251
|
Poisot T, Bell T, Martinez E, Gougat-Barbera C, Hochberg ME. Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Res 2012; 1:21. [PMID: 27512559 PMCID: PMC4964844 DOI: 10.12688/f1000research.1-21.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/24/2022] Open
Abstract
Despite knowledge about microbial responses to abiotic stress, few studies have investigated stress responses to antagonistic species, such as competitors, predators and pathogens. While it is often assumed that interacting populations of bacteria and phage will coevolve resistance and exploitation strategies, an alternative is that individual bacteria tolerate or evade phage predation through inducible responses to phage presence. Using the microbial model
Pseudomonas fluorescens SBW25 and its lytic DNA phage SBW25Φ2, we demonstrate the existence of an inducible response in the form of a transient increase in population growth rate, and found that the response was induced by phage binding. This response was accompanied by a decrease in bacterial cell size, which we propose to be an associated cost. We discuss these results in the context of bacterial ecology and phage-bacteria co-evolution.
Collapse
Affiliation(s)
- Timothée Poisot
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada; Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, Montréal, QC, H3A 1B1, Canada
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Esteban Martinez
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Claire Gougat-Barbera
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Michael E Hochberg
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
252
|
Yang F, Cao Y. Biosynthesis of phloroglucinol compounds in microorganisms--review. Appl Microbiol Biotechnol 2011; 93:487-95. [PMID: 22101786 DOI: 10.1007/s00253-011-3712-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/23/2011] [Accepted: 11/05/2011] [Indexed: 12/24/2022]
Abstract
Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted. From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis and a greater potential of microbial production.
Collapse
Affiliation(s)
- Fang Yang
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | | |
Collapse
|
253
|
Adebusuyi AA, Foght JM. An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a. BMC Microbiol 2011; 11:252. [PMID: 22085438 PMCID: PMC3247133 DOI: 10.1186/1471-2180-11-252] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022] Open
Abstract
Background Efflux pumps belonging to the resistance-nodulation-division (RND) superfamily in bacteria are involved in antibiotic resistance and solvent tolerance but have an unknown physiological role. EmhABC, a RND-type efflux pump in Pseudomonas fluorescens strain cLP6a, extrudes hydrophobic antibiotics, dyes and polycyclic aromatic hydrocarbons including phenanthrene. The effects of physico-chemical factors such as temperature or antibiotics on the activity and expression of EmhABC were determined in order to deduce its physiological role(s) in strain cLP6a in comparison to the emhB disruptant strain, cLP6a-1. Results Efflux assays conducted with 14C-phenanthrene showed that EmhABC activity is affected by incubation temperature. Increased phenanthrene efflux was measured in cLP6a cells grown at 10°C and decreased efflux was observed at 35°C compared with cells grown at the optimum temperature of 28°C. Membrane fatty acids in cLP6a cells were substantially altered by changes in growth temperature and in the presence of tetracycline. Changed membrane fatty acids and increased membrane permeability were associated with ~30-fold increased expression of emhABC in cLP6a cells grown at 35°C, and with increased extracellular free fatty acids. Growth of P. fluorescens cLP6a at supra-optimal temperature was enhanced by the presence of EmhABC compared to strain cLP6a-1. Conclusions Combined, these observations suggest that the EmhABC efflux pump may be involved in the management of membrane stress effects such as those due to unfavourable incubation temperatures. Efflux of fatty acids replaced as a result of membrane damage or phospholipid turnover may be the primary physiological role of the EmhABC efflux pump in P. fluorescens cLP6a.
Collapse
|
254
|
Valueva OA, Rakhuba D, Shashkov AS, Zdorovenko EL, Kiseleva E, Novik G, Knirel YA. Structure of the major O-specific polysaccharide from the lipopolysaccharide of Pseudomonas fluorescens BIM B-582: identification of 4-deoxy-D-xylo-hexose as a component of bacterial polysaccharides. JOURNAL OF NATURAL PRODUCTS 2011; 74:2161-2167. [PMID: 21942882 DOI: 10.1021/np200472p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel constituent of bacterial polysaccharides, 4-deoxy-D-xylo-hexose (D-4dxylHex), was found in the major O-specific polysaccharide from the lipopolysaccharide of Pseudomonas fluorescens BIM B-582. D-4dxylHex was isolated in the free state by paper chromatography after full acid hydrolysis of the polysaccharide and identified by GLC-mass spectrometry, 1H and 13C NMR spectroscopy, and specific rotation. It occurs as a lateral substituent in ∼40% of the oligosaccharide repeating units, making the polysaccharide devoid of strict regularity. The structure of the polysaccharide was established by sugar analysis, Smith degradation, and two-dimensional 1H and 13C NMR spectroscopy. In addition, a minor polysaccharide was isolated from the same lipopolysaccharide and found to contain 4-O-methylrhamnose.
