251
|
Bryniarski AR, Meyer GA. Brown Fat Promotes Muscle Growth During Regeneration. J Orthop Res 2019; 37:1817-1826. [PMID: 31042310 PMCID: PMC6824921 DOI: 10.1002/jor.24324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 02/04/2023]
Abstract
Accumulation of adipose tissue around and within muscles is highly correlated with reduced strength, functional limitations, and poor rehabilitative outcomes. Given the intimate physical contact between these tissues, paracrine cross-talk is a likely mediator of this association. The recent discovery that muscle-associated adipose tissue exhibits features of beige fat has suggested that this cross-talk may be modifiable, as beige fat can be stimulated to assume features of brown fat. In this work, we describe a novel intermuscular fat transplant model in the mouse rotator cuff to investigate cross-talk between muscle and adipose tissue. Specifically, we examine the role of transplanted fat phenotype on muscle regeneration by transplanting pieces of classical brown (interscapular), beige (inguinal), or white (epididymal) adipose tissue in conjunction with cardiotoxin injection to the adjacent supraspinatus muscle. Transplantation of brown fat, but not beige or white, significantly increased muscle mass, fiber cross-sectional area and contractile force production compared with sham injury. This effect was not seen when cardiotoxin was delivered to a distant muscle, or when adjacent muscles were injected with saline indicating that the effect is localized and specifically targeting the regenerative process. Thus, we conclude that local signaling between fat and muscle varies by phenotype and that brown fat supports regeneration. Clinical significance: Our findings suggest that the phenotype of muscle-associated fat could be a novel therapeutic target to modulate fat-muscle signaling. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1817-1826, 2019.
Collapse
Affiliation(s)
- Anna R. Bryniarski
- Departments of Investigation performed at the Program in Physical Therapy, Washington University in St. Louis; St. Louis, MO 63108
| | - Gretchen A. Meyer
- Departments of Investigation performed at the Program in Physical Therapy, Washington University in St. Louis; St. Louis, MO 63108,Departments of Neurology, Orthopaedic Surgery and Biomedical Engineering, Washington University in St. Louis; St. Louis, MO 63108,Corresponding Author: Dr. Gretchen A.Meyer, 4444 Forest Park Ave, Suite 1101, St. Louis, MO 63108, Tel: 314-286-1456, Fax: 314-747-0674,
| |
Collapse
|
252
|
Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019; 370:219-230. [PMID: 31189728 PMCID: PMC6652132 DOI: 10.1124/jpet.119.259663] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the β-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38β suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38β isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.
Collapse
Affiliation(s)
- Jonathan Oliva
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Scott Galasinski
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amelia Richey
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amy E Campbell
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Marvin J Meyers
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Neal Modi
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Jun Wen Zhong
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Rabi Tawil
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Stephen J Tapscott
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Francis M Sverdrup
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| |
Collapse
|
253
|
Biotoxins in muscle regeneration research. J Muscle Res Cell Motil 2019; 40:291-297. [PMID: 31359301 DOI: 10.1007/s10974-019-09548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Skeletal muscles are characterized by their unique regenerative capacity following injury due to the presence of muscle precursor cells, satellite cells. This characteristic allows researchers to study muscle regeneration using experimental injury models. These injury models should be stable and reproducible. Variety of injury models have been used, among which the intramuscular injection of myotoxic biotoxins is considered the most common and widespread method in muscle regeneration research. By using isolated biotoxins, researchers could induce acute muscle damage and regeneration in a controlled and reproducible manner. Therefore, it is considered an easy method for inducing muscle injury in order to understand the different mechanisms involved in muscle injuries and tissue response following injury. However, different toxins and venoms have different compositions and subsequently the possible effects of these toxins on skeletal muscle vary according to their composition. Moreover, regeneration of injured muscle by venoms and toxins varies according to the target of toxin or venom. Therefore, it is essential for researcher to be aware of the mechanism and possible target of toxin-induced injury. The current paper provides an overview of the biotoxins used in skeletal muscle research.
Collapse
|
254
|
Houston MT, Gutierrez JB. The FRiND Model: A Mathematical Model for Representing Macrophage Plasticity in Muscular Dystrophy Pathogenesis. Bull Math Biol 2019; 81:3976-3997. [PMID: 31302876 PMCID: PMC6764940 DOI: 10.1007/s11538-019-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/19/2019] [Indexed: 12/04/2022]
Abstract
Muscular dystrophy describes generalized progressive muscular weakness due to the wasting of muscle fibers. The progression of the disease is affected by known immunological and mechanical factors, and possibly other unknown mechanisms. This article introduces a new mathematical model, the FRiND model, to further elucidate these known immunological actions. We will perform stability and sensitivity analyses on this model. The models time course results will be verified by biological studies in the literature. This model could be the foundation for further understanding of immunological muscle repair.
Collapse
Affiliation(s)
- Matthew T Houston
- Department of Mathematics, Middle Georgia State University, Macon, GA, 31206, USA. .,University of Georgia, Athens, GA, 30602, USA.
| | | |
Collapse
|
255
|
Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Front Immunol 2019; 10:1591. [PMID: 31354730 PMCID: PMC6632423 DOI: 10.3389/fimmu.2019.01591] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a complex process which is highly conserved among species. Inflammation occurs in response to injury, infection, and cancer, as an allostatic mechanism to return the tissue and to return the organism back to health and homeostasis. Excessive, or chronic inflammation is associated with numerous diseases, and thus strategies to combat run-away inflammation is required. Anti-inflammatory drugs were therefore developed to switch inflammation off. However, the inflammatory response may be beneficial for the organism, in particular in the case of sterile tissue injury. The inflammatory response can be divided into several parts. The first step is the mounting of the inflammatory reaction itself, characterized by the presence of pro-inflammatory cytokines, and the infiltration of immune cells into the injured area. The second step is the resolution phase, where immune cells move toward an anti-inflammatory phenotype and decrease the secretion of pro-inflammatory cytokines. The last stage of inflammation is the regeneration process, where the tissue is rebuilt. Innate immune cells are major actors in the inflammatory response, of which, macrophages play an important role. Macrophages are highly sensitive to a large number of environmental stimuli, and can adapt their phenotype and function on demand. This change in phenotype in response to the environment allow macrophages to be involved in all steps of inflammation, from the first mounting of the pro-inflammatory response to the post-damage tissue repair.
Collapse
Affiliation(s)
- Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| |
Collapse
|
256
|
Manoharan P, Song T, Radzyukevich TL, Sadayappan S, Lingrel JB, Heiny JA. KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. iScience 2019; 17:334-346. [PMID: 31326700 PMCID: PMC6652133 DOI: 10.1016/j.isci.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle repair and regeneration after injury requires coordinated interactions between the innate immune system and the injured muscle. Myeloid cells predominate in these interactions. This study examined the role of KLF2, a zinc-finger transcription factor that regulates immune cell activation, in specifying myeloid cell functions during muscle regeneration. Loss of KLF2 in myeloid lineage cells (myeKlf2-/- mice) dramatically enhanced the initial inflammatory response to acute muscle injury (cardiotoxin). Injured muscles showed dramatically elevated expression of inflammatory mediators and greater numbers of infiltrating, pro-inflammatory monocytes that matured earlier into activated macrophages. Notably, the inflammatory phase resolved earlier and regeneration progressed to myogenesis, marked by elevated expression of factors that promote the formation of new fibers from satellite cells. Regeneration was completed earlier, with phenotypically normal adult fibers integrated into the muscle syncytium. These findings identify myeloid KLF2 as a key regulator of myeloid cell functions in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Palanikumar Manoharan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | - Taejeong Song
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Tatiana L Radzyukevich
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
257
|
Mohiuddin M, Lee NH, Moon JY, Han WM, Anderson SE, Choi JJ, Shin E, Nakhai SA, Tran T, Aliya B, Kim DY, Gerold A, Hansen LM, Taylor WR, Jang YC. Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. Sci Rep 2019; 9:9551. [PMID: 31266969 PMCID: PMC6606576 DOI: 10.1038/s41598-019-45923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Critical limb ischemia, the most severe form of peripheral artery disease, leads to extensive damage and alterations to skeletal muscle homeostasis. Although recent research has investigated the tissue-specific responses to ischemia, the role of the muscle stem cell in the regeneration of its niche components within skeletal muscle has been limited. To elucidate the regenerative mechanism of the muscle stem cell in response to ischemic insults, we explored cellular interactions between the vasculature, neural network, and muscle fiber within the muscle stem cell niche. Using a surgical murine hindlimb ischemia model, we first discovered a significant increase in subsynaptic nuclei and remodeling of the neuromuscular junction following ischemia-induced denervation. In addition, ischemic injury causes significant alterations to the myofiber through a muscle stem cell-mediated accumulation of total myonuclei and a concomitant decrease in myonuclear domain size, possibly to enhance the transcriptional and translation output and restore muscle mass. Results also revealed an accumulation of total mitochondrial content per myonucleus in ischemic myofibers to compensate for impaired mitochondrial function and high turnover rate. Taken together, the findings from this study suggest that the muscle stem cell plays a role in motor neuron reinnervation, myonuclear accretion, and mitochondrial biogenesis for skeletal muscle regeneration following ischemic injury.
