251
|
Wanner C, Krane V. Recent advances in the treatment of atherogenic dyslipidemia in type 2 diabetes mellitus. Kidney Blood Press Res 2011; 34:209-17. [PMID: 21691123 DOI: 10.1159/000326849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite best treatment efforts reducing low-density lipoprotein cholesterol, a substantial number of type 2 diabetes mellitus patients still experience progression of cardiovascular risk. Even with intensification of statin therapy, a substantial residual cardiovascular risk remains and atherogenic dyslipidemia is an important driver of this so-called residual risk. Besides statin therapy, new strategies evaluate the role of intensive combination lipid treatment for the entire type 2 diabetic population. The results from the ACCORD (Action to Control Cardiovascular Risk in Diabetes) Lipid trial suggest that there is a lipid-related modifiable component to cardiovascular residual risk in statin-treated type 2 diabetic patients, and that further research should address patients with triglycerides above 204 mg/dl and high-density lipoprotein cholesterol below 34 mg/dl. Based on their respective lipid-modifying activity, the combination of a fibrate and statin is a logical approach to improving achievement of lipid targets in statin-treated patients with a glomerular filtration rate of >60 ml/min/1.73 m(2) and with residual atherogenic dyslipidemia. The link between dyslipidemia treatment and diabetic retinopathy, nephropathy and neuropathy is an emerging new field and microvascular complications are targets for new treatments.
Collapse
Affiliation(s)
- Christoph Wanner
- Department of Medicine, Division of Nephrology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
252
|
Wong SL, Huang Y. Targeting soluble epoxide hydrolase via peroxisome proliferator-activated receptor γ: A new therapeutic strategy for vascular complications. Clin Exp Pharmacol Physiol 2011; 38:356-7. [DOI: 10.1111/j.1440-1681.2011.05507.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
253
|
Choi DK, Oh TS, Yun JW. Inhibitory activity of Phellodendri cortex extracts on differentiation of 3T3-L1 preadipocytes. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
254
|
Gumieniczek A, Komsta Ł, Chehab MR. Effects of two oral antidiabetics, pioglitazone and repaglinide, on aconitase inactivation, inflammation and oxidative/nitrosative stress in tissues under alloxan-induced hyperglycemia. Eur J Pharmacol 2011; 659:89-93. [DOI: 10.1016/j.ejphar.2010.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/13/2010] [Accepted: 12/09/2010] [Indexed: 11/25/2022]
|
255
|
Kianbakht S, Abasi B, Perham M, Hashem Dabaghian F. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. Phytother Res 2011; 25:1849-53. [PMID: 21506190 DOI: 10.1002/ptr.3506] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/07/2011] [Accepted: 03/22/2011] [Indexed: 01/16/2023]
Abstract
Hyperlipidemia is a common metabolic disorder contributing to morbidities and mortalities due to cardiovascular and cerebrovascular diseases. Conventional antihyperlipidemic drugs have limited efficacies and important side effects, so that alternative lipid lowering agents are needed. Salvia officinalis L. (sage) leaves have PPAR γ agonistic, pancreatic lipase and lipid absorption inhibitory, antioxidant, lipid peroxidation inhibitory and antiinflammatory effects. Thus, in this randomized double-blind placebo-controlled clinical trial with 67 hyperlipidemic (hypercholesterolemic and/or hypertriglyceridemic) patients aged 56.4 ± 30.3 years (mean ± SD), the effects of taking sage leaf extract (one 500 mg capsule every 8 h for 2 months) on fasting blood levels of lipids, creatinine and liver enzymes including SGOT and SGPT were evaluated in 34 patients and compared with the placebo group (n = 33). The extract lowered the blood levels of total cholesterol (p < 0.001), triglyceride (p = 0.001), LDL (p = 0.004) and VLDL (p = 0.001), but increased the blood HDL levels (p < 0.001) without any significant effects on the blood levels of SGOT, SGPT and creatinine (p > 0.05) compared with the placebo group at the endpoint. No adverse effects were reported. The results suggest that sage may be effective and safe in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- S Kianbakht
- Department of Pharmacology and Applied Medicine, Research Institute of Medicinal Plants, ACECR, Karaj, Iran. .
| | | | | | | |
Collapse
|
256
|
Rogue A, Lambert C, Jossé R, Antherieu S, Spire C, Claude N, Guillouzo A. Comparative gene expression profiles induced by PPARγ and PPARα/γ agonists in human hepatocytes. PLoS One 2011; 6:e18816. [PMID: 21533120 PMCID: PMC3078935 DOI: 10.1371/journal.pone.0018816] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/10/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. METHODOLOGY/PRINCIPAL FINDINGS Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. CONCLUSIONS/SIGNIFICANCE This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients.
Collapse
Affiliation(s)
- Alexandra Rogue
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
- Biologie Servier, Gidy, France
| | - Carine Lambert
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Rozenn Jossé
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Sebastien Antherieu
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | | | - Nancy Claude
- Institut de Recherches Servier, Courbevoie, France
| | - André Guillouzo
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| |
Collapse
|
257
|
Ibarra A, Bai N, He K, Bily A, Cases J, Roller M, Sang S. Fraxinus excelsior seed extract FraxiPure™ limits weight gains and hyperglycemia in high-fat diet-induced obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:479-485. [PMID: 21036576 DOI: 10.1016/j.phymed.2010.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/21/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
PURPOSE The aim of this study was to determine whether a Fraxinus excelsior L. seed extract, FraxiPure™ (0.5% in the diet), limits weight gain and hyperglycemia in mice. In a previous report, we identified several secoiridoids in FraxiPure™, some of which activated peroxisome proliferator-activated receptor alpha (PPARα) in vitro and inhibited the differentiation of 3T3-L1 preadipocyte cells. In a separate study, FraxiPure™ reduced glycemia in healthy volunteers, following an oral glucose tolerance test. These findings suggest that FraxiPure™ has antiobesity and antihyperglycemia effects. MATERIALS AND METHODS FraxiPure™ was tested in mice that were fed a high-fat diet over 16 weeks and compared with low-fat and high-fat diet controls. Weight gain, omental and retroperitoneal fat, fasting blood glucose, and fasting blood insulin were measured. RESULTS FraxiPure™ reduced gains in body weight by 32.30% (p < 0.05), omental fat by 17.92%, and retroperitoneal fat by 17.78%. FraxiPure™ also lowered fasting blood glucose levels by 76.52% (p < 0.001) and plasma insulin levels by 53.43% (p < 0.05) after 16 weeks. Moreover, FraxiPure™ lowered liver weight gains by 63.62% (p < 0.05) and the incidence of fatty livers by 66.67%. CONCLUSIONS Our novel results demonstrate the antiobesity effects of chronic administration of an F. excelsior seed extract and confirm its ability to regulate glycemia and insulinemia. In addition, this extract, which is rich in secoiridoid glucosides, protects against obesity-related liver steatosis.
