasound (US) is best known for its imaging capabilities of organs in the periphery, but various arrangements of the transducers producing the acoustic signal allow the energy to be precisely focused (F) within the skull. Using FUS in combination with MRI and contrast agents further enhances accuracy by providing clear information on location. Varying the acoustic power allows FUS to be used in applications ranging from imaging, stimulation of brain circuits, to ablation of tissue. In several transgenic mouse models of AD, the use of FUS with microbubbles reduces plaque load and improves cognition and suggests the need to investigate this technology for plaque removal in AD. In PD, FUS is being explored as a way to non-invasively ablate the brain areas responsible for the tremor and dyskinesia associated with the disease, but has yet to be utilized for non-invasive delivery of putative therapeutics. The FUS approach also greatly increases the range of possible CNS therapeutics as it overcomes the issues of BBB penetration. In this review we discuss how the characteristics and various applications of FUS may advance the therapeutics available for treating or preventing neurodegenerative disorders with an emphasis on treating AD and PD.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| | - James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| |
Collapse
|
280
|
Ma X, Liu Q. Preparation of poly(N-isopropylacrylamide)-block-(acrylic acid)-encapsulated proteinaceous microbubbles for delivery of doxorubicin. Colloids Surf B Biointerfaces 2017; 154:115-122. [PMID: 28334688 DOI: 10.1016/j.colsurfb.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
Inspired by theranostic technologies, we electrostatically loaded proteinaceous microbubbles (MBs) with a model drug, doxorubicin (Dox) to couple their utilizations in diagnostic imaging with drug loading. A temperature-sensitive polymer, poly(N-isopropylacrylamide-block-acrylic acid) (poly(NIPAM-b-AAc)) was used to encapsulate the Dox-loaded MBs to prevent premature release and to control the Dox release thermally. An LCST of 39°C, slightly higher than normal body temperatures, enables the release of Dox through a conformational change of the polymer shell upon moderate heating. The successive loadings of Dox and poly(NIPAM-b-AAc) were confirmed by fluorescent confocal laser scanning microscope (CLSM) imaging, zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), and quartz crystal microbalance with dissipation (QCM-D). Without a polymer shell, Dox-loaded MBs showed a poor in vitro retention of Dox at room temperature, releasing ∼75% within 8h, whereas the polymer-shelled, Dox-loaded MBs did not show any premature release of Dox. From 37°C to 39°C, the cumulative release of Dox from the polymer-encapsulated MBs was increased from ∼20 to ∼90% over a period of 18h based on in vitro release testing (IVRT). However, the release profiles of Dox from the shell-free, Dox-loaded MBs did not exhibit any similar temperature-controlled behavior, releasing ∼90% of Dox within 5h at both 37°C and 39°C.
Collapse
Affiliation(s)
- Xiaochen Ma
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211 - 116 St NW, Edmonton, Canada T6G 1H9
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211 - 116 St NW, Edmonton, Canada T6G 1H9.
| |
Collapse
|
281
|
PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release 2017; 259:128-135. [PMID: 28279799 DOI: 10.1016/j.jconrel.2017.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug-loaded poly(n-butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US-mediated drug delivery. Molecular imaging of angiogenic tumor blood vessels and inflamed atherosclerotic endothelium is performed by modifying the surface of PBCA MB with peptides and antibodies recognizing E-selectin and VCAM-1. Stable and inertial cavitation of PBCA MB enables sonoporation and permeabilization of blood vessels in tumors and in the brain, which can be employed for direct and indirect drug delivery. Direct drug delivery is based on US-induced release of (model) drug molecules from the MB shell. Indirect drug delivery refers to US- and MB-mediated enhancement of extravasation and penetration of co-administered drugs and drug delivery systems. These findings are in line with recently reported pioneering proof-of-principle studies showing the usefulness of (phospholipid) MB for molecular US imaging and sonoporation-enhanced drug delivery in patients. They aim to exemplify the potential and the broad applicability of combining MB with US to improve disease diagnosis and therapy.