Collapse
Affiliation(s)
- Mahir Mohiuddin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nan Hee Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - June Young Moon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woojin M Han
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shannon E Anderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunjung Shin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shadi A Nakhai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thu Tran
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Berna Aliya
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Do Young Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aimee Gerold
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Laura M Hansen
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - W Robert Taylor
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
258
|
Reidy PT, Dupont-Versteegden EE, Drummond MJ. Macrophage Regulation of Muscle Regrowth From Disuse in Aging. Exerc Sport Sci Rev 2019; 47:246-250. [DOI: 10.1249/jes.0000000000000201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
259
|
CD34 regulates the skeletal muscle response to hypoxia. J Muscle Res Cell Motil 2019; 40:309-318. [PMID: 31222587 DOI: 10.1007/s10974-019-09525-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/13/2019] [Indexed: 01/25/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) can sometimes be associated with skeletal muscle atrophy. Hypoxemic episodes, which occur during disease exacerbation and daily physical activity, are frequent in COPD patients. However, the link between hypoxemia and muscle atrophy remains unclear, along with mechanisms of muscle hypoxic stress response. Myogenic progenitors (MPs) and fibro/adipogenic progenitors (FAPs) express CD34 and participate to muscle mass maintenance. Although there is evidence linking CD34 expression and muscle repair, the link between CD34 expression, muscle wasting and the hypoxic stress observed in COPD has never been studied. Using a 2-day model of exposure to hypoxic conditions, we investigated the impact of hypoxia on skeletal muscle wasting and function, and elucidated the importance of CD34 expression in that response. A 2-day exposure to hypoxic conditions induces muscle atrophy, which was significantly worse in Cd34-/- mice compared to wild type (WT). Moreover, the lack of CD34 expression negatively impacts the maximal strength of the extensor digitorum longus muscle in response to hypoxia. Following exposure to hypoxic conditions, FAPs (which support MPs differentiation and myogenesis) are significantly lower in Cd34-/- mice compared to WT animals while the expression of myogenic regulatory factors and degradation factors (Atrogin) are similar. CD34 expression is important in the maintenance of muscle mass and function in response to hypoxic stress. These results highlight a new potential role for CD34 in muscle mass maintenance in hypoxic stress such as observed in COPD.
Collapse
|
260
|
Ishiba R, Santos ALF, Almeida CF, Caires LC, Ribeiro AF, Ayub-Guerrieri D, Fernandes SA, Souza LS, Vainzof M. Faster regeneration associated to high expression of Fam65b and Hdac6 in dysferlin-deficient mouse. J Mol Histol 2019; 50:375-387. [DOI: 10.1007/s10735-019-09834-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
|
261
|
Zhu P, Zhang C, Gao Y, Wu F, Zhou Y, Wu WS. The transcription factor Slug represses p16 Ink4a and regulates murine muscle stem cell aging. Nat Commun 2019; 10:2568. [PMID: 31189923 PMCID: PMC6561969 DOI: 10.1038/s41467-019-10479-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2019] [Indexed: 01/21/2023] Open
Abstract
Activation of the p16Ink4a-associated senescence pathway during aging breaks muscle homeostasis and causes degenerative muscle disease by irreversibly dampening satellite cell (SC) self-renewal capacity. Here, we report that the zinc-finger transcription factor Slug is highly expressed in quiescent SCs of mice and functions as a direct transcriptional repressor of p16Ink4a. Loss of Slug promotes derepression of p16Ink4a in SCs and accelerates the entry of SCs into a fully senescent state upon damage-induced stress. p16Ink4a depletion partially rescues defects in Slug-deficient SCs. Furthermore, reduced Slug expression is accompanied by p16Ink4a accumulation in aged SCs. Slug overexpression ameliorates aged muscle regeneration by enhancing SC self-renewal through active repression of p16Ink4a transcription. Our results identify a cell-autonomous mechanism underlying functional defects of SCs at advanced age. As p16Ink4a dysregulation is the chief cause for regenerative defects of human geriatric SCs, these findings highlight Slug as a potential therapeutic target for aging-associated degenerative muscle disease. Muscle regeneration depends on self-renewal of muscle stem cells but how this is regulated on aging is unclear. Here, the authors identify Slug as regulating p16Ink4a in quiescent muscle stem cells, and when Slug expression reduces in aged stem cells, p16Ink4a accumulates, causing regenerative defects.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunping Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yongxing Gao
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Furen Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yalu Zhou
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Wen-Shu Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
262
|
Jung HW, Choi JH, Jo T, Shin H, Suh JM. Systemic and Local Phenotypes of Barium Chloride Induced Skeletal Muscle Injury in Mice. Ann Geriatr Med Res 2019; 23:83-89. [PMID: 32743293 PMCID: PMC7387593 DOI: 10.4235/agmr.19.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle regeneration in mice has traditionally been studied using local freeze burn or snake venom injection models. More recently, a barium chloride (BaCl2)-induced muscle injury model has been established and is gaining popularity due to the relatively simple procedure and accessibility to required reagents. Here we sought to characterize the local and systemic effects of BaCl2-induced muscle injury. For this study, a 1.2% BaCl2 solution was locally administered to the tibialis anterior (TA) muscle and local and systemic phenotypes were analyzed at different timepoints. When 50 μL of the solution was injected unilaterally in the TA muscle, no mortality was observed. However, when 100 μL of the solution was injected, 50% of the mice died within 24 h. Serum analysis of the mice injected with 50 μL of BaCl2 solution at days 1 and 7 revealed changes resembling rhabdomyolysis. At day 1 post-injection of 50 μL of the BaCl2 solution, acute suppurative inflammation was observed in gross examination of the TA muscle, while extensive hemorrhagic necrosis was revealed on histological examination. At day 7, regenerated myofibers with centralized nuclei appeared with the resolution of acute inflammatory infiltration and the muscle tissue displayed molecular signatures consistent with myofiber differentiation. The overall muscle injury and regeneration phenotypes in the BaCl2-induced muscle injury model were similar to those of the well-established freeze burn or snake venom injection models. Taken together, the BaCl2-induced muscle injury model is comparable to conventional muscle injury and regeneration models, with considerations for possible systemic effects.
Collapse
Affiliation(s)
- Hee-Won Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| | - Jin-Hyuk Choi
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| | - Taehee Jo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| | - Hyemi Shin
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology, Daejeon, Korea
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| |
Collapse
|
263
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
264
|
Chikenji TS, Saito Y, Konari N, Nakano M, Mizue Y, Otani M, Fujimiya M. p16 INK4A-expressing mesenchymal stromal cells restore the senescence-clearance-regeneration sequence that is impaired in chronic muscle inflammation. EBioMedicine 2019; 44:86-97. [PMID: 31129096 PMCID: PMC6604166 DOI: 10.1016/j.ebiom.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The therapeutic benefits of mesenchymal stromal cells (MSCs) include treatment of chronic inflammation. However, given the short-lived engraftment of these cells in vivo, their therapeutic efficacy remains mysterious. Transient induction of cellular senescence contributes to activation of immune cells, which promotes clearance of damaged cells during tissue remodelling. This may occur in tissue-resident mesenchymal progenitor cells during regeneration. Elucidation of the role of senescence in tissue-resident mesenchymal progenitor cells during regeneration would provide insight into the profile of therapeutic MSCs for treatment of chronic inflammatory disease. METHODS We evaluated multipotent mesenchymal progenitor cells, termed fibro/adipogenic progenitors (FAPs), and immune cells in acute muscle injury (AMI) model mice and mice with myosin-induced experimental autoimmune myositis, a model of chronic inflammatory myopathy (CIM). Human bone marrow MSCs were optimised for the treatment of CIM using placental extract. FINDING FAPs in AMI transiently expressed p16INK4A on days 1 and 2 after injury and recruited phagocytic immune cells, whereas in CIM, p16INK4A expression in FAPs was low. Cellular senescence occurs during the natural maturation of the placenta. Therefore, we used human placental extract to induce p16INK4A expression in therapeutic human bone marrow MSCs in culture. Treatment of CIM with p16INK4A-expressing MSCs promoted tissue remodelling by transiently increasing the abundance of engrafted MSCs, inducing cellular senescence in innate FAPs, and recruiting phagocytic immune cells. INTERPRETATION MSCs may exert their effect by remodelling the chronic inflammatory environment via senescence-related regenerative processes.
