251
|
Abstract
OBJECTIVES We previously described adoptive immunotherapy (AIT) with cytotoxic T lymphocytes (CTLs) stimulated by the mucin 1 (MUC1)-expressing human pancreatic cancer cell line YPK-1 (MUC1-CTLs) and demonstrated that MUC1-CTLs might prevent liver metastasis. In the present study, we combined gemcitabine (GEM) and AIT for the treatment of pancreatic cancer. METHODS A total of 43 patients who underwent radical pancreatectomy received treatment with MUC1-CTLs and GEM. After surgery, MUC1-CTLs were induced and administered intravenously 3 times, and GEM administered according to the standard regimen for 6 months. The patients whose relative dose intensity of GEM was 50% or more and who received 2 or more MUC1-CTL treatments were used as the adequate treatment group (n = 21). RESULTS In the adequate treatment group, disease-free survival was 15.8 months, and overall survival was 24.7 months. Liver metastasis was found only in 7 patients (33%), and local recurrence occurred in 4 patients (19%). The independent prognostic factor of long-term disease-free survival on multivariate analysis was the average number of CTLs administered (P = 0.0133). CONCLUSIONS The combination therapy with AIT and GEM prevented liver metastasis and local recurrence. Moreover, the disease free-survival was improved in patients who received sufficient CTLs.
Collapse
|
252
|
Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2 + regulatory T cells in tumor immunity. Onco Targets Ther 2017; 10:4315-4319. [PMID: 28919780 PMCID: PMC5590762 DOI: 10.2147/ott.s142085] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor development is closely related to angiogenesis, and VEGFR2 plays an important role in tumor angiogenesis. It is broadly expressed in the blood vessels, especially in the microvessels of tumor tissues. Furthermore, VEGFR2 is detected on the surface of the cell membrane in various immune cells, such as dendritic cells, macrophages, and regulatory T cells (Tregs). Tregs, which are one of the key negative regulatory factors in tumor immune microenvironments, show high-level expression of VEGFR2 which participates in the regulation of immunosuppressive function. VEGFR2+ Tregs play a potent suppressive role in the formation of immunosuppressive microenvironments. A large number of reports have proven the synergistic effects between targeted therapy for VEGFR2 and immunotherapy. The depression of VEGFR2 activity on T cells can significantly reduce the infiltration of Tregs into the tumor tissue. Targeted therapy for VEGFR2+ Tregs also provides a new choice for the clinical treatment of malignant solid tumors. In this paper, the role and significance of VEGFR2+ Tregs in tumor immunity in recent years are reviewed.
Collapse
Affiliation(s)
- Panrong Zhu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Chenxi Hu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Kaiyuan Hui
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaodong Jiang
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
253
|
Murthy V, Minehart J, Sterman DH. Local Immunotherapy of Cancer: Innovative Approaches to Harnessing Tumor-Specific Immune Responses. J Natl Cancer Inst 2017; 109:4085220. [DOI: 10.1093/jnci/djx097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
|
254
|
Akimova T, Zhang T, Negorev D, Singhal S, Stadanlick J, Rao A, Annunziata M, Levine MH, Beier UH, Diamond JM, Christie JD, Albelda SM, Eruslanov EB, Hancock WW. Human lung tumor FOXP3+ Tregs upregulate four "Treg-locking" transcription factors. JCI Insight 2017; 2:94075. [PMID: 28814673 DOI: 10.1172/jci.insight.94075] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022] Open
Abstract
Experimental data indicate that FOXP3+ Tregs can markedly curtail host antitumor immune responses, but the properties of human intratumoral Tregs are still largely unknown, in part due to significant methodologic problems. We studied the phenotypic, functional, epigenetic, and transcriptional features of Tregs in 92 patients with non-small-cell lung cancer, comparing the features of Tregs within tumors versus corresponding blood, lung, and lymph node samples. Intratumoral Treg numbers and suppressive function were significantly increased compared with all other sites but did not display a distinctive phenotype by flow cytometry. However, by undertaking simultaneous evaluation of mRNA and protein expression at the single-cell level, we demonstrated that tumor Tregs have a phenotype characterized by upregulated expression of FOXP3 mRNA and protein as well as significantly increased expression of EOS, IRF4, SATB1, and GATA1 transcription factor mRNAs. Expression of these "Treg-locking" transcription factors was positively correlated with levels of FOXP3 mRNA, with highest correlations for EOS and SATB1. EOS had an additional, FOXP3 mRNA-independent, positive correlation with FOXP3 protein in tumor Tregs. Our study identifies distinctive features of intratumoral Tregs and suggests that targeting Treg-locking transcription factors, especially EOS, may be of clinical importance for antitumor Treg-based therapy.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tianyi Zhang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dmitri Negorev
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Stadanlick
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abhishek Rao
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Annunziata
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania and University of Pennsylvania, Philadelphia, Pennsylvania, USA. Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
255
|
Huang A, Cheng L, He M, Nie J, Wang J, Jiang K. Interleukin-35 on B cell and T cell induction and regulation. JOURNAL OF INFLAMMATION-LONDON 2017; 14:16. [PMID: 28794689 PMCID: PMC5547520 DOI: 10.1186/s12950-017-0164-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
Interleukin (IL)-35 is a relatively newly discovered member of IL-12 cytokine family that is unique in that it is a dimer formed by two subunits. The review documents the structure, secretion and signal transduction of IL-35, the regulation effect of IL-35 on B cells and T cells as well as the adoptive transfer of IL-35+ regulatory B cells (Breg), therapeutic prospects of recombinant IL-35 (rIL-35) and IL-35 regulation role in various diseases. B-cell regulation expands the regulatory range of IL-35 and alters the view that IL-10 is the chief immune mechanism for Breg cells which secrete IL-35. IL-35 induces Breg cells, which then can induce Treg cells. IL-35 also plays an immunomodulatory role in the human body.
Collapse
Affiliation(s)
- Ai Huang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Lin Cheng
- Department of Anesthesiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Miao He
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Jun Nie
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| |
Collapse
|
256
|
Moreno Ayala MA, Gottardo MF, Imsen M, Asad AS, Bal de Kier Joffé E, Casares N, Lasarte JJ, Seilicovich A, Candolfi M. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat 2017; 166:393-405. [PMID: 28756536 DOI: 10.1007/s10549-017-4414-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Regulatory T cells (Tregs) impair the clinical benefit of cancer immunotherapy. To optimize the antitumor efficacy of therapeutic dendritic cell (DC) vaccines, we aimed to inhibit Foxp3, a transcription factor required for Treg function. METHODS Mice bearing established syngeneic LM3 and 4T1 breast tumors were treated with antitumor DC vaccines and a synthetic peptide (P60) that has been shown to inhibit Foxp3. RESULTS Treatment with P60 improved the therapeutic efficacy of DC vaccines in these experimental models. In addition, monotherapy with P60 inhibited tumor growth in immunocompetent as well as in immuno-compromised animals bearing established tumors. We found expression of Foxp3 in human and murine breast tumor cells. P60 inhibited IL-10 secretion in breast cancer cells that expressed Foxp3. CONCLUSIONS Our results suggest that Foxp3 blockade improves the therapeutic efficacy of DC vaccines by inhibition of Tregs and through a direct antitumor effect. This strategy could prove useful to neutralize the immunosuppressive microenvironment and to boost antitumor immunity in breast cancer.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - Elisa Bal de Kier Joffé
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Área Investigación, Instituto de Oncología Angel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Avenida Pio XII 55, 31008, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Avenida Pio XII 55, 31008, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.
| |
Collapse
|
257
|
Zahaf NI, Schmidt G. Bacterial Toxins for Cancer Therapy. Toxins (Basel) 2017; 9:toxins9080236. [PMID: 28788054 PMCID: PMC5577570 DOI: 10.3390/toxins9080236] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Several pathogenic bacteria secrete toxins to inhibit the immune system of the infected organism. Frequently, they catalyze a covalent modification of specific proteins. Thereby, they block production and/or secretion of antibodies or cytokines. Moreover, they disable migration of macrophages and disturb the barrier function of epithelia. In most cases, these toxins are extremely effective enzymes with high specificity towards their cellular substrates, which are often central signaling molecules. Moreover, they encompass the capacity to enter mammalian cells and to modify their substrates in the cytosol. A few molecules, at least of some toxins, are sufficient to change the cellular morphology and function of a cell or even kill a cell. Since many of those toxins are well studied concerning molecular mechanisms, cellular receptors, uptake routes, and structures, they are now widely used to analyze or to influence specific signaling pathways of mammalian cells. Here, we review the development of immunotoxins and targeted toxins for the treatment of a disease that is still hard to treat: cancer.
Collapse
Affiliation(s)
- Nour-Imene Zahaf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albert-Str. 25, 79104 Freiburg, Germany.
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albert-Str. 25, 79104 Freiburg, Germany.
| |
Collapse
|
258
|
Wang H, Franco F, Ho PC. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends Cancer 2017; 3:583-592. [PMID: 28780935 DOI: 10.1016/j.trecan.2017.06.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
The promising outcomes observed in cancer immunotherapy are evidence that the immune system provides a powerful arsenal for the restriction of tumor outgrowth; however, the immunosuppressive tumor microenvironment (TME) is known to impair antitumor immunity and impede the efficacy of cancer immunotherapies. Regulatory T cells (Tregs), which prevent overt immune responses and autoimmunity, accumulate aberrantly in some types of tumor to suppress antitumor immunity and support the establishment of an immunosuppressive microenvironment. Ablation of Tregs has been shown to not only unleash antitumor immunity and interrupt formation of an immunosuppressive TME, but also lead to severe autoimmune disorders. Therefore, it is essential to develop approaches to specifically target intratumoral Tregs. Herein, we summarize the immunomodulatory functions of Tregs in the TME and discuss how metabolic regulation of Tregs can facilitate intratumoral Treg accumulation.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Fabien Franco
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland.
| |
Collapse
|
259
|
Zhou C, Zhang J, Chen Y, Wang H, Hou J. Interleukin-35 as a predictor of prostate cancer in patients undergoing initial prostate biopsy. Onco Targets Ther 2017; 10:3485-3491. [PMID: 28761357 PMCID: PMC5522820 DOI: 10.2147/ott.s135873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Interleukin (IL)-35 is a novel inhibitory cytokine and has recently been implicated in tumor immunity. However, the role of IL-35 in prostate cancer (PCa) has not been elucidated. Objective To evaluate the role of plasma IL-35 in the diagnosis and prognosis of PCa in Chinese patients undergoing initial prostate biopsy. Materials and methods Using ELISA, plasma IL-35 levels were measured in 180 patients, who underwent a prostate biopsy. The clinical correlation of IL-35 with clinicopathological parameters was also evaluated. Univariate and multivariate logistic regression and receiver operating characteristic (ROC) curve analysis were performed to establish the role of IL-35 as a clinical biomarker. Results Seventy-five (41.6%) of patients were histopathologically confirmed to have PCa. Plasma IL-35 levels were significantly higher in PCa patients (134.48±78.48 pg/mL) compared to non-PCa patients (67.22±24.08 pg/mL). ROC analysis showed that IL-35 was an independent predictor of PCa. Furthermore, IL-35 was found to be a significantly independent predictor of PCa in a group of patients with prostate-specific antigen levels between 4 and 10 ng/mL; was also able to predict advanced PCa from localized PCa and bone metastasis positive PCa from negative PCa. Conclusion Our data suggest for the first time that plasma IL-35 levels are correlated with PCa and is the independent predictor of PCa progression and metastasis. Thus, IL-35 could be utilized as a potential biomarker for diagnosis and prognosis of PCa, could also aid in decision making and predict the stage of the disease.
Collapse
Affiliation(s)
- Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ye Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
260
|
Lechner A, Schlößer H, Rothschild SI, Thelen M, Reuter S, Zentis P, Shimabukuro-Vornhagen A, Theurich S, Wennhold K, Garcia-Marquez M, Tharun L, Quaas A, Schauss A, Isensee J, Hucho T, Huebbers C, von Bergwelt-Baildon M, Beutner D. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 2017; 8:44418-44433. [PMID: 28574843 PMCID: PMC5546490 DOI: 10.18632/oncotarget.17901] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA-/CCR7-). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the 'Immunoscore' (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance.
Collapse
Affiliation(s)
- Axel Lechner
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Hans Schlößer
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Sacha I. Rothschild
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- University Hospital Basel, Department of Internal Medicine, Medical Oncology, Basel, Switzerland
| | - Martin Thelen
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sabrina Reuter
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lars Tharun
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, University of Cologne, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, University of Cologne, Germany
| | - Christian Huebbers
- Jean-Uhrmacher Institute for Clinical ENT Research, University of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
261
|
Zhang K, Peng Z, Huang X, Qiao Z, Wang X, Wang N, Xi H, Cui J, Gao Y, Huang X, Gao H, Wei B, Chen L. Phase II Trial of Adjuvant Immunotherapy with Autologous Tumor-derived Gp96 Vaccination in Patients with Gastric Cancer. J Cancer 2017; 8:1826-1832. [PMID: 28819380 PMCID: PMC5556646 DOI: 10.7150/jca.18946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Background/Aims: Autologous, tumor-derived, heat shock protein gp96 peptide complexes have antitumor potential. We conducted the first Phase II trial to evaluate the safety and efficacy of gp96 vaccination in adjuvant settings for patients with gastric cancer. Methods: We enrolled 73 consecutive patients from October 2012 to December 2015. Thirty-eight patients received gp96 vaccination plus chemotherapy and 35 received chemotherapy alone. The primary endpoints were disease-free survival (DFS) and toxicity. The secondary endpoints were overall survival (OS) and tumor-specific immune responses. Results: There were comparable baseline characteristics between the two groups. Tumor-specific immune responses increased significantly after gp96 vaccination. gp96 vaccination plus chemotherapy was well tolerated and there were no gp96-related serious adverse events. Patients who received gp96 vaccination had improved DFS compared with those who did not [p = 0.045; hazard ratio (HR): 0.47; 95% confidence interval (CI): 0.23-0.96]. The 2-year OS rates were 81.9% and 67.9% for the gp96 vaccination and chemotherapy alone group, respectively (p = 0.123; HR: 0.42; 95% CI: 0.15-1.24). Conclusion: gp96 vaccination elicits tumor-specific immune responses and can be safely used in adjuvant settings combined with chemotherapy. Patients with less-aggressive diseases might benefit from gp96 therapy.
Collapse
Affiliation(s)
- Kecheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Zheng Peng
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xiaohui Huang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Zhi Qiao
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xinxin Wang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Ning Wang
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Xijian Huang
- Cure&Sure Biotech Co., LTD, Hi-tech Industrial Park, Shenzhen 518057, P.R. China
| | - Hua Gao
- Cure&Sure Biotech Co., LTD, Hi-tech Industrial Park, Shenzhen 518057, P.R. China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Beijing 100853, China
| |
Collapse
|
262
|
Zhang Y, Yang SL, Zhang HR, Gao L, Gao X, Liu PJ, Yi ZY, Li N, Xu ZQ. Combination radiotherapy and cantharidin inhibits lung cancer growth through altering tumor infiltrating lymphocytes. Future Oncol 2017; 13:1173-1180. [PMID: 28498036 DOI: 10.2217/fon-2016-0437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to detect the effect of combination radiotherapy and cantharidin on lung cancer growth. We found that combination therapy with radiotherapy and cantharidin was more effective in inhibiting the tumor growth than radiotherapy or cantharidin alone. It decreased the percentage of CD4+ Tregs and enhanced the percentage of CD8+ T cells, CD4+ Teff cells when comparing to that of single treatment. Combination therapy promoted a great increase in double producing CD8+ T cells and CD4+ Teff cells in tumor infiltrating lymphocytes. Overexpression of CTLA4 reversed the inhibitory action of combination treatment on cancer growth. Our data suggest that combining radiotherapy and cantharidin may have synergistic effects in driving tumor rejection by increasing T-cell infiltration, proliferation and cytokine production.
Collapse
Affiliation(s)
- Yan Zhang
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Shu-li Yang
- Department of Imaging, Henan Medical College, Zhengzhou 451191, China
| | - Hong-rui Zhang
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Ling Gao
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Xin Gao
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Pei-jie Liu
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Zhen-ying Yi
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Ning Li
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Zhi-qiao Xu
- Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
| |
Collapse
|
263
|
The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun 2017; 8:15129. [PMID: 28541302 PMCID: PMC5529670 DOI: 10.1038/ncomms15129] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs play a pivotal role in T-helper cell development but little is known about their roles in Treg differentiation and functions during the progression of hepatocellular carcinoma (HCC). Here, we show that lnc-epidermal growth factor receptor (EGFR) upregulation in Tregs correlates positively with the tumour size and expression of EGFR/Foxp3, but negatively with IFN-γ expression in patients and xenografted mouse models. Lnc-EGFR stimulates Treg differentiation, suppresses CTL activity and promotes HCC growth in an EGFR-dependent manner. Mechanistically, lnc-EGFR specifically binds to EGFR and blocks its interaction with and ubiquitination by c-CBL, stabilizing it and augmenting activation of itself and its downstream AP-1/NF-AT1 axis, which in turn elicits EGFR expression. Lnc-EGFR links an immunosuppressive state to cancer by promoting Treg cell differentiation, thus offering a potential therapeutic target for HCC. The role of long noncoding RNAs in regulating T-cell differentiation within the tumour microenvironment is unclear. Here the authors identify a lncRNA that, through direct interactions with EGFR, promotes T-regulatory cell differentiation within the microenvironment of hepatocellular carcinoma, thus promoting tumour growth via immune suppression.
Collapse
|
264
|
da Silva RF, Yoshida A, Cardozo DM, Jales RM, Paust S, Derchain S, Guimarães F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18050856. [PMID: 28513532 PMCID: PMC5454809 DOI: 10.3390/ijms18050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Adriana Yoshida
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | | | | | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophie Derchain
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | - Fernando Guimarães
- Women´s Hospital "Professor Doutor José Aristodemo Pinotti"-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas, 13083-881 Campinas, Brazil.
| |
Collapse
|
265
|
Abstract
PURPOSE OF REVIEW The growing awareness that the immune system is a key player in the antitumoral response and the excellent clinical results achieved in some settings with anti-programmed cell death 1 (PD1)/programmed death ligand 1 (PDL1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) drugs has led to the rise of immunotherapy as a supplement or an alternative to conventional cancer treatment. The high costs associated with these therapies, their significant toxicity and the need to understand and circumvent immune escape mechanisms raise the urgent need for immunological assessment of therapy response. The study of the immunological parameters before, during and after treatment is referred to as immunomonitoring. This review discusses the current knowledge of immunomonitoring markers in gastrointestinal cancers. RECENT FINDINGS The last decade has seen a collaborative effort to standardize the assays performed in clinical trials to assess response to immunotherapy. Since then, multiple studies have been conducted on blood samples, biopsies and surgical specimens to determine their immunological profiles leading to the identification of several immunological markers possessing a predictive value of response to treatment. SUMMARY Future research will focus on detangling the predictive value of immune markers in different therapeutic models, and also to develop new noninvasive means to monitor the immune response of patients. VIDEO ABSTRACT: http://links.lww.com/COON/A20.
Collapse
|
266
|
Khaja ASS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, Elkord E. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget 2017; 8:33159-33171. [PMID: 28388539 PMCID: PMC5464858 DOI: 10.18632/oncotarget.16565] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Immunosuppressive cells such as regulatory T cells (Tregs) have an ambiguous role in breast cancer prognosis, with studies reporting both positive and negative correlations between Treg infiltration and prognosis. This discrepancy could be due to the different immunosuppressive molecules present in these cells. In the present study, we phenotypically characterize different Treg subsets infiltrating the tumor microenvironment (TME), compared to adjacent normal tissue and peripheral blood of primary breast cancer (PBC) patients. We report that the majority of tumor-infiltrating CD4+ and CD8+ T cells have terminally exhaustive phenotype as assessed by CD39 and PD-1 expressions. We also show that Tregs are accumulated in breast TME compared to normal tissue. Further characterization of Tregs showed that these are mainly FoxP3+Helios+ and express high levels of CTLA-4 and PD-1. This preferential accumulation of FoxP3+Helios+ Treg subset with co-expression of different immune inhibitory molecules might have a negative effect on breast cancer prognosis. Taken together, our results suggest that breast tumor cells might utilize Tregs, and different suppressive pathways involving CD39, PD-1 and CTLA-4 molecules in creating an immune-subversive environment for them to survive, and a dual blockade of these immunosuppressive molecules might be considered as an effective method in breast cancer treatment.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Haytham El Salhat
- Oncology Department, Al Noor Hospital, Abu Dhabi, United Arab Emirates
- Surgery Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Issam Faour
- Surgery Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Navid Ul Haq
- Pathology Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
267
|
Lozano T, Gorraiz M, Lasarte-Cía A, Ruiz M, Rabal O, Oyarzabal J, Hervás-Stubbs S, Llopiz D, Sarobe P, Prieto J, Casares N, Lasarte JJ. Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget 2017; 8:71709-71724. [PMID: 29069740 PMCID: PMC5641083 DOI: 10.18632/oncotarget.17845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/27/2017] [Indexed: 12/04/2022] Open
Abstract
Although T regulatory cells (Treg) are essential for the prevention of autoimmune diseases, their immunoregulatory function restrains the induction of immune responses against cancer. Thus, development of inhibitors of FOXP3, a key transcription factor for the immunosuppressive activity of Treg, might give new therapeutic opportunities. In a previous work we identified a peptide (named P60) able to enter into the cells, bind to FOXP3, and impair Treg activity in vitro and in vivo. Here we show that P60 binds to the intermediate region of FOXP3 and inhibits its homodimerization as well as its interaction with the transcription factor AML1. Alanine-scanning of P60 revealed the relevance of each position on FOXP3 binding, homodimerization, association with AML1 and inhibition of Treg activity. Introduction of alanine at positions 2, 5 and 11 improved the activity of the original P60, whereas alanine mutations at positions 1, 7, 8, 9, 10 and 12 were detrimental. Multiple mutation experiments allowed us to identify peptides with higher FOXP3 binding affinity and stronger biological activity than the original P60. Head to tail macrocyclization of peptide P60-D2A-S5A improved Treg inhibition and enhanced anti-tumor activity of anti-PD1 antibodies in a model of hepatocellular carcinoma. Introduction of a D-aminoacid at position 2 augmented significantly microsomal stability while maintained FOXP3 binding capacity and Treg inhibition in vitro. In vivo, when combined with the cytotoxic T-cell epitope AH1, it induced protection against CT26 tumor implantation. This study provides important structure–function relationships essential for further drug design to inhibit Treg cells in cancer.
Collapse
Affiliation(s)
- Teresa Lozano
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Aritz Lasarte-Cía
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Marta Ruiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Diana Llopiz
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Pablo Sarobe
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Jesús Prieto
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, University of Navarra, 31008, IDISNA, Pamplona, Spain
| |
Collapse
|
268
|
Abstract
HER2 and CDK4/6 are undoubted two most important biological targets for breast cancer. Anti-HER2 treatments enhance objective response and progression-free survival/disease-free survival as well as overall survival. Three CDK4/6 inhibitors consistently improve objective response and progression-free survival; however, overall survival data are waited. Optimization of chemotherapy and endocrine strategies remains an unmet need. Check point inhibitor-based immunotherapy combined with chemotherapy is a promising field, especially for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Wei Huang
- Roche Product Development in Asia Pacific.5F, Tower C, Parkview Green, No.9, Dongdaqiao Road, Chaoyang District, Beijing, 100020 People’s Republic of China
| | - Minhao Fan
- Hutchison MediPharma Limited, Building 4 917 Halei Road Zhangjiang Hi-Tech Park, Shanghai, 201203 China
| |
Collapse
|
269
|
Rahal A, Musher B. Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 2017; 116:94-103. [PMID: 28407327 DOI: 10.1002/jso.24626] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Outcomes of pancreatic adenocarcinoma (PDA) remain dismal despite extensive clinical investigation. Combination chemotherapy provides modest improvements in survival above best supportive care, and immunotherapy has thus far not proven effective. Nevertheless, growing insight into antitumor immunity and the tumor microenvironment has inspired the discovery of novel agents targeting PDA. Oncolytic viruses represent an emerging class of immunotherapeutic agents that have undergone extensive preclinical investigation and warrant further investigation in well-designed clinical trials.
Collapse
Affiliation(s)
- Ahmad Rahal
- Division of Hematology-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Benjamin Musher
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
270
|
De Rosa V, Di Rella F, Di Giacomo A, Matarese G. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism. Cytokine Growth Factor Rev 2017; 35:15-25. [PMID: 28442214 DOI: 10.1016/j.cytogfr.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression.
Collapse
Affiliation(s)
- Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | - Francesca Di Rella
- Oncologia Medica, Dipartimento di Senologia, Istituto Nazionale Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Antonio Di Giacomo
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità Operativa Complessa di Patologia Clinica, Azienda Ospedaliera dei Colli "V. Monaldi", Napoli, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
271
|
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, Asano Y, Sato S. CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:3897-3908. [DOI: 10.4049/jimmunol.1601607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
|
272
|
Zhang T, Ye L, Han L, He Q, Zhu J. Knockdown of HVEM, a Lymphocyte Regulator Gene, in Ovarian Cancer Cells Increases Sensitivity to Activated T Cells. Oncol Res 2017; 24:189-96. [PMID: 27458100 PMCID: PMC7838697 DOI: 10.3727/096504016x14641336229602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is highly malignant with a gradually increasing incidence and a high mortality rate. Immunosuppression is induced in ovarian cancer, although the mechanism detail is not clear. It has been indicated that HVEM (herpesvirus entry mediator) B- and T-lymphocyte attenuator (BTLA) negatively regulates the immune responses of T lymphocytes. Here, HVEM mRNA was found to be elevated in ovarian cancer tissue samples and primary ovarian cancer cells in comparison with benign tissue samples. We then knocked down HVEM expression in an ovarian cancer cell line, OVCAR3, by lentivirus-based small hairpin RNA (shRNA). Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis showed that HVEM-shRNA had no effect on the proliferation, early apoptosis, or cell cycle distribution of OVCAR3. We then isolated activated T cells and performed coculture experiments in Transwell. Remarkably, HVEM-silenced ovarian cancer cells (primary ovarian cancer cells and OVCAR3) increased the number of T cells and the secretion of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), while activated T cells promoted the apoptosis of HVEM-silenced ovarian cancer cells. The current study partially explains the immune escape mechanism of ovarian cancer cells and provides a possible target for immunotherapy.
Collapse
Affiliation(s)
- Ting Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
273
|
Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, Munshi NC, Tai YT, Anderson KC. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clin Cancer Res 2017; 23:4290-4300. [PMID: 28249894 DOI: 10.1158/1078-0432.ccr-16-3192] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/06/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Purpose: We study CD38 levels in immunosuppressive CD4+CD25highFoxp3+ regulatory T cells (Treg) and further define immunomodulating effects of a therapeutic CD38 mAb isatuximab/SAR650984 in multiple myeloma.Experimental Design: We evaluated percentages of CD38-expressing subsets in Tregs from normal donors and multiple myeloma patients. Peripheral blood mononuclear cells (PBMC) were then treated with isatuximab with or without lenalidomide or pomalidomide to identify their impact on the percentage and immunosuppressive activity of Tregs on CD4+CD25- T cells (Tcons). We investigated the mechanism of increased Tregs in multiple myeloma patients in ex vivo cocultures of multiple myeloma cells with PBMCs or Tcons.Results: CD38 expression is higher on Tregs than Tcons from multiple myeloma patients versus normal donors. CD38 levels and the percentages of CD38high Tregs are increased by lenalidomide and pomalidomide. Isatuximab preferentially decreases Treg and increases Tcon frequencies, which is enhanced by pomalidomide/lenalidomide. Isatuximab reduces Foxp3 and IL10 in Tregs and restores proliferation and function of Tcons. It augments multiple myeloma cell lysis by CD8+ T and natural killer cells. Coculture of multiple myeloma cells with Tcons significantly induces Tregs (iTregs), which express even higher CD38, CD25, and FoxP3 than natural Tregs. This is associated with elevated circulating CD38+ Tregs in multiple myeloma patients versus normal donors. Conversely, isatuximab decreases multiple myeloma cell- and bone marrow stromal cell-induced iTreg by inhibiting both cell-cell contact and TGFβ/IL10. Finally, CD38 levels correlate with differential inhibition by isatuximab of Tregs from multiple myeloma versus normal donors.Conclusions: Targeting CD38 by isatuximab can preferentially block immunosuppressive Tregs and thereby restore immune effector function against multiple myeloma. Clin Cancer Res; 23(15); 4290-300. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoyan Feng
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gang An
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth Wen
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Nikhil C Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
274
|
Qian F, Qingping Y, Linquan W, Xiaojin H, Rongshou W, Shanshan R, Wenjun L, Yong H, Enliang L. High tumor-infiltrating FoxP3 + T cells predict poor survival in estrogen receptor-positive breast cancer: A meta-analysis. Eur J Surg Oncol 2017; 43:1258-1264. [PMID: 28214052 DOI: 10.1016/j.ejso.2017.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
AIMS Tumor-infiltrating FoxP3+ T cells and FoxP3+ tumor cells have been reported in breast cancer (BC), which impaired immunity and promoted tumors progression. However, their prognostic value for survival in patients with breast BC remains controversial. METHODS A meta-analysis was performed. Original data included the hazard ratios (HR) of overall survival (OS), relapse-free survival and odds ratio (OR) in BC patients. We pooled HR/OR with 95% confidence intervals (CI) to estimate the hazard. RESULTS The overall survival of high tumor-infiltrating FoxP3+ T cells patients was lower than low tumor-infiltrating FoxP3+ T cells patients with estrogen receptor (ER)-positive (HR 0.86, 95% CI 0.77-0.96; P = 0.009) but not ER-negative (HR 1.09, 95% CI 0.82-1.45; P = 0.569) BC. And FoxP3+ tumor cells were not associated with the overall survival and recurrences of BC patients (P > 0.05). In addition, a significant association was revealed between high tumor-infiltrating FoxP3+ T cells and grade (I + II/III: OR 0.31, 95% CI 0.17-0.56; P < 0.001), ER status (present: OR 2.39, 95% CI 1.51-3.76; P < 0.001), HER2 status (present: OR 0.53, 95% CI 0.36-0.78; P = 0.001), PR status (present: OR 1.88, 95% CI 1.31-2.71; P < 0.001). And a significant association was revealed between positive FoxP3+ tumor cells and Nodal status (present: OR 0.48, 95% CI 0.23-0.97; P = 0.04), grade (I + II/III: OR 0.44, 95% CI 0.22-0.85; P = 0.01), PR status (present: OR 2.37, 95% CI 1.54-3.36; P < 0.001). CONCLUSIONS High tumor-infiltrating FoxP3+ T cells were associated with a poorer prognosis for ER-positive BC, but not for ER-negative BC.
Collapse
Affiliation(s)
- F Qian
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Y Qingping
- Department of Assisted Reproductive, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - W Linquan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - H Xiaojin
- Department of Assisted Reproductive, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - W Rongshou
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical, Ganzhou 341000, China
| | - R Shanshan
- Department of Operating Room, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - L Wenjun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - H Yong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - L Enliang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
275
|
The Mechanisms and Effects of Physical Activity on Breast Cancer. Clin Breast Cancer 2017; 17:272-278. [PMID: 28233686 DOI: 10.1016/j.clbc.2017.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most common cancer in women. An extensive part of this health problem can be prevented by an active lifestyle. Physical activity can reduce the risk of breast cancer, reduce the rate of recurrence, and increase the survival rate of patients with breast cancer. The aim of this review was to summarize our current knowledge regarding the effects of physical activity on breast cancer risk, recurrence, and survival. Furthermore, we investigated 5 possible underlying mechanisms through which physical activity has an influence on breast cancer (ie, a reduction of sex hormones, metabolic hormones, adipokines and oxidative stress, and an improvement of the immune function). In this review, we give a complete overview of this subject.
Collapse
|
276
|
CD8, FoxP3, and CD45RO+ Lymphocytic Infiltrates in Type I and Type II Endometrial Cancers in African American and European American Females. Int J Gynecol Pathol 2017; 36:540-549. [PMID: 28114190 DOI: 10.1097/pgp.0000000000000359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
African American (AA) females with endometrial carcinoma have a significantly worse prognosis with regard to disease-free survival and overall survival than their European American (EA) counterparts and this finding is true across all stages and grades. The presence of tumor-infiltrating lymphocytes (TILs) has been demonstrated to be of prognostic significance in a variety of malignancies, including endometrial cancers. This study aims to determine whether clinically significant differences in levels of CD8+ cytotoxic T lymphocytes, FoxP3+ regulatory T lymphocytes, and CD45RO+ memory T lymphocytes exist between races and to document the clinical impact of TILs. One hundred ten patients with endometrial adenocarcinoma, treated with hysterectomy from 2003 to 2011 were studied. Patients were selected to provide equal representation across type and grade for both EAs and AAs. Immunohistochemical stains were used to highlight CD8-positive, FoxP3-positive, and CD45RO-positive TILs at the endometrial-myometrial interface on slides from paraffin-embedded tissue. Patients with "high" or "low" levels of TILs were compared with respect to the race, tumor type, and survival. High levels of CD45RO+ TILs were associated with improved overall survival in EA women (hazard ratio, 0.32; 95% confidence interval, 0.11-0.92; P=0.034). Comparatively, AA women with high levels of CD45RO+ TILs received no survival benefit (hazard ratio, 0.96; 95% confidence interval, 0.35-2.64; P=0.94). High levels of CD8-positive or FoxP3-positive TILs, alone, had no impact on survival. EA patients with TILs containing high levels of CD45RO cells but low levels of CD8+ cells lost the survival benefit; however, limited numbers preclude significant conclusions from this observation. Neither tumor type nor race were predictive of the levels of TILs of any type. Further study with a larger sample size is required to determine the impact of TIL subtype combinations on survival.
Collapse
|
277
|
Anders CK, Abramson V, Tan T, Dent R. The Evolution of Triple-Negative Breast Cancer: From Biology to Novel Therapeutics. Am Soc Clin Oncol Educ Book 2017; 35:34-42. [PMID: 27249684 DOI: 10.1200/edbk_159135] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is clinically defined as lacking expression of the estrogen receptor (ER), progesterone receptor (ER), and HER2. Historically, TNBC has been characterized by an aggressive natural history and worse disease-specific outcomes compared with other breast cancer subtypes. The advent of next-generation sequencing (NGS) has allowed for the dissection of TNBC into molecular subtypes (i.e., basal-like, claudin-low). Within TNBC, several subtypes have emerged as "immune-activated," consistently illustrating better disease outcome. In addition, NGS has revealed a host of molecular features characteristic of TNBC, including high rates of TP53 mutations, PI3K and MEK pathway activation, and genetic similarities to serous ovarian cancers, including inactivation of the BRCA pathway. Identified genetic vulnerabilities of TNBC have led to promising therapeutic approaches, including DNA-damaging agents (i.e., platinum salts and PARP inhibitors), as well as immunotherapy. Platinum salts are routinely incorporated into the treatment of metastatic TNBC; however, best outcomes are observed among those with deficiencies in the BRCA pathway. Although the incorporation of platinum in the neoadjuvant care of patients with TNBC yields higher pathologic complete response (pCR) rates, the impact on longer-term outcome is less clear. The presence of immune infiltrate in TNBC has shown both a predictive and prognostic role. Checkpoint inhibitors, including PD-1 and PD-L1 inhibitors, are under investigation in the setting of metastatic TNBC and have shown responses in initial clinical trials. Finally, matching emerging therapeutic strategies to optimal subtype of TNBC is of utmost importance as we design future research strategies to improve patient outcome.
Collapse
Affiliation(s)
- Carey K Anders
- From the Department of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Medicine, National Cancer Center Singapore, Singapore; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC; UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Vandana Abramson
- From the Department of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Medicine, National Cancer Center Singapore, Singapore; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC; UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Tira Tan
- From the Department of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Medicine, National Cancer Center Singapore, Singapore; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC; UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Rebecca Dent
- From the Department of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Medicine, National Cancer Center Singapore, Singapore; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC; UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| |
Collapse
|
278
|
Frankel T, Lanfranca MP, Zou W. The Role of Tumor Microenvironment in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:51-64. [PMID: 29275464 DOI: 10.1007/978-3-319-67577-0_4] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune "checkpoints" whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
279
|
Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Therap Adv Gastroenterol 2017; 10:168-194. [PMID: 28286568 PMCID: PMC5330603 DOI: 10.1177/1756283x16667909] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer is a highly aggressive and lethal cancer characterized by high invasiveness, local and extensive dissemination at time of diagnosis and resistance to treatment. Few therapies have shown efficacy in the past and even standard of care therapies yield only modest improvements in the mortality of patients with advanced or metastatic disease. Efforts have been undertaken to study the pancreatic tumor microenvironment and have established its complex and immunosuppressive nature which could explain the high resistance to chemotherapy. Novel therapies targeting the tumor microenvironment with an aim to decrease this resistance, improve immune tolerance and increase the efficacy of the current treatment have shown some promising preliminary results in preclinical and clinical trials. We review the current advances in the field of immunotherapy and their effectiveness as a potential treatment strategy in the pancreatic cancer.
Collapse
Affiliation(s)
- Komal Thind
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Leslie J. Padrnos
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Mitesh J. Borad
- Division of Hematology/Oncology, Mayo Clinic Arizona, 5777 E. Mayo Boulevard, Phoenix, AZ 85054, USA
| |
Collapse
|
280
|
Kindlund B, Sjöling Å, Yakkala C, Adamsson J, Janzon A, Hansson LE, Hermansson M, Janson P, Winqvist O, Lundin SB. CD4 + regulatory T cells in gastric cancer mucosa are proliferating and express high levels of IL-10 but little TGF-β. Gastric Cancer 2017; 20:116-125. [PMID: 26782287 DOI: 10.1007/s10120-015-0591-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increase of regulatory T cells, defined as CD25high- and/or FOXP3+-expressing CD4+ T cells, within tumors has been reported in several studies. Tregs promote tumor growth by modulating the antitumor immune response, mainly through inhibition of T-cell-mediated tumor cell killing: this has been suggested to be dependent on IL-10 and/or TGF-β. In stomach cancer, the mechanisms behind the accumulation of Tregs in tumor tissue has not been fully elucidated, and neither has Treg gene expression in situ. MATERIALS AND METHODS Stomach tissue from gastric cancer patients undergoing gastric resection was analyzed using flow cytometry and cell sorting, followed by RT-PCR. RESULTS We observed that stomach CD4+ FOXP3+ T cells proliferated to a higher degree than CD4+ FOXP3- T cells, which may contribute to Treg accumulation in the mucosa. By analyzing DNA methylation, we demonstrated that both proliferating and nonproliferating FOXP3+ T cells exhibited complete demethylation of the FOXP3 gene, indicating a stable FOXP3 expression in both cell populations. Furthermore, analysis of T-cell populations isolated directly from the tumor and tumor-free mucosa demonstrated that CD4+ CD25high T cells have a higher IL-10/IFN-γ gene expression ratio but express lower levels of TGF-β than CD4+ CD25low/- T cells. CONCLUSION We demonstrate strong proliferation among regulatory CD4+ FOXP3+ CD25high T cells in the gastric cancer mucosa. These local Treg express a suppressive cytokine profile characterized by high IL-10 and low TGF-β and IFN-γ production.
Collapse
Affiliation(s)
- Bert Kindlund
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden
| | - Åsa Sjöling
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden
| | - Chakradhar Yakkala
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden
| | - Jenni Adamsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden
| | - Anders Janzon
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden
| | - Lars-Erik Hansson
- Department of Gastro-Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Hermansson
- Department of Gastro-Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Janson
- Clinical Allergy Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ola Winqvist
- Clinical Allergy Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel B Lundin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 40530, Gothenburg, Sweden.
| |
Collapse
|
281
|
Varn FS, Mullins DW, Arias‐Pulido H, Fiering S, Cheng C. Adaptive immunity programmes in breast cancer. Immunology 2017; 150:25-34. [PMID: 27564847 PMCID: PMC5341497 DOI: 10.1111/imm.12664] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022] Open
Abstract
The role of the immune system in shaping cancer development and patient prognosis has recently become an area of intense focus in industry and academia. Harnessing the adaptive arm of the immune system for tumour eradication has shown great promise in a variety of tumour types. Differences between tissues, however, necessitate a greater understanding of the adaptive immunity programmes that are active within each tumour type. In breast cancer, adaptive immune programmes play diverse roles depending on the cellular infiltration found in each tumour. Cytotoxic T lymphocytes and T helper type 1 cells can induce tumour eradication, whereas regulatory T cells and T helper type 2 cells are known to be involved in tumour-promoting immunosuppressive responses. Complicating these matters, heterogeneous expression of hormone receptors and growth factors in different tumours leads to disparate, patient-specific adaptive immune responses. Despite this non-conformity in adaptive immune behaviours, encouraging basic and clinical results have been observed that suggest a role for immunotherapeutic approaches in breast cancer. Here, we review the literature pertaining to the adaptive immune response in breast cancer, summarize the primary findings relating to the breast tumour's biology, and discuss potential clinical immunotherapies.
Collapse
Affiliation(s)
- Frederick S. Varn
- Department of Molecular and Systems BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - David W. Mullins
- Department of Medical EducationGeisel School of Medicine at DartmouthHanoverNHUSA
- Department of Microbiology and ImmunologyGeisel School of Medicine at DartmouthLebanonNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Hugo Arias‐Pulido
- Department of Microbiology and ImmunologyGeisel School of Medicine at DartmouthLebanonNHUSA
| | - Steven Fiering
- Department of Molecular and Systems BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Department of Microbiology and ImmunologyGeisel School of Medicine at DartmouthLebanonNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Chao Cheng
- Department of Molecular and Systems BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
- Department of Biomedical Data ScienceGeisel School of Medicine at DartmouthLebanonNHUSA
| |
Collapse
|
282
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
283
|
Abstract
FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.,Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
284
|
Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci Rep 2016; 6:39247. [PMID: 27976733 PMCID: PMC5157012 DOI: 10.1038/srep39247] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
The role of the different circulating regulatory T-cells (Treg) subsets, as well as their correlation with clinical outcome of non-small cell lung cancer (NSCLC) patients is poorly understood. Peripheral blood from 156 stage III/IV chemotherapy-naive NSCLC patients and 31 healthy donors (HD) was analyzed with flow cytometry for the presence and functionality of CD4+ Treg subsets (naive, effector and terminal effector). Their frequencies were correlated with the clinical outcome. All CD4+ Treg subsets exhibited highly suppressive activity by TGF-β and IL-10 production. The percentages of naive Treg were found elevated in NSCLC patients compared to HD and were associated with poor clinical outcome, whereas the percentage of terminal effector Treg was lower compared to HD and higher levels were correlated with improved clinical response. At baseline, normal levels of naive and effector Treg were associated with longer overall survival (OS) compared to high levels, while the high frequency of the terminal effector Treg was correlated with longer Progression-Free Survival and OS. It is demonstrated, for first time, that particular CD4+ Treg subtypes are elevated in NSCLC patients and their levels are associated to the clinical outcome. The blocking of their migration to the tumor site may be an effective therapeutic strategy.
Collapse
|
285
|
Hartkopf AD, Taran FA, Wallwiener M, Walter CB, Krämer B, Grischke EM, Brucker SY. PD-1 and PD-L1 Immune Checkpoint Blockade to Treat Breast Cancer. Breast Care (Basel) 2016; 11:385-390. [PMID: 28228704 DOI: 10.1159/000453569] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibition represents a major recent breakthrough in the treatment of malignant diseases including breast cancer. Blocking the programmed death receptor-1 (PD-1) and its ligand, PD-L1, has shown impressive antitumor activity and may lead to durable long-term disease control, especially in the triple-negative subtypes of breast cancer (TNBC). Although immune checkpoint blockade is generally well tolerated, specific immune-related adverse events (irAEs) may occur. This review summarizes the clinical efficacy, perspectives, and future challenges of using PD-1/PD-L1-directed antibodies in the treatment of breast cancer.
Collapse
Affiliation(s)
- Andreas D Hartkopf
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| | - Florin-Andrei Taran
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| | - Markus Wallwiener
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Christina B Walter
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| | - Bernhard Krämer
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| | - Eva-Maria Grischke
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, Tübingen, Germany, Heidelberg, Germany
| |
Collapse
|
286
|
de la Cruz-Merino L, Chiesa M, Caballero R, Rojo F, Palazón N, Carrasco FH, Sánchez-Margalet V. Breast Cancer Immunology and Immunotherapy: Current Status and Future Perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:1-53. [PMID: 28325210 DOI: 10.1016/bs.ircmb.2016.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer immunology has gained renewed interest in the past few years due to emerging findings on mechanisms involved in tumoral immune evasion. Indisputably, immune edition is currently considered a critical hallmark of cancer. Basic research has revealed new targets which can be modulated in the clinical setting with new compounds and strategies. As recent evidence confirms, breast cancer (BC) is a complex and heterogeneous disease in which host immune responses play a substantial role. T-infiltrating lymphocytes measurement is suggested as a powerful new tool necessary to predict early BC evolution, especially in HER2-positive and triple negative subtypes. However, T-infiltrating lymphocytes, genomic platforms, and many other biomarkers in tissue and peripheral blood (e.g., regulatory T cells and myeloid-derived suppressor cells) are not the only factors being evaluated regarding their potential role as prognostic and/or predictive factors. Many ongoing clinical trials are exploring the activity of immune checkpoint modulators in BC treatment, both in the advanced and neoadjuvant setting. Although this field is expanding with exciting new discoveries and promising clinical results-and creating great expectations-there remain many uncertainties yet to be addressed satisfactorily before this long awaited therapeutic promise can come to fruition.
Collapse
Affiliation(s)
| | - M Chiesa
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - R Caballero
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - F Rojo
- Fundación Jiménez Díaz, Madrid, Spain
| | - N Palazón
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - F H Carrasco
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | | |
Collapse
|
287
|
Hwang HK, Kim HI, Kim SH, Choi J, Kang CM, Kim KS, Lee WJ. Prognostic impact of the tumor-infiltrating regulatory T-cell (Foxp3 +)/activated cytotoxic T lymphocyte (granzyme B +) ratio on resected left-sided pancreatic cancer. Oncol Lett 2016; 12:4477-4484. [PMID: 28105157 PMCID: PMC5228542 DOI: 10.3892/ol.2016.5252] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Among the subsets of tumor-infiltrating lymphocytes (TILs), activated cytotoxic T lymphocytes (granzyme B+) have an antitumor effect, while regulatory T lymphocytes [forkhead box P3 (Foxp3)+] suppress the antitumor immune response. The aim of the present study was to investigate the possible associations between TIL subsets and survival outcomes in patients with left-sided pancreatic ductal adenocarcinoma (PDAC). From January 2000 to December 2008, 30 patients who underwent curative distal pancreatectomy without neoadjuvant chemoradiotherapy due to left-sided PDAC were enrolled in the present study. TIL subsets were enumerated by immunohistochemical staining for cluster of differentiation (CD)3, CD4, CD8, Foxp3 and granzyme B in the intra-tumoral areas of tissue blocks. Patients were divided into two groups according to the median value of the absolute counts and relative ratios of TIL subsets. In the univariate analysis, age, gender, tumor size, nodal stage, tumor differentiation and lymphovascular/perineural invasion were not significantly associated with survival outcome. However, low levels of preoperative cancer antigen (CA) 19-9 were associated with a longer overall survival (OS), although the association was not significant (37 vs. 18 months; P=0.061). A high level of granzyme B+ was associated with enhanced disease-free survival (DFS) (25 vs. 10 months; P=0.023), and a low Foxp3+/granzyme B+ ratio was associated with a favorable prognosis in terms of DFS (25 vs. 8 months; P=0.008) and OS (47 vs. 17 months; P=0.003). In the multivariate analysis, the ratio of Foxp3+/granzyme B+ was an independent prognostic factor for determining DFS [Exp(B), 3.060; 95% confidence interval (CI), 1.259-47.436; P=0.014] and OS [Exp(B), 3.580; 95% CI, 1.460-8.780; P=0.005]. Among the clinicopathological factors, low levels of CA 19-9 were significantly associated with a low Foxp3+/granzyme B+ ratio (P=0.016). The results of the present study suggested that a low Foxp3+/granzyme B+ ratio may be useful for predicting a good prognosis in surgically resected left-sided PDAC.
Collapse
Affiliation(s)
- Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyoung-Il Kim
- Division of Gastrointestinal Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University College of Pharmacy, Incheon 406-840, Republic of Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyung Sik Kim
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
288
|
Elevated regulatory T cells, surface and intracellular CTLA-4 expression and interleukin-17 in the lung cancer microenvironment in humans. Cancer Immunol Immunother 2016; 66:161-170. [PMID: 27866241 PMCID: PMC5281670 DOI: 10.1007/s00262-016-1930-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Abstract
Regulatory T cells (Tregs) play an important role in the suppression of the immune response in lung cancer. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) expressed on T lymphocytes is capable of downregulating cytotoxic T cells and is constitutively expressed on Tregs. Little is known about the population of Tregs with two forms of CTLA-4: surface (s) and intracellular (in) in the lung cancer environment. Th17 cells defined by production of IL-17 have pleiotropic functions in anticancer immune response. Our aim was to detect the elements of immune response regulation in lung cancer in three compartments: by analysis of bronchoalveolar lavage fluid (BALF) from the lung affected by cancer (clBALF), healthy symmetrical lung (hlBALF) and peripheral blood (PB) from the same patient. A total of 54 samples were collected. Tregs, (s)CTLA-4, (in)CTLA-4 were detected by flow cytometry with antibodies against CD4, CD25, Foxp3, CD127, CTLA-4, and concentration of IL-17 was estimated by ELISA. We observed a significantly higher proportion of Tregs in clBALF than in hlBALF or PB (8.5 vs. 5.0 vs. 5.1%, respectively, p < 0.05). The median proportion of (in)CTLA-4+ Tregs was higher in clBALF than in hlBALF or PB (89.0, 81.5, 56.0%, p < 0.05). IL-17 concentration was the highest in clBALF-6.6 pg/ml. We observed a significant correlation between the proportion of Tregs and (in)CTLA-4+ Tregs with IL-17A concentration in clBALF. We confirmed significant differences in the proportion of regulatory elements between cancerous lung and healthy lung and PB and the usefulness of BALF analysis in evaluation of immune response regulation in local lung cancer environment.
Collapse
|
289
|
Ren L, Yu Y, Wang L, Zhu Z, Lu R, Yao Z. Hypoxia-induced CCL28 promotes recruitment of regulatory T cells and tumor growth in liver cancer. Oncotarget 2016; 7:75763-75773. [PMID: 27716621 PMCID: PMC5342776 DOI: 10.18632/oncotarget.12409] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022] Open
Abstract
Tumor cells craft microenvironment to overcome growth disadvantages and adjust to escape the immunosurveillance during tumorigenesis and metastasis. The evolving adaption to the changing microenvironment is exemplified by the development of strategies to deal with hypoxia resulted from fast proliferation of the tumor cells. In this study, we found that hypoxia hepatocellular carcinoma (HCC) cells recruited Regulatory T cells (Tregs) and expressed more Chemokine (C-C motif) ligand 28 (CCL28). Deletion of CCL28 inhibited Treg recruitment. Furthermore, overexpression of CCL28 promoted tumor growth and Treg infiltration in vivo. Enhanced angiogenesis and VEGF expression was also observed. Moreover, inhibition of HIF1α reversed hypoxia-induced CCL28 upregulation. Taken together, our results demonstrate that HCC recruits Tregs to promote angiogenesis under hypoxic condition by upregulating CCL28 expression. These findings establish a link between Tregs and hypoxia in HCC growth and may provide a new potential therapeutic target for treating HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemotaxis/immunology
- Disease Models, Animal
- Gene Knockout Techniques
- Heterografts
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating
- Mice
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Yang Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Li Wang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Zhifeng Zhu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Rong Lu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
290
|
Li CX, Ling CC, Shao Y, Xu A, Li XC, Ng KTP, Liu XB, Ma YY, Qi X, Liu H, Liu J, Yeung OWH, Yang XX, Liu QS, Lam YF, Zhai Y, Lo CM, Man K. CXCL10/CXCR3 signaling mobilized-regulatory T cells promote liver tumor recurrence after transplantation. J Hepatol 2016; 65:944-952. [PMID: 27245433 DOI: 10.1016/j.jhep.2016.05.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Liver graft injury and tumor recurrence are the major challenges of liver transplantation for the patients with hepatocellular carcinoma (HCC). Here, we aimed to explore the role and mechanism of liver graft injury mobilizing regulatory T cells (Tregs), which lead to late phase tumor recurrence after liver transplantation. METHODS The correlation among tumor recurrence, liver graft injury and Tregs mobilization were studied in 257 liver transplant recipients with HCC and orthotopic rat liver transplantation models. The direct roles of CXCL10/CXCR3 signaling on Tregs mobilization and tumor recurrence were investigated in CXCL10-/- and CXCR3-/- mice models with hepatic IR injury. RESULTS Clinically, patients received the graft with graft weight ratio (GWR) <60% had higher HCC recurrence after liver transplantation than the recipients with GWR ⩾60% graft. More circulating Tregs and higher intragraft TLR4/CXCL10/CXCR3 levels were detected in recipients with GWR <60% graft. These results were further validated in rat transplantation model. Foxp3+ cells and expressions of TLR4, CXCL10, TGFβ, CTLA-4 and CD274 were increased in rat liver tumor tissues from small-for-size graft group. In mouse model, the mobilization and recruitment of Tregs were decreased in TLR4-/-, CXCL10-/- and CXCR3-/- mice compared to wild-type mice. Moreover, less CXCR3+ Tregs were recruited into liver in CXCL10-/- mice after hepatic IR injