251
|
Norman G, Shi C, Westby MJ, Price BL, McBain AJ, Dumville JC, Cullum N. Bacteria and bioburden and healing in complex wounds: A prognostic systematic review. Wound Repair Regen 2021; 29:466-477. [PMID: 33591630 DOI: 10.1111/wrr.12898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
The wound microbiome may play an important role in the wound healing process. We conducted the first systematic prognosis review investigating whether aspects of the wound microbiome are independent prognostic factors for the healing of complex wounds. We searched Medline, Embase, CINAHL and the Cochrane Library to February 2019. We included longitudinal studies which assessed the independent association of aspects of wound microbiome with healing of complex wounds while controlling for confounding factors. Two reviewers extracted data and assessed risk of bias and certainty of evidence using the GRADE approach. We synthesised studies narratively due to the clinical and methodological heterogeneity of included studies and sparse data. We identified 28 cohorts from 21 studies with a total of 38,604 participants, including people with diabetes and foot ulcers, open surgical wounds, venous leg ulcers and pressure ulcers. Risk of bias varied from low (2 cohorts) to high (17 cohorts); the great majority of participants were in cohorts at high risk of bias. Most evidence related to the association of baseline clinical wound infection with healing. Clinical infection at baseline may be associated with less likelihood of wound healing in foot ulcers in diabetes (HR from cohort with moderate risk of bias 0.53, 95% CI 0.33 to 0.83) or slower healing in open surgical wounds (HR 0.65, 95% CI 0.51 to 0.83); evidence in other wounds is more limited. Most other associations assessed showed no clear relationship with wound healing; evidence was limited and often sparse; and we documented gaps in the evidence. There is low certainty evidence that a diagnosis of wound infection may be prognostic of poorer healing in foot ulcers in diabetes, and some moderate certainty evidence for this in open surgical wounds. Low certainty evidence means that more research could change these findings.
Collapse
Affiliation(s)
- Gill Norman
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Maggie J Westby
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bianca L Price
- Division of Pharmacy & Optometry, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy & Optometry, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Jo C Dumville
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Research and Innovation Division, Manchester University Foundation NHS Trust, Manchester, UK
| | - Nicky Cullum
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Research and Innovation Division, Manchester University Foundation NHS Trust, Manchester, UK
| |
Collapse
|
252
|
Blanco-Fernandez B, Castaño O, Mateos-Timoneda MÁ, Engel E, Pérez-Amodio S. Nanotechnology Approaches in Chronic Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:234-256. [PMID: 32320364 PMCID: PMC8035922 DOI: 10.1089/wound.2019.1094] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.
Collapse
Affiliation(s)
- Barbara Blanco-Fernandez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Castaño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Bioelectronics Unit and Nanobioengineering Lab, Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Miguel Ángel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
253
|
Laulund AS, Schwartz F, Trøstrup H, Thomsen K, Christophersen L, Calum H, Ciofu O, Høiby N, Moser C. Adjunctive S100A8/A9 Immunomodulation Hinders Ciprofloxacin Resistance in Pseudomonas aeruginosa in a Murine Biofilm Wound Model. Front Cell Infect Microbiol 2021; 11:652012. [PMID: 33912476 PMCID: PMC8072475 DOI: 10.3389/fcimb.2021.652012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Pseudomonas aeruginosa is known to contribute to the pathogenesis of chronic wounds by biofilm-establishment with increased tolerance to host response and antibiotics. The neutrophil-factor S100A8/A9 has a promising adjuvant effect when combined with ciprofloxacin, measured by quantitative bacteriology, and increased anti- and lowered pro-inflammatory proteins. We speculated whether a S100A8/A9 supplement could prevent ciprofloxacin resistance in infected wounds. Method Full-thickness 2.9cm2-necrosis was inflicted on 32 mice. On day 4, P.aeruginosa in seaweed alginate was injected sub-eschar to mimic a mono-pathogenic biofilm. Mice were randomized to receive ciprofloxacin and S100A8/A9 (n=14), ciprofloxacin (n=12) or saline (n=6). Half of the mice in each group were euthanized day 6 and the remaining day 10 post-infection. Mice were treated until sacrifice. Primary endpoint was the appearance of ciprofloxacin resistant P.aeruginosa. The study was further evaluated by genetic characterization of resistance, means of quantitative bacteriology, wound-size and cytokine-production. Results Three mice receiving ciprofloxacin monotherapy developed resistance after 14 days. None of the mice receiving combination therapy changed resistance pattern. Sequencing of fluoroquinolone-resistance determining regions in the ciprofloxacin resistant isolates identified two high-resistant strains mutated in gyrA C248T (MIC>32µg/ml) and a gyr B mutation was found in the sample with low level resistance (MIC=3µg/ml). Bacterial densities in wounds were lower in the dual treated group compared to the placebo group on both termination days. Conclusion This study supports the ciprofloxacin augmenting effect and indicates a protective effect in terms of hindered ciprofloxacin resistance of adjuvant S100A8/A9 in P.aeruginosa biofilm infected chronic wounds.
Collapse
Affiliation(s)
- Anne S Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery, Zealand University Hospital, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology (ISIM), University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology (ISIM), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
254
|
Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12:648554. [PMID: 33897696 PMCID: PMC8062706 DOI: 10.3389/fimmu.2021.648554] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed wound healing can cause significant issues for immobile and ageing individuals as well as those living with co-morbid conditions such as diabetes, cardiovascular disease, and cancer. These delays increase a patient’s risk for infection and, in severe cases, can result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and expensive to treat and there is an urgent need to develop more effective therapeutics that restore healing processes. Sustained innate immune activation and inflammation are common features observed across most chronic wound types. However, the factors driving this activation remain incompletely understood. Emerging evidence suggests that the composition and structure of the wound microbiome may play a central role in driving this dysregulated activation but the cellular and molecular mechanisms underlying these processes require further investigation. In this review, we will discuss the current literature on: 1) how bacterial populations and biofilms contribute to chronic wound formation, 2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target bacteria-innate immune interactions to improve healing. We will also discuss potential issues in studying the complexity of immune-biofilm interactions in chronic wounds and explore future areas of investigation for the field.
Collapse
Affiliation(s)
- Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Emily Russell
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra Zigic
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Katrina G DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Jonah E Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
255
|
Stuermer EK, Besser M, Brill F, Geffken M, Plattfaut I, Severing AL, Wiencke V, Rembe JD, Naumova EA, Kampe A, Debus S, Smeets R. Comparative analysis of biofilm models to determine the efficacy of antimicrobials. Int J Hyg Environ Health 2021; 234:113744. [PMID: 33780904 DOI: 10.1016/j.ijheh.2021.113744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
Biofilms are one of the greatest challenges in today's treatment of chronic wounds. While antimicrobials kill platonic bacteria within seconds, they are rarely able to harm biofilms. In order to identify effective substances for antibacterial therapy, cost-efficient, standardized and reproducible models that aim to mimic the clinical situation are required. In this study, two 3D biofilm models based on human plasma with immune cells (lhBIOM) or based on sheep blood (sbBIOM) containing S. aureus or P. aeruginosa, are compared with the human biofilm model hpBIOM regarding their microscopic structure (scanning electron microscopy; SEM) and their bacterial resistance to octenidine hydrochloride (OCT) and a sodium hypochlorite (NaOCl) wound-irrigation solution. The three analyzed biofilm models show little to no reaction to treatment with the hypochlorous solution while planktonic S. aureus and P. aeruginosa cells are reduced within minutes. After 48 h, octenidine hydrochloride manages to erode the biofilm matrix and significantly reduce the bacterial load. The determined effects are qualitatively reflected by SEM. Our results show that both ethically acceptable human and sheep blood based biofilm models can be used as a standard for in vitro testing of new antimicrobial substances. Due to their composition, both fulfill the criteria of a reality-reflecting model and therefore should be used in the approval for new antimicrobial agents.
Collapse
Affiliation(s)
- E K Stuermer
- Dept. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Martini Street 52, 20246, Hamburg, Germany.
| | - M Besser
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - F Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - M Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - I Plattfaut
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - A L Severing
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany
| | - V Wiencke
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - J D Rembe
- Dpt. of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, Witten, Germany; Dpt. of Vascular and Endovascular Surgery, Heinrich-Heine-University of Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | - E A Naumova
- Department of Biological and Material Sciences in Dentistry, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - A Kampe
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Stiegstueck 34, 22339, Hamburg, Germany
| | - S Debus
- Dept. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Martini Street 52, 20246, Hamburg, Germany
| | - R Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martini Street 52, 20246, Hamburg, Germany
| |
Collapse
|
256
|
Adaptation of Staphylococcus aureus in a Medium Mimicking a Diabetic Foot Environment. Toxins (Basel) 2021; 13:toxins13030230. [PMID: 33810194 PMCID: PMC8005162 DOI: 10.3390/toxins13030230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of β-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.