Collapse
Affiliation(s)
- Alvin Ibarra
- Naturex Inc., 375 Huyler St., South Hackensack, NJ 07606, USA
| | | | | | | | | | | | | |
Collapse
|
258
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Zarić BL, Stojanović SD, Stokić EJ, Mikhailidis DP, Isenović ER. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology 2011; 62:523-34. [PMID: 21467121 DOI: 10.1177/0003319711401012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) represent the family of 3 nuclear receptor isoforms-PPARα, -γ, and -δ/β, which are encoded by different genes. As lipid sensors, they are primarily involved in regulation of lipid metabolism and subsequently in inflammation and atherosclerosis. Atherosclerosis considers accumulation of the cells and extracellular matrix in the vessel wall leading to the formation of atherosclerotic plaque, atherothrombosis, and other vascular complications. Besides existence of natural ligands for PPARs, their more potent synthetic ligands are fibrates and thiazolidindiones. Future investigations should now focus on the mechanisms of PPARs activation, which might present new approaches involved in the antiatherosclerotic effects revealed in this review. In addition, in this review we are presenting latest data from recent performed clinical studies which have focus on novel approach to PPARs agonists as potential therapeutic agents in the treatment of complex disease such as atherosclerosis.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Lannutti F, Marrone A, Re N. Prediction of the PPARα agonism of fibrates by combined MM–docking approaches. J Mol Graph Model 2011; 29:865-75. [DOI: 10.1016/j.jmgm.2011.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
|
260
|
Keil S, Matter H, Schönafinger K, Glien M, Mathieu M, Marquette JP, Michot N, Haag-Diergarten S, Urmann M, Wendler W. Sulfonylthiadiazoles with an unusual binding mode as partial dual peroxisome proliferator-activated receptor (PPAR) γ/δ agonists with high potency and in vivo efficacy. ChemMedChem 2011; 6:633-53. [PMID: 21400663 DOI: 10.1002/cmdc.201100047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Indexed: 12/24/2022]
Abstract
Compounds that simultaneously activate the peroxisome proliferator-activated receptor (PPAR) subtypes PPARγ and PPARδ have the potential to effectively target dyslipidemia and type II diabetes in a single pharmaceutically active molecule. The frequently observed side effects of selective PPARγ agonists, such as edema and weight gain, are expected to be overcome by using partial instead of full agonists for this nuclear receptor family. Herein we report the discovery, synthesis, and optimization of a novel series of sulfonylthiadiazoles that are active as partial agonists. The initial compound 6 was discovered by high-throughput screening as a moderate partial PPARδ agonist; its optimization was based on the X-ray crystal structure in complex with PPARδ. In contrast to other PPARδ agonists, this ligand does not interact directly with residues from the activation helix AF-2, which might be linked to its partial agonistic effect. Interestingly, the thiadiazole moiety fills a novel subpocket, which becomes accessible after moderate conformational rearrangement. The optimization was focused on introducing conformational constraints and replacing intramolecular hydrogen bonding interactions. Highly potent molecules with activity as dual partial PPARγ/δ agonists in the low nanomolar range were then identified. One of the most active members, compound 20 a, displayed EC₅₀ values of 1.6 and 336 nM for PPARδ and γ, respectively. The X-ray crystal structure of its complex with PPARδ confirms our design hypothesis. Compound 20 a clearly displayed in vivo activity in two chronic mice studies. Lipids were modified in a beneficial way in normolipidemic mice, and the development of overt diabetes could be prevented in pre-diabetic db/db mice. However, body weight gain was similar to that observed with the PPARγ agonist rosiglitazone. Hence, active compounds from this series can be considered as valuable tools to elucidate the complex roles of dual PPARγ/δ agonists for potential treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Stefanie Keil
- Sanofi-Aventis Deutschland GmbH, R&D, Diabetes Division and Lead Generation & Candidate Realization, Industriepark Hoechst, Building G 878, 65926 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Maillet ÉL. Récepteurs gustatifs des molécules sucrantes et antisucrantes. Med Sci (Paris) 2011; 27:177-82. [DOI: 10.1051/medsci/2011272177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
262
|
Abstract
INTRODUCTION The prevalence of type 2 diabetes mellitus (T2DM) has reached epidemic proportions. Many new therapies have emerged, including thiazolidinediones (TZDs), selective agonists of PPAR-γ, now used as both primary and add-on therapies. Given that T2DM is a lifetime disease, there is a need for assurance that new drugs are both safe and effective. Recent concern about the cardiovascular safety of one of the new drugs, rosiglitazone, is the stimulus for this review. AREAS COVERED The safety of pioglitazone and rosiglitazone under the headings of liver safety, cardiovascular safety, fluid retention, weight gain and bone fractures is reviewed based on a PubMed search of the years 1997 through June 2010. This review also describes the magnitude of the risks of the TZDs and provides a recommendation on the use of TZDs. EXPERT OPINION Liver safety is no longer an issue with the TZDs. There are no significant differences between rosiglitazone and pioglitazone in fluid retention, weight gain and bone fractures. However, pioglitazone tends to be cardioprotective while rosiglitazone is cardiotoxic. There is no current justification for prescribing rosiglitazone.
