251
|
Shen J, Zhao J, Ye QY, Gu XD. Interference of miR-943-3p with secreted frizzled-related proteins4 (SFRP4) in an asthma mouse model. Cell Tissue Res 2019; 378:67-80. [PMID: 31101982 DOI: 10.1007/s00441-019-03026-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
The aim of this study is to investigate the potential roles of miR-943-3p and its target gene secreted frizzled-related proteins4 (SFRP4) in allergic asthma and elucidate its underlying mechanism, which may prompt a new clue about developing novel treatments of this disease. An allergic asthma mouse model was generated by challenging with ovalbumin (OVA); lung pathological features of mice were viewed using H&E staining; thickness of subepithelial fibrosis and smooth muscle was measured using Masson's trichrome staining. Inflammatory cells from bronchoalveolar lavage fluid (BALF) were counted based on Diff-Quik staining and morphometric analysis. Expressions of miR-943-3p, SFRP4 and Wnt signal pathway-associated proteins were detected using RT-PCR or immunoblotting, respectively. SFRP4 was downregulated in the bronchial biopsies of allergic asthma patients and represented a unique intersection between differentially expressed genes (DEGs) and genes in the Wnt signal pathway. Both miR-943-3p upregulation and SFRP4 downregulation were detected in allergic asthma patients and OVA-induced mice. Besides, OVA-induced mice possessed more inflammatory cells in BALF including macrophage (mac), eosinophil (eos), lymphocyte (lym) and neutrophil (neu), higher expression of collagen, β-catenin and c-Myc as well as thicker subepithelial fibrosis and smooth muscle in lung than control mice. In vivo delivery of miR-943-3p agomir worsened these symptoms, while both miR-943-3p antagomir and Ad-SFRP4 administration effectively alleviated this disease. Taken together, miR-943-3p accelerated the progression of airway inflammation and remodeling in allergic asthma via suppressing the activity of SFRP4 through Wnt signaling pathway in asthma patients and OVA-induced mice.
Collapse
Affiliation(s)
- Jian Shen
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| | - Jun Zhao
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Qing-Yan Ye
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Xi-Dong Gu
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, China
| |
Collapse
|
252
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
253
|
Vallée A, Vallée JN, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 2019; 24:643-652. [PMID: 30104725 DOI: 10.1038/s41380-018-0131-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Paris-Descartes University; Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital; AP-HP, Paris, France. .,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054, Amiens, France.,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100, Meaux, France
| |
Collapse
|
254
|
Lechner JF, Stoner GD. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules 2019; 24:E1602. [PMID: 31018549 PMCID: PMC6515411 DOI: 10.3390/molecules24081602] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Carcinogenesis is the process whereby a normal cell is transformed into a neoplastic cell. This action involves several steps starting with initiation and followed by promotion and progression. Driving these stages are oxidative stress and inflammation, which in turn encompasses a myriad of aberrant gene expressions, both within the transforming cell population and the cells within the surrounding lesion. Chemoprevention of cancer with bioreactive foods or their extracted/purified components occurs via normalizing these inappropriate gene activities. Various foods/agents have been shown to affect different gene expressions. In this review, we discuss whereby the chemoprevention activities of the red beetroot itself may disrupt carcinogenesis and the activities of the water-soluble betalains extracted from the plant.
Collapse
Affiliation(s)
- John F Lechner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Gary D Stoner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
255
|
Liu QQ, Wang P, He QJ, Ma R, Lee SC. PPARγ promotes diabetes‐associated centrosome amplification via increasing the expression of SKA1 directly at the transcriptional level. J Cell Physiol 2019; 234:20694-20703. [DOI: 10.1002/jcp.28674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Qin Qin Liu
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Pu Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Qin Ju He
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Ronald Ma
- Department of Medicine and Therapeutics Chinese University of Hong Kong Shatin Hong Kong SAR PR China
| | - Shao Chin Lee
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
- Department of Biology, School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu PR China
| |
Collapse
|
256
|
Ittiudomrak T, Puthong S, Roytrakul S, Chanchao C. α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells. Toxicol Res 2019; 35:167-179. [PMID: 31015899 PMCID: PMC6467359 DOI: 10.5487/tr.2019.35.2.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, α-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. α-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with α-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas α-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in α-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both α-mangostin and apigenin arrested the cell cycle at the G2/M phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and α-mangostin-treated SKOV-3 cells, respectively. α-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and α-mangostin likely being involved with inflammation.