Collapse
|
257
|
Abstract
Biofilms are aggregates formed as a protective survival state by microorganisms to adapt to the environment and can be resistant to antimicrobial agents and host immune responses due to chemical or physical diffusion barriers, modified nutrient environments, suppression of the growth rate within biofilms, and the genetic adaptation of cells within biofilms. With the widespread use of medical devices, medical device-associated biofilms continue to pose a serious threat to human health, and these biofilms have become the most important source of nosocomial infections. However, traditional antimicrobial agents cannot completely eliminate medical device-associated biofilms. New strategies for the treatment of these biofilms and targeting biofilm infections are urgently required. Several novel approaches have been developed and identified as effective and promising treatments. In this review, we briefly summarize the challenges associated with the treatment of medical device-associated biofilm infections and highlight the latest promising approaches aimed at preventing or eradicating these biofilms.
Collapse
|
258
|
Maillard JY, Kampf G, Cooper R. Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC Antimicrob Resist 2021; 3:dlab027. [PMID: 34223101 PMCID: PMC8209993 DOI: 10.1093/jacamr/dlab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have provided an effective means to control wound infection, but the continued emergence of antibiotic-resistant strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed. Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings in patients. This review calls for a unified approach to developing standardized methods of evaluating antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in wound care.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Günter Kampf
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | - Rose Cooper
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
259
|
Woo K, Dowsett C, Costa B, Ebohon S, Woodmansey EJ, Malone M. Efficacy of topical cadexomer iodine treatment in chronic wounds: Systematic review and meta-analysis of comparative clinical trials. Int Wound J 2021; 18:586-597. [PMID: 33559332 PMCID: PMC8450789 DOI: 10.1111/iwj.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to summarise the clinical evidence supporting almost 40 years of topical cadexomer iodine (CIOD) use in wound bed preparation by removing barriers to healing such as exudate, slough, bioburden, and infection and allowing chronic wound progression. A systematic review was conducted (Embase/PubMed, November 2020) to identify relevant comparative studies meeting inclusion criteria. Meta‐analyses were performed using a fixed‐effects (I2 < 50%) or random‐effects model (I2 ≥ 50%) depending on statistical heterogeneity. Dichotomous outcomes were reported as relative risk (RR) and continuous outcomes as mean difference (MD), with 95% confidence intervals. In total, 436 publications were identified of which 13 were comparative trials including outcomes of interest. Significant reductions in exudate, pus/debris, slough, bioburden, and infection were reported in chronic wounds treated with CIOD, compared with standard of care (SOC). Meta‐analyses highlighted the positive impact of CIOD on mean wound area reduction (MD = 2.35 cm2, 95% CI = 0.34–4.36, P = .0219) after eight weeks treatment and overall wound healing events compared to SOC; wounds including venous leg ulcers, diabetic foot ulcers, and pressure ulcers treated with CIOD were more than twice as likely to heal than those receiving SOC (RR = 2.30, 95% CI = 1.54–3.45, P < .0001). This meta‐analysis demonstrates the efficacy of CIOD on chronic wounds through removal of barriers to healing. CIOD should be considered in wound bed preparation and treatment protocols.
Collapse
Affiliation(s)
- Kevin Woo
- School of Nursing, Queen's University, Kingston, Ontario, Canada
| | | | - Ben Costa
- Smith & Nephew Clinical and Medical Affairs, Kingston upon Hull, UK
| | - Stephen Ebohon
- Smith & Nephew Clinical and Medical Affairs, Kingston upon Hull, UK
| | | | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, Sydney, Australia.,School of Medicine, Infectious Diseases and Microbiology, Western Sydney University, Australia
| |
Collapse
|
260
|
Xu W, Dielubanza E, Maisel A, Leung K, Mustoe T, Hong S, Galiano R. Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes. Cell Mol Life Sci 2021; 78:935-947. [PMID: 32409862 PMCID: PMC11072219 DOI: 10.1007/s00018-020-03545-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Chronic wounds have been considered as major medical problems that may result in expensive healthcare. One of the common causes of chronic wounds is bacterial contamination that leads to persistent inflammation and unbalanced host cell immune responses. Among the bacterial strains that have been identified from chronic wounds, Staphylococcus aureus is the most common strain. We previously observed that S. aureus impaired mouse cutaneous wound healing by delaying re-epithelialization. Here, we investigated the mechanism of delayed re-epithelialization caused by S. aureus infection. With the presence of S. aureus exudate, the migration of in vitro cultured human keratinocytes was significantly inhibited and connexin-43 (Cx43) was upregulated. Inhibition of keratinocyte migration by S. aureus exudate disappeared in keratinocytes where the expression of Cx43 knocked down. Protein kinase phosphorylation array showed that phosphorylation of Akt-S473 was upregulated by S. aureus exudate. In vivo study of Cx43 in S. aureus-infected murine splinted cutaneous wound model showed upregulation of Cx43 in the migrating epithelial edge by S. aureus infection. Treatment with a PI3K/Akt inhibitor reduced Cx43 expression and overcame the wound closure impairment by S. aureus infection in the mouse model. This may contribute to the development of treatment to bacterium-infected wounds.
Collapse
Affiliation(s)
- Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| | - Elodi Dielubanza
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amanda Maisel
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kai Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JB Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Thomas Mustoe
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seok Hong
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Robert Galiano
- Laboratory for Wound Repair and Regenerative Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
261
|
Thaarup IC, Bjarnsholt T. Current In Vitro Biofilm-Infected Chronic Wound Models for Developing New Treatment Possibilities. Adv Wound Care (New Rochelle) 2021; 10:91-102. [PMID: 32496982 DOI: 10.1089/wound.2020.1176] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significance: The prevalence of chronic wounds is increasing worldwide. The most recent estimates suggest that up to 2% of the population in the industrialized countries is affected. Recent Advances: During the past few decades, bacterial biofilms have been elucidated as one of the primary reasons why chronic wounds fail to heal. Critical Issues: There is a lack of direct causation and evidence of the role that biofilms play in persistent wounds, which complicates research on new treatment options, since it is still unknown which factors dominate. For this reason, several different in vitro wound models that mimic the biofilm infections observed in chronic wounds and other chronic infections have been created. These different models are, among other purposes, used to test a variety of wound care products. However, chronic wounds are highly complex, and several different factors must be taken into consideration along with the infection, including physiochemical and human-supplemented factors. Furthermore, the limitations of using in vitro models, such as the lack of a responsive immune system should always be given due consideration. Future Directions: Present understandings of all the elements and interactions that take place within chronic wounds are incomplete. As our insight of in vivo chronic wounds continues to expand, so too must the in vitro models used to mimic these infections evolve and adapt to new knowledge.
Collapse
Affiliation(s)
- Ida C. Thaarup
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
262
|
Wu BC, Haney EF, Akhoundsadegh N, Pletzer D, Trimble MJ, Adriaans AE, Nibbering PH, Hancock REW. Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms Microbiomes 2021; 7:8. [PMID: 33495449 PMCID: PMC7835231 DOI: 10.1038/s41522-020-00182-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial biofilms cause 65% of all human infections and are highly resistant to antibiotic therapy but lack specific treatments. To provide a human organoid model for studying host-microbe interplay and enabling screening for novel antibiofilm agents, a human epidermis organoid model with robust methicillin-resistant Staphylococcus aureus (MRSA) USA300 and Pseudomonas aeruginosa PAO1 biofilm was developed. Treatment of 1-day and 3-day MRSA and PAO1 biofilms with antibiofilm peptide DJK-5 significantly and substantially reduced the bacterial burden. This model enabled the screening of synthetic host defense peptides, revealing their superior antibiofilm activity against MRSA compared to the antibiotic mupirocin. The model was extended to evaluate thermally wounded skin infected with MRSA biofilms resulting in increased bacterial load, cytotoxicity, and pro-inflammatory cytokine levels that were all reduced upon treatment with DJK-5. Combination treatment of DJK-5 with an anti-inflammatory peptide, 1002, further reduced cytotoxicity and skin inflammation.
Collapse
Affiliation(s)
- Bing Catherine Wu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Evan F Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Akhoundsadegh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Alwin E Adriaans
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
263
|
Sodium Salicylate Influences the Pseudomonas aeruginosa Biofilm Structure and Susceptibility Towards Silver. Int J Mol Sci 2021; 22:ijms22031060. [PMID: 33494399 PMCID: PMC7865925 DOI: 10.3390/ijms22031060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Hard-to-heal wounds are typically infected with biofilm-producing microorganisms, such as Pseudomonas aeruginosa, which strongly contribute to delayed healing. Due to the global challenge of antimicrobial resistance, alternative treatment strategies are needed. Here, we investigated whether inhibition of quorum sensing (QS) by sodium salicylate in different P. aeruginosa strains (QS-competent, QS-mutant, and chronic wound strains) influences biofilm formation and tolerance to silver. Biofilm formation was evaluated in simulated serum-containing wound fluid in the presence or absence of sodium salicylate (NaSa). Biofilms were established using a 3D collagen-based biofilm model, collagen coated glass, and the Calgary biofilm device. Furthermore, the susceptibility of 48-h-old biofilms formed by laboratory and clinical strains in the presence or absence of NaSa towards silver was evaluated by assessing cell viability. Biofilms formed in the presence of NaSa were more susceptible to silver and contained reduced levels of virulence factors associated with biofilm development than those formed in the absence of NaSa. Biofilm aggregates formed by the wild-type but not the QS mutant strain, were smaller and less heterogenous in size when grown in cultures with NaSa compared to control. These data suggest that NaSa, via a reduction of cell aggregation in biofilms, allows the antiseptic to become more readily available to cells.