Collapse
|
282
|
Qureshi AI, Saleem MA, Ahrar A, Raja F. Imaging of the Vasa Nervorum Using Contrast-Enhanced Ultrasound. J Neuroimaging 2017; 27:583-588. [DOI: 10.1111/jon.12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Adnan I. Qureshi
- Zeenat Qureshi Stroke Institute; St. Cloud MN
- Rockford Memorial Hospital; Rockford IL
| | | | - Asad Ahrar
- Zeenat Qureshi Stroke Institute; St. Cloud MN
| | - Faisal Raja
- Zeenat Qureshi Stroke Institute; St. Cloud MN
- Rockford Memorial Hospital; Rockford IL
| |
Collapse
|
283
|
Effect of PEGylation on performance of protein microbubbles and its comparison with lipid microbubbles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:425-430. [DOI: 10.1016/j.msec.2016.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/07/2016] [Accepted: 10/16/2016] [Indexed: 11/23/2022]
|
284
|
Fix SM, Novell A, Yun Y, Dayton PA, Arena CB. An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro. J Ther Ultrasound 2017; 5:7. [PMID: 28127427 PMCID: PMC5260003 DOI: 10.1186/s40349-017-0085-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phase-change ultrasound contrast agents (PCCAs) offer a solution to the inherent limitations associated with using microbubbles for sonoporation; they are characterized by prolonged circulation lifetimes, and their nanometer-scale sizes may allow for passive accumulation in solid tumors. As a first step towards the goal of extravascular cell permeabilization, we aim to characterize the sonoporation potential of a low-boiling point formulation of PCCAs in vitro. METHODS Parameters to induce acoustic droplet vaporization and subsequent microbubble cavitation were optimized in vitro using high-speed optical microscopy. Sonoporation of pancreatic cancer cells in suspension was then characterized at a range of pressures (125-600 kPa) and pulse lengths (5-50 cycles) using propidium iodide as an indicator molecule. RESULTS We achieved sonoporation efficiencies ranging from 8 ± 1% to 36 ± 4% (percent of viable cells), as evidenced by flow cytometry. Increasing sonoporation efficiency trended with increasing pulse length and peak negative pressure. CONCLUSIONS We conclude that PCCAs can be used to induce the sonoporation of cells in vitro, and our results warrant further investigation into the use of PCCAs as extravascular sonoporation agents in vivo.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | - Anthony Novell
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA
| | - Yeoheung Yun
- FIT BEST Laboratory, Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina Chapel Hill, Chapel Hill, NC USA.,Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA
| | - Christopher B Arena
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA.,Laboratory for Therapeutic Directed Energy, Department of Physics, Elon University, Elon, NC USA
| |
Collapse
|
285
|
Huang Y, Vezeridis AM, Wang J, Wang Z, Thompson M, Mattrey RF, Gianneschi NC. Polymer-Stabilized Perfluorobutane Nanodroplets for Ultrasound Imaging Agents. J Am Chem Soc 2017; 139:15-18. [PMID: 28032757 DOI: 10.1021/jacs.6b08800] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we describe a method for the stabilization of low-boiling point (low-bp) perfluorocarbons (PFCs) at physiological temperatures by an amphiphilic triblock copolymer which can emulsify PFCs and be cross-linked. After UV-induced thiol-ene cross-linking, the core of the PFC emulsion remains in liquid form even at temperatures exceeding their boiling points. Critically, the formulation permits vaporization at rarefactional pressures relevant for clinical ultrasound.
Collapse
Affiliation(s)
- Yuran Huang
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - Alexander M Vezeridis
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - James Wang
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - Zhao Wang
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - Matthew Thompson
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - Robert F Mattrey
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| | - Nathan C Gianneschi
- Materials Science & Engineering Program, ‡Department of Radiology, and §Department of Chemistry & Biochemistry, University of California-San Diego , La Jolla, California 92093, United States
| |
Collapse
|
286
|
Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G. Complex interfaces in "phase-change" contrast agents. Phys Chem Chem Phys 2017; 18:8378-88. [PMID: 26931337 DOI: 10.1039/c5cp07538f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report on the study of the interface of hybrid shell droplets encapsulating decafluoropentane (DFP), which exhibit interesting potentialities for ultrasound (US) imaging. The fabrication of the droplets is based on the deposition of a dextran methacrylate layer onto the surface of surfactants. The droplets have been stabilized against coalescence by UV curing, introducing crosslinks in the polymer layer and transforming the shell into an elastomeric membrane with a thickness of about 300 nm with viscoelastic behaviour. US irradiation induces the evaporation of the DFP core of the droplets transforming the particles into microbubbles (MBs). The presence of a robust crosslinked polymer shell introduces an unusual stability of the droplets also during the core phase transition and allows the recovery of the initial droplet state after a few minutes from switching off US. The interfacial tension of the droplets has been investigated by two approaches, the pendant drop method and an indirect method, based on the determination of the liquid ↔ gas transition point of DFP confined in the droplet core. The re-condensation process has been followed by capturing images of single MBs by confocal microscopy. The time evolution of MB relaxation to droplets was analysed in terms of a modified Church model to account for the structural complexity of the MB shell, i.e. a crosslinked polymer layer over a layer of surfactants. In this way the microrheology parameters of the shell were determined. In a previous paper (Chem. Commun., 2013, 49, 5763-5765) we showed that these systems could be used as ultrasound contrast agents (UCAs). In this work we substantiate this view assessing some key features offered by the viscoelastic nature of the droplet shell.