Collapse
Affiliation(s)
- Olga A Valueva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
255
|
Shintani M, Matsumoto T, Yoshikawa H, Yamane H, Ohkuma M, Nojiri H, Top EM. DNA rearrangement has occurred in the carbazole-degradative plasmid pCAR1 and the chromosome of its unsuitable host, Pseudomonas fluorescens Pf0-1. MICROBIOLOGY-SGM 2011; 157:3405-3416. [PMID: 21948045 DOI: 10.1099/mic.0.053280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The carbazole-degradative plasmid pCAR1 carries the class II transposon Tn4676, which contains the car and ant genes, essential for conversion of carbazole into anthranilate, and anthranilate into catechol, respectively. In our previous study, DNA rearrangements in pCAR1 were frequently detected in the host Pseudomonas fluorescens Pf0-1 in the presence of carbazole, resulting in the improvement of host survivability. Several Pf0-1 mutants harbouring pCAR1 were isolated, and deletion of DNA in the plasmid ant gene was found. Here, we compared genome sequences of the parent strain Pf0-1L(pCAR1::rfp) and one of its mutants, 5EP83, to assess whether other DNA rearrangements occurred in either the plasmid or the host chromosome. We found transposition of Tn4676 into the 5EP83 chromosome. In addition, ISPre1 had transposed into the car gene intergenic region on the pCAR1-derivative plasmid of 5EP83, which inhibited car transcription. As a result of these transpositions, 5EP83 was able to metabolize carbazole due to the Tn4676 on its chromosome, although the car genes on its plasmid were non-functional. We also found that one copy of duplicate carAa genes had been deleted, and that ISPre4 had transposed into both the host chromosome and the plasmid. Our findings suggest that Pf0-1 harbouring pCAR1 is subjected to DNA rearrangements not only on the plasmid but also on its chromosome in the presence of carbazole.
Collapse
Affiliation(s)
- Masaki Shintani
- Japan Collection of Microorganisms, BioResource Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, BioResource Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
256
|
Chou WKW, Ikeda H, Cane DE. Cloning and characterization of Pfl_1841, a 2-methylenebornane synthase in Pseudomonas fluorescens PfO-1. Tetrahedron 2011; 67:6627-6632. [PMID: 21804650 DOI: 10.1016/j.tet.2011.05.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pfl_1841 gene from Pseudomonas fluorescens PfO-1 is the only gene in any of the three sequenced genomes of the Gram-negative bacterium Pseudomonas fluorescens that is annotated as a putative terpene synthase. The predicted Pfl_1841 protein, which harbors the two strictly conserved divalent metal binding domains found in all terpene cyclases, is closely related to several known or presumed 2-methylisoborneol synthases, with the closest match being to the MOL protein of Micromonaspora olivasterospora KY11048 that has been implicated as a 2-methylenebornane synthase. A synthetic gene encoding P. fluorescens Pfl_1841 and optimized for expression in Escherichia coli was expressed and purified as an N-terminal His(6)-tagged protein. Incubation of recombinant Pfl_1841 with 2-methylgeranyl diphosphate produced 2-methylenebornane as the major product accompanied by 1-methyl camphene as well as other minor, monomethyl-homomonoterpene hydrocarbons and alcohols. The steady-state kinetic parameters for the Pfl_1841-catalyzed reaction were K(M) = 110 ± 13 nM and k(cat) = 2.4 ± 0.1 × 10(-2) s(-1). Attempts to identify the P. fluorescens SAM-dependent 2-methylgeranyl diphosphate synthase have so far been unsuccessful.
Collapse
Affiliation(s)
- Wayne K W Chou
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108 USA
| | | | | |
Collapse
|
257
|
Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011; 12:438. [PMID: 21884571 PMCID: PMC3189399 DOI: 10.1186/1471-2164-12-438] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.