Collapse
|
264
|
Di Vito M, Smolka A, Proto MR, Barbanti L, Gelmini F, Napoli E, Bellardi MG, Mattarelli P, Beretta G, Sanguinetti M, Bugli F. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics (Basel) 2021; 10:antibiotics10010088. [PMID: 33477717 PMCID: PMC7831920 DOI: 10.3390/antibiotics10010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Among the top five human infections requiring medical treatment is dermatitis. Treatment of bacterial and fungal skin infections is usually based on antibiotic therapy, which is often ineffective due to the involvement of antibiotic-resistant microbial strains. The aim of this study was to compare the antimicrobial activity of essential oils (EOs) and hydrolates (Hys) extracted from six aromatic plants grown in Italy (Lavandula angustifolia, Lavandula intermedia, Origanum hirtum, Satureja montana, Monarda didyma, and Monarda fistulosa) towards fungal (Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis; Trichophyton soudanense, Trichophyton tonsurans, Trichophyton rubrum, Trichophyton violaceum and Microsporum canis) and bacterial strains (Staphylococcus aureus MRSA, Staphylococcus aureus MSSA, Streptococcus pyogenes, E. faecalis, Enterococcus faecalis VRE, and Enterococcus faecium) potentially pathogenic for human skin. The composition and antimicrobial activity of EOs and Hys were evaluated using the Gas-chromatography mass spectrometry and micro dilution-broth test, respectively. The volatiles’ conversion factors (CFs) were calculated to compare the activity of Hys with that of the corresponding EOs. Data show that, although the minimum inhibitory concentration values of EOs are lower than the corresponding Hys, the volatiles contained in Hys are more effective at inhibiting microbial growth because they are active at lower concentrations.
Collapse
Affiliation(s)
- Maura Di Vito
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Correspondence: ; Tel.: +39-051-209-6267 or +39-06-30154964
| | - Antonina Smolka
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
| | - Maria Rita Proto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Lorenzo Barbanti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Fabrizio Gelmini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via P. Gaifami 18, 95126 Catania, Italy;
| | - Maria Grazia Bellardi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Giangiacomo Beretta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
265
|
Blanchette V, Brousseau-Foley M. [Multidisciplinary management of diabetic foot ulcer infection]. Rev Med Interne 2021; 42:193-201. [PMID: 33451819 DOI: 10.1016/j.revmed.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Infection is one of the most common complications of diabetic foot ulceration resulting in lower extremity amputations and early mortality in this population. Several factors influence the course of diabetic foot ulceration infection and in that context, integrated multidisciplinary management is required as soon as possible. In fact, a holistic interdisciplinary approach should be the standard of care. Whether the infection is categorized as mild, moderate or severe, with or without bone infection, the overall individual's characteristics must be addressed, in addition to local wound care, offloading and antibiotic therapy. Some severe infections have potential indications for hospitalization and are considered as surgical emergencies. In some DFU cases, surgical revascularization of the limb is mandatory to treat the infection. However, surgical interventions and amputations, are sometimes inevitable, they are predictors of bad prognosis. Although some adjuvant therapies are effective to promote wound healing, their use is not recommended to treat diabetic foot ulcer infection. Infection management can be divided into three general interventions: proper clinical diagnosis, microbiological and imaging investigations, and treatment. This review is an update on the up-to-date evidences in scientific literature and includes the latest recommendations from the International Working Group on the Diabetic Foot (IWGDF).
Collapse
Affiliation(s)
- V Blanchette
- Université du Québec à Trois-Rivières, programme de médecine podiatrique, département des sciences de l'activité physique, 3351, boulevard des Forges, CP 500, G9A 5H7 Trois-Rivières, Québec, Canada.
| | - M Brousseau-Foley
- Université du Québec à Trois-Rivières, programme de médecine podiatrique, département des sciences de l'activité physique, 3351, boulevard des Forges, CP 500, G9A 5H7 Trois-Rivières, Québec, Canada; Centre intégré universitaire de santé et de services sociaux de la Mauricie et du Centre-du-Québec (CIUSSS-MCQ) affilié à l'Université de Montréal, Faculté de Médecine, Groupe de médecine familiale universitaire de Trois-Rivières, G9A 1X9 Trois-Rivières, Québec, Canada.
| |
Collapse
|
266
|
Krasowski G, Junka A, Paleczny J, Czajkowska J, Makomaska-Szaroszyk E, Chodaczek G, Majkowski M, Migdał P, Fijałkowski K, Kowalska-Krochmal B, Bartoszewicz M. In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. MEMBRANES 2021; 11:membranes11010062. [PMID: 33477349 PMCID: PMC7830887 DOI: 10.3390/membranes11010062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds complicated with biofilm formed by pathogens remain one of the most significant challenges of contemporary medicine. The application of topical antiseptic solutions against wound biofilm has been gaining increasing interest among clinical practitioners and scientific researchers. This paper compares the activity of polyhexanide-, octenidine- and hypochlorite/hypochlorous acid-based antiseptics against biofilm formed by clinical strains of Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. The analyses included both standard techniques utilizing polystyrene plates and self-designed biocellulose-based models in which a biofilm formed by pathogens was formed on an elastic, fibrinous surface covered with a fibroblast layer. The obtained results show high antibiofilm activity of polihexanide- and octenidine-based antiseptics and lack or weak antibiofilm activity of hypochlorite-based antiseptic of total chlorine content equal to 80 parts per million. The data presented in this paper indicate that polihexanide- or octenidine-based antiseptics are highly useful in the treatment of biofilm, while hypochlorite-based antiseptics with low chlorine content may be applied for wound rinsing but not when specific antibiofilm activity is required.
Collapse
Affiliation(s)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-784-06-75
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| | - Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | | | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; (G.C.); (M.M.)
| | - Michał Majkowski
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; (G.C.); (M.M.)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Beata Kowalska-Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| |
Collapse
|
267
|
Prevalence and characteristics of older people with pressure ulcers and legs ulcers, in nursing homes in Barcelona. J Tissue Viability 2021; 30:108-115. [PMID: 33485786 DOI: 10.1016/j.jtv.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nursing home residents are vulnerable to chronic wounds. However, the prevalence data are scarce. AIM The purpose of this study was to determine the prevalence of pressure ulcers and/or leg ulcers in nursing home residents, and describe the characteristics of the nursing homes, the residents and the wounds, as well as possible associations between these characteristics. METHODS This was a cross-sectional survey of nursing home residents over the age of 65 in 168 facilities in Barcelona. Those presenting category II-IV pressure ulcers and/or leg ulcers were included. The data were collected by observation/examination. Descriptive, bivariate, and multivariate analyses were performed. RESULTS The overall prevalence of pressure ulcers and leg ulcers combined was 4.4% (3.5% were pressure ulcers and 0.9% were leg ulcers). In small nursing homes with less nursing staff, the overall prevalence was greater than in large nursing homes (5.6% vs 3.8% [p = 0.01]). As expected, residents with pressure ulcers had higher pressure ulcer risk, worse dependence and cognitive status, urinary and faecal incontinence, and most were underweight. However, residents with leg ulcers had worse venous and arterial impairment and also were overweight. A multivariate analysis showed that pressure ulcers were statistically significantly associated with faecal incontinence (OR = 0.28, 95% CI = 0.09-0.81) and dyslipidaemia (OR = 0.21, 95% CI = 0.06-0.66), and leg ulcers were statistically significantly associated with venous insufficiency (OR = 4.93, 95% CI = 1.65-15.34). The characteristics of gluteal and ischial pressure ulcers, a high prevalence of infection, and a low reference to biofilm by nurses, in both types of wounds, suggest that these aspects are not adequately taken into account. CONCLUSIONS Pressure ulcers and leg ulcers, mainly pressure ulcers, remain a public health problem in nursing homes. Further studies are required to confirm the associations found in this study.