Collapse
Affiliation(s)
- Sabrina Capece
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy. and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Brasili
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Angelico Bedini
- INAIL - Settore Ricerca Certificazione e Verifica - DITSIPIA, Via Fontana Candida, 1 Monteporzio Catone, 00040 Italy
| | - Federico Bordi
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
287
|
Qureshi AI, Saleem MA, Aytac E, Wallery SS. Assessment of Skeletal Muscle Perfusion using Contrast-Enhanced Ultrasonography: Technical Note. JOURNAL OF VASCULAR AND INTERVENTIONAL NEUROLOGY 2017; 9:41-44. [PMID: 28243350 PMCID: PMC5317291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Intravenous contrast-enhanced ultrasonography is a recently developed technique for assessment of tissue perfusion, but has not been used for assessment of skeletal muscle perfusion. METHODS We studied a 42-year-old woman in whom myonecrosis was suspected due to systemic vasculitis and ischemia. The biceps brachii (right) and quadriceps femoris (vastus medialis) on right-hand side and subsequently left-hand side were imaged. Intravenous bolus of activated perflutren lipid microspheres was injected and B-Flow color mode (brown color) was used within a selected region of interest to image the passage of contrast through muscle parenchyma throughout three cardiac cycles. RESULTS Visual interpretation of muscle perfusion was performed based on the maximal intensity of contrast in the muscle, and the speed of contrast replenishment. No deficits were noted in the perfusion pattern. The arterial phase demonstrated stellate vascularity, centrifugal filling, and homogeneous hypervascularity at peak enhancement. CONCLUSIONS The bolus of contrast resulted in good signal persistence and satisfactory imaging for multiple muscle groups.
Collapse
Affiliation(s)
- Adnan I. Qureshi
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
- Rockford Memorial Hospital, Rockford, IL, USA
| | - Muhammad A. Saleem
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
- Rockford Memorial Hospital, Rockford, IL, USA
| | - Emrah Aytac
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
- Rockford Memorial Hospital, Rockford, IL, USA
| | | |
Collapse
|
288
|
Mulvana H, Browning RJ, Luan Y, de Jong N, Tang MX, Eckersley RJ, Stride E. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:232-251. [PMID: 27810805 DOI: 10.1109/tuffc.2016.2613991] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Collapse
|
289
|
Tay LM, Xu C. Coating microbubbles with nanoparticles for medical imaging and drug delivery. Nanomedicine (Lond) 2017; 12:91-94. [DOI: 10.2217/nnm-2016-0362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Li Min Tay
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Nanyang Institute of Technology in Health & Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Chenjie Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
290
|
Ando Y, Tabata H, Sanchez M, Cagna A, Koyama D, Krafft MP. Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12461-12467. [PMID: 27409141 DOI: 10.1021/acs.langmuir.6b01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The numerous applications of microbubbles in food science and medicine call for a better understanding and control of the effects of the properties of their shells on their stability and ability to resonate at chosen frequencies when submitted to an ultrasound field. We have investigated both millimetric and micrometric bubbles stabilized by an amphiphilic block copolymer, Poloxamer 188 (e.g., Pluronic F-68). Although Pluronic F-68 is routinely being used as a dispersing and foaming agent to facilitate phospholipid-based microbubble preparation, it has never been studied as a shell component per se. First, we investigated the adsorption kinetics of Pluronic F-68 at the interface between water and air, or air saturated with vapors of perfluorohexane (F-hexane), using bubble profile tensiometry analysis. F-Hexane was found to strongly accelerate the adsorption of Pluronic F-68 (at low concentrations) and decrease the interfacial tension values at equilibrium (at all concentrations). We also found that relatively stable microbubbles could unexpectedly be prepared from Pluronic F-68 in the absence of any other surfactant, but only when F-hexane was present. These bubbles showed an only limited volume increase over ∼3 h, while a 10-fold increase in size occurred within 200 s in the absence of a fluorocarbon. Remarkably, their deflation rate decreased when the Pluronic F-68 concentration decreased, suggesting that bubbles with semidilute copolymer coverage are more stable than those more densely covered by copolymer brushes. Single-bubble experiments using laser Doppler vibratometry showed that, by contrast with other surfactant-coated microbubbles, the resonance radius of the Pluronic F-68-coated microbubbles was lower than that of naked microbubbles, meaning that they are less elastic. It was also found that the bubble's vibrational displacement amplitude decreased substantially when the microbubbles were covered with Pluronic F-68, an effect that was further amplified by F-hexane.