Collapse
Affiliation(s)
- Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Naoto Konari
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Masako Nakano
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Yuka Mizue
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Miho Otani
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
265
|
Ko IK, Yoo ES, Park SM, Lee BK, Kim JH, Yoo JJ, Atala A. Use of uniformly sized muscle fiber fragments for restoration of muscle tissue function. J Tissue Eng Regen Med 2019; 13:1230-1240. [PMID: 31050866 DOI: 10.1002/term.2873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/19/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
Treatment of extensive muscle loss due to traumatic injury, congenital defects, or tumor ablations is clinically challenging. The current treatment standard is grafting of autologous muscle flaps; however, significant donor site morbidity and graft tissue availability remain a problem. Alternatively, muscle fiber therapy has been attempted to treat muscle injury by transplanting single fibers into the defect site. However, irregularly organized long fibers resulted in low survivability due to delay in vascular and neural integration, thus limiting the therapeutic efficacy. Therefore, no effective method is available to permanently restore extensive muscle injuries. To address the current limitations, we developed a novel method that produces uniformly sized native muscle fiber fragments (MFFs) for muscle transplantation. We hypothesized that fragmentation of muscle fibers into small and uniformly sized fragments would allow for rapid reassembly and efficient engraftment within the defect site, resulting in accelerated recovery of muscle function. Our results demonstrate that the processed MFFs have a dimension of approximately 100 μm and contain living muscle cells on extracellular matrices. In preclinical animal studies using volumetric defect and urinary incontinence models, histological and functional analyses confirmed that the transplanted MFFs into the injury sites were able to effectively integrate with host muscle tissue, vascular, and neural systems, which resulted in significant improvement of muscle function and mass. These results indicate that the MFF technology platform is a promising therapeutic option for the restoration of muscle function and can be applied to various muscle defect and injury cases.
Collapse
Affiliation(s)
- In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Eun Sang Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC.,Department of Urology, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sang Mi Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Bu-Kyu Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC.,Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
266
|
Bensalah M, Klein P, Riederer I, Chaouch S, Muraine L, Savino W, Butler-Browne GS, Trollet C, Mouly V, Bigot A, Negroni E. Combined methods to evaluate human cells in muscle xenografts. PLoS One 2019; 14:e0211522. [PMID: 31048846 PMCID: PMC6497248 DOI: 10.1371/journal.pone.0211522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022] Open
Abstract
Xenotransplantation of human cells into immunodeficient mouse models is a very powerful tool and an essential step for the pre-clinical evaluation of therapeutic cell- and gene- based strategies. Here we describe an optimized protocol combining immunofluorescence and real-time quantitative PCR to both quantify and visualize the fate and localization of human myogenic cells after injection in regenerating muscles of immunodeficient mice. Whereas real-time quantitative PCR-based method provides an accurate quantification of human cells, it does not document their specific localization. The addition of an immunofluorescence approach using human-specific antibodies recognizing engrafted human cells gives information on the localization of the human cells within the host muscle fibres, in the stem cell niche or in the interstitial space. These two combined approaches offer an accurate evaluation of human engraftment including cell number and localization and should provide a gold standard to compare results obtained either using different types of human stem cells or comparing healthy and pathological muscle stem cells between different research laboratories worldwide.
Collapse
Affiliation(s)
- Mona Bensalah
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Pierre Klein
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Soraya Chaouch
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Laura Muraine
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Capucine Trollet
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
- * E-mail:
| |
Collapse
|
267
|
Fernandes DC, Cardoso-Nascimento JJA, Garcia BCC, Costa KB, Rocha-Vieira E, Oliveira MX, Machado ASD, Santos AP, Gaiad TP. Low intensity training improves redox status and reduces collagen fibers on dystrophic muscle. J Exerc Rehabil 2019; 15:213-223. [PMID: 31111003 PMCID: PMC6509444 DOI: 10.12965/jer.1938060.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Exercise therapy on skeletal muscle of muscular dystrophies has no defined parameters. The effect of low-intensity treadmill training on the oxidative stress markers and fibrosis on hindlimb muscles was investigated. Sixteen dystrophic male mdx animals were separated in trained (mdxT/n=8) and untrained (mdxNT/n=8) groups. Wild type animals (WT/n=8) were used as healthy control. The mdxT group runned at a horizontal treadmill (9 m/min, 30 min/day, 3 times/wk, 8 weeks). Gastrocnemius and tibial anterior muscles were collected for analysis of enzymatic/non-enzymatic oxidant activity, oxidative damage concentration, collagen fibers area morphometry. The mdxT group presented a lower collagen fiber area compared to mdxNT for gastrocnemius (P=0.025) and tibial anterior (P=0.000). Oxidative damage activity was higher in the mdxT group for both muscles compared to mdxNT. Catalase presented similar activity for tibial anterior (P=0.527) or gastrocnemius (P=0.323). Superoxide dismutase (P=0.003) and total antioxidant capacity (P=0.024) showed increased activity in the mdxT group at tibial anterior with no difference for gastrocnemius. Low-intensity training is considered therapeutic as it reduces collagen deposition while improving tissue redox status.
Collapse
Affiliation(s)
- Danielle Cristina Fernandes
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jessica Junia A Cardoso-Nascimento
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna Caroline C Garcia
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Karine Beatriz Costa
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alex Sander D Machado
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thaís Peixoto Gaiad
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
268
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
269
|
Wang M, He F, Li H, Yang S, Zhang J, Ghosh P, Wang HH, Nie Z. Near-Infrared Light-Activated DNA-Agonist Nanodevice for Nongenetically and Remotely Controlled Cellular Signaling and Behaviors in Live Animals. NANO LETTERS 2019; 19:2603-2613. [PMID: 30907088 PMCID: PMC6530480 DOI: 10.1021/acs.nanolett.9b00421] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optogenetics provides promising tools for the precise control of receptor-mediated cell behaviors in a spatiotemporal manner. Yet, most photoreceptors require extensive genetic manipulation and respond only to ultraviolet or visible light, which are suboptimal for in vivo applications because they do not penetrate thick tissues. Here we report a novel near-infrared light-activated DNA agonist (NIR-DA) nanodevice for nongenetic manipulation of cell signaling and phenotype in deep tissues. This nanodevice is prepared by conjugating a preinactivated DNA agonist onto the gold nanorods (AuNRs). Upon NIR light treatment, the DNA agonist is released through the localized surface plasmon resonance (LSPR)-based photothermal effect of AuNRs and becomes active. The active DNA agonist dimerizes the DNA-modified chimeric or native receptor tyrosine kinase (RTK) on cell surfaces and activates downstream signal transduction in live cells. Such NIR-DA activation of RTK signaling enables the control of cytoskeletal remodeling, cell polarization, and directional migration. Furthermore, we demonstrate that the NIR-DA system can be used in vivo to mediate RTK signaling and skeletal muscle satellite cell migration and myogenesis, which are critical cellular behaviors in the process of skeletal muscle regeneration. Thus, the NIR-DA system offers a powerful and versatile platform for exogenous modulation of deep tissues for purposes such as regenerative medicine.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Hao Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Sihui Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Jinghui Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Pradipta Ghosh
- Department of Medicine, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651, USA
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
270
|
Chen B, Shan T. The role of satellite and other functional cell types in muscle repair and regeneration. J Muscle Res Cell Motil 2019; 40:1-8. [PMID: 30968305 DOI: 10.1007/s10974-019-09511-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Skeletal muscles play essential roles in physiological processes, including motor function, energy hemostasis, and respiration. Skeletal muscles also have the capacity to regenerate after injury. Regeneration of skeletal muscle is an extremely complex biological process, which involves multiple cell types. Skeletal muscle stem cells (also known as satellite cells; SCs) are crucial for the development, growth, maintenance and repair of the skeletal muscle. Cell fates and function have been extensively studied in the context of skeletal muscle regeneration. In addition to SCs, other cell types, such as fibro-adipogenic precursors (FAPs), endothelial cells, fibroblasts, pericytes and certain immune cells, play important regulatory roles during skeletal muscle regeneration. In this review, we summarize and discuss the current research progress on the different cell types and their respective functions in skeletal muscle regeneration and repair.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
271
|
Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration. Nat Immunol 2019; 20:626-636. [PMID: 30936495 PMCID: PMC6537107 DOI: 10.1038/s41590-019-0356-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Muscle damage elicits a sterile immune response that facilitates complete regeneration. Here, we utilized mass spectrometry-based lipidomics to map the mediator lipidome during the transition from inflammation to resolution and regeneration in skeletal muscle injury. We observed the temporal regulation of glycerophospholipids and the production of pro-inflammatory (e.g., leukotrienes, prostaglandins) and specialized pro-resolving (e.g., resolvins, lipoxins) lipid mediators, which were modulated by ibuprofen. These time-dependent profiles were recapitulated in sorted neutrophils and Ly6Chi and Ly6Clo muscle-infiltrating macrophages, with a distinct pro-resolving signature observed in Ly6Clo macrophages. RNA-seq of macrophages stimulated with resolvin D2 (RvD2) showed similarities to transcriptional changes found during the temporal Ly6Chi to Ly6Clo macrophage transition. In vivo, RvD2 increased Ly6Clo macrophages and functional improvement of the regenerating muscle. These results reveal dynamic lipid mediator signatures of innate immune cells and provide a proof-of-concept for their exploitable effector roles in muscle regeneration.