Collapse
Affiliation(s)
- Da-Qiang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | | | | | | | | | | | | |
Collapse
|
258
|
Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl Environ Microbiol 2011; 77:7345-54. [PMID: 21856827 DOI: 10.1128/aem.05434-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.
Collapse
|
259
|
Shintani M, Horisaki T, Yamane H, Ohkuma M, Nojiri H. Evolution of the IncP-7 carbazole-degradative plasmid pCAR1 improves survival of its host Pseudomonas fluorescens Pf0-1 in artificial water microcosms. Microbiology (Reading) 2011; 157:2276-2286. [DOI: 10.1099/mic.0.049064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, Pseudomonas fluorescens Pf0-1L, harbouring the IncP-7 carbazole-degradative plasmid pCAR1 : : rfp, was shown to be undetectable within 5 days post-inoculation in carbazole-contaminated artificial freshwater microcosms containing several plasmid-free bacteria in addition to Pf0-1L(pCAR1 : : rfp). Fourteen days after the inoculation, carbazole degraders become detectable. Here, we revealed that these isolates were not pCAR1 transconjugants, but Pf0-1L(pCAR1 : : rfp) mutants, based on RFLP and BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) analysis. Notably, the mutants displayed more rapid initiation of carbazole degradation than the parent strain Pf0-1L(pCAR1 : : rfp). The mutants were unable to degrade anthranilate due to a 163 bp deletion in the antA gene, which was overcome by their transformation with a wild-type antABC-expressing plasmid. Quantitative RT-PCR analysis indicated that the transcriptional induction of carbazole-, anthranilate- and catechol-degradative genes was comparable in both parent and mutant strains. The deletion mutants became dominant in the artificial water microcosm. The mutation caused anthranilate to accumulate instead of catechol, a toxic compound for the parent strain, and may be beneficial to host survival in artificial microcosms.
Collapse
Affiliation(s)
- Masaki Shintani
- Japan Collection of Microorganisms, BioResource Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadafumi Horisaki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, BioResource Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
260
|
Abstract
Intergenic regions of prokaryotic genomes carry multiple copies of terminal inverted repeat (TIR) sequences, the nonautonomous miniature inverted-repeat transposable element (MITE). In addition, there are the repetitive extragenic palindromic (REP) sequences that fold into a small stem loop rich in G–C bonding. And the clustered regularly interspaced short palindromic repeats (CRISPRs) display similar small stem loops but are an integral part of a complex genetic element. Other classes of repeats such as the REP2 element do not have TIRs but show other signatures. With the current availability of a large number of whole-genome sequences, many new repeat elements have been discovered. These sequences display diverse properties. Some show an intimate linkage to integrons, and at least one encodes a small RNA. Many repeats are found fused with chromosomal open reading frames, and some are located within protein coding sequences. Small repeat units appear to work hand in hand with the transcriptional and/or post-transcriptional apparatus of the cell. Functionally, they are multifaceted, and this can range from the control of gene expression, the facilitation of host/pathogen interactions, or stimulation of the mammalian immune system. The CRISPR complex displays dramatic functions such as an acquired immune system that defends against invading viruses and plasmids. Evolutionarily, mobile repeat elements may have influenced a cycle of active versus inactive genes in ancestral organisms, and some repeats are concentrated in regions of the chromosome where there is significant genomic plasticity. Changes in the abundance of genomic repeats during the evolution of an organism may have resulted in a benefit to the cell or posed a disadvantage, and some present day species may reflect a purification process. The diverse structure, eclectic functions, and evolutionary aspects of repeat elements are described.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY, USA.
| |
Collapse
|
261
|
Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J Bacteriol 2011; 193:4685-98. [PMID: 21764921 DOI: 10.1128/jb.05483-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs.
Collapse
|
262
|
Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 2011; 7:e1002132. [PMID: 21799664 PMCID: PMC3136466 DOI: 10.1371/journal.ppat.1002132] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. Breakthroughs in genomics have unleashed a new suite of tools for studying the genetic bases of phenotypic differences across diverse bacterial isolates. Here, we analyze 19 genomes of P. syringae, a pathogen of many crop species, to reveal the genetic changes underlying differences in virulence across host plants ranging from rice to maple trees. Surprisingly, a pair of strains diverged dramatically via the acquisition of a 1 Mb megaplasmid, which constitutes roughly 14% of the genome. Novel plasmids and horizontal genetic exchange have contributed extensively to species-wide diversification. Type III effector proteins are essential for pathogenicity, exhibit wide diversity between strains and are present in distinct higher-level patterns across the species. Furthermore, we use sequence comparisons within an evolutionary context to identify functional changes in multiple virulence genes. Overall, our data provide a unique overview of evolutionary pressures within P. syringae and an important resource for the phytopathogen research community.