Collapse
Affiliation(s)
- Yu Ando
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | - Hiraku Tabata
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | | | - Alain Cagna
- TECLIS Instruments , Tassin, 69160 Lyon Métropole, France
| | - Daisuke Koyama
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
291
|
Ventre DM, Koppes AN. The Body Acoustic: Ultrasonic Neuromodulation for Translational Medicine. Cells Tissues Organs 2016; 202:23-41. [DOI: 10.1159/000446622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 11/19/2022] Open
Abstract
For the greater part of the last century, ultrasound (US) has seen widespread use in applications ranging from materials science to medicine. The history of US in medicine has also seen promising success in clinical diagnostics and regenerative medicine. Recent studies have shown that US is able to manipulate the nervous system, leading toward potential treatment for various neuropathological conditions, a phenomenon known as ultrasonic neuromodulation (NM). Ultrasonic NM is a promising alternative to pharmaceuticals and surgery, due to high spatiotemporal resolution combined with the potentially noninvasive means of application. Current advances have made progress in establishing effective dosage limits, waveform parameters, and stimulus regimes in order to achieve desired effects in a variety of tissue and cell types. However, to date there has been limited systematic analysis of the complex variables involved in creating a therapeutic US stimulation regime specifically tailored to the nervous system. Without a fundamental understanding of the effects of US on neural tissue, including the surrounding bone, musculature, and vasculature, the safety and efficacy of US as an NM tool is yet to be determined. Advances in imaging technology and focusing hardware highlight new avenues for potential clinical applications for therapeutic ultrasonic stimulation. US may be an alternative to electrical and magnetic means of NM for targets in the central nervous system as well as in the peripheral and autonomic nervous systems. This review provides a historical perspective on the past, present, and future of US as a translational therapeutic.
Collapse
|
292
|
Malik R, Pancholi K, Melzer A. Microbubble-liposome conjugate: Payload evaluation of potential theranostic vehicle. Nanobiomedicine (Rij) 2016; 3:1849543516670806. [PMID: 29942387 PMCID: PMC5998260 DOI: 10.1177/1849543516670806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022] Open
Abstract
Liposome–microbubble conjugates are considered as better targeted drug delivery vehicles compared to microbubbles alone. The microbubble in the integrated drug delivery system delivers the drug intracellularly on the target, whereas the liposome component allows loading of high drug dose and extravasation through leaky vasculature. In this work, a new high yielding microbubble production method was used to prepare microbubbles for formulation of the liposome-conjugated drug delivery system. In formulation process, the prepared liposome of 200 nm diameter was attached to the microbubble surface using the avidin–biotin interaction. The analysis of the confocal scanning laser microscope images showed that approximately 8 × 108 microbubbles per millilitre (range: 2–7 μm, mean size 5 ± 0.5 μm) can be efficiently conjugated to the liposomes. The method of conjugation was found to be effective in attaching liposome to microbubbles.
Collapse
Affiliation(s)
- Ritu Malik
- Institute of Medical Sciences and Technology, University of Dundee, Dundee, UK
| | - Ketan Pancholi
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Melzer
- Institute of Medical Sciences and Technology, University of Dundee, Dundee, UK
| |
Collapse
|
293
|
Chen R, Yu H(W, Zhu L, Patil RM, Lee T. Spatial and temporal scaling of unequal microbubble coalescence. AIChE J 2016. [DOI: 10.1002/aic.15504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rou Chen
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Huidan (Whitney) Yu
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Likun Zhu
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Raveena M. Patil
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Taehun Lee
- Mechanical Engineering Dept.The City College of New YorkNew York NY10031
| |
Collapse
|
294
|
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-Targeted Nanotheranostics: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4936-4954. [PMID: 27150247 DOI: 10.1002/smll.201600635] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/22/2016] [Indexed: 05/10/2023]
Abstract
Cancer-targeted nanotechnology is experiencing the trend of finding new materials with multiple functions for imaging and therapeutic applications. With the rapid development of the related fields, there exists a large number of reports regarding theranostic nanomedicine, decreasing the gap between cancer diagnosis and treatment with minimized separate comprehensions. In order to present an overview on the cancer-targeted nanotheranostics, we first describe their essential building blocks, including platforms, therapeutic agents and imaging agents, and then the recently rapidly developed multimodal theranostic systems. Finally we discuss the major challenges and the perspectives of future development of nanotheranostics toward clinical translations and personalized nanomedicine.