Collapse
Affiliation(s)
- Teeranai Ittiudomrak
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
257
|
Wang J, Zhou P, Wang X, Yu Y, Zhu G, Zheng L, Xu Z, Li F, You Q, Yang Q, Zhuo W, Sun J, Chen Z. Rab25 promotes erlotinib resistance by activating the β1 integrin/AKT/β-catenin pathway in NSCLC. Cell Prolif 2019; 52:e12592. [PMID: 30848009 PMCID: PMC6536583 DOI: 10.1111/cpr.12592] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI) has significant therapeutic efficacy in non‐small‐cell lung cancer (NSCLC) patients. However, acquired resistance is inevitable and limits the long‐term efficacy of EGFR‐TKI. Our study aimed to investigate the role of ras‐associated binding protein 25 (Rab25) in mediating EGFR‐TKI resistance in NSCLC. Materials and Methods Rab25 expression in NSCLC patients was measured by immunohistochemical staining. Western blotting was used to analyse the expression of molecules in the Rab25, EGFR and Wnt signalling pathways. Lentiviral vectors were constructed to knock in and knock out Rab25. The biological function of Rab25 was demonstrated by cell‐counting kit‐8 and flow cytometry. The interaction between Rab25 and β1 integrin was confirmed by co‐immunoprecipitation. Results Rab25 overexpression induced erlotinib resistance, whereas Rab25 knockdown reversed this refractoriness in vitro and in vivo. Moreover, Rab25 interacts with β1 integrin and promotes its trafficking to the cytoplasmic membrane. The membrane‐β1 integrin induced protein kinase B (AKT) phosphorylation and subsequently activated the Wnt/β‐catenin signalling pathway, promoting cell proliferation. Furthermore, high Rab25 expression was associated with poor response to EGFR‐TKI treatment in NSCLC patients. Conclusions Rab25 mediates erlotinib resistance by activating the β1 integrin/AKT/β‐catenin signalling pathway. Rab25 may be a predictive biomarker and has potential therapeutic value in NSCLC patients with acquired resistance to EGFR‐TKI.
Collapse
Affiliation(s)
- Jianmin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Pu Zhou
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xudong Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongxin Yu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangkuo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Linpeng Zheng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zihan Xu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Feng Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiai You
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiao Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhengtang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
258
|
Abstract
Abstract
Myelodysplastic syndrome (MDS) is characterized by bone marrow failure and a strong propensity for leukemic evolution. Somatic mutations are critical early drivers of the disorder, but the factors enabling the emergence, selection, and subsequent leukemic evolution of these “leukemia-poised” clones remain incompletely understood. Emerging data point at the mesenchymal niche as a critical contributor to disease initiation and evolution. Disrupted inflammatory signaling from niche cells may facilitate the occurrence of somatic mutations, their selection, and subsequent clonal expansion. This review summarizes the current concepts about “niche-facilitated” bone marrow failure and leukemic evolution, their underlying molecular mechanisms, and clinical implications for future innovative therapeutic targeting of the niche in MDS.