Collapse
|
268
|
Salisbury AM, Mullin M, Foulkes L, Chen R, Percival SL. The Ability of a Concentrated Surfactant Gel to Reduce an Aerobic, Anaerobic and Multispecies Bacterial Biofilm In Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1323:149-157. [PMID: 33433854 DOI: 10.1007/5584_2020_609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biofilm formation in wounds can lead to increased inflammation, infection and delayed wound healing. Additionally, biofilms show increased recalcitrance to antimicrobials compared to their planktonic counterparts making them difficult to manage and treat. Biofilms are frequently polymicrobial, consisting of aerobic and anaerobic bacteria, as well as fungi and yeasts. The aim of this study was to evaluate the effects of a concentrated surfactant gel with antibacterial preservative agents (CSG) against wound relevant opportunistic pathogens, including an aerobic biofilm, anaerobic biofilm and multispecies biofilm. The CSG was added to a 48 h anaerobic biofilm of Bacteroides fragilis, a 24 h multispecies biofilm of Acinetobacter baumannii, Staphylococcus aureus and Staphylococcus epidermidis and a 24 h biofilm of Pseudomonas aeruginosa grown in an in vitro wound relevant environment. Following a contact time of 24 h with the CSG, the bacterial cell density of the biofilms was reduced by 2-4 log in comparison to an untreated control. The results demonstrate the ability of the CSG to disrupt wound relevant biofilms and support the use of the CSG in the clinic to treat wounds caused by biofilm related infections.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK.
| | - Marc Mullin
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Lauren Foulkes
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Rui Chen
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Steven L Percival
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| |
Collapse
|
269
|
Hammond JA, Gordon EA, Socarras KM, Chang Mell J, Ehrlich GD. Beyond the pan-genome: current perspectives on the functional and practical outcomes of the distributed genome hypothesis. Biochem Soc Trans 2020; 48:2437-2455. [PMID: 33245329 PMCID: PMC7752077 DOI: 10.1042/bst20190713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
The principle of monoclonality with regard to bacterial infections was considered immutable prior to 30 years ago. This view, espoused by Koch for acute infections, has proven inadequate regarding chronic infections as persistence requires multiple forms of heterogeneity among the bacterial population. This understanding of bacterial plurality emerged from a synthesis of what-were-then novel technologies in molecular biology and imaging science. These technologies demonstrated that bacteria have complex life cycles, polymicrobial ecologies, and evolve in situ via the horizontal exchange of genic characters. Thus, there is an ongoing generation of diversity during infection that results in far more highly complex microbial communities than previously envisioned. This perspective is based on the fundamental tenet that the bacteria within an infecting population display genotypic diversity, including gene possession differences, which result from horizontal gene transfer mechanisms including transformation, conjugation, and transduction. This understanding is embodied in the concepts of the supragenome/pan-genome and the distributed genome hypothesis (DGH). These paradigms have fostered multiple researches in diverse areas of bacterial ecology including host-bacterial interactions covering the gamut of symbiotic relationships including mutualism, commensalism, and parasitism. With regard to the human host, within each of these symbiotic relationships all bacterial species possess attributes that contribute to colonization and persistence; those species/strains that are pathogenic also encode traits for invasion and metastases. Herein we provide an update on our understanding of bacterial plurality and discuss potential applications in diagnostics, therapeutics, and vaccinology based on perspectives provided by the DGH with regard to the evolution of pathogenicity.
Collapse
Affiliation(s)
- Jocelyn A. Hammond
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Emma A. Gordon
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Kayla M. Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Joshua Chang Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
- Department of Otolaryngology – Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
270
|
Zhao CY, Hao Y, Wang Y, Varga JJ, Stecenko AA, Goldberg JB, Brown SP. Microbiome Data Enhances Predictive Models of Lung Function in People With Cystic Fibrosis. J Infect Dis 2020; 223:S246-S256. [PMID: 33330902 DOI: 10.1093/infdis/jiaa655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microbiome sequencing has brought increasing attention to the polymicrobial context of chronic infections. However, clinical microbiology continues to focus on canonical human pathogens, which may overlook informative, but nonpathogenic, biomarkers. We address this disconnect in lung infections in people with cystic fibrosis (CF). METHODS We collected health information (lung function, age, and body mass index [BMI]) and sputum samples from a cohort of 77 children and adults with CF. Samples were collected during a period of clinical stability and 16S rDNA sequenced for airway microbiome compositions. We use ElasticNet regularization to train linear models predicting lung function and extract the most informative features. RESULTS Models trained on whole-microbiome quantitation outperformed models trained on pathogen quantitation alone, with or without the inclusion of patient metadata. Our most accurate models retained key pathogens as negative predictors (Pseudomonas, Achromobacter) along with established correlates of CF disease state (age, BMI, CF-related diabetes). In addition, our models selected nonpathogen taxa (Fusobacterium, Rothia) as positive predictors of lung health. CONCLUSIONS These results support a reconsideration of clinical microbiology pipelines to ensure the provision of informative data to guide clinical practice.
Collapse
Affiliation(s)
- Conan Y Zhao
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| | - Yiqi Hao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA.,Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| | - John J Varga
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA.,Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| | - Arlene A Stecenko
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Atlanta, Georgia, USA
| |
Collapse
|
271
|
Baidamshina DR, Koroleva VA, Trizna EY, Pankova SM, Agafonova MN, Chirkova MN, Vasileva OS, Akhmetov N, Shubina VV, Porfiryev AG, Semenova EV, Sachenkov OA, Bogachev MI, Artyukhov VG, Baltina TV, Holyavka MG, Kayumov AR. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int J Biol Macromol 2020; 164:4205-4217. [DOI: 10.1016/j.ijbiomac.2020.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
272
|
Di Domenico EG, De Angelis B, Cavallo I, Sivori F, Orlandi F, Fernandes Lopes Morais D’Autilio M, Di Segni C, Gentile P, Scioli MG, Orlandi A, D’Agosto G, Trento E, Kovacs D, Cardinali G, Stefanile A, Koudriavtseva T, Prignano G, Pimpinelli F, Lesnoni La Parola I, Toma L, Cervelli V, Ensoli F. Silver Sulfadiazine Eradicates Antibiotic-Tolerant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms in Patients with Infected Diabetic Foot Ulcers. J Clin Med 2020; 9:3807. [PMID: 33255545 PMCID: PMC7760944 DOI: 10.3390/jcm9123807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Infections are among the most frequent and challenging events in diabetic foot ulcers (DFUs). Pathogenic bacteria growing in biofilms within host tissue are highly tolerant to environmental and chemical agents, including antibiotics. The present study was aimed at assessing the use of silver sulfadiazine (SSD) for wound healing and infection control in 16 patients with DFUs harboring biofilm-growing Staphylococcus aureus and Pseudomonas aeruginosa. All patients received a treatment based on a dressing protocol including disinfection, cleansing, application of SSD, and application of nonadherent gauze, followed by sterile gauze and tibio-breech bandage, in preparation for toilet surgery after 30 days of treatment. Clinical parameters were analyzed by the T.I.M.E. classification system. In addition, the activity of SSD against biofilm-growing S. aureus and P. aeruginosa isolates was assessed in vitro. A total of 16 patients with S. aureus and P. aeruginosa infected DFUs were included in the study. Clinical data showed a statistically significant (p < 0.002) improvement of patients' DFUs after 30 days of treatment with SSD with significant amelioration of all the parameters analyzed. Notably, after 30 days of treatment, resolution of infection was observed in all DFUs. In vitro analysis showed that both S. aureus and P. aeruginosa isolates developed complex and highly structured biofilms. Antibiotic susceptibility profiles indicated that biofilm cultures were significantly (p ≤ 0.002) more tolerant to all tested antimicrobials than their planktonic counterparts. However, SSD was found to be effective against fully developed biofilms of both S. aureus and P. aeruginosa at concentrations below those normally used in clinical preparations (10 mg/mL). These results strongly suggest that the topical administration of SSD may represent an effective alternative to conventional antibiotics for the successful treatment of DFUs infected by biofilm-growing S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Barbara De Angelis
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Fabrizio Orlandi
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | | | - Chiara Di Segni
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Pietro Gentile
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Maria Giovanna Scioli
- Department of Anatomic Pathology, University of Rome Tor Vergata, 00144 Rome, Italy; (M.G.S.); (A.O.)
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, 00144 Rome, Italy; (M.G.S.); (A.O.)
| | - Giovanna D’Agosto
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Elisabetta Trento
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (G.C.)
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (G.C.)
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.S.); (T.K.)
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.S.); (T.K.)
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Ilaria Lesnoni La Parola
- Lichen Sclerosus Unit, Department of Dermatology, STI, Environmental Health, Tropical and Immigration, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio Cervelli
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| |
Collapse
|
273
|
Garcia-Salinas S, Gámez E, Landa G, Arruebo M, Irusta S, Mendoza G. Antimicrobial Wound Dressings against Fluorescent and Methicillin-Sensitive Intracellular Pathogenic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51302-51313. [PMID: 33147946 DOI: 10.1021/acsami.0c17043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is limited evidence indicating that drug-eluting dressings are clinically more effective than simple conventional dressings. To shed light on this concern, we have performed evidence-based research to evaluate the antimicrobial action of thymol (THY)-loaded antimicrobial dressings having antibiofilm forming ability, able to eradicate intracellular and extracellular pathogenic bacteria. We have used four different Staphylococcus aureus strains, including the ATCC 25923 strain, the Newman strain (methicillin-sensitive strain, MSSA) expressing the coral green fluorescent protein from the vector pCN47, and two clinical reference strains, Newman-(MSSA) and USA300-(methicillin-resistant strain), as traceable models of pathogenic bacteria commonly infecting skin and soft tissues. Compared to non-loaded dressings, THY-loaded polycaprolactone-based electrospun dressings were also able to eliminate pathogenic bacteria in coculture models based on infected murine macrophages. In addition, by using confocal microscopy and the conventional microdilution plating method, we corroborated the successful ability of THY in preventing also biofilm formation. Herein, we demonstrated that the use of wound dressings loaded with the natural monoterpenoid phenol derivative THY are able to eliminate biofilm formation and intracellular methicillin-sensitive S aureus more efficiently than with their corresponding THY-free counterparts.