Collapse
Affiliation(s)
- Yufei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Saijie Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
295
|
Kothapalli SVVN, Wiklund M, Janerot-Sjoberg B, Paradossi G, Grishenkov D. Investigation of polymer-shelled microbubble motions in acoustophoresis. ULTRASONICS 2016; 70:275-283. [PMID: 27261567 DOI: 10.1016/j.ultras.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 03/30/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The objective of this paper is to explore the trajectory motion of microsize (typically smaller than a red blood cell) encapsulated polymer-shelled gas bubbles propelled by radiation force in an acoustic standing-wave field and to compare the corresponding movements of solid polymer microbeads. The experimental setup consists of a microfluidic chip coupled to a piezoelectric crystal (PZT) with a resonance frequency of about 2.8MHz. The microfluidic channel consists of a rectangular chamber with a width, w, corresponding to one wavelength of the ultrasound standing wave. It creates one full wave ultrasound of a standing-wave pattern with two pressure nodes at w/4 and 3w/4 and three antinodes at 0, w/2, and w. The peak-to-peak amplitude of the electrical potential over the PZT was varied between 1 and 10V. The study is limited to no-flow condition. From Gor'kov's potential equation, the acoustic contrast factor, Φ, for the polymer-shelled microbubbles was calculated to about -60.7. Experimental results demonstrate that the polymer-shelled microbubbles are translated and accumulated at the pressure antinode planes. This trajectory motion of polymer-shelled microbubbles toward the pressure antinode plane is similar to what has been described for other acoustic contrast particles with a negative Φ. First, primary radiation forces dragged the polymer-shelled microbubbles into proximity with each other at the pressure antinode planes. Then, primary and secondary radiation forces caused them to quickly aggregate at different spots along the channel. The relocation time for polymer-shelled microbubbles was 40 times shorter than that for polymer microbeads, and in contrast to polymer microbeads, the polymer-shelled microbubbles were actuated even at driving voltages (proportional to radiation forces) as low as 1V. In short, the polymer-shelled microbubbles demonstrate the behavior attributed to the negative acoustic contrast factor particles and thus can be trapped at the antinode plane and thereby separated from particles having a positive acoustic contrast factor, such as for example solid particles and cells. This phenomenon could be utilized in exploring future applications, such as bioassay, bioaffinity, and cell interaction studies in vitro in a well-controlled environment.
Collapse
Affiliation(s)
- Satya V V N Kothapalli
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, SE-142 51 Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Birgitta Janerot-Sjoberg
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, SE-142 51 Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institute, SE-142 51 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, SE-142 51 Stockholm, Sweden
| | - Gaio Paradossi
- Dipartimento di Chimica, Università di Roma Tor Vergata, 00133 Rome, Italy
| | - Dmitry Grishenkov
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, SE-142 51 Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institute, SE-142 51 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, SE-142 51 Stockholm, Sweden.
| |
Collapse
|
296
|
Huang P, Zhang Y, Chen J, Shentu W, Sun Y, Yang Z, Liang T, Chen S, Pu Z. Enhanced antitumor efficacy of ultrasonic cavitation with up-sized microbubbles in pancreatic cancer. Oncotarget 2016; 6:20241-51. [PMID: 26036312 PMCID: PMC4653001 DOI: 10.18632/oncotarget.4048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
Ultrasonic cavitation is a novel potential approach for cancer treatment. We optimized the techniques of ultrasonic cavitation to enhance antitumor efficacy in a mouse model with human pancreatic cancer. A polydisperse MB contrast agent formulation (TS-P) with a mean number diameter of 1.9 μm was depleted in small diameter particles by differential centrifugation, producing an “up-sized” size distribution (TS-PL) possessing a mean diameter of 2.9 μm. Mice bearing the XPA-1-RFP pancreatic tumor were treated daily for 3 consecutive days with either up-sized or standard MB. Both treatment cohorts exhibited a significant reduction in tumor volume relative to the untreated control cohort (P < 0.05), and TS-PL group has significantly reduction in tumor volume (1215.1± 324.7 mm3) compared with standard TS-P group (2131.2±753.4 mm3) (P < 0.05). The treatment with TS-PL resulted in more tumor cell necrosis and apoptosis than with TS-P. Decreased expression of CD31 and MVD was observed histologically in tumors treated with TS-PL relative to TS-P. This study demonstrates that tuning the size distribution of existing contrast agent products, specifically to reduce the concentration of small MB, is required for enhanced anti-tumor cavitation activity.