Collapse
|
259
|
Aoyama T, Takasawa A, Takasawa K, Ono Y, Emori M, Murata M, Hayasaka T, Fujitani N, Osanai M, Yamashita T, Hasegawa T, Sawada N. Identification of Coiled-Coil Domain-Containing Protein 180 and Leucine-Rich Repeat-Containing Protein 4 as Potential Immunohistochemical Markers for Liposarcoma Based on Proteomic Analysis Using Formalin-Fixed, Paraffin-Embedded Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1015-1028. [PMID: 30790560 DOI: 10.1016/j.ajpath.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Recent technical improvements in both mass spectrometry and protein extraction have made it possible to use formalin-fixed, paraffin-embedded (FFPE) tissues for proteome analysis. In this study, comparable proteome analysis of FFPE tissues revealed multiple candidate marker molecules for differentiating atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) from lipoma. A total of 181 unique proteins were identified for ALT/WDL. Of the identified proteins, coiled-coil domain-containing protein 180 (CCDC180) and leucine-rich repeat-containing protein 4 (LRRC4) were studied as candidate markers of ALT/WDL. CCDC180 and LRRC4 immunohistochemistry clearly stained tumor cells of ALT/WDL and dedifferentiated liposarcoma and could differentiate them from lipoma with high accuracy. Cell biological methods were used to further examine the expression of the candidate marker molecules in liposarcoma cells. In liposarcoma cells, knockdown of CCDC180 and LRRC4 inhibited cell proliferation. CCDC180 inhibited cell migration, invasion, and apoptosis resistance in WDL cells. Adipogenic differentiation suppressed the expression of CCDC180 and LRRC4 in WDL cells. These results indicated that LRRC4 and CCDC180 are novel immunohistochemical markers for differentiating ALT/WDLs. Their expression was associated with adipocyte differentiation and contributed to malignant potentials of WDL cells. Proteome analysis using a standard stock of FFPE tissues can reveal novel biomarkers for various diseases, which contributes to the progress of molecular pathology.
Collapse
Affiliation(s)
- Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
260
|
Xianyuan L, Wei Z, Yaqian D, Dan Z, Xueli T, Zhanglu D, Guanyi L, Lan T, Menghua L. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:274-285. [PMID: 30668407 DOI: 10.1016/j.phymed.2018.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Renal fibrosis is the most common pathway leading to end-stage renal disease. It is characterized by excess extracellular matrix (ECM) accumulation and renal tissue damage, subsequently leading to kidney failure. Asperulosidic acid (ASPA), a bioactive iridoid glycoside, exerts anti-tumor, anti-oxidant, and anti-inflammatory activities, but its effects on renal fibrosis induced by unilateral ureteral obstruction (UUO) have not yet been investigated. PURPOSE This study aimed to investigate the protective effect of ASPA on renal fibrosis induced by UUO, and to explore its pharmacological mechanism. METHODS Thirty-six Sprague-Dawley (SD) rats were randomly divided into six groups: sham group, UUO model group, three ASPA treatment groups (10, 20, and 40 mg/kg), and captopril group (20 mg/kg). Rats were administered vehicle, ASPA or captopril intraperitoneally once a day for 14 consecutive days. Urea nitrogen (BUN), uric acid (UA) and inflammatory factors in serum samples were evaluated on the 7th, 10th, and 14th day after renal fibrosis induction. In addition, the 12 h urine was collected to test the content of urinary protein (upro) on the 14th day. The obstructive renal tissues were collected for pathological analysis (hematoxylin and eosion (H&E) staining and Masson's Trichrome staining) and immunohistochemical analysis on the 14th day after renal fibrosis induction. The mRNA expression of related factors and the protein levels of smad2, smad3, and smad4 were measured in UUO-induced rats by real time PCR and Western blot, respectively. RESULTS The levels of BUN, UA, and upro were elevated in UUO-induced rats, but ASPA treatment improved renal function by reducing the levels of BUN, UA, and upro. The protein levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, as well as the mRNA levels of TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), were decreased after ASPA administration (10, 20 and 40 mg/kg) in a dose-dependent manner. The ASPA exerted an alleviation effect on the inflammatory response through inhibition of nuclear factor-kappa B (NF-κB) pathway. In addition, reductions in α-smooth muscle actin (α-SMA), collagen III, and fibronectin expression were observed after ASPA administration at doses of 20 and 40 mg/kg. Furthermore, the renal expression of transforming growth factor-β1 (TGF-β1), smad2, smad3, and smad4 was down-regulated by ASPA treatment at doses of 20 and 40 mg/kg. CONCLUSION ASPA possessed protective effects on renal interstitial fibrosis in UUO-induced rats. These effects may be through inhibition of the activation of NF-κB and TGF-β1/smad2/smad3 signaling pathways.