Collapse
Affiliation(s)
- David A. Baltrus
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marc T. Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Artur Romanchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff H. Chang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karen Cherkis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Roach
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Grant
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (CDJ, computational queries); (JLD, biological queries)
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (CDJ, computational queries); (JLD, biological queries)
| |
Collapse
|
263
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
264
|
Bertels F, Rainey PB. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria. PLoS Genet 2011; 7:e1002132. [PMID: 21698139 PMCID: PMC3116915 DOI: 10.1371/journal.pgen.1002132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/02/2011] [Indexed: 12/31/2022] Open
Abstract
Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII) of repetitive extragenic palindromic (REP) sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins) and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs), combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT–containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA. DNA sequences that copy themselves throughout genomes, and make no specific contribution to reproductive success, are by definition “selfish.” Such DNA is a feature of the genomes of all organisms and evident by virtue of its repetitive nature. In bacteria the predominant repetitive sequences are short (∼20 bp), extragenic, and palindromic. These so-called REP sequences may occur many hundreds of times per genome, but their origins and means of dissemination have been a longstanding mystery. We show that REPs are components of higher-order replicative entities termed REPINs, which are themselves thought to be derived from REP sequences that flanked an ancestral autonomous selfish element. In this ancestral state the REP sequences were likely to have been critical for the movement of the selfish element, but were devoid of any capacity to replicate independently. REPINs, on the other hand, have evolved to have a life of their own, albeit one that exploits—even enslaves—a genetic element upon which their existence depends. REPINs are the ultimate non-autonomous, super-streamlined, selfish element and are widespread among bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.
| | | |
Collapse
|
265
|
Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol 2011; 2:118. [PMID: 21687428 PMCID: PMC3108286 DOI: 10.3389/fmicb.2011.00118] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022] Open
Abstract
Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.
Collapse
Affiliation(s)
- Joseph S. Lam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Véronique L. Taylor
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Salim T. Islam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Dana Kocíncová
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| |
Collapse
|
266
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
267
|
Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2011; 2:94. [PMID: 21833332 PMCID: PMC3153052 DOI: 10.3389/fmicb.2011.00094] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/18/2011] [Indexed: 02/01/2023] Open
Abstract
Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin–protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.
Collapse
Affiliation(s)
- Katherine C Goldfarb
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Song L, Zhang X. Accurate localization and excision of genomic islands in four strains of Pseudomonas aeruginosa and Pseudomonas fluorescens. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4410-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
269
|
de Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 2011; 13:1655-65. [PMID: 21450006 DOI: 10.1111/j.1462-2920.2011.02469.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative environmental species and an opportunistic microorganism, establishes itself in vulnerable patients, such as those with cystic fibrosis or hospitalized in intensive care units. It has become a major cause of nosocomial infections worldwide (about 10% of all such infections in most European Union hospitals) and a serious threat to Public Health. The overuse and misuse of antibiotics have also led to the selection of resistant strains against which very few therapeutic options exist. How an environmental species can cause human infections remains a key question that still needs elucidation despite the incredibly high progress that has been made in the P. aeruginosa biology over the past decades. The workshop belonging to Current trends in Biomedicine series, which was held under the sponsorship of the Universidad International de Andalucia between the 8th and the 10th November 2010 brought in the most recent advances in the environmental life of P. aeruginosa, the human P. aeruginosa infections, the new animal models to study Pseudomonas infections, the new genetic aspects including metabolomics, genomics and bioinformatics and the community lifestyle named biofilm that accounts for P. aeruginosa persistence in humans. This workshop organized by Soeren Molin (Danemark), Juan-Luis Ramos (Spain) and Sophie de Bentzmann (France) gathered 46 researchers coming from 11 European and American countries in a small format and was hosted in the 'Sede Antonio Machado' in Baeza. It was organized in seven sessions covering animal models for P. aeruginosa pathogenesis, resistance to drugs, regulatory potency including small RNA, two component systems, extracytoplasmic function sigma factors and trancriptional regulators, new therapies emerging from dissection of molecular mechanisms, and evolutionary mechanisms of P. aeruginosa strains in patients.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France.
| | | |
Collapse
|
270
|
Qi M, Wang D, Bradley CA, Zhao Y. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011; 6:e16451. [PMID: 21304594 PMCID: PMC3029378 DOI: 10.1371/journal.pone.0016451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carl A. Bradley
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
271
|
Browne P, Barret M, O'Gara F, Morrissey JP. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol 2010; 10:300. [PMID: 21108798 PMCID: PMC3003667 DOI: 10.1186/1471-2180-10-300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. RESULTS In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. CONCLUSIONS Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.