Collapse
Affiliation(s)
- Keith G Tolman
- University of Utah College of Pharmacy, Department of Pharmacology and Toxicology, 4059 S. Gary Rd, SLC, UT 84124, USA.
| |
Collapse
|
263
|
Abstract
This review considers the therapeutic choices currently faced by people with type 2 diabetes and those caring for them when glucose levels initially controlled with lifestyle management and metformin start to rise. While sulphonylureas are familiar agents and cheaper than other alternatives, they cause hypoglycaemia and modest weight gain, and robust outcome data are still lacking. Dipeptidyl peptidase 4 inhibitors ('gliptins') have an attractive pharmacological and adverse effect profile, but their effects on the cardiovascular system are also uncertain. Thiazolidinediones ('glitazones') are effective glucose-lowering agents, but cause weight gain and increase the risk of fracture, while the cardiovascular benefits hoped for in association with 'insulin-sensitization' have not been as expected. Glucagon-like peptide-1 agonists will not be acceptable as initial second-line agents for many people as they are injectable rather than oral. Well-powered 'head-to-head' clinical trials of adequate duration are therefore required to allow evidence-based decisions on second-line therapy.
Collapse
Affiliation(s)
- J R Petrie
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
264
|
Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. Open Cardiovasc Med J 2011; 5:24-34. [PMID: 21660248 PMCID: PMC3109607 DOI: 10.2174/1874192401105010024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 12/21/2022] Open
Abstract
Dyslipidaemia is frequently present in obesity, metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM). The predominant features of dyslipidaemia in these disorders include increased flux of free fatty acids (FFA), raised triglyceride (TG) and low high density lipoprotein cholesterol (HDL-C) levels, a predominance of small, dense (atherogenic) low density lipoprotein cholesterol (LDL) particles and raised apolipoprotein (apo) B values Posprandial hyperlipidaemia may also be present. Insulin resistance (IR) appears to play an important role in the pathogenesis of dyslipidaemia in obesity, MetS and T2DM. The cornerstone of treatment of this IR-related dyslipidaemia is lifestyle changes and in diabetic patients, tight glycaemic control. In addition to these measures, recent clinical trials showed benefit with statin treatment. Nevertheless, a substantial percentage of patients treated with statins still experience vascular events. This residual vascular risk needs to be addressed. This review summarizes the effects of hypolipidaemic drug combinations (including statins with cholesterol ester protein inhibitors, niacin, fibrates or fish oil, as well as fibrate-ezetimibe combination) on the residual vascular risk in patients with obesity, MetS or T2DM.
Collapse
Affiliation(s)
- Vasilios G Athyros
- Second Propedeutic Department of Internal Medicine, Aristotle University, Hippocration Hospital, Thessaloniki, Greece
| | | | | | | |
Collapse
|
265
|
Krisanapun C, Lee SH, Peungvicha P, Temsiririrkkul R, Baek SJ. Antidiabetic Activities of Abutilon indicum (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:167684. [PMID: 21603234 PMCID: PMC3094712 DOI: 10.1093/ecam/neq004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 01/01/2010] [Indexed: 12/20/2022]
Abstract
Abutilon indicum (L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1.
Collapse
Affiliation(s)
- Chutwadee Krisanapun
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
266
|
Choi SS, Cha BY, Iida K, Sato M, Lee YS, Teruya T, Yonezawa T, Nagai K, Woo JT. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes. J Nat Med 2011; 65:424-30. [PMID: 21327521 DOI: 10.1007/s11418-011-0512-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 01/07/2011] [Indexed: 11/27/2022]
Abstract
Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.
Collapse
Affiliation(s)
- Sun-Sil Choi
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Choi SS, Cha BY, Kagami I, Lee YS, Sasaki H, Suenaga K, Teruya T, Yonezawa T, Nagai K, Woo JT. N,N′-diphenethylurea isolated from Okinawan ascidian Didemnum molle enhances adipocyte differentiation in 3T3-L1 cells. J Antibiot (Tokyo) 2011; 64:277-80. [DOI: 10.1038/ja.2010.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
268
|
Ahmed TAN, Karalis I, Jukema JW. Emerging drugs for coronary artery disease. From past achievements and current needs to clinical promises. Expert Opin Emerg Drugs 2011; 16:203-33. [DOI: 10.1517/14728214.2011.549606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
269
|
Choi SS, Cha BY, Iida K, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 2011; 81:925-33. [PMID: 21219874 DOI: 10.1016/j.bcp.2011.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/01/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays an important role in adipocyte differentiation. Its ligands, including thiazolidinediones, improve insulin sensitivity in type 2 diabetes. We investigated the effects of artepillin C, an ingredient of Baccharis dracunculifolia, on adipogenesis and glucose uptake using 3T3-L1 cells. In PPARγ ligand-binding assays, artepillin C exhibited binding affinity toward PPARγ. Artepillin C dose-dependently enhanced adipocyte differentiation of 3T3-L1 cells. As a result of the artepillin C-induced adipocyte differentiation, the gene expression of PPARγ and its target genes, such as aP2, adiponectin and glucose transporter (GLUT) 4, was increased. These increases were abolished by cotreatment with GW9662, a PPARγ antagonist. In mature 3T3-L1 adipocytes, artepillin C significantly enhanced the basal and insulin-stimulated glucose uptake. These effects were decreased by cotreatment with a PI3K inhibitor. Although artepillin C had no effects on the insulin signaling cascade, artepillin C enhanced the expression and plasma membrane translocation of GLUT1 and GLUT4 in mature adipocytes. In conclusion, these findings suggest that artepillin C promotes adipocyte differentiation and glucose uptake in part by direct binding to PPARγ, which could be the basis of the pharmacological benefits of green propolis intake in reducing the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Sil Choi
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Hussein MA. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.1.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
271
|
Ushiroda K, Maruta K, Kitoh M, Iwai K, Nagamine J, Tsuchida A, Taiji M, Nagata R. Development of a new class of benzoylpyrrole-based PPARα/γ activators. Bioorg Med Chem Lett 2011; 21:220-4. [PMID: 21130649 DOI: 10.1016/j.bmcl.2010.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 12/14/2022]
Abstract
Starting with a subtle blood glucose-lowering effect of a TGF-β inhibitor, we designed and synthesized a series of benzoylpyrrole-based carboxylic acids as PPARs activators. Among these compounds, 10sNa exhibited favorable blood glucose-lowering effect without body weight gain. We assume that the beneficial effect of 10sNa is attributed to not only its compound PPARα agonistic activity but also its PPARγ partial agonistic activity.