Collapse
Affiliation(s)
- Sara Garcia-Salinas
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Enrique Gámez
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Guillermo Landa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| |
Collapse
|
274
|
Khémiri I, Essghaier B, Sadfi-Zouaoui N, Bitri L. Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. in the Management of Skin Injuries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4103418. [PMID: 33204394 PMCID: PMC7661123 DOI: 10.1155/2020/4103418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Infection of skin injuries by pathogenic microbial strains is generally associated if not treated with a lasting wound bed oxidative stress status, a delay in healing process, and even wound chronicity with several human health complications. The aim of the current study was to explore the antioxidant and antimicrobial potentialities of safflower (Carthamus tinctorius L.) extracted oil from seeds by cold pressing which would be beneficial in the management of skin wounds. Antioxidant capacity of the oil was evaluated (scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP)). Total phenolic, total flavonoid, total carotenoid, and total chlorophyll contents were determined. Antimicrobial activities of safflower oil were tested against 10 skin pathogenic microorganisms: 4 bacterial strains (Escherichia coli, Enterobacter cloacae, Staphylococcus aureus, and Streptococcus agalactiae), 3 yeast species strains (Candida albicans, Candida parapsilosis, and Candida sake), and 3 fungi species (Aspergillus niger, Penicillium digitatum, and Fusarium oxysporum). A notable antioxidant capacity was demonstrated for the tested oil that exhibited moreover high antibacterial effects by both bacteriostatic and bactericidal pathways including lysozyme activity. An antifungal effect was further observed on the spore's germination. Safflower oil could be considered as a good natural alternative remedy in the management of skin wounds and their possible microbial infections.
Collapse
Affiliation(s)
- Ikram Khémiri
- Unité de Physiologie des Systèmes de Régulations et des Adaptations, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Badiaa Essghaier
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Lotfi Bitri
- Unité de Physiologie des Systèmes de Régulations et des Adaptations, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
275
|
Abbade LPF, Frade MAC, Pegas JRP, Dadalti-Granja P, Garcia LC, Bueno Filho R, Parenti CEF. Consensus on the diagnosis and management of chronic leg ulcers - Brazilian Society of Dermatology. An Bras Dermatol 2020; 95 Suppl 1:1-18. [PMID: 33371937 PMCID: PMC7772605 DOI: 10.1016/j.abd.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic leg ulcers affect a large portion of the adult population and cause a significant social and economic impact, related to outpatient and hospital care, absence from work, social security expenses, and reduced quality of life. The correct diagnosis and therapeutic approach are essential for a favorable evolution. OBJECTIVE To gather the experience of Brazilian dermatologists, reviewing the specialized literature to prepare recommendations for the diagnosis and treatment of the main types of chronic leg ulcers. METHODS Seven specialists from six university centers with experience in chronic leg ulcers were appointed by the Brazilian Society of Dermatology to reach a consensus on the diagnosis and therapeutic management of these ulcers. Based on the adapted DELPHI methodology, relevant elements were considered in the diagnosis and treatment of chronic leg ulcers of the most common causes; then, the recent literature was analyzed using the best scientific evidence. RESULTS The following themes were defined as relevant for this consensus - the most prevalent differential etiological diagnoses of chronic leg ulcers (venous, arterial, neuropathic, and hypertensive ulcers), as well as the management of each one. It also included the topic of general principles for local management, common to chronic ulcers, regardless of the etiology. CONCLUSION This consensus addressed the main etiologies of chronic leg ulcers and their management based on scientific evidence to assist dermatologists and other health professionals and benefit the greatest number of patients with this condition.
Collapse
Affiliation(s)
- Luciana Patricia Fernandes Abbade
- Department of Infectious Diseases, Dermatology, Diagnostic Imaging and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine (Dermatology Division), Faculty of Medicine, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José Roberto Pereira Pegas
- Dermatology Service, Hospital Padre Bento de Guarulhos, Guarulhos, SP, Brazil; Discipline of Dermatology, Faculty of Medicine, Universidade da Cidade de São Paulo, São Paulo, SP, Brazil; Discipline of Dermatology, Faculty of Medicine, Jundiaí, SP, Brazil
| | - Paula Dadalti-Granja
- Department of Clinical Medicine (Discipline of Dermatology), Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lucas Campos Garcia
- Dermatology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto Bueno Filho
- Dermatology Service, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
276
|
Buch PJ, Chai Y, Goluch ED. Bacterial chatter in chronic wound infections. Wound Repair Regen 2020; 29:106-116. [PMID: 33047459 DOI: 10.1111/wrr.12867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
One of the hallmark characteristics of chronic diabetic wounds is the presence of biofilm-forming bacteria. Bacteria encapsulated in a biofilm may coexist as a polymicrobial community and communicate with each other through a phenomenon termed quorum sensing (QS). Here, we describe the QS circuits of bacterial species commonly found in chronic diabetic wounds. QS relies on diffusion of signaling molecules and the local concentration changes of these molecules that bacteria experience in wounds. These biochemical signaling pathways play a role not only in biofilm formation and virulence but also in wound healing. They are, therefore, key to understanding the distinctive nature of these infections. While several in vivo and in vitro models exist to study QS in wounds, there has been limited progress in understanding the interplay between QS molecules and host factors that contribute to wound healing. Lastly, we examine the potential of targeting QS for both diagnosis and therapeutic intervention purposes.
Collapse
Affiliation(s)
- Pranali J Buch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
277
|
Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020; 8:microorganisms8101580. [PMID: 33066595 PMCID: PMC7602394 DOI: 10.3390/microorganisms8101580] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Foot infections are the main disabling complication in patients with diabetes mellitus. These infections can lead to lower-limb amputation, increasing mortality and decreasing the quality of life. Biofilm formation is an important pathophysiology step in diabetic foot ulcers (DFU)-it plays a main role in the disease progression and chronicity of the lesion, the development of antibiotic resistance, and makes wound healing difficult to treat. The main problem is the difficulty in distinguishing between infection and colonization in DFU. The bacteria present in DFU are organized into functionally equivalent pathogroups that allow for close interactions between the bacteria within the biofilm. Consequently, some bacterial species that alone would be considered non-pathogenic, or incapable of maintaining a chronic infection, could co-aggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. In this review, we discuss current knowledge on biofilm formation, its presence in DFU, how the diabetic environment affects biofilm formation and its regulation, and the clinical implications.
Collapse
|
278
|
Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK. Antimicrobial Hypochlorous Wound Irrigation Solutions Demonstrate Lower Anti-biofilm Efficacy Against Bacterial Biofilm in a Complex in-vitro Human Plasma Biofilm Model (hpBIOM) Than Common Wound Antimicrobials. Front Microbiol 2020; 11:564513. [PMID: 33162949 PMCID: PMC7583357 DOI: 10.3389/fmicb.2020.564513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms pose a relevant factor for wound healing impairment in chronic wounds. With 78% of all chronic wounds being affected by biofilms, research in this area is of high priority, especially since data for evidence-based selection of appropriate antimicrobials and antiseptics is scarce. Therefore, the objective of this study was to evaluate the anti-biofilm efficacy of commercially available hypochlorous wound irrigation solutions compared to established antimicrobials. Using an innovative complex in-vitro human plasma biofilm model (hpBIOM), quantitative reduction of Pseudomonas aeruginosa, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA) biofilms by three hypochlorous irrigation solutions [two <0.08% and one 0.2% sodium hypochlorite (NaClO)] was compared to a 0.04% polyhexanide (PHMB) irrigation solution and 0.1% octenidine-dihydrochloride/phenoxyethanol (OCT/PE). Efficacy was compared to a non-challenged planktonic approach, as well as with increased substance volume over a prolonged exposure (up to 72 h). Qualitative visualization of biofilms was performed by scanning electron microscopy (SEM). Both reference agents (OCT/PE and PHMB) induced significant biofilm reductions within 72 h, whereby high volume OCT/PE even managed complete eradication of P. aeruginosa and MRSA biofilms after 72 h. The tested hypochlorous wound irrigation solutions achieved no relevant penetration and eradication of biofilms despite increased volume and exposure. Only 0.2% NaClO managed a low reduction under prolonged exposure. The results demonstrate that low-dosed hypochlorous wound irrigation solutions are significantly less effective than PHMB-based irrigation solution and OCT/PE, thus unsuitable for biofilm eradication on their own. The used complex hpBIOM thereby mimics the highly challenging clinical wound micro-environment, providing a more profound base for future clinical translation.
Collapse
Affiliation(s)
- Julian-Dario Rembe
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Lioba Huelsboemer
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Isabell Plattfaut
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Manuela Besser
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Ewa K. Stuermer
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
279
|
Castelo-Branco DDSCM, Amando BR, Ocadaque CJ, Aguiar LD, Paiva DDDQ, Diógenes EM, Guedes GMDM, Costa CL, Santos-Filho ASP, Andrade ARCD, Cordeiro RDA, Rocha MFG, Sidrim JJC. Mini-review: from in vitro to ex vivo studies: an overview of alternative methods for the study of medical biofilms. BIOFOULING 2020; 36:1129-1148. [PMID: 33349038 DOI: 10.1080/08927014.2020.1859499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Microbial biofilms are a natural adaptation of microorganisms, typically composed of multiple microbial species, exhibiting complex community organization and cooperation. Biofilm dynamics and their complex architecture are challenging for basic analyses, including the number of viable cells, biomass accumulation, biofilm morphology, among others. The methods used to study biofilms range from in vitro techniques to complex in vivo models. However, animal welfare has become a major concern, not only in society, but also in the academic and scientific field. Thus, the pursuit for alternatives to in vivo biofilm analyses presenting characteristics that mimic in vivo conditions has become essential. In this context, the present review proposes to provide an overview of strategies to study biofilms of medical interest, with emphasis on alternatives that approximate experimental conditions to host-associated environments, such as the use of medical devices as substrata for biofilm formation, microcosm and ex vivo models.