Collapse
Affiliation(s)
- Patrick Browne
- BIOMERIT Research Centre, Microbiology Department University College Cork, Ireland
| | | | | | | |
Collapse
|
272
|
Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol 2010; 193:177-89. [PMID: 20971913 DOI: 10.1128/jb.00895-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses.
Collapse
|
273
|
Ogier JC, Calteau A, Forst S, Goodrich-Blair H, Roche D, Rouy Z, Suen G, Zumbihl R, Givaudan A, Tailliez P, Médigue C, Gaudriault S. Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 2010; 11:568. [PMID: 20950463 PMCID: PMC3091717 DOI: 10.1186/1471-2164-11-568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). Results RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGPmob), or with no remarkable feature (RGPnone). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGPmob and RGPnone, have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. Conclusions This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution.
Collapse
Affiliation(s)
- Jean-Claude Ogier
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Yu G. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing. BMC Bioinformatics 2010; 11:508. [PMID: 20939910 PMCID: PMC2967562 DOI: 10.1186/1471-2105-11-508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing) and their isogenic reference (using simulated data). As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time-consuming when compared to Maq, a popular tool for SNP analysis, GenHtr is able to predict potential multiple variants that pre-exist in the bacterial population as well as SNPs that occur in the highly duplicated gene families. It is expected that, with the proper experimental design, this analysis can improve our understanding of the molecular mechanism underlying the dynamics and the evolution of drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Gongxin Yu
- Department of Biological Science, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA.
| |
Collapse
|
275
|
Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH. An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6. BMC Genomics 2010; 11:522. [PMID: 20920191 PMCID: PMC2997014 DOI: 10.1186/1471-2164-11-522] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas fluorescens is a genetically and physiologically diverse species of bacteria present in many habitats and in association with plants. This species of bacteria produces a large array of secondary metabolites with potential as natural products. P. fluorescens isolate WH6 produces Germination-Arrest Factor (GAF), a predicted small peptide or amino acid analog with herbicidal activity that specifically inhibits germination of seeds of graminaceous species. Results We used a hybrid next-generation sequencing approach to develop a high-quality draft genome sequence for P. fluorescens WH6. We employed automated, manual, and experimental methods to further improve the draft genome sequence. From this assembly of 6.27 megabases, we predicted 5876 genes, of which 3115 were core to P. fluorescens and 1567 were unique to WH6. Comparative genomic studies of WH6 revealed high similarity in synteny and orthology of genes with P. fluorescens SBW25. A phylogenomic study also placed WH6 in the same lineage as SBW25. In a previous non-saturating mutagenesis screen we identified two genes necessary for GAF activity in WH6. Mapping of their flanking sequences revealed genes that encode a candidate anti-sigma factor and an aminotransferase. Finally, we discovered several candidate virulence and host-association mechanisms, one of which appears to be a complete type III secretion system. Conclusions The improved high-quality draft genome sequence of WH6 contributes towards resolving the P. fluorescens species, providing additional impetus for establishing two separate lineages in P. fluorescens. Despite the high levels of orthology and synteny to SBW25, WH6 still had a substantial number of unique genes and represents another source for the discovery of genes with implications in affecting plant growth and health. Two genes are demonstrably necessary for GAF and further characterization of their proteins is important for developing natural products as control measure against grassy weeds. Finally, WH6 is the first isolate of P. fluorescens reported to encode a complete T3SS. This gives us the opportunity to explore the role of what has traditionally been thought of as a virulence mechanism for non-pathogenic interactions with plants.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 2010; 5:e12504. [PMID: 20856932 PMCID: PMC2938339 DOI: 10.1371/journal.pone.0012504] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development. Methodology/Principal Findings We mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria. Conclusions/Significance These experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled.