Collapse
Affiliation(s)
- Lu Xianyuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zou Wei
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China.
| | - Dong Yaqian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhou Dan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Tong Xueli
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dong Zhanglu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Guanyi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Tang Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liu Menghua
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
261
|
A case of nasal low-grade non-intestinal-type adenocarcinoma with aberrant CDX2 expression and a novel SYN2-PPARG gene fusion in a 13-year-old girl. Virchows Arch 2019; 474:619-623. [PMID: 30666415 DOI: 10.1007/s00428-019-02524-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
We report the first patient (a 13-year-old girl) with a sinonasal low-grade non-intestinal-type adenocarcinoma showing aberrant CDX2 expression both within morular areas and in the tubular component and demonstrate for the first time a SYN2-PPARG gene fusion in this tumor type. The tumor arose from the nasal septum and had not spread beyond the nasal cavity.
Collapse
|
262
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
263
|
Mediators of Inflammation - A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma. J Immunol Res 2018; 2018:1061780. [PMID: 30539028 PMCID: PMC6260538 DOI: 10.1155/2018/1061780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common tumour of the oral cavity, associated with significant morbidity and mortality. It is a multifactorial condition, both genetic and environmental factors being involved in its development and progression. Its pathogenesis is not fully elucidated, but a pivotal role has been attributed to inflammation, strong evidence supporting the association between chronic inflammation and carcinogenesis. Moreover, an increasing number of studies have investigated the role of different mediators of inflammation in the early detection of OSCC. In this review, we have summarized the main markers of inflammation that could be useful in diagnosis and shed some light in OSCC pathogenesis.
Collapse
|
264
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
265
|
Nugud A, Sandeep D, El-Serafi AT. Two faces of the coin: Minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J Adv Res 2018; 14:73-79. [PMID: 30023134 PMCID: PMC6047483 DOI: 10.1016/j.jare.2018.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as by-products of several intracellular metabolic pathways and are reduced to more stable molecules by several protective pathways. The presence of high levels of ROS can be associated with disturbance of cell function and could lead to apoptosis. The presence of ROS within the physiological range has many effects on several signalling pathways. In stem cells, this role can range between keeping the potency of the naive stem cells to differentiation towards a certain lineage. In addition, the level of certain ROS would change according to the differentiation stage. For example, the presence of ROS can be associated with increasing the proliferation of mesenchymal stem cells, decreasing the potency of embryonic stem cells and adding to the genomic stability of induced pluripotent stem cells. ROS can enhance the differentiation of stem cells into cardiomyocytes, adipocytes, endothelial cells, keratinocytes and neurons. In the meantime, ROS inhibits osteogenesis and enhances the differentiation of cartilage to the hypertrophic stage, which is associated with chondrocyte death. Thus, ROS may form a link between naïve stem cells in the body and the environment. In addition, monitoring of ROS levels in vitro may help in tissue regeneration studies.
Collapse
Affiliation(s)
- Ahmed Nugud
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Divyasree Sandeep
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Ahmed T. El-Serafi
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
- Faculty of Medicine, Suez Canal University, Egypt
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
266
|
Chen G, Chen X, Niu C, Huang X, An N, Sun J, Huang S, Ye W, Li S, Shen Y, Liang J, Cong W, Jin L. Baicalin alleviates hyperglycemia-induced endothelial impairment 1 via Nrf2. J Endocrinol 2018; 240:JOE-18-0457.R1. [PMID: 30400057 DOI: 10.1530/joe-18-0457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine, which exhibits strong anti-inflammatory, anti-viral and anti-tumor activities. The present work was devoted to elucidate the molecular and cellular mechanisms underlying the protective effects of Baicalin against diabetes-induced oxidative damage, inflammation and endothelial dysfunction. Diabetic mice, induced by streptozotocin (STZ), were treated with intraperitoneal Baicalin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of Baicalin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered oxidative damage and inflammation in HUVECs and diabetic aortal vasculature by Baicalin, along with restoration of hyperglycemia-impaired nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway activity. However, the protective effects of Baicalin almost completely abolished in HUVECs transduced with shRNA against Nrf2, but not with nonsense shRNA. Mechanistic studies demonstrated that HG decreased Akt and GSK3B phosphorylation, restrained nuclear export of Fyn and nuclear localization of Nrf2, blunted Nrf2 downstream target genes, and subsequently induced oxidative stress in HUVECs. However, those destructive cascade, were well prevented by Baicalin in HUVECs. Furthermore, LY294002 and ML385 (inhibitor of PI3K and Nrf2) attenuated Baicalin mediated Nrf2 activation and the ability of facilitates angiogenesis in vivo and ex vivo. Taken together, the endothelial protective effect of Baicalin under hyperglycemia condition could be partly attributed to its role in downregulating reactive oxygen species (ROS) and inflammation via the Akt/GSK3B/Fyn-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Gen Chen
- G Chen, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Xiangjuan Chen
- X Chen, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Chao Niu
- C Niu, Department of pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Xiaozhong Huang
- X Huang, Department of pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Ning An
- N An, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Jia Sun
- J Sun, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Shuai Huang
- S Huang, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Weijian Ye
- W Ye, Department of pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Santie Li
- S Li, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Yingjie Shen
- Y Shen, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Jiaojiao Liang
- J Liang, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Weitao Cong
- W Cong, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Litai Jin
- L Jin, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| |
Collapse
|
267
|
Codrici E, Albulescu L, Popescu ID, Mihai S, Enciu AM, Albulescu R, Tanase C, Hinescu ME. Caveolin-1-Knockout Mouse as a Model of Inflammatory Diseases. J Immunol Res 2018; 2018:2498576. [PMID: 30246033 PMCID: PMC6136523 DOI: 10.1155/2018/2498576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (CAV1) is the scaffold protein of caveolae, which are minute invaginations of the cell membrane that are involved in endocytosis, cell signaling, and endothelial-mediated inflammation. CAV1 has also been reported to have a dual role as either a tumor suppressor or tumor promoter, depending on the type of cancer. Inflammation is an important player in tumor progression, but the role of caveolin-1 in generating an inflammatory milieu remains poorly characterized. We used a caveolin-1-knockout (CAV1-/-) mouse model to assess the inflammatory status via the quantification of the pro- and anti-inflammatory cytokine levels, as well as the ability of circulating lymphocytes to respond to nonspecific stimuli by producing cytokines. Here, we report that the CAV1-/- mice were characterized by a low-grade systemic proinflammatory status, with a moderate increase in the IL-6, TNF-α, and IL-12p70 levels. CAV1-/- circulating lymphocytes were more prone to cytokine production upon nonspecific stimulation than the wild-type lymphocytes. These results show that CAV1 involvement in cell homeostasis is more complex than previously revealed, as it plays a role in the inflammatory process. These findings indicate that the CAV1-/- mouse model could prove to be a useful tool for inflammation-related studies.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Simona Mihai
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Radu Albulescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- National Institute for Chemical Pharmaceutical R&D, Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihail E. Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| |
Collapse
|
268
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|