Collapse
|
272
|
Pestronk A, Sinha N, Alhumayyd Z, Ly C, Schmidt R, Bucelli R. Immune myopathy with large histiocyte-related myofiber necrosis. Neurology 2019; 92:e1763-e1772. [PMID: 30894448 DOI: 10.1212/wnl.0000000000007260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To describe the features of a new, pathologically distinctive, acquired myopathy with an unusual pattern of scattered necrotic muscle fibers that are neighbored, surrounded, or invaded, by large, often multinucleated, histiocytic cells. METHODS Retrospective review of records and muscle pathology of 4 patients. RESULTS Clinical features common to our patients included muscle pain and proximal, symmetric, moderate to severe, weakness in the arms and legs progressing over 1-4 weeks. Patients had other associated systemic disorders, including anemia in all, and hemophagocytic lymphohistiocytosis, hepatic disease, Raynaud phenomenon, metastatic cancer, and cardiomyopathy, in 1 patient each. Serum creatine kinase (CK) levels at presentation were very high, ranging from 10,000 to 102,000 U/L. Three patients improved within 3 months after treatment. Muscle pathology included scattered necrotic muscle fibers with cytoplasm that stained for C5b-9 complement, especially around fiber peripheries, pale on nicotinamide adenine dinucleotide and often dark on hematoxylin & eosin. Large, often multinucleated, cells with features of histiocytes, including anatomical features on electron microscopy and immunostaining for major histocompatibility complex Class I and histiocyte markers (HAM56, CD68, CD163, and S100), were usually closely apposed to the surface of, or invaded, necrotic myofibers. CONCLUSIONS Patients with large-histiocyte-associated myopathy (LHIM) had a subacute onset of proximal predominant weakness, associated systemic disorders, very high serum CK, and a pathologically distinctive pattern of large histiocyte-associated muscle fiber necrosis. LHIM may be caused by an autoimmune, histiocyte-mediated attack directed against muscle fibers.
Collapse
Affiliation(s)
- Alan Pestronk
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia.
| | - Namita Sinha
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia
| | - Ziad Alhumayyd
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia
| | - Cindy Ly
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia
| | - Robert Schmidt
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia
| | - Robert Bucelli
- From the Departments of Neurology (A.P., C.L., R.B.) and Pathology and Immunology (A.P., N.S., R.S.), Washington University School of Medicine, Saint Louis, MO; and Department of Neurology (Z.A.), King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
273
|
Vitamin D-binding protein deficiency in mice decreases systemic and select tissue levels of inflammatory cytokines in a murine model of acute muscle injury. J Trauma Acute Care Surg 2019; 84:847-854. [PMID: 29554047 DOI: 10.1097/ta.0000000000001875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. METHODS C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. RESULTS All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. CONCLUSIONS Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.
Collapse
|
274
|
Winje IM, Sheng X, Hansson K, Solbrå A, Tennøe S, Saatcioglu F, Bruusgaard JC, Gundersen K. Cachexia does not induce loss of myonuclei or muscle fibres during xenografted prostate cancer in mice. Acta Physiol (Oxf) 2019; 225:e13204. [PMID: 30325108 DOI: 10.1111/apha.13204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
AIM Cachexia is a severe wasting disorder involving loss of body- and muscle mass reducing survival and quality of life in cancer patients. We aim at determining if cachexia is a mere perturbation of the protein balance or if the condition also involves a degenerative loss of myonuclei within the fibre syncytia or loss of whole muscle fibres. METHODS We induced cachexia by xenografting PC3 prostate cancer cells in nu/nu mice. Six weeks later, we counted myonuclei by in vivo microscopic imaging of single live fibres in the extensor digitorum longus muscle (EDL), and the EDL, soleus and tibialis anterior muscles were also harvested for ex vivo histology. RESULTS The mice lost on average 15% of the whole-body wt. The muscle wet weight of the glycolytic, fast EDL was reduced by 14%, the tibialis anterior by 17%, and the slow, oxidative soleus by 6%. The fibre cross-sectional area in the EDL was reduced by 21% with no loss of myonuclei or any significant reduction in the number of muscle fibres. TUNEL-positive nuclei or fibres with embryonic myosin were rare both in cachectic and control muscles, and haematoxylin-eosin staining revealed no clear signs of muscle pathology. CONCLUSION The data suggest that the cachexia induced by xenografted prostate tumours induces a pronounced atrophy not accompanied by a loss of myonuclei or a loss of muscle fibres. Thus, stem cell related treatment might be redundant, and the quest for treatment options should rather focus on intervening with intracellular pathways regulating muscle fibre size.
Collapse
Affiliation(s)
| | - Xia Sheng
- Department of Biosciences University of Oslo Oslo Norway
| | - Kenth‐Arne Hansson
- Department of Biosciences University of Oslo Oslo Norway
- Center for Integrative Neuroplasticity (CINPLA) University of Oslo Oslo Norway
| | - Andreas Solbrå
- Center for Integrative Neuroplasticity (CINPLA) University of Oslo Oslo Norway
- Department of Physics University of Oslo Oslo Norway
| | - Simen Tennøe
- Center for Integrative Neuroplasticity (CINPLA) University of Oslo Oslo Norway
- Department of Informatics University of Oslo Oslo Norway
| | - Fahri Saatcioglu
- Department of Biosciences University of Oslo Oslo Norway
- Institute of Cancer Genetics and Informatics Oslo University Hospital Oslo Norway
| | - Jo Christiansen Bruusgaard
- Department of Biosciences University of Oslo Oslo Norway
- Center for Integrative Neuroplasticity (CINPLA) University of Oslo Oslo Norway
- Department of Health Sciences Kristiania University College Oslo Norway
| | - Kristian Gundersen
- Department of Biosciences University of Oslo Oslo Norway
- Center for Integrative Neuroplasticity (CINPLA) University of Oslo Oslo Norway
| |
Collapse
|
275
|
Forcina L, Miano C, Pelosi L, Musarò A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics 2019; 20:24-37. [PMID: 31015789 PMCID: PMC6446479 DOI: 10.2174/1389202920666190116094736] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| |
Collapse
|
276
|
Fernando CA, Pangan AM, Cornelison D, Segal SS. Recovery of blood flow regulation in microvascular resistance networks during regeneration of mouse gluteus maximus muscle. J Physiol 2019; 597:1401-1417. [PMID: 30575953 DOI: 10.1113/jp277247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Skeletal muscle regenerates after injury, however the recovery of its microvascular supply is poorly understood. We injured the gluteus maximus muscle in mice aiming to investigate the recovery of blood flow regulation in microvascular resistance networks. We hypothesized that blood flow regulation recovers in concert with myofibre regeneration. Microvascular perfusion ceased within 1 day post injury and was restored at 5 days coincident with the appearance of new myofibres; however, the resistance network was dilated and unresponsive to vasoactive agents. Spontaneous vasomotor tone, endothelium-dependent dilatation and adrenergic vasoconstriction increased at 10 days in concert with myofibre regeneration. Vasomotor control recovered at 21 days, when regenerated myofibres matured and active force production stabilized. Functional vasodilatation in response to muscle contraction recovered at 35 days. Physiological integrity of microvascular smooth muscle and endothelium recovers in parallel with myofibre regeneration. Additional time is required to restore the efficacy of signalling between myofibres and microvascular networks controlling their oxygen supply. ABSTRACT Myofibre regeneration after skeletal muscle injury is well-studied, although little is known about how microvascular perfusion is restored. The present study aimed to evaluate the recovery of blood flow regulation during skeletal muscle regeneration. In anaesthetized male C57BL/6J mice (aged 4 months), the gluteus maximus muscle (GM) was injured by local injection of barium chloride solution (1.2%, 75 μL). Functional integrity of the resistance network was evaluated at 5, 10, 21 and 35 days post-injury vs. Control by measuring internal diameter of feed arteries, first-, second- and third-order arterioles supplying the GM using intravital microscopy. The resting diameters of all branch orders were significantly greater (P < 0.05) than Control at 5 and 10 days and recovered to Control by 21 days, as did spontaneous vasomotor tone. Vasodilatation to ACh and vasoconstriction to phenylephrine (10-9 to 10-5 m) were absent at 5 days, increased at 10 days and recovered to Control by 21 days; reactivity improved in a distal-to-proximal gradient. Across branch orders, functional vasodilatation to single tetanic contraction (100 Hz, 500 ms) and to rhythmic twitch contractions (4 Hz, 30 s) was impaired at 5 days, improved through 21 days and was not different from Control at 35 days. Peak force development (g) was 60% of Control at 10 days and recovered by 21 days. Diminished vasomotor tone during the initial stages of regeneration promotes tissue perfusion as myofibre recovery begins. Recovery of tone and vasomotor responses to agonists occur in concert with myofibre regeneration. Delayed recovery of functional vasodilatation indicates that additional time is required to restore signalling between contracting myofibres and their vascular supply.
Collapse
Affiliation(s)
| | - Aaron M Pangan
- Department of Biomedical, Biological and Chemical Engineering
| | - Ddw Cornelison
- Division of Biological Sciences.,Christopher S. Bond Life Sciences Center
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
277
|
Anderson SE, Han WM, Srinivasa V, Mohiuddin M, Ruehle MA, Moon JY, Shin E, San Emeterio CL, Ogle ME, Botchwey EA, Willett NJ, Jang YC. Determination of a Critical Size Threshold for Volumetric Muscle Loss in the Mouse Quadriceps. Tissue Eng Part C Methods 2019; 25:59-70. [PMID: 30648479 PMCID: PMC6389771 DOI: 10.1089/ten.tec.2018.0324] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT The goal of this study was to determine the threshold for a critically sized, nonhealing muscle defect by characterizing key components in the balance between fibrosis and regeneration as a function of injury size in the mouse quadriceps. There is currently limited understanding of what leads to a critically sized muscle defect and which muscle regenerative components are functionally impaired. With the substantial increase in preclinical VML models as testbeds for tissue engineering therapeutics, defining the critical threshold for VML injuries will be instrumental in characterizing therapeutic efficacy and potential for subsequent translation.
Collapse
Affiliation(s)
- Shannon E. Anderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Woojin M. Han
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Vunya Srinivasa
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Mahir Mohiuddin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Marissa A. Ruehle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - June Young Moon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Eunjung Shin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Cheryl L. San Emeterio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Edward A. Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Nick J. Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Department of Orthopedics, Emory University, Atlanta, Georgia
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia
| | - Young C. Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
278
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
279
|
Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. NPJ Regen Med 2018; 3:24. [PMID: 30588332 PMCID: PMC6303387 DOI: 10.1038/s41536-018-0062-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Investigations on developmental and regenerative myogenesis have led to major advances in decrypting stem cell properties and potential, as well as their interactions within the evolving niche. As a consequence, regenerative myogenesis has provided a forum to investigate intrinsic regulators of stem cell properties as well as extrinsic factors, including stromal cells, during normal growth and following injury and disease. Here we review some of the latest advances in the field that have exposed fundamental processes including regulation of stress following trauma and ageing, senescence, DNA damage control and modes of symmetric and asymmetric cell divisions. Recent studies have begun to explore the nature of the niche that is distinct in different muscle groups, and that is altered from prenatal to postnatal stages, and during ageing. We also discuss heterogeneities among muscle stem cells and how distinct properties within the quiescent and proliferating cell states might impact on homoeostasis and regeneration. Interestingly, cellular quiescence, which was thought to be a passive cell state, is regulated by multiple mechanisms, many of which are deregulated in various contexts including ageing. These and other factors including metabolic activity and genetic background can impact on the efficiency of muscle regeneration.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
280
|
Sun M, Brady RD, van der Poel C, Apted D, Semple BD, Church JE, O'Brien TJ, McDonald SJ, Shultz SR. A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Front Neurol 2018; 9:1089. [PMID: 30619048 PMCID: PMC6297867 DOI: 10.3389/fneur.2018.01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Danielle Apted
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jarrod E Church
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
281
|
Gayraud-Morel B, Le Bouteiller M, Commere PH, Cohen-Tannoudji M, Tajbakhsh S. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development 2018; 145:145/23/dev162636. [PMID: 30478226 DOI: 10.1242/dev.162636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Cell fate decisions occur through the action of multiple factors, including signalling molecules and transcription factors. Recently, the regulation of translation has emerged as an important step for modulating cellular function and fate, as exemplified by ribosomes that play distinct roles in regulating cell behaviour. Notchless (Nle) is a conserved nuclear protein that is involved in a crucial step in ribosome biogenesis, and is required for the maintenance of adult haematopoietic and intestinal stem/progenitor cells. Here, we show that activated skeletal muscle satellite cells in conditional Nle mutant mice are arrested in proliferation; however, deletion of Nle in myofibres does not impair myogenesis. Furthermore, conditional deletion of Nle in satellite cells during homeostasis did not impact on their fate for up to 3 months. In contrast, loss of Nle function in primary myogenic cells blocked proliferation because of major defects in ribosome formation. Taken together, we show that muscle stem cells undergo a stage-specific regulation of ribosome biogenesis, thereby underscoring the importance of differential modulation of mRNA translation for controlling cell fate decisions.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Marie Le Bouteiller
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Pierre-Henri Commere
- Plateforme de Cytometrie, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France .,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
282
|
Meyer GA. Evidence of induced muscle regeneration persists for years in the mouse. Muscle Nerve 2018; 58:858-862. [PMID: 30159908 DOI: 10.1002/mus.26329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Efficient repositioning of centralized nuclei after injury has long been assumed, with centralized nuclei frequently cited as indicators of ongoing regeneration. However, reports of centralized nuclei that persist after full recovery of fiber area and muscle force production call into question the time course of nuclear repositioning. METHODS We evaluated regeneration after cardiotoxin-induced damage in 10-week-old mice by quantifying intracellular and extracellular pathology at 2 and 94 weeks post-injection. RESULTS Centrally nucleated fibers were still prevalent at 94 weeks post-injection, representing > 25% of muscle fibers. Areas with > 90% centrally nucleated fibers could still be identified. Extra-myocellular indicators of regeneration (e.g., fibrosis and fatty infiltration) also remained significantly elevated at the 94-week time-point. DISCUSSION These findings indicate that not all nuclei are repositioned at the conclusion of induced muscle regeneration. Muscle Nerve 58:858-862, 2018.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, 4444 Forest Park Avenue, Suite 1101, St. Louis, Missouri, 63108, USA
| |
Collapse
|
283
|
Schaaf GJ, van Gestel TJM, in ‘t Groen SLM, de Jong B, Boomaars B, Tarallo A, Cardone M, Parenti G, van der Ploeg AT, Pijnappel WWMP. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathol Commun 2018; 6:119. [PMID: 30404653 PMCID: PMC6220463 DOI: 10.1186/s40478-018-0620-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Pompe disease is a metabolic myopathy that is caused by glycogen accumulation as a result of deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Previously, we showed that adult muscle stem cells termed satellite cells are present at normal levels in muscle from patients with Pompe disease, but that these are insufficiently activated to repair the severe muscle pathology. Here we characterized the muscle regenerative response during disease progression in a mouse model of Pompe disease and investigated the intrinsic capacity of Gaa-/- satellite cells to regenerate muscle damage. Gaa-/- mice showed progressive muscle pathology from 15 weeks of age as reflected by increased lysosomal size, decreased fiber diameter and reduced muscle wet weight. Only during the first 15 weeks of life but not thereafter, we detected a gradual increase in centrally nucleated fibers and proliferating satellite cells in Gaa-/- muscle, indicating a mild regenerative response. The levels of Pax7-positive satellite cells were increased in Gaa-/- mice at all ages, most likely as result of enhanced satellite cell activation in young Gaa-/- animals. Surprisingly, both young and old Gaa-/- mice regenerated experimentally-induced muscle injury efficiently as judged by rapid satellite cell activation and complete restoration of muscle histology. In response to serial injury, Gaa-/- mice also regenerated muscle efficiently and maintained the satellite cell pool. These findings suggest that, similar to human patients, Gaa-/- mice have insufficient satellite cell activation and muscle regeneration during disease progression. The initial endogenous satellite cell response in Gaa-/- mice may contribute to the delayed onset of muscle wasting compared to human patients. The rapid and efficient regeneration after experimental muscle injury suggest that Gaa-/- satellite cells are functional stem cells, opening avenues for developing muscle regenerative therapies for Pompe disease.