Collapse
|
277
|
Comparative Analysis of Metabolic Networks Provides Insight into the Evolution of Plant Pathogenic and Nonpathogenic Lifestyles in Pseudomonas. Mol Biol Evol 2010; 28:483-99. [DOI: 10.1093/molbev/msq213] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
278
|
McDonald MJ, Cooper TF, Beaumont HJE, Rainey PB. The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biol Lett 2010; 7:98-100. [PMID: 20659918 DOI: 10.1098/rsbl.2010.0547] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theoretical studies of adaptation emphasize the importance of understanding the distribution of fitness effects (DFE) of new mutations. We report the isolation of 100 adaptive mutants-without the biasing influence of natural selection-from an ancestral genotype whose fitness in the niche occupied by the derived type is extremely low. The fitness of each derived genotype was determined relative to a single reference type and the fitness effects found to conform to a normal distribution. When fitness was measured in a different environment, the rank order changed, but not the shape of the distribution. We argue that, even with detailed knowledge of the genetic architecture underpinning the adaptive types (as is the case here), the DFEs remain unpredictable, and we discuss the possibility that general explanations for the shape of the DFE might not be possible in the absence of organism-specific biological details.
Collapse
Affiliation(s)
- Michael J McDonald
- New Zealand Institute For Advanced Study, Massey University at Albany, Private Bag 102904, North Shore Mail Centre, Auckland 0745, New Zealand.
| | | | | | | |
Collapse
|
279
|
Knight CG, Zhang XX, Gunn A, Brenner T, Jackson RW, Giddens SR, Prabhakar S, Zitzmann N, Rainey PB. Testing temperature-induced proteomic changes in the plant-associated bacterium Pseudomonas fluorescens SBW25. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:396-402. [PMID: 23766112 DOI: 10.1111/j.1758-2229.2009.00102.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Traits used by bacteria to enhance ecological performance in natural environments are not well understood. Recognizing that the saprophytic plant-colonizing bacterium Pseudomonas fluorescens SBW25 experiences temperatures in its natural environment significantly cooler than the 28°C routinely used in the laboratory, we identified proteins differentially expressed between 28°C and the more environmentally relevant temperature of 14°C. Of 2102 protein isoforms, 32 were temperature responsive and identified by mass spectrometry. Seven of these (OmpR, MucD, GuaD, OsmY and three of unknown function, Tee1, Tee2 and Tee3) were selected for genetic and ecological analyses. In each instance, changes in protein expression with temperature were mirrored by parallel transcriptional changes. The fitness contribution of the genes encoding each of the seven proteins was larger at 14°C than 28°C and included two cases of trade-offs (enhanced fitness at one temperature and reduced fitness at the other -mucD and tee2 deletions). The relationship between the fitness effects of genes in vitro and in vivo was variable, but two temperature-responsive genes -osmY and mucD- contribute substantially to the ability of P. fluorescens to colonize the plant environment.
Collapse
Affiliation(s)
- C G Knight
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Private Bag 102904, North Shore Mail Centre 0745, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O'Gara F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:403-411. [PMID: 23766113 DOI: 10.1111/j.1758-2229.2009.00105.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mobilization of insoluble soil inorganic phosphate by plant beneficial rhizobacteria is a trait of key importance to the development of microbial biofertilizers. In this study, the ability of several Pseudomonas spp. to solubilize Ca3 (PO4 )2 was compared. While all Pseudomonas spp. were found to facilitate a decrease in pH and solubilize inorganic phosphate by the production of extracellular organic acids, strains varied by producing either gluconic or 2-ketogluconic acid. Furthermore, comparison between the Pseudomonas spp. of the genes involved in oxidative glucose metabolism revealed variations in genomic organization. To further investigate the genetic mechanisms involved in inorganic phosphate solubilization by Pseudomonas spp., a transposon mutant library of P. fluorescens F113 was screened for mutants with reduced Ca3 (PO4 )2 solubilization ability. Mutations in the gcd and pqqE genes greatly reduced the solubilization ability, whereas mutations in the pqqB gene only moderately reduced this ability. The combination of biochemical analysis and genomic comparisons revealed that alterations in the pqq biosynthetic genes, and the presence/absence of the gluconate dehydrogenase (gad) gene, fundamentally affect phosphate solublization in strains of P. fluorescens.