Collapse
Affiliation(s)
- Pintong Huang
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Ying Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Jian Chen
- Department of Surgery, The Second Affiliated Hospital Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Weihui Shentu
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Yu Sun
- Origin Biosciences Inc., Nanjing, Jiangsu Province, P. R. China
| | - Zhijian Yang
- Origin Biosciences Inc., Nanjing, Jiangsu Province, P. R. China
| | - Tingbo Liang
- Department of Surgery, The Second Affiliated Hospital Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Shuyuan Chen
- Baylor Research Institute, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Zhaoxia Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
297
|
Tsao NH, Hall EAH. Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6534-6543. [PMID: 27245495 DOI: 10.1021/acs.langmuir.6b01075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The fabrication of an enzyme-degradable polymer/silica hybrid microbubble is reported that produces an ultrasound contrast image. The polymer, a triethoxysilane end-capped polycaprolactone (SiPCL), is used to incorporate enzyme-degradable components into a silica microbubble synthesis, and to impart increased elasticity for enhanced acoustic responsiveness. Formulations of 75, 85, and 95 wt % SiPCL in the polymer feed produced quite similar ratios of SiPCL and silica in the final bubble but different surface properties. The data suggest that different regions of the microbubbles were SiPCL-rich: the inner layer next to the polystyrene template core and the outer surface layer, thereby creating a sandwiched silica-rich layer of the bubble shell. Overall, the thickness of the microbubble shell was dependent on the starting TEOS concentration and the reaction time. Despite the layered structure, the microbubble could be efficiently degraded by lipase enzyme, but was stable without enzyme. The ultrasound contrast showed a general trend of increase in image intensity with SiPCL feed ratio, although the 95 wt % SiPCL bubbles did not produce a contrast image, probably due to bubble collapse. At higher normalized peak negative acoustic pressure (mechanical index, MI), a nonlinear frequency response also emerges, characterized by the third harmonic at around 3f0, and increases with MI. The threshold MI transition from linear to nonlinear response increased with decrease in SiPCL.
Collapse
Affiliation(s)
- Nadia H Tsao
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge , Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Elizabeth A H Hall
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge , Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| |
Collapse
|
298
|
Novell A, Arena CB, Oralkan O, Dayton PA. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:3193. [PMID: 27369143 PMCID: PMC5848826 DOI: 10.1121/1.4953580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 05/05/2023]
Abstract
An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio.
Collapse
Affiliation(s)
- Anthony Novell
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Christopher B Arena
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Omer Oralkan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
299
|
Caschera L, Lazzara A, Piergallini L, Ricci D, Tuscano B, Vanzulli A. Contrast agents in diagnostic imaging: Present and future. Pharmacol Res 2016; 110:65-75. [PMID: 27168225 DOI: 10.1016/j.phrs.2016.04.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
Specific contrast agents have been developed for x ray examinations (mainly CT), sonography and Magnetic Resonance Imaging. Most of them are extracellular agents which create different enhancement on basis of different vascularization or on basis of different interstitial network in tissues, but some can be targeted to a particular cell line (e.g. hepatocyte). Microbubbles can be used as carrier for therapeutic drugs which can be released in specific targets under sonographic guidance, decreasing systemic toxicity and increasing therapeutic effect. Radiologists have to choose a particular contrast agent knowing its physical and chemical properties and the possibility of adverse reactions and balancing them with the clinical benefits of a more accurate diagnosis. As for any drug, contrast agents can cause adverse events, which are more frequent with Iodine based CA, but also with Gd based CA and even with sonographic contrast agents hypersensitivity reaction can occur.
Collapse
Affiliation(s)
- Luca Caschera
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Angelo Lazzara
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Lorenzo Piergallini
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Domenico Ricci
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Bruno Tuscano
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Angelo Vanzulli
- Department of Biomedical and Clinical Sciences, University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy.
| |
Collapse
|
300
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|