Collapse
Affiliation(s)
- Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Lara de Aguiar
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - Débora Damásio de Queiroz Paiva
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Expedito Maia Diógenes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Glaucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Anísio Silvestre Pinheiro Santos-Filho
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Raquel Colares de Andrade
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
280
|
Su Y, Mainardi VL, Wang H, Zhang YS, Chen S, John JV, Wong SL, Hollins RR, Wang G, Xie J. Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms via Effectively Delivering a Database-Designed Antimicrobial Peptide. ACS NANO 2020; 14:11775-11786. [PMID: 32840361 PMCID: PMC7673654 DOI: 10.1021/acsnano.0c04527] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biofilms in chronic wounds, including diabetic foot ulcers, pressure ulcers, and venous leg ulcers, pose a major challenge to wound management. Herein, we report a Janus-type antimicrobial dressing for eradication of biofilms in chronic wounds. The dressing consists of electrospun nanofiber membranes coupled with dissolvable microneedle arrays to enable effective delivery of a database-designed antimicrobial peptide to both inside and outside biofilms. This antimicrobial dressing exhibited high efficacy against a broad spectrum of resistant pathogens in vitro. Importantly, such a dressing was able to eradicate methicillin-resistant Staphylococcus aureus (MRSA) biofilms in both an ex vivo human skin wound infection model and a type II diabetic mouse wound infection model after daily treatment without applying surgical debridement. Most importantly, the dressing can also completely remove the Pseudomonas aeruginosa and MRSA, dual-species biofilm in an ex vivo human skin infection model. In addition, our computational simulations also suggested that microneedles were more effective in the delivery of peptides to the biofilms than free drugs. Our results indicate that the Janus-type antimicrobial dressings may provide an effective treatment and management of chronic wound polymicrobial infections.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Shannon L. Wong
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Ronald R. Hollins
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Corresponding Authors: To whom correspondence should be addressed. (J. Xie) and (G. Wang), Phone: +1 (402) 5599442, Fax: +1(402) 5597521
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
- Corresponding Authors: To whom correspondence should be addressed. (J. Xie) and (G. Wang), Phone: +1 (402) 5599442, Fax: +1(402) 5597521
| |
Collapse
|
281
|
N. Amirrah I, Mohd Razip Wee MF, Tabata Y, Bt Hj Idrus R, Nordin A, Fauzi MB. Antibacterial-Integrated Collagen Wound Dressing for Diabetes-Related Foot Ulcers: An Evidence-Based Review of Clinical Studies. Polymers (Basel) 2020; 12:polym12092168. [PMID: 32972012 PMCID: PMC7570079 DOI: 10.3390/polym12092168] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
| | | | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8397, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Abid Nordin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
- Correspondence:
| |
Collapse
|
282
|
Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents 2020; 56:106064. [DOI: 10.1016/j.ijantimicag.2020.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022]
|
283
|
Abstract
The skin microbiota is intimately coupled with cutaneous health and disease. Interactions between commensal microbiota and the multiple cell types involved in cutaneous wound healing regulate the immune response and promote barrier restoration. This dialog between host cells and the microbiome is dysregulated in chronic wounds. In this review, we first describe how advances in sequencing approaches and analysis have been used to study the chronic wound microbiota, and how these findings underscored the complexity of microbial communities and their association with clinical outcomes in patients with chronic wound disorders. We also discuss the mechanistic insights gathered from multiple animal models of polymicrobial wound infections. In addition to the well-described role of bacteria residing in polymicrobial biofilms, we also discuss the role of the intracellular bacterial niche in wound healing. We describe how, in contrast to pathogenic species capable of subverting skin immunity, commensals are essential for the regulation of the cutaneous immune system and provide protection from intracellular pathogens through modulation of the antimicrobial molecule, Perforin-2. Despite recent advances, more research is needed to shed light on host-microbiome crosstalk in both healing and nonhealing chronic wounds to appropriately guide therapeutic developments.
Collapse
Affiliation(s)
- Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Jamie L Burgess
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Katelyn E O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA.
| |
Collapse
|
284
|
Edwards-Jones V. Antimicrobial stewardship in wound care. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2020; 29:S10-S16. [PMID: 32790545 DOI: 10.12968/bjon.2020.29.15.s10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Strategies to tackle the global crisis of antimicrobial resistance include implementing antimicrobial stewardship across the healthcare and agricultural sectors. Many clinical specialities have developed policies to advise practitioners on how to prescribe antibiotics more effectively, but there is still a lack of data on the impact of this change. Overuse and misuse of antibiotics have been commonplace since their introduction 70 years ago, and have contributed to the development of the resistance seen today. There is a dearth of new antibiotics and, if nothing is done to restrict the use of those that remain effective, there is a risk of returning to the pre-antibiotic era where simple infections could result in death. In wound care, it is essential that antibiotic treatment is appropriate to reduce infections. Many medical conditions predispose people to wounds that are difficult to heal and become chronic unless the underlying causes are addressed. Most wound infections are caused by bacteria, which are becoming increasingly resistant to commonly used antibiotics. This necessitates strict regimens for managing infection, which include prescribing antibiotics only when they are essential. Antimicrobial stewardship is undertaken in all UK healthcare facilities, and local advisory committees oversee the prudent use of antibiotics and other antimicrobial agents to try to prevent further increases in resistance. National guidance has been produced but whether full compliance has been followed has yet to be established and the impact of implementation needs to be analysed.
Collapse
Affiliation(s)
- Val Edwards-Jones
- Emeritus Professor of Medical Microbiology, Manchester Metropolitan University
| |
Collapse
|
285
|
Wu YF, Lee TY, Liao WT, Chuan HH, Cheng NC, Cheng CM. Rapid detection of biofilm with modified alcian blue staining: In-vitro protocol improvement and validation with clinical cases. Wound Repair Regen 2020; 28:834-843. [PMID: 32691440 DOI: 10.1111/wrr.12845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
For chronic wounds, biofilm infection is a critical issue because it can tip the scales toward an unhealing state. Biofilm-based wound therapy has been extensively advocated. However, point-of-care biofilm diagnosis still largely relies on clinical judgment. In this study, we aimed to develop a rapid tool for diagnosing wound biofilm presence by alcian blue staining. First, we sought to optimize alcian blue staining using a colorimetric-based approach to detect the biofilm, specifically targeting polysaccharides in the extracellular polymeric substances. Among examined transfer membranes and cationic detergents at various concentrations, we selected a positively charged nylon transfer membrane for sample loading, and 1% cetyl trimethyl ammonium chloride (CTAC) as the blocking solution. After sample loading and blocking, the membrane was immersed in alcian blue solution for staining, followed by immersion in 1% CTAC to decrease background noise. Each step required only 30 seconds, and the whole procedure was completed within a few minutes. In the second part of this study, we enrolled 31 patients with chronic wounds to investigate the predictive validity of biofilm detection for unhealed wounds at a 1-month follow-up visit. Among the 18 cases with positive wound biofilm staining, 15 wounds (83.3%) were not healed at the 1-month follow-up visit. Only three unhealed wounds (30%) produced in negative staining cases. This finding indicates that biofilm infection is associated with poor healing outcome for chronic wounds. Moreover, our staining results correlated well with the clinical microbiological culture assessment (83.9% consistency; 95.2% sensitivity, and 60% specificity). In conclusion, the modified alcian blue staining protocol used here represents a rapid and sensitive procedure for detecting biofilm in chronic wounds. This technique provides a practical point-of-care approach for detection of wound biofilm, the implementation of which may improve clinical outcomes for chronic wound patients. Additional studies are required to validate this method.
Collapse
Affiliation(s)
- Yu-Feng Wu
- Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Tyng-Yuh Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Ting Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital, Chu-Tung Branch, Hsinchu, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
286
|
Abstract
This review of the literature concerning bacteria, antibiotics and tissue repair shows there are extensive data supporting microbial interference with wound healing once bacterial burden exceeds 104 CFU per unit of measure, The mechanism of bacterial interference lies largely in prolonging the inflammatory phase of tissue repair. Reducing the microbial bioburden allows tissue repair to continue. Systemic and topical antimicrobials appear critical to reducing the bioburden and facilitating repair. The current controversy over the use of antimicrobials in patients with chronically infected wounds, in particular, revolves around the definition of infection. The reliance on classic clinical signs of inflammation to support antimicrobial use in these patients is tenuous due to the lack of correlation of these signs with the microbial burden known to impair tissue repair.