Collapse
Affiliation(s)
- Simon H Miller
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland. Université de Lyon, F-69622, Lyon, France. Université Lyon 1, Villeurbanne, France. CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
281
|
Höfte M, Altier N. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 2010; 161:464-71. [PMID: 20457252 DOI: 10.1016/j.resmic.2010.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
The highly diverse genus Pseudomonas contains very effective biocontrol agents that can increase plant growth and improve plant health. Biocontrol characteristics, however, are strain-dependent and cannot be clearly linked to phylogenetic variation. Isolate screening remains essential to find suitable strains, which can be done by testing large local collections for disease suppression and plant-growth promotion exemplified in a case study on forage legumes in Uruguay or by targeted screening for Pseudomonas spp. which produce desirable secondary metabolites, as demonstrated in a case study on cocoyam in Cameroon. In both case studies, access to reference strains from public and private collections was essential for identification, phylogenetic studies and metabolite characterization.
Collapse
Affiliation(s)
- Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, Belgium.
| | | |
Collapse
|
282
|
Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 2010; 12:2539-58. [DOI: 10.1111/j.1462-2920.2010.02227.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
283
|
Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513-30. [PMID: 20192968 DOI: 10.1111/j.1462-2920.2010.02181.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Partial sequences of four core 'housekeeping' genes (16S rRNA, gyrB, rpoB and rpoD) of the type strains of 107 Pseudomonas species were analysed in order to obtain a comprehensive view regarding the phylogenetic relationships within the Pseudomonas genus. Gene trees allowed the discrimination of two lineages or intrageneric groups (IG), called IG P. aeruginosa and IG P. fluorescens. The first IG P. aeruginosa, was divided into three main groups, represented by the species P. aeruginosa, P. stutzeri and P. oleovorans. The second IG was divided into six groups, represented by the species P. fluorescens, P. syringae, P. lutea, P. putida, P. anguilliseptica and P. straminea. The P. fluorescens group was the most complex and included nine subgroups, represented by the species P. fluorescens, P. gessardi, P. fragi, P. mandelii, P. jesseni, P. koreensis, P. corrugata, P. chlororaphis and P. asplenii. Pseudomonas rhizospherae was affiliated with the P. fluorescens IG in the phylogenetic analysis but was independent of any group. Some species were located on phylogenetic branches that were distant from defined clusters, such as those represented by the P. oryzihabitans group and the type strains P. pachastrellae, P. pertucinogena and P. luteola. Additionally, 17 strains of P. aeruginosa, 'P. entomophila', P. fluorescens, P. putida, P. syringae and P. stutzeri, for which genome sequences have been determined, have been included to compare the results obtained in the analysis of four housekeeping genes with those obtained from whole genome analyses.
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | | | | |
Collapse
|
284
|
Nunvar J, Huckova T, Licha I. Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 2010; 11:44. [PMID: 20085626 PMCID: PMC2817692 DOI: 10.1186/1471-2164-11-44] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/19/2010] [Indexed: 02/08/2023] Open
Abstract
Background Bacterial repetitive extragenic palindromes (REPs) compose a distinct group of genomic repeats. They usually occur in high abundance (>100 copies/genome) and are often arranged in composite repetitive structures - bacterial interspersed mosaic elements (BIMEs). In BIMEs, regularly spaced REPs are present in alternating orientations. BIMEs and REPs have been shown to serve as binding sites for several proteins and suggested to play role in chromosome organization and transcription termination. Their origins are, at present, unknown. Results In this report, we describe a novel class of putative transposases related to IS200/IS605 transposase family and we demonstrate that they are obligately associated with bacterial REPs. Open reading frames coding for these REP-associated tyrosine transposases (RAYTs) are always flanked by two REPs in inverted orientation and thus constitute a unit reminiscent of typical transposable elements. Besides conserved residues involved in catalysis of DNA cleavage, RAYTs carry characteristic structural motifs that are absent in typical IS200/IS605 transposases. DNA sequences flanking rayt genes are in one third of examined cases arranged in modular BIMEs. RAYTs and their flanking REPs apparently coevolve with each other. The rayt genes themselves are subject to rapid evolution, substantially exceeding the substitution rate of neighboring genes. Strong correlation was found between the presence of a particular rayt in a genome and the abundance of its cognate REPs. Conclusions In light of our findings, we propose that RAYTs are responsible for establishment of REPs and BIMEs in bacterial genomes, as well as for their exceptional dynamics and species-specifity. Conversely, we suggest that BIMEs are in fact a special type of nonautonomous transposable elements, mobilizable by RAYTs.
Collapse
Affiliation(s)
- Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | | | | |
Collapse
|
285
|
Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J. Both Cycloclasticusâspp. and Pseudomonasâspp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 2010; 71:137-47. [DOI: 10.1111/j.1574-6941.2009.00788.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
286
|
Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, Monroe M, Nicora CD, Lipton MS, Levy SB. Proteomic detection of non-annotated protein-coding genes in Pseudomonas fluorescens Pf0-1. PLoS One 2009; 4:e8455. [PMID: 20041161 PMCID: PMC2794547 DOI: 10.1371/journal.pone.0008455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
Collapse
Affiliation(s)
- Wook Kim
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mark W. Silby
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sam O. Purvine
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Julie S. Nicoll
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kim K. Hixson
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Monroe
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
287
|
Abstract
Bet hedging-stochastic switching between phenotypic states-is a canonical example of an evolutionary adaptation that facilitates persistence in the face of fluctuating environmental conditions. Although bet hedging is found in organisms ranging from bacteria to humans, direct evidence for an adaptive origin of this behaviour is lacking. Here we report the de novo evolution of bet hedging in experimental bacterial populations. Bacteria were subjected to an environment that continually favoured new phenotypic states. Initially, our regime drove the successive evolution of novel phenotypes by mutation and selection; however, in two (of 12) replicates this trend was broken by the evolution of bet-hedging genotypes that persisted because of rapid stochastic phenotype switching. Genome re-sequencing of one of these switching types revealed nine mutations that distinguished it from the ancestor. The final mutation was both necessary and sufficient for rapid phenotype switching; nonetheless, the evolution of bet hedging was contingent upon earlier mutations that altered the relative fitness effect of the final mutation. These findings capture the adaptive evolution of bet hedging in the simplest of organisms, and suggest that risk-spreading strategies may have been among the earliest evolutionary solutions to life in fluctuating environments.
Collapse
|
288
|
Shintani M, Takahashi Y, Tokumaru H, Kadota K, Hara H, Miyakoshi M, Naito K, Yamane H, Nishida H, Nojiri H. Response of thePseudomonashost chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ Microbiol 2009; 12:1413-26. [DOI: 10.1111/j.1462-2920.2009.02110.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
289
|
Thomas WJ, Thireault CA, Kimbrel JA, Chang JH. Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:919-28. [PMID: 19682294 DOI: 10.1111/j.1365-313x.2009.03998.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many Gram-negative bacteria use a type III secretion system (T3SS) to establish associations with their hosts. The T3SS is a conduit for direct injection of type-III effector proteins into host cells, where they manipulate the host for the benefit of the infecting bacterium. For plant-associated pathogens, the variations in number and amino acid sequences of type-III effectors, as well as their functional redundancy, make studying type-III effectors challenging. To mitigate this challenge, we developed a stable delivery system for individual or defined sets of type-III effectors into plant cells. We used recombineering and Tn5-mediated transposition to clone and stably integrate, respectively, the complete hrp/hrc region from Pseudomonas syringae pv. syringae 61 into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. We describe our development of Effector-to-Host Analyzer (EtHAn), and demonstrate its utility for studying effectors for their in planta functions.
Collapse
Affiliation(s)
- William J Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
290
|
|
291
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
292
|
Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics 2009; 183:1041-53. [PMID: 19704015 DOI: 10.1534/genetics.109.107110] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new mutational pathways (Aws and Mws) that allow realization of the WS phenotype: in common with the Wsp module these pathways contain a di-guanylate cyclase-encoding gene subject to negative regulation. Together, mutations in the Wsp, Aws, and Mws regulatory modules account for the spectrum of WS phenotype-generating mutations found among a collection of 26 spontaneously arising WS genotypes obtained from independent adaptive radiations. Despite a large number of potential mutational pathways, the repeated discovery of mutations in a small number of loci (parallel evolution) prompted the construction of an ancestral genotype devoid of known (Wsp, Aws, and Mws) regulatory modules to see whether the types derived from this genotype could converge upon the WS phenotype via a novel route. Such types-with equivalent fitness effects-did emerge, although they took significantly longer to do so. Together our data provide an explanation for why WS evolution follows a limited number of mutational pathways and show how genetic architecture can bias the molecular variation presented to selection.
Collapse
|