Collapse
|
284
|
TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature 2018; 563:508-513. [PMID: 30464263 PMCID: PMC6324568 DOI: 10.1038/s41586-018-0665-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
A dominant histopathological feature in neuromuscular diseases, including amyotrophic lateral sclerosis and inclusion body myopathy, is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare mutations in TARDBP-the gene that encodes TDP-43-that lead to protein misfolding often cause protein aggregation, most patients do not have any mutations in TARDBP. Therefore, aggregates of wild-type TDP-43 arise in most patients by an unknown mechanism. Here we show that TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, which we call myo-granules, during regeneration of skeletal muscle in mice and humans. Myo-granules bind to mRNAs that encode sarcomeric proteins and are cleared as myofibres mature. Although myo-granules occur during normal skeletal-muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro and are increased in a mouse model of inclusion body myopathy. Therefore, increased assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates that commonly occur in neuromuscular disease.
Collapse
|
285
|
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2018; 126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.
Collapse
Affiliation(s)
- Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany
| | | | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University , Victoria , Australia
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health , Jyväskylä , Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
286
|
von Kobbe C. Cellular senescence: a view throughout organismal life. Cell Mol Life Sci 2018; 75:3553-3567. [PMID: 30030594 PMCID: PMC11105332 DOI: 10.1007/s00018-018-2879-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the final fate of most cells in response to specific stimuli, but is not the end. Indeed, it is the beginning of a singular life, with multiple side roads leading to diverse effects on the organism. Many studies have been done in the last few years to elucidate the intriguing role of senescent cells in the organism, demonstrating them as the cause of several age-related diseases. However, these cells are also positively implicated in other important pathways, such as embryogenesis and wound healing. It appears that the multiple effects are time-dependent: long-term senescence is mostly implicated in chronic inflammation and disease, whereas in the short term, senescent cells seem to be beneficial, being rapidly targeted by the innate immune system. The influence of senescent cells on their neighbors by paracrine factors, differential activity depending on developmental stage, and duration of the effects make the cellular senescent program a unique spatial-temporal mechanism. During pathological conditions such as progeroid syndromes, this mechanism is deregulated, leading to accelerated onset of some aging-related diseases and a shorter lifespan, among other physiological defects. Here, we review the three primary cell senescence programs described so far (replicative, stress-induced, and developmentally programmed senescence), their onset during development, and their potential roles in diseases with premature aging. Finally, we discuss the role of immune cells in keeping senescence burden below the threshold of disease.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
287
|
Jin RM, Warunek J, Wohlfert EA. Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis. JCI Insight 2018; 3:121549. [PMID: 30232283 DOI: 10.1172/jci.insight.121549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
The robust regenerative potential of skeletal muscle is imperative for the maintenance of tissue function across a host of potential insults including exercise, infection, and trauma. The highly coordinated action of multiple immune populations, especially macrophages, plays an indispensable role in guiding this reparative program. However, it remains unclear how skeletal muscle repair proceeds in a chronically inflamed setting, such as infection, where an active immune response is already engaged. To address this question, we used a cardiotoxin injury model to challenge the reparative potential of chronically infected muscle. Compared with regenerating naive skeletal muscle, infected skeletal muscle exhibited multiple indicators of delayed muscle repair including a divergent morphologic response to injury and dysregulated expression of myogenic regulatory factors. Further, using both flow cytometric and single-cell RNA sequencing approaches, we show that reduced macrophage heterogeneity due to delayed emergence of restorative subsets underlies dysfunctional tissue repair during chronic infection. Our findings highlight how the preexisting inflammatory environment within tissue alters reparative immunity and ultimately the quality of tissue regeneration.
Collapse
|
288
|
Estrellas KM, Chung L, Cheu LA, Sadtler K, Majumdar S, Mula J, Wolf MT, Elisseeff JH, Wagner KR. Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. J Biol Chem 2018; 293:15594-15605. [PMID: 30139748 DOI: 10.1074/jbc.ra118.004417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/16/2018] [Indexed: 01/16/2023] Open
Abstract
Recent studies have reported that the immune system significantly mediates skeletal muscle repair and regeneration. Additionally, biological scaffolds have been shown to play a role in polarizing the immune microenvironment toward pro-myogenic outcomes. Moreover, myostatin inhibitors are known to promote muscle regeneration and ameliorate fibrosis in animal models of Duchenne muscular dystrophy (DMD), a human disease characterized by chronic muscle degeneration. Biological scaffolds and myostatin inhibition can potentially influence immune-mediated regeneration in the dystrophic environment, but have not been evaluated together. Toward this end, here we created an injectable biological scaffold composed of hyaluronic acid and processed skeletal muscle extracellular matrix. This material formed a cytocompatible hydrogel at physiological temperatures in vitro When injected subfascially above the tibialis anterior muscles of both WT and dystrophic mdx-5Cv mice, a murine model of DMD, the hydrogel spreads across the entire muscle before completely degrading at 3 weeks in vivo We found that the hydrogel is associated with CD206+ pro-regenerative macrophage polarization and elevated anti-inflammatory cytokine expression in both WT and dystrophic mice. Co-injection of both hydrogel and myostatin inhibitor significantly increased FoxP3+ regulatory T cell modulation and Foxp3 gene expression in the scaffold immune microenvironment. Finally, delivery of myostatin inhibitor with the hydrogel increased its bioactivity in vivo, and transplantation of immortalized human myoblasts with the hydrogel promoted their survival in vivo This study identifies a key role for biological scaffolds and myostatin inhibitors in modulating a pro-regenerative immune microenvironment in dystrophic muscle.
Collapse
Affiliation(s)
- Kenneth M Estrellas
- From the Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205.,the Translational Tissue Engineering Center and
| | - Liam Chung
- the Translational Tissue Engineering Center and.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Lindsay A Cheu
- the Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Kaitlyn Sadtler
- the David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.,the Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts 02115
| | | | - Jyothi Mula
- the NCI at Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Matthew T Wolf
- the Translational Tissue Engineering Center and.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jennifer H Elisseeff
- the Translational Tissue Engineering Center and .,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Kathryn R Wagner
- From the Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, .,the Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
289
|
L'honoré A, Commère PH, Negroni E, Pallafacchina G, Friguet B, Drouin J, Buckingham M, Montarras D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife 2018; 7:e32991. [PMID: 30106373 PMCID: PMC6191287 DOI: 10.7554/elife.32991] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.
Collapse
Affiliation(s)
- Aurore L'honoré
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | | | - Elisa Negroni
- Center for Research in MyologySorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Giorgia Pallafacchina
- NeuroscienceInstitute, Department of Biomedical Sciences, Italian National Research CouncilUniversityof PadovaPadovaItaly
| | - Bertrand Friguet
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Jacques Drouin
- Laboratory of Molecular GeneticsInstitut de Recherches Cliniques de MontréalMontréalCanada
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| | - Didier Montarras
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| |
Collapse
|
290
|
Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, Mazeraud A, Bouglé A, Shorte SL, Staels B, Chrétien F, Duez H, Danckaert A. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle 2018; 8:25. [PMID: 30081940 PMCID: PMC6091189 DOI: 10.1186/s13395-018-0171-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022] Open
Abstract
Background Skeletal muscle has the capacity to adapt to environmental changes and regenerate upon injury. To study these processes, most experimental methods use quantification of parameters obtained from images of immunostained skeletal muscle. Muscle cross-sectional area, fiber typing, localization of nuclei within the muscle fiber, the number of vessels, and fiber-associated stem cells are used to assess muscle physiology. Manual quantification of these parameters is time consuming and only poorly reproducible. While current state-of-the-art software tools are unable to analyze all these parameters simultaneously, we have developed MuscleJ, a new bioinformatics tool to do so. Methods Running on the popular open source Fiji software platform, MuscleJ simultaneously analyzes parameters from immunofluorescent staining, imaged by different acquisition systems in a completely automated manner. Results After segmentation of muscle fibers, up to three other channels can be analyzed simultaneously. Dialog boxes make MuscleJ easy-to-use for biologists. In addition, we have implemented color in situ cartographies of results, allowing the user to directly visualize results on reconstituted muscle sections. Conclusion We report here that MuscleJ results were comparable to manual observations made by five experts. MuscleJ markedly enhances statistical analysis by allowing reliable comparison of skeletal muscle physiology-pathology results obtained from different laboratories using different acquisition systems. Providing fast robust multi-parameter analyses of skeletal muscle physiology-pathology, MuscleJ is available as a free tool for the skeletal muscle community. Electronic supplementary material The online version of this article (10.1186/s13395-018-0171-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France.
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Quentin Thorel
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Pascal Roux
- UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Lorna Gueniot
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - David Briand
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Aurélien Mazeraud
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Adrien Bouglé
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Spencer L Shorte
- UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Fabrice Chrétien
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | - Hélène Duez
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, U1011 - EGID, 1 rue du Pr. Calmette, F-59000, Lille, France
| | - Anne Danckaert
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France. .,UTechS PBI (Imagopole)-Citech, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
291
|
Goel AJ, Rieder MK, Arnold HH, Radice GL, Krauss RS. Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Rep 2018; 21:2236-2250. [PMID: 29166613 DOI: 10.1016/j.celrep.2017.10.102] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/01/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Many adult stem cells display prolonged quiescence, promoted by cues from their niche. Upon tissue damage, a coordinated transition to the activated state is required because non-physiological breaks in quiescence often lead to stem cell depletion and impaired regeneration. Here, we identify cadherin-mediated adhesion and signaling between muscle stem cells (satellite cells [SCs]) and their myofiber niche as a mechanism that orchestrates the quiescence-to-activation transition. Conditional removal of N-cadherin and M-cadherin in mice leads to a break in SC quiescence, with long-term expansion of a regeneration-proficient SC pool. These SCs have an incomplete disruption of the myofiber-SC adhesive junction and maintain niche residence and cell polarity, yet show properties of SCs in a state of transition from quiescence toward full activation. Among these is nuclear localization of β-catenin, which is necessary for this phenotype. Injury-induced perturbation of niche adhesive junctions is therefore a likely first step in the quiescence-to-activation transition.
Collapse
Affiliation(s)
- Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marysia-Kolbe Rieder
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hans-Henning Arnold
- Cell and Molecular Biology, Institute of Zoology, Technical University Braunschweig, 38106 Braunschweig, Germany
| | - Glenn L Radice
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
292
|
Han WM, Anderson SE, Mohiuddin M, Barros D, Nakhai SA, Shin E, Amaral IF, Pêgo AP, García AJ, Jang YC. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. SCIENCE ADVANCES 2018; 4:eaar4008. [PMID: 30116776 PMCID: PMC6093653 DOI: 10.1126/sciadv.aar4008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/11/2018] [Indexed: 05/29/2023]
Abstract
Muscle satellite cells (MuSCs) play a central role in muscle regeneration, but their quantity and function decline with comorbidity of trauma, aging, and muscle diseases. Although transplantation of MuSCs in traumatically injured muscle in the comorbid context of aging or pathology is a strategy to boost muscle regeneration, an effective cell delivery strategy in these contexts has not been developed. We engineered a synthetic hydrogel-based matrix with optimal mechanical, cell-adhesive, and protease-degradable properties that promotes MuSC survival, proliferation, and differentiation. Furthermore, we establish a biomaterial-mediated cell delivery strategy for treating muscle trauma, where intramuscular injections may not be applicable. Delivery of MuSCs in the engineered matrix significantly improved in vivo cell survival, proliferation, and engraftment in nonirradiated and immunocompetent muscles of aged and dystrophic mice compared to collagen gels and cell-only controls. This platform may be suitable for treating craniofacial and limb muscle trauma, as well as postoperative wounds of elderly and dystrophic patients.
Collapse
Affiliation(s)
- Woojin M. Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shannon E. Anderson
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mahir Mohiuddin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Daniela Barros
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shadi A. Nakhai
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eunjung Shin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Isabel Freitas Amaral
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young C. Jang
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
293
|
Sun KT, Cheung KK, Au SWN, Yeung SS, Yeung EW. Overexpression of Mechano-Growth Factor Modulates Inflammatory Cytokine Expression and Macrophage Resolution in Skeletal Muscle Injury. Front Physiol 2018; 9:999. [PMID: 30140235 PMCID: PMC6094977 DOI: 10.3389/fphys.2018.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
In muscle regeneration, infiltrating myeloid cells, such as macrophages mediate muscle inflammation by releasing key soluble factors. One such factor, insulin-like growth factor 1 (IGF-1), suppresses inflammatory cytokine expression and mediates macrophage polarization to anti-inflammatory phenotype during muscle injury. Previously the IGF-1Ea isoform was shown to be anti-inflammatory. Another isoform of IGF-1, mechano-growth factor (MGF), is structurally and functionally distinct from IGF-1Ea, but its role in muscle inflammation has not yet been characterized. In this study, we hypothesized that MGF expression in muscle injury modulates muscle inflammation. We first investigated changes of transcription and expression of MGF in response to skeletal muscle injury induced by cardiotoxin (CTX) in vivo. At 1–2 days post-injury, Mgf expression was significantly upregulated and positively correlated with that of inflammatory cytokines. Immunostaining revealed that infiltration of neutrophils and macrophages coincided with Mgf upregulation. Furthermore, infiltrating neutrophils and macrophages expressed Mgf, suggesting their contribution to MGF upregulation in muscle injury. Macrophages seem to be the predominant source of MGF in muscle injury, whereas neutrophil depletion did not affect muscle Mgf expression. Given the association of MGF and macrophages, we then studied whether MGF could affect macrophage infiltration and polarization. To test this, we overexpressed MGF in CTX-injured muscles and evaluated inflammatory marker expression, macrophage populations, and muscle regeneration outcomes. MGF overexpression delayed the resolution of macrophages, particularly the pro-inflammatory phenotype. This coincided with upregulation of inflammatory markers. Annexin V-based flow cytometry revealed that MGF overexpression likely delays macrophage resolution by limiting macrophage apoptosis. Although MGF overexpression did not obviously affect muscle regeneration outcomes, the findings are novel and provide insights on the physiological roles of MGF in muscle regeneration.
Collapse
Affiliation(s)
- Keng-Ting Sun
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shannon W N Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Simon S Yeung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ella W Yeung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
294
|
Cheng X, Huang H, Luo X, Shi B, Li J. Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat craniofacial muscle. Sci Rep 2018; 8:10613. [PMID: 30006540 PMCID: PMC6045621 DOI: 10.1038/s41598-018-28917-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles drive critical functions in the head, including speech, feeding and expression. Compared with their counterparts in trunk and limbs, craniofacial muscles are of distinct embryonic origins, which might consequently lead to different growth patterns and regenerative potential. In this study, rat levator veli palatini muscle and masseter muscle were compared with tibialis anterior muscle in their response to exogenous Wnt7a stimulus, which has been proved effective in promoting muscle regeneration in the limbs. Histological, cellular and molecular analyses were performed both under basal condition and after a single dose injection of recombinant human Wnt7a. Under basal condition, levator veli palatini muscle demonstrated considerably more satellite cells than the others. After Wnt7a administration, regeneration-related activities, including satellite cell expansion, myofiber hyperplasia and hypertrophy were generally observed in all three muscles, but with obvious differences in the extent. The composition of fast/slow myofibers underwent substantial alterations, and the pattern varied among the three muscles. Location-specific alterations in the expression level of core components in planar cell polarity pathway, Akt/mTOR pathway and myostatin pathway were also observed. In conclusion, both craniofacial and limb muscles could be effectively expanded by exogenous Wnt7a stimulus, but muscle-to-muscle variations in response patterns existed.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China.
| |
Collapse
|
295
|
Xu P, Werner JU, Milerski S, Hamp CM, Kuzenko T, Jähnert M, Gottmann P, de Roy L, Warnecke D, Abaei A, Palmer A, Huber-Lang M, Dürselen L, Rasche V, Schürmann A, Wabitsch M, Knippschild U. Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma-A Broad Spectrum Analysis. Front Physiol 2018; 9:674. [PMID: 29922174 PMCID: PMC5996306 DOI: 10.3389/fphys.2018.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore, histological satellite cell evaluation showed lower satellite cell numbers in the obese model upon injury. Ankrd1, C3ar1, Ccl8, Mpeg1, and Myog expression levels were also verified by qPCR. In summary, increased fibrosis formation, the reduction of Pax7+ satellite cells as well as specific changes in gene expression and signaling pathways could explain the delay of tissue regeneration in obese mice post trauma.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Sebastian Milerski
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Carmen M Hamp
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Tatjana Kuzenko
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Luisa de Roy
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Daniela Warnecke
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Volker Rasche
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
296
|
Begam M, Collier AF, Mueller AL, Roche R, Galen SS, Roche JA. Diltiazem improves contractile properties of skeletal muscle in dysferlin-deficient BLAJ mice, but does not reduce contraction-induced muscle damage. Physiol Rep 2018; 6:e13727. [PMID: 29890050 PMCID: PMC5995314 DOI: 10.14814/phy2.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
B6.A-Dysfprmd /GeneJ (BLAJ) mice model human limb-girdle muscular dystrophy 2B (LGMD2B), which is linked to mutations in the dysferlin (DYSF) gene. We tested the hypothesis that, the calcium ion (Ca2+ ) channel blocker diltiazem (DTZ), reduces contraction-induced skeletal muscle damage, in BLAJ mice. We randomly assigned mice (N = 12; 3-4 month old males) to one of two groups - DTZ (N = 6) or vehicle (VEH, distilled water, N = 6). We conditioned mice with either DTZ or VEH for 1 week, after which, their tibialis anterior (TA) muscles were tested for contractile torque and susceptibility to injury from forced eccentric contractions. We continued dosing with DTZ or VEH for 3 days following eccentric contractions, and then studied torque recovery and muscle damage. We analyzed contractile torque before eccentric contractions, immediately after eccentric contractions, and at 3 days after eccentric contractions; and counted damaged fibers in the injured and uninjured TA muscles. We found that DTZ improved contractile torque before and immediately after forced eccentric contractions, but did not reduce delayed-onset muscle damage that was observed at 3 days after eccentric contractions.
Collapse
Affiliation(s)
- Morium Begam
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Alyssa F. Collier
- Program in Physical TherapyWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Amber L. Mueller
- Program in Molecular MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Renuka Roche
- Eastern Michigan University School of Health SciencesYpsilantiMichigan
| | - Sujay S. Galen
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Joseph A. Roche
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| |
Collapse
|
297
|
Mahdy MAA. Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 2018; 374:233-241. [DOI: 10.1007/s00441-018-2846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
298
|
Szymkowicz DB, Schwendinger KL, Tatnall CM, Swetenburg JR, Bain LJ. Embryonic-only arsenic exposure alters skeletal muscle satellite cell function in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:276-286. [PMID: 29574248 PMCID: PMC5889967 DOI: 10.1016/j.aquatox.2018.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant found worldwide in drinking water and food. Epidemiological studies have correlated arsenic exposure with reduced weight gain and improper muscular development, while in vitro studies show that arsenic exposure impairs myogenic differentiation. The purpose of this study was to use Fundulus heteroclitus or killifish as a model organism to determine if embryonic-only arsenic exposure permanently reduces the number or function of muscle satellite cells. Killifish embryos were exposed to 0, 50, 200, or 800 ppb arsenite (AsIII) until hatching, and then juvenile fish were raised in clean water. At 28, 40, and 52 weeks after hatching, skeletal muscle injuries were induced by injecting cardiotoxin into the trunk of the fish just posterior to the dorsal fin. Muscle sections were collected at 0, 3 and 10 days post-injury. Collagen levels were used to assess muscle tissue damage and recovery, while levels of proliferating cell nuclear antigen (PCNA) and myogenin were quantified to compare proliferating cells and newly formed myoblasts. At 28 weeks of age, baseline collagen levels were 105% and 112% greater in 200 and 800 ppb groups, respectively, and at 52 weeks of age, were 58% higher than controls in the 200 ppb fish. After cardiotoxin injury, collagen levels tend to increase to a greater extent and take longer to resolve in the arsenic exposed fish. The number of baseline PCNA(+) cells were 48-216% greater in 800 ppb exposed fish compared to controls, depending on the week examined. However, following cardiotoxin injury, PCNA is reduced at 28 weeks in 200 and 800 ppb fish at day 3 during the recovery period. By 52 weeks, there are significant reductions in PCNA in all exposure groups at day 3 of the recovery period. Based on these results, embryonic arsenic exposure increases baseline collagen levels and PCNA(+) cells in skeletal muscle. However, when these fish are challenged with a muscle injury, the proliferation and differentiation of satellite cells into myogenic precursors is impaired and instead, the fish appear to be favoring a fibrotic resolution to the injury.
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Katey L Schwendinger
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Caroline M Tatnall
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - John R Swetenburg
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
299
|
Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins (Basel) 2018; 10:toxins10050182. [PMID: 29723952 PMCID: PMC5983238 DOI: 10.3390/toxins10050182] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration after myonecrosis involves the activation, proliferation and fusion of myogenic cells, and a coordinated inflammatory response encompassing phagocytosis of necrotic cell debris, and the concerted synthesis of cytokines and growth factors. Myonecrosis often occurs in snakebite envenomings. In the case of venoms that cause myotoxicity without affecting the vasculature, such as those of many elapid snakes, regeneration proceeds successfully. In contrast, in envenomings by most viperid snakes, which affect the vasculature and extracellular matrix in addition to muscle fibers, regeneration is largely impaired and, therefore, the muscle mass is reduced and replaced by fibro-adipose tissue. This review discusses possible causes for such poor regenerative outcome including: (a) damage to muscle microvasculature, which causes tissue hypoxia and affects the inflammatory response and the timely removal of necrotic tissue; (b) damage to intramuscular nerves, which results in atrophy of regenerating fibers; (c) degradation of muscle cell basement membrane, compromising the spatial niche for proliferating myoblasts; (d) widespread degradation of the extracellular matrix; and (e) persistence of venom components in the damaged tissue, which may affect myogenic cells at critical points in the regenerative process. Understanding the causes of poor muscle regeneration may pave the way for the development of novel therapeutic interventions aimed at fostering the regenerative process in envenomed patients.
Collapse
|
300
|
Xie L, Yin A, Nichenko AS, Beedle AM, Call JA, Yin H. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J Clin Invest 2018. [PMID: 29533927 PMCID: PMC5983316 DOI: 10.1172/jci96208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.
Collapse
Affiliation(s)
- Liwei Xie
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Amelia Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Anna S Nichenko
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, New York, USA
| | - Jarrod A Call
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, The University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| |
Collapse
|