Collapse
|
287
|
In vivo efficacy of a unique first-in-class antibiofilm antibiotic for biofilm-related wound infections caused by Acinetobacter baumannii. Biofilm 2020; 2:100032. [PMID: 33447817 PMCID: PMC7798455 DOI: 10.1016/j.bioflm.2020.100032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wounds complicated by biofilms challenge even the best clinical care and can delay a return to duty for service members. A major component of treatment in wounded warriors includes infected wound management. Yet, all antibiotic therapy options have been optimized against planktonic bacteria, leaving an important gap in biofilm-related wound care. We tested the efficacy of a unique compound (CZ-01179) specifically synthesized to eradicate biofilms. CZ-01179 was formulated as the active agent in a hydrogel, and tested in vitro and in vivo in a pig excision wound model for its ability to treat and prevent biofilm-related wound infection caused by Acinetobacter baumannii. Data indicated that compared to a clinical standard—silver sulfadiazine—CZ-01179 was much more effective at eradicating biofilms of A. baumannii in vitro and up to 6 days faster at eradicating biofilms in vivo. CZ-01179 belongs to a broader class of newly-synthesized antibiofilm agents (referred to as CZ compounds) with reduced risk of resistance development, specific efficacy against biofilms, and promising formulation potential for clinical applications. Given its broad spectrum and biofilm-specific nature, CZ-01179 gel may be a promising agent to increase the pipeline of products to treat and prevent biofilm-related wound infections.
Collapse
|
288
|
Xie X, Liu X, Li Y, Luo L, Yuan W, Chen B, Liang G, Shen R, Li H, Huang S, Duan C. Advanced Glycation End Products Enhance Biofilm Formation by Promoting Extracellular DNA Release Through sigB Upregulation in Staphylococcus aureus. Front Microbiol 2020; 11:1479. [PMID: 32765439 PMCID: PMC7381169 DOI: 10.3389/fmicb.2020.01479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilms do serious harm to the diabetic foot ulcer (DFU) because they play a crucial role in infection invasion and spread. Staphylococcus aureus, the predominant Gram-positive bacteria in diabetic foot infection (DFI), is often associated with colonization and biofilm formation. Through biofilm formation tests in vitro, we observed that S. aureus bacteria isolated from DFU wounds were more prone to form biofilms than those from non-diabetic patients, while there was no difference in blood sugar between the biofilm (+) diabetics (DB+) and biofilm (-) diabetics (DB-). Furthermore, we found that advanced glycation end products (AGEs) promoted the biofilm formation of S. aureus in clinical isolates and laboratory strains in vitro, including a methicillin-resistant strain. Analysis of biofilm components demonstrated that the biofilms formed mainly by increasing extracellular DNA (eDNA) release; remarkably, the S. aureus global regulator sigB was upregulated, and its downstream factor lrgA was downregulated after AGE treatments. Mechanism studies using a sigB-deleted mutant (Newman-ΔsigB) confirmed that AGEs decreased expression of lrgA via induction of sigB, which is responsible for eDNA release and is a required component for S. aureus biofilm development. In conclusion, the present study suggests that AGEs promote S. aureus biofilm formation via an eDNA-dependent pathway by regulating sigB. The data generated by this study will provide experimental proof and theoretical support to improve DFU infection healing.
Collapse
Affiliation(s)
- Xiaoying Xie
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiang Liu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Luo
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baiji Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoyan Liang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Shen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songyin Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
289
|
Atkin L, Stephenson J, Cooper DM. Wound bed preparation: a case series using polyhexanide and betaine solution and gel-a UK perspective. J Wound Care 2020; 29:380-386. [PMID: 32654602 DOI: 10.12968/jowc.2020.29.7.380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The burden of wound care within the NHS is estimated at a cost of £5.3 billion per year and is set to rise annually by 30%. This case series describes the results of using polyhexanide (PHMB) and betaine wound irrigation solution and gels (Prontosan, B.Braun Medical Ltd., UK) across the UK in hard-to-heal (also described as chronic) wounds up to 20 years' duration, with an observation period of greater than one month. Over half of the hard-to-heal wounds were healed and vast improvements to all other wounds were observed. Improvements to wound bed condition were reported as early as two days after commencing initial treatment, with decreases in malodour, exudate, slough and pain reported across the case series. In addition to wound bed improvements, a reduction in dressing change frequency of 55% was observed in hard-to-heal wounds under the new treatment regime.
Collapse
Affiliation(s)
- Leanne Atkin
- Vascular Nurse Consultant/Lecturer; School of Human and Health Sciences, University of Huddersfield and Mid Yorkshire NHS Trust, Yorkshire, UK
| | - John Stephenson
- Senior Lecturer in Biomedical Statistics; School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Dawn M Cooper
- Visiting Research Fellow; School of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
290
|
Wolcott RD, Cook RG, Johnson E, Jones CE, Kennedy JP, Simman R, Woo K, Weir D, Schultz G, Hermans MH. A review of iodine-based compounds, with a focus on biofilms: results of an expert panel. J Wound Care 2020; 29:S38-S43. [PMID: 32654617 DOI: 10.12968/jowc.2020.29.sup7.s38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biofilms play a central role in the chronicity of non-healing lesions such as venous leg ulcers and diabetic foot ulcers. Therefore, biofilm management and treatment is now considered an essential part of wound care. Many antimicrobial treatments, whether topical or systemic, have been shown to have limited efficacy in the treatment of biofilm phenotypes. The antimicrobial properties of iodine compounds rely on multiple and diverse interactions to exert their effects on microorganisms. An expert panel, held in Las Vegas during the autumn Symposium on Advanced Wound Care meeting in 2018, discussed these properties, with the focus on iodine and iodophors and their effects on biofilm prevention and treatment.
Collapse
Affiliation(s)
| | - Randall G Cook
- Jackson Wound and Hyperbaric Medicine Center, Montgomery, AL, US
| | - Eric Johnson
- Bozeman Deaconess Wound and Hyperbaric Center, Driggs, ID, US
| | | | | | | | - Kevin Woo
- Queen's School of Nursing, Kingston, ON, Canada
| | - Dot Weir
- Catholic Health Advanced Wound Healing Centers, Cheektowaga, NY, US
| | - Gregory Schultz
- Institute for Wound Research to Study Molecular and Cellular Regulation of Healing, University of Florida, Gainesville, FL, US
| | | |
Collapse
|
291
|
Ofstead CL, Buro BL, Hopkins KM, Eiland JE. The impact of continuous electrical microcurrent on acute and hard-to-heal wounds: a systematic review. J Wound Care 2020; 29:S6-S15. [PMID: 32654615 DOI: 10.12968/jowc.2020.29.sup7.s6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Wound infections result in considerable morbidity, mortality and healthcare costs. Antibiotic resistance has complicated wound healing, and new, non-antibiotic-based treatment methods are being developed. AIMS To evaluate evidence on the safety, efficacy and real-world effectiveness of electroceutical devices (ECDs) that provide continuous electrical stimulation to wounds. METHOD A systematic search was conducted to identify primary studies published between 2009 and 2019 that described therapeutic wound treatment using portable ECDs. Studies were included if the ECD delivered continuous electrical current directly to the wound area for the duration of treatment. RESULTS Of 171 citations identified in the search, 13 articles met the inclusion criteria and were analysed. Nine studies evaluated dressings embedded with zinc and silver particles that generated electricity electrochemically, and four evaluated electrode-based units with external batteries. ECDs were effective in healing complex, hard-to-heal wounds that had not responded to other treatments. Four studies showed that ECDs led to complete closure of wounds without complications, and in some cases healed wounds faster than standard of care (SOC). One study found that ECDs resulted in higher ratings by both patients and surgeons than SOC for the progression of wound healing and scar appearance. Additionally, three studies found ECD treatment was less expensive than SOC, due to patients requiring fewer dressing changes or nurse visits. CONCLUSION ECDs appeared to be a safe, effective and cost-effective method for treating severe, complex and challenging wounds, including hard-to-heal wounds, surgical incisions and skin graft donor sites.
Collapse
Affiliation(s)
- Cori L Ofstead
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - Brandy L Buro
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - Krystina M Hopkins
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - John E Eiland
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| |
Collapse
|
292
|
Lee VE, O'Neill AJ. Potential for repurposing the personal care product preservatives bronopol and bronidox as broad-spectrum antibiofilm agents for topical application. J Antimicrob Chemother 2020; 74:907-911. [PMID: 30590494 DOI: 10.1093/jac/dky520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Bacterial biofilms represent a major impediment to healing in chronic wounds and are largely refractory to the antibacterial agents currently used in wound management. From a repurposing screen of compounds considered safe for topical application in humans, we report the identification of the personal care product preservatives bronopol and bronidox as broad-spectrum antibiofilm agents and potential candidates for reducing biofilm burden in chronic wounds. METHODS Antibiofilm activity was assessed by viable counting against single-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa in the Calgary Biofilm Device, and against mixed-species biofilms of the two organisms growing on nitrocellulose discs. RESULTS Bronopol and bronidox exhibited broad-spectrum antibiofilm activity that encompassed the two major wound pathogens, S. aureus and P. aeruginosa. When impregnated into gauze dressings at their existing maximum authorized concentrations for safe use and placed onto an established mixed-species biofilm, bronopol and bronidox completely eradicated P. aeruginosa and achieved an ∼5 log10 reduction in the S. aureus population. The antibiofilm action of bronopol and bronidox was attributed to their ability to kill slow- or non-growing bacteria found in biofilms, and both compounds exhibited synergistic antibiofilm effects in combination with established wound-treatment agents. CONCLUSIONS Bronopol and bronidox kill bacteria regardless of growth state, a property that endows them with broad-spectrum antibiofilm activity. As this effect is observed at concentrations authorized for use on human skin, these compounds represent promising candidates for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Victoria E Lee
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alex J O'Neill
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
293
|
Kirketerp-Møller K, Stewart PS, Bjarnsholt T. The zone model: A conceptual model for understanding the microenvironment of chronic wound infection. Wound Repair Regen 2020; 28:593-599. [PMID: 32529778 PMCID: PMC7540265 DOI: 10.1111/wrr.12841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/26/2022]
Abstract
In 2008, two articles in Wound Repair and Regeneration changed the clinical perspective on chronic wounds. They stated that chronic wounds that do not heal contain bacterial biofilms and that these biofilms may be one of the reasons for the nonhealing properties of the wounds. However, we still do not understand the exact role biofilms play in the halted healing process, and we are not able to successfully treat them. The reason for this could be that in vivo biofilms differ substantially from in vitro biofilms, and that most of the knowledge about biofilms originates from in vitro research. In this article, we introduce the zone model as a concept for understanding bacterial behavior and the impact of the microenvironment on both the host and the bacteria. Until now, identification of bacteria, gene expression, and postscript regulation have been looking at a bulk of bacteria and averaging the behavior of all the bacteria. As the zone model dictates that every single bacterium reacts to its own microenvironment, the model may facilitate the planning of future research with improved clinical relevance. The zone model integrates physiology and biology from single cells, microbial aggregates, local host response, surrounding tissue, and the systemic context of the whole host. Understanding the mechanisms behind the actions and reactions by a single bacterium when interacting with other neighboring bacteria cells, other microorganisms, and the host will help us overcome the detrimental effects of bacteria in chronic wounds. Furthermore, we propose use of the terminology "bacterial phenotype" when describing the actions and reactions of bacteria, and the term "biofilms" to describe the morphology of the bacterial community.
Collapse
Affiliation(s)
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen and Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
294
|
Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg 2020; 271:1174-1185. [PMID: 30614873 DOI: 10.1097/sla.0000000000003053] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS Isogenic mutant strains of S. aureus with varying degree (ΔrexB > USA300 > ΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.
Collapse
|
295
|
Abraham WR. Commentary on "Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review" authored by Enrique Barrajón-Catalán, Institute of Molecular and Cell Biology (IBMC), Miguel Hernandez University (UMH), Avda. Universidad s/n, Elche 03202. Spain. Curr Med Chem 2020; 27:4750-4752. [PMID: 32571199 DOI: 10.2174/092986732728200621213702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
296
|
Bain MA, Koullias GJ, Morse K, Wendling S, Sabolinski ML. Type I collagen matrix plus polyhexamethylene biguanide antimicrobial for the treatment of cutaneous wounds. J Comp Eff Res 2020; 9:691-703. [PMID: 32476449 DOI: 10.2217/cer-2020-0058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Determine the effectiveness of purified native type I collagen matrix plus polyhexamethylene biguanide antimicrobial (PCMP) on cutaneous wounds. Materials & methods: A prospective cohort study of 307 patients (67 venous leg ulcers, 62 diabetic foot ulcers, 45 pressure ulcers, 54 post-surgical wounds and 79 other wounds) was conducted. Results: Cox wound closure for PCMP was 73% at week 32. The median time to wound closure was 17 weeks (Kaplan-Meier). The incidence of PCMP-treated wounds showing >60% reductions in areas, depths and volumes were 81, 71 and 85%, respectively. Conclusion: PCMP demonstrated clinically meaningful benefits to patients with various types of cutaneous wounds. Clinical Trial registration number: NCT03286452.
Collapse
Affiliation(s)
- Michael A Bain
- Department of Plastic Surgery, Hoag Hospital, Newport Beach & Irvine, CA 92663, USA
| | - George J Koullias
- Department of Surgery, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| | - Keith Morse
- Yavapai Regional Medical Center, Prescott, AZ 86301, USA
| | | | | |
Collapse
|
297
|
Antibiofilm Activity of a Broad-Range Recombinant Endolysin LysECD7: In Vitro and In Vivo Study. Viruses 2020; 12:v12050545. [PMID: 32429199 PMCID: PMC7291189 DOI: 10.3390/v12050545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed. In this paper, we test the efficacy of a broad-range recombinant endolysin of the coliphage LysECD7 against forming and mature biofilms. We used a strong biofilm producer-Klebsiella pneumoniae Ts 141-14 clinical isolate. In vitro investigation of the antibacterial activity was performed using the standard biofilm assay in microtiter plates. We optimized the implantable diffusion chamber approach in order to reach strong biofilm formation in vivo avoiding severe consequences of the pathogen for the animals and to obtain a well-reproducible model of implant-associated infection. Endolysin LysECD7 significantly reduced the biofilm formation and was capable of degrading the preformed biofilm in vitro. The animal trials on the preformed biofilms confirmed these results. Overall, our results show that LysECD7 is a promising substance against clinically relevant biofilms.
Collapse
|
298
|
Outbreak of Arcanobacterium haemolyticum in chronic wounds in The Netherlands. J Hosp Infect 2020; 105:691-697. [PMID: 32417434 DOI: 10.1016/j.jhin.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Aging and comorbidities such as diabetes and vascular problems contribute to the increasing occurrence of chronic wounds. From the beginning of 2016, a marked increase in Arcanobacterium haemolyticum (ARH) in chronic wound cultures was noted among patients visiting a wound expertise centre in The Netherlands. AIM To report the outbreak investigation of ARH cultured from chronic wounds and describe the implemented infection prevention measures. METHODS In total, 50 ARH isolates were sent to a reference laboratory for molecular typing. Samples for bacterial culture and ARH polymerase chain reaction were taken from care workers, the environment and items used for wound care. Infection prevention measures were implemented in a bundled approach, involving education, better aseptic wound care conditions and hygienic precautions. Before and after the implementation of infection prevention measures, two screening rounds of ARH testing were performed among all patients receiving home care. RESULTS ARH isolates from wound care patients were found to be identical by core genome multi-locus sequence typing. No definite outbreak source could be determined by culture. However, three pairs of forceps, used by two nurses on multiple patients, were found to be ARH positive by polymerase chain reaction. In the two screening rounds before and after the implementation of infection prevention measures, the proportion of ARH-positive patients decreased significantly from 20% (20/99) to 3% (3/104). Subsequently, no new cases occurred. CONCLUSION This first ARH outbreak was likely caused by re-using contaminated instruments. Through the implementation of improved infection prevention measures and re-education of all employees involved, the outbreak was controlled. With the current trend of care transition, infection control must be a major concern.
Collapse
|
299
|
Severing AL, Rembe JD, Koester V, Stuermer EK. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J Antimicrob Chemother 2020; 74:365-372. [PMID: 30388236 DOI: 10.1093/jac/dky432] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Sodium hypochlorite (NaClO, SHC)/hypochlorous acid (HClO, HCA) wound irrigation solutions have experienced a renaissance in the prevention and treatment of low-level wound infections. They are attributed with lower cytotoxicity and have therefore gained increasing attention in daily clinical practice. Objectives To determine the cytotoxicity and antimicrobial efficacy of six NaClO/HClO wound irrigation solutions. Methods For cytotoxicity evaluation (based on DIN EN 10993-5), human keratinocytes (HaCaT) and human skin fibroblasts (BJ) were used. Staphylococcus aureus and Pseudomonas aeruginosa were used for antimicrobial efficacy evaluation (based on DIN EN 13727). Solutions were evaluated after 1, 5 and 15 min of exposure. Additionally, physicochemical properties (pH and oxidation-reduction potential values) were investigated. Results Efficacy and cytotoxicity varied significantly between solutions. Generally, increasing antimicrobial activity was associated with decreasing cell viability. Furthermore, a concentration- and time-dependent impact on pathogens and cells was observed: cytotoxic and antimicrobial activity increased with rising NaClO/HClO solution concentrations and extended exposure times. Based on these in vitro evaluations, the following ranking (lowest to highest microbicidal effect and cytotoxic impact) was found: Microdacyn60® (SHC/HCA-M) < Granudacyn® (SHC/HCA-G) < Veriforte™ (SHC/HCA-V) < KerraSol™ (SHC-K) < Lavanox® (SHC-L) ≪ ActiMaris®forte (SHC/SM-A). Conclusions The presented results indicate that microbicidal effects are almost always associated with certain negative side effects on cell proliferation. Efficacy and biocompatibility of NaClO/HClO solutions depend on their specific formulation and physicochemical properties. The investigations also underline the necessity for exact product- and application-specific efficacy profiles.
Collapse
Affiliation(s)
- Anna-Lena Severing
- Institute for Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Julian-Dario Rembe
- Institute for Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Verena Koester
- Institute for Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Ewa K Stuermer
- Institute for Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| |
Collapse
|
300
|
LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020; 13:613-628. [PMID: 32237219 PMCID: PMC7111087 DOI: 10.1111/1751-7915.13471] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are an ever-growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound-responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | - Peter Glynne-Jones
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|