Collapse
Affiliation(s)
- Kantaro Ushiroda
- Dainippon Sumitomo Pharma Co, Ltd, Drug Research Division, Chemistry Research Laboratories, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Toth PP. Pharmacomodulation of high-density lipoprotein metabolism as a therapeutic intervention for atherosclerotic disease. Curr Cardiol Rep 2010; 12:481-7. [PMID: 20740329 DOI: 10.1007/s11886-010-0136-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The high-density lipoproteins (HDLs) are produced by the liver and small intestine as well as on the surface of lipid-enriched macrophages in the subendothelial space of arterial walls. Unlike the apo B100-containing lipoproteins, the HDLs are uniquely antiatherogenic. Based on prospective observational studies performed throughout the world, there is a consistent inverse relationship between serum levels of HDLs and risk for cardiovascular events: low levels of high-density lipoprotein-cholesterol (HDL-C) are associated with increased risk, whereas high levels are usually associated with reduced risk for myocardial infarction, ischemic stroke, and cardiovascular mortality. Post hoc analyses of a number of studies using statins and fibrates have shown that raising serum HDL-C correlates with a reduction in risk for cardiovascular morbidity and mortality. Given these observations, enormous resources are being committed to the development of novel means by which to pharmacologically increase rates of HDL biosynthesis, modulate the functionality of HDL, and to promote reverse cholesterol transport with intravenous infusions of HDL particles.
Collapse
Affiliation(s)
- Peter P Toth
- Sterling Rock Falls Clinic, 101 East Miller Road, Sterling, IL 61081, USA.
| |
Collapse
|
273
|
Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production. Mol Biol Rep 2010; 38:4501-8. [DOI: 10.1007/s11033-010-0581-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 11/20/2010] [Indexed: 11/27/2022]
|
274
|
Liao X, Wang Y, Wong CW. Troglitazone induces cytotoxicity in part by promoting the degradation of peroxisome proliferator-activated receptor γ co-activator-1α protein. Br J Pharmacol 2010; 161:771-81. [PMID: 20860658 DOI: 10.1111/j.1476-5381.2010.00900.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Troglitazone (Tro), rosiglitazone (Rosi) and pioglitazone (Pio) are anti-diabetic thiazolidinediones that function as ligands for peroxisome proliferator-activated receptor γ (PPARγ); however, Tro has been withdrawn from the market due to liver toxicity issues. Mitochondrial dysfunction induced by Tro has been suggested to be an important mechanism behind its cytotoxicity. Constitutively active nuclear hormone receptors, oestrogen-related receptor α and γ are thought to regulate mitochondrial mass and oxidative phosphorylation together with their co-activators PPARγ co-activator-1α and -1β (PGC-1α and PGC-1β). Hence, in this study, we investigated whether Tro affects the expression and activity levels of these regulators. EXPERIMENTAL APPROACH Cellular viability was measured by an ATP-based assay. Mitochondrial mass and reactive oxygen species (ROS) were quantified by two different fluorogenic probes. Apoptosis was measured by an Annexin-V-based kit. Gene expression at the levels of mRNA and protein was measured by quantitative RT-PCR and Western analysis. Over-expression of PGC-1α was mediated by an adenovirus. KEY RESULTS Tro, but not Rosi or Pio, selectively stimulated PGC-1α protein degradation. As a result, Tro reduced mitochondrial mass, and superoxide dismutases 1 and 2 expressions, but induced ROS to initiate apoptosis. Using a ubiquitin-proteasome inhibitor MG132, it was established that blocking PGC-1α degradation partially suppressed the reduction of mitochondrial mass. Importantly, over-expressing PGC-1α partially restored the Tro-suppressed mitochondrial mass and attenuated the cytotoxic effects of Tro. CONCLUSIONS AND IMPLICATIONS Collectively, these results suggest that PGC-1α degradation is an important mechanism behind the cytotoxic effects of Tro in the liver.
Collapse
Affiliation(s)
- Xuemei Liao
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | |
Collapse
|
275
|
Ciocoiu CC, Ravna AW, Sylte I, Hansen TV. Synthesis, Biological Evaluation and Molecular Modeling of GW 501516 Analogues. Arch Pharm (Weinheim) 2010; 343:612-24. [DOI: 10.1002/ardp.201000189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
276
|
Role of PPARα and Its Agonist in Renal Diseases. PPAR Res 2010; 2010:345098. [PMID: 21076544 PMCID: PMC2976496 DOI: 10.1155/2010/345098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/17/2010] [Indexed: 01/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity, and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of diabetes and inflammation-induced nephropathy. Implication of new and more potent PPAR-α activators could provide important insights into the overall benefits of activating PPAR-α clinically for the treatment of dyslipidemia and the prevention of diabetic or inflammation-induced nephropathy in the future.
Collapse
|
277
|
NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res 2010; 342:325-39. [PMID: 21052718 DOI: 10.1007/s00441-010-1060-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are essential mediators of normal cell physiology. However, in the last few decades, it has become evident that ROS overproduction and/or alterations of the antioxidant system associated with inflammation and metabolic dysfunction are key pathological triggers of cardiovascular disorders. NADPH oxidases (Nox) represent a class of hetero-oligomeric enzymes whose primary function is the generation of ROS. In the vasculature, Nox-derived ROS contribute to the maintenance of vascular tone and regulate important processes such as cell growth, proliferation, differentiation, apoptosis, cytoskeletal organization, and cell migration. Under pathological conditions, excessive Nox-dependent ROS formation, which is generally associated with the up-regulation of different Nox subtypes, induces dysregulation of the redox control systems and promotes oxidative injury of the cardiovascular cells. The molecular mechanism of Nox-derived ROS generation and the means by which this class of molecule contributes to vascular damage remain debatable issues. This review focuses on the processes of ROS formation, molecular targets, and neutralization in the vasculature and provides an overview of the novel concepts regarding Nox functions, expression, and regulation in vascular health and disease. Because Nox enzymes are the most important sources of ROS in the vasculature, therapeutic perspectives to counteract Nox-dependent oxidative stress in the cardiovascular system are discussed.
Collapse
|
278
|
Phelps LE, Peuler JD. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil. J Smooth Muscle Res 2010; 46:125-42. [PMID: 20647690 DOI: 10.1540/jsmr.46.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or spontaneously-occurring. These findings are particularly relevant to both the recently renewed concern over the impact of fibrates on hypertension and a new understanding of their gastrointestinal side effects.
Collapse
Affiliation(s)
- Laura E Phelps
- Department of Pharmacology, Midwestern University, IL 60515, USA
| | | |
Collapse
|
279
|
Ameliorative role of rosiglitazone in hyperhomocysteinemia-induced experimental cardiac hypertrophy. J Cardiovasc Pharmacol 2010; 56:53-9. [PMID: 20351560 DOI: 10.1097/fjc.0b013e3181de308b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study has been designed to explore the beneficial effect of rosiglitazone, a peroxisome proliferator activated receptor-gamma agonist, in hyperhomocysteinemia-induced cardiac hypertrophy in rats. The hyperhomocysteinemia was induced in rats by feeding L-methionine (1.7 g/kg per day orally) for 8 weeks. The development of cardiac hypertrophy was assessed by measuring ratio of left ventricular weight to body weight, left ventricular wall thickness, cardiomyocyte diameter, and mean arterial blood pressure. The extent of fibrosis was checked by biochemical and histological assessment of collagen deposition. Moreover, the oxidative stress in heart was measured in terms of an increase in thiobarbituric acid reactive substances, superoxide anion generation, and decrease in reduced glutathione levels. The treatment with rosiglitazone (5 and 10 mg/kg per day orally) started from the first day of administration of L-methionine significantly abolished hyperhomocysteinemia-induced increase in left ventricular weight to body weight ratio, left ventricular wall thickness, cardiomyocyte diameter, collagen deposition, and oxidative stress without affecting serum homocysteine levels in rats. At high dose, rosiglitazone markedly reduced mean arterial blood pressure but at low dose, a significant reduction in mean arterial blood pressure was not observed in hyperhomocysteinemic rats. Hence, our results suggest that rosiglitazone provides benefit in hyperhomocysteinemia-induced cardiac hypertrophy and fibrosis in a dose-dependent manner and its protective action is independent of change in mean arterial blood pressure and serum homocysteine levels in rats.
Collapse
|
280
|
Lee OH, Seo DH, Park CS, Kim YC. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. Biofactors 2010; 36:459-67. [PMID: 20806284 DOI: 10.1002/biof.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 07/10/2010] [Indexed: 01/14/2023]
Abstract
Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert antihyperglycemic and antioxidant effects and thus have pharmacological actions in the treatment of diabetes and cardiovascular diseases. We investigated the effects of puerarin on the changes of key gene expression associated with adipocyte differentiation and insulin sensitivity and link to cellular antioxidant response pathways. Puerarin treatment significantly enhanced differentiation of 3T3-L1 preadipocytes accompanying increased lipid accumulation and glucose-6-phosphate dehydrogenase (G6PDH) activity. At a molecular level, puerarin upregulated mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, an adipocyte-specific fatty acid binding protein (aP2) and GLUT4. Puerarin also caused a significant increase in mRNA level of adiponectin, an important insulin-sensitizing adipocytokine that is downregulated in insulin-resistant and diabetic states. In addition, treatment with puerarin was found to upregulate mRNA levels of G6PDH, glutathione reductase, and catalase, all of which are important for endogenous antioxidant responses. These data suggest that the hypoglycemic effects of puerarin can be attributed to the upregulation of PPARγ and its downstream target genes, GLUT4 and adiponectin expression, leading to increased glucose utilization. Puerarin may also be effective in preventing the rise of oxidative stress during adipocyte differentiation by increasing endogenous antioxidant responses.
Collapse
Affiliation(s)
- Ok-Hwan Lee
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
281
|
Singh V, Sharma R, Kumar A, Deedwania P. Low high-density lipoprotein cholesterol: current status and future strategies for management. Vasc Health Risk Manag 2010; 6:979-96. [PMID: 21127701 PMCID: PMC2988622 DOI: 10.2147/vhrm.s5685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the foremost cause of death and disability in the Western world, and it is rapidly becoming so in the developing nations. Even though the use of statin therapy aiming at the low-density lipoprotein cholesterol (LDL) has significantly reduced cardiovascular events and mortality, substantial residual cardiac events still occur in those being treated to the currently recommended targets. In fact, residual risk is also seen in those who are treated “aggressively” such as the “high risk” patients so defined by the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III). Consequently, one must look for the predictors of risk beyond LDL reduction. High-density lipoprotein cholesterol (HDL) is the next frontier. The protectiveness of elevated HDL against atherosclerosis is well described in the literature. HDL subdues several atherogenic processes, such as oxidation, inflammation, cell proliferation and thrombosis. It also helps mobilize the excess LDL via reverse cholesterol transport. Low levels of HDL have been shown to be independent predictors of risk. Thus, therapies to raise the HDL hold promise for additional cardiac risk reduction. In this regard, several randomized trials have recently tested this hypothesis, especially in patients at high risk. In addition to the use of aggressive lifestyle modification, clinical outcomes have been measured following augmentation of HDL levels with various treatment modalities, including aggressive statin therapy, combination therapy with fibrates and niacin, and direct HDL-raising drug treatments. These data for low HDL as an independent risk factor and as the new treatment target are reviewed in this paper.
Collapse
Affiliation(s)
- Vibhuti Singh
- University of South Florida College of Medicine, Suncoast Cardiovascular Center, St. Petersburg, Florida 33701, USA.
| | | | | | | |
Collapse
|
282
|
Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver. PPAR Res 2010; 2010:325183. [PMID: 20981297 PMCID: PMC2963138 DOI: 10.1155/2010/325183] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/15/2010] [Indexed: 01/15/2023] Open
Abstract
Thiazolidinediones are a class of Peroxisome Proliferator Activated Receptor γ (PPARγ) agonists that reduce insulin resistance in type 2 diabetic patients. Although no detectable hepatic toxicity has been evidenced in animal studies during preclinical trials, these molecules have nevertheless induced hepatic adverse effects in some treated patients. The mechanism(s) of hepatotoxicity remains equivocal. Several studies have been conducted using PCR analysis and microarray technology to identify possible target genes and here we review the data obtained from various in vivo and in vitro experimental models. Although PPARγ is expressed at a much lower level in liver than in adipose tissue, PPARγ agonists exert various PPARγ-dependent effects in liver in addition to PPARγ-independent effects. Differences in effects are dependent on the choice of agonist and experimental conditions in rodent animal studies and in rodent and human liver cell cultures. These effects are much more pronounced in obese and diabetic liver. Moreover, our own recent studies have shown major interindividual variability in the response of primary human hepatocyte populations to troglitazone treatment, supporting the occurrence of hepatotoxicity in only some individuals.
Collapse
|
283
|
Foryst-Ludwig A, Hartge M, Clemenz M, Sprang C, Hess K, Marx N, Unger T, Kintscher U. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice. Cardiovasc Diabetol 2010; 9:64. [PMID: 20955583 PMCID: PMC2984486 DOI: 10.1186/1475-2840-9-64] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/18/2010] [Indexed: 12/13/2022] Open
Abstract
Background Inflammation of adipose tissue (AT) has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD) develop systemic insulin resistance (IR) and glucose intolerance (GI) associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model) in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD) for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.
Collapse
Affiliation(s)
- Anna Foryst-Ludwig
- Center for Cardiovascular Research, Institute of Pharmacology Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Wohl P, Krušinová E, Hill M, Kratochvílová S, Zídková K, Kopecký J, Neškudla T, Pravenec M, Klementová M, Vrbíková J, Wohl P, Mlejnek P, Pelikánová T. Effect of telmisartan on selected adipokines, insulin sensitivity, and substrate utilization during insulin-stimulated conditions in patients with metabolic syndrome and impaired fasting glucose. Eur J Endocrinol 2010; 163:573-583. [DOI: 10.1530/eje-10-0436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
ObjectiveTelmisartan improves glucose and lipid metabolism in rodents. This study evaluated the effect of telmisartan on insulin sensitivity, substrate utilization, selected plasma adipokines and their expressions in subcutaneous adipose tissue (SAT) in metabolic syndrome.Design and methodsTwelve patients with impaired fasting glucose completed the double-blind, randomized, crossover trial. Patients received telmisartan (160 mg/day) or placebo for 3 weeks and vice versa with a 2-week washout period. At the end of each period, a hyperinsulinemic euglycemic clamp (HEC) combined with indirect calorimetry was performed. During HEC (0, 30, and 120 min), plasma levels of adipokines were measured and a needle biopsy (0 and 30 min) of SAT was performed.ResultsFasting plasma glucose was lower after telmisartan compared with placebo (P<0.05). There were no differences in insulin sensitivity and substrate utilization. We found no differences in basal plasma adiponectin, resistin and tumour necrosis factor α (TNFα), but an increase was found in basal leptin, after telmisartan treatment. Insulin-stimulated plasma adiponectin (P<0.05), leptin and resistin (P<0.001) were increased, whereas TNFα was decreased (P<0.05) after telmisartan treatment. Expression of resistin, but not adiponectin, TNFα and leptin was increased after telmisartan treatment.ConclusionsDespite the decrease in fasting plasma glucose, telmisartan does not improve insulin sensitivity and substrate utilization. Telmisartan increases plasma leptin as well as insulin-stimulated plasma adiponectin, leptin and resistin, and decreases plasma TNFα during HEC. Changes in plasma adipokines cannot be explained by their expressions in SAT. The changes in plasma adipokines might be involved in the metabolic effects of telmisartan in metabolic syndrome.
Collapse
|
285
|
Nadra K, Quignodon L, Sardella C, Joye E, Mucciolo A, Chrast R, Desvergne B. PPARgamma in placental angiogenesis. Endocrinology 2010; 151:4969-81. [PMID: 20810566 DOI: 10.1210/en.2010-0131] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor involved in diverse biological processes including adipocyte differentiation, glucose homeostasis, and inflammatory responses. Analyses of PPARγ knockout animals have been so far preempted by the early embryonic death of PPARγ-/- embryos as a consequence of the severe alteration of their placental vasculature. Using Sox2Cre/PPARγL2/L2 mice, we obtained fully viable PPARγ-null mice through specific and total epiblastic gene deletion, thereby demonstrating that the placental defect is the unique cause of PPARγ-/- embryonic lethality. The vasculature defects observed in PPARγ-/- placentas at embryonic d 9.5 correlated with an unsettled balance of pro- and antiangiogenic factors as demonstrated by increased levels of proliferin (Prl2c2, PLF) and decreased levels of proliferin-related protein (Prl7d1, PRP), respectively. To analyze the role of PPARγ in the later stage of placental development, when its expression peaks, we treated pregnant wild-type mice with the PPARγ agonist rosiglitazone. This treatment resulted in a disorganization of the placental layers and an altered placental microvasculature, accompanied by the decreased expression of proangiogenic genes such as Prl2c2, vascular endothelial growth factor, and Pecam1. Together our data demonstrate that PPARγ plays a pivotal role in controlling placental vascular proliferation and contributes to its termination in late pregnancy.
Collapse
Affiliation(s)
- Karim Nadra
- Center for Integrative Genomics, Department of Medical Genetics and Electron Microscopy Platform, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
286
|
Briand F, Naik SU, Fuki I, Millar JS, Macphee C, Walker M, Billheimer J, Rothblat G, Rader DJ. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci 2010; 2:127-33. [PMID: 20169010 DOI: 10.1111/j.1752-8062.2009.00098.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARdelta) agonism increases HDL cholesterol and has therefore the potential to stimulate macrophage-to-feces reverse cholesterol transport (RCT). To test whether PPARdelta activation promotes RCT in mice, in vivo macrophage RCT was assessed using cholesterol-loaded/3H-cholesterol-labeled macrophages injected intraperitoneally. PPARdelta agonist GW0742 (10 mg/kg per day) did not change 3H-tracer plasma appearance, but increased fecal 3H-free sterols excretion by 103% ( p < 0.005) over 48 hours. Total free cholesterol efflux from macrophages to serum (collected from both control and GW0742 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW0742. The metabolic fate of HDL labeled with 3H- cholesteryl ether or 3H-cholesteryl oleate was also measured. While 3H-cholesteryl ether tissue uptake was unchanged, the 3H-tracer recovered in fecal free sterol fraction after 3H-cholesteryl oleate injection increased by 88% with GW0742 ( p < 0.0005). This was associated with a lower Niemann-Pick C1 like 1 (NPC1L1) mRNA expression in the small intestine ( p < 0.05). The same experiments in mice treated with ezetimibe, which blocks NPC1L1, showed a similar 2-fold increase in fecal free sterol excretion after labeled macrophages orHDL injection. In conclusion, PPARdelta activation enhances excretion of macrophage or HDL-derived cholesterol in feces through reduced NPC1L1 expression in mice, comparable to the effect of ezetimibe.
Collapse
Affiliation(s)
- François Briand
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Kumar A, Singh V. Atherogenic dyslipidemia and diabetes mellitus: what's new in the management arena? Vasc Health Risk Manag 2010; 6:665-9. [PMID: 20859538 PMCID: PMC2941780 DOI: 10.2147/vhrm.s5686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Indexed: 11/23/2022] Open
Abstract
When compared with the general population, the diabetic population is at higher risk of cardiovascular disease (CVD), as predicted by the Framingham Risk Score calculations (10-year risk 20%). For this reason diabetes is considered a "coronary disease equivalent" condition, as classified by the National Cholesterol Education Program Adult Treatment Panel (NCEP-ATP) III. Furthermore, patients with diabetes who experience a myocardial infarction have a poorer prognosis than nondiabetic patients, which contributes to their overall higher mortality. Dyslipidemia is a major underlying risk factor contributing to the excess CVD risk, and is usually more atherogenic in the presence of diabetes. It is uniquely manifested by raised levels of triglycerides, low levels of high-density lipoprotein cholesterol, and smaller, denser, and more atherogenic low-density lipoprotein particles. Recent trials have suggested the need for more aggressive treatment of dyslipidemia in this subpopulation than the current recommendations by the NCEP-ATP III. This review addresses the newer developments in the diabetes arena in terms of our current understanding of atherogenic dyslipidemia in diabetes and data from the latest randomized trials addressing its management.
Collapse
Affiliation(s)
- Ajoy Kumar
- Bayfront Family Medicine Residency, St Petersburg, FL 33701, USA.
| | | |
Collapse
|
288
|
Cardiometabolic effects of rosiglitazone in patients with type 2 diabetes and coronary artery bypass grafts: A randomized placebo-controlled clinical trial. Atherosclerosis 2010; 211:565-73. [DOI: 10.1016/j.atherosclerosis.2010.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/30/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022]
|
289
|
Youm YH, Yang H, Amin R, Smith SR, Leff T, Dixit VD. Thiazolidinedione treatment and constitutive-PPARgamma activation induces ectopic adipogenesis and promotes age-related thymic involution. Aging Cell 2010; 9:478-89. [PMID: 20374200 PMCID: PMC2910128 DOI: 10.1111/j.1474-9726.2010.00574.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. Peroxisome proliferator-activated receptor gamma (PPARgamma) is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARgamma expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARgamma leads to reduction in thymopoiesis. Treatment of aged mice with antihyperglycemic PPARgamma-ligand class of thiazolidinedione drug, rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARgamma activation induces thymic involution, we created transgenic mice with constitutive-active PPARgamma (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARgamma transgene was expressed in thymus and in fibroblast-specific protein-1/S100A4 (FSP1(+)) cells, a marker of secondary mesenchymal cells. The CAPPARgamma fusion protein mimicked the liganded PPARgamma receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARgamma mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARgamma transgenic mice had restricted T cell receptor repertoire diversity. Collectively, our data suggest that activation of PPARgamma accelerates thymic aging and thymus-specific PPARgamma antagonist may forestall age-related decline in T cell diversity.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Hyunwon Yang
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Raj Amin
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Steven R. Smith
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48201
| | - Vishwa Deep Dixit
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| |
Collapse
|
290
|
Bailey CJ, Green BD, Flatt PR. Fixed-dose combination therapy for type 2 diabetes: sitagliptin plus pioglitazone. Expert Opin Investig Drugs 2010; 19:1017-25. [DOI: 10.1517/13543784.2010.505235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
291
|
Toth PP. Fibrate Therapy in the Management of Diabetic Dyslipidemia: There is No ACCORD to be Found. Curr Atheroscler Rep 2010; 12:331-5. [DOI: 10.1007/s11883-010-0126-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
292
|
Wang Y, Fang F, Wong CW. Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 2010; 80:80-5. [PMID: 20298676 DOI: 10.1016/j.bcp.2010.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 01/16/2023]
Abstract
As a ligand for peroxisome proliferators-activated receptor gamma (PPAR gamma), troglitazone inhibits cell growth by mechanisms besides activating PPAR gamma. In this study, we found that troglitazone interfered with the interactions between estrogen-related receptor alpha and gamma (ERR alpha and ERR gamma) and their coactivator PPAR gamma coactivator-1 alpha (PGC-1 alpha) functioning as an inverse agonist. Additionally, troglitazone suppressed the expressions of PGC-1 alpha and its related member PGC-1 beta which are key regulators of mitochondrial function. Consequently, troglitazone reduced mitochondrial mass and suppressed the expressions of superoxide dismutases to elevate reactive oxygen species (ROS) production. The increase in ROS in turn induced the expression of cell cycle inhibitor p21(WAF1). We therefore propose that ERR alpha and ERR gamma are alternative targets of troglitazone important for mediating its growth suppressive effect.
Collapse
Affiliation(s)
- Yanfei Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Guangzhou 510663, China
| | | | | |
Collapse
|
293
|
Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ, Blaak EE, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res 2010; 51:1793-800. [PMID: 20176858 PMCID: PMC2882737 DOI: 10.1194/jlr.m003046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/17/2010] [Indexed: 12/14/2022] Open
Abstract
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Collapse
Affiliation(s)
- Catherine M. Phillips
- Nutrigenomics Research Group, UCD School of Public Health and Population Science, UCD Conway Institute, and Institute of Food and Health, University College Dublin, Ireland
| | - Louisa Goumidi
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | | | | | | | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Catherine Defoort
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food Biosciences, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | - Ellen E. Blaak
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
| | - Beata Kiec-Wilk
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15A, Krakow, Poland
| | - Britta Karlstrom
- Department of Public Health and Caring Sciences/Clinical Nutrition and Metabolism, Uppsala University, Uppsala Science Park, 751 85 Uppsala, Sweden
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, School of Medicine, University of Cordoba, Spain
| | - Ross McManus
- Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Serge Hercberg
- INSERM U557, INRA:CNAM, Université Paris 13, Bobigny, France
| | - Denis Lairon
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Richard Planells
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD School of Public Health and Population Science, UCD Conway Institute, and Institute of Food and Health, University College Dublin, Ireland
| |
Collapse
|
294
|
Liang YJ, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG. Advanced glycation end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells. Diabetes Metab Res Rev 2010; 26:406-16. [PMID: 20583309 DOI: 10.1002/dmrr.1100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetic nephropathy has attracted many researchers' attention. Because of the emerging evidence about the effects of advanced glycation end products (AGEs) and receptor of AGE (RAGE) on the progression of diabetic nephropathy, a number of different therapies to inhibit AGE or RAGE are under investigation. The purpose of the present study was to examine whether peroxisome proliferator-activated receptor delta (PPARdelta) agonist (L-165041) or epigallocatechin gallate (EGCG) alters AGE-induced pro-inflammatory gene expression and apoptosis in human embryonic kidney cells (HEK293) and human mesangial cells (HMCs). METHODS The HEK cells and HMC were separated into the following groups: 100 microg/mL AGE alone for 18 h; AGE treated with 1 microM L-165041 or 10 microM EGCG, and untreated cells. Inflammatory cytokines, nuclear factor-kappaB pathway, RAGE expression, superoxide dismutase and cell apoptosis were determined. RESULTS AGE significantly increased tumour necrosis factor-alpha (TNF-alpha), a major pro-inflammatory cytokine. The mRNA and protein expression of RAGE were up-regulated. These effects were significantly attenuated by pre-treatment with L-165041 or EGCG. AGE-induced nuclear factor-kappaB pathway activation and both cells apoptosis were also inhibited by L-165041 or EGCG. Furthermore, both L-165041 and EGCG increased superoxide dismutase levels in AGE-treated HEK cells and HMC. CONCLUSIONS This study demonstrated that PPARdelta agonist and EGCG decreased the AGE-induced kidney cell inflammation and apoptosis. This study provides important insights into the molecular mechanisms of EGCG and PPARdelta agonist in attenuation of kidney cell inflammation and may serve as a therapeutic modality to treat patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Abstract
Diabetes mellitus and heart failure (HF) commonly coexist, and together these conditions are associated with increased morbidity and mortality compared with either condition alone. Although the optimal treatment strategy to achieve glucose control in HF patients with type 2 diabetes has not been well studied, given the common coexistence of these conditions and the need to adequately treat hyperglycemia to prevent microvascular complications, it is important for clinicians to understand the potential implications of diabetic therapy in patients with established HF. Until recently, metformin was contraindicated in patients with HF because of the potential risk of lactic acidosis; however, recent retrospective studies of metformin use in HF patients have shown that this medication may be used safely and indeed may be beneficial in patients with stable HF. The association between thiazolidinediones (TZDs) and HF remains controversial, but recent prospective randomized trials of TZD use in HF patients suggest that worsening volume retention associated with these agents may lead to worsening of HF symptoms. The recently developed incretin-based therapies, such as exenatide and sitagliptin, also have not been extensively studied in HF populations; however, small pilot studies of glucagon-like peptide-1 have shown potential promise in the treatment of diabetic patients with HF. Although they may be difficult to perform, future randomized controlled trials are needed to establish optimal treatment goals and strategies in this population.
Collapse
|
296
|
3-Aryl-2-{4-[4-(2,4-dioxothiazolidin-5-ylmethyl)phenoxy]-phenyl}-acrylic acid alkyl ester: synthesis and antihyperglycemic evaluation. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9369-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
297
|
Arora MK, Reddy K, Balakumar P. The low dose combination of fenofibrate and rosiglitazone halts the progression of diabetes-induced experimental nephropathy. Eur J Pharmacol 2010; 636:137-44. [DOI: 10.1016/j.ejphar.2010.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 01/08/2023]
|
298
|
Adipokine expression and secretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS and TNFalpha. Pflugers Arch 2010; 460:603-16. [PMID: 20473515 DOI: 10.1007/s00424-010-0845-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 04/12/2010] [Accepted: 04/30/2010] [Indexed: 02/06/2023]
Abstract
Adiposity and obesity are increasing in dogs. We have examined here the endocrine function of canine adipose tissue and the regulation of production of inflammation-related adipokines by dog adipocytes. Adiponectin, leptin, IL-6, MCP-1 and TNFalpha genes were expressed in the main adipose depots of dogs, but there were no major depot differences in mRNA levels. Each adipokine was expressed in canine adipocytes differentiated in culture and secreted into the medium (leptin undetected). IL-6, MCP-1 and TNFalpha were also expressed and secreted by preadipocytes; adiponectin and leptin were only expressed after adipocyte differentiation. The inflammatory mediators LPS and TNFalpha had major stimulatory effects on the expression and secretion of IL-6, MCP-1 and TNFalpha; there was a >5,000-fold increase in IL-6 mRNA level with LPS. IL-6 release into the medium was increased >50-fold over 24 h with LPS and TNFalpha, while MCP-1 release was increased 23- and 40-fold by TNFalpha and LPS, respectively. However, there was no effect, or small reductions, in adiponectin and leptin mRNA levels with the inflammatory mediators. Dexamethasone-stimulated leptin gene expression, had no effect on adiponectin expression, but decreased the expression and secretion of IL-6 and MCP-1. The PPARgamma agonist rosiglitazone stimulated both adiponectin and leptin expression and inhibited the expression of IL-6, MCP-1 and TNFalpha; MCP-1 secretion was reduced. These results demonstrate that canine adipocytes express and secrete key adipokines and show that adipocytes of this species are highly responsive to inflammatory mediators with the induction of major increases in the production of inflammation-related adipokines.
Collapse
|
299
|
Atanasovska E, Jakovski K, Kostova E, Petlichkovski A, Dimitrovski C, Bitovska I, Kikerkov I, Petrovski O, Labachevski N. Effects of Rosiglitazone on Metabolic Parameters and Adiponectin Levels in Fructose-Fed Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.3889/mjms.1857-5773.2009.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
300
|
Residual Risk Reduction Initiative: výzva ke snížení reziduálního vaskulárního rizika u pacientů s dyslipidemií. COR ET VASA 2010. [DOI: 10.33678/cor.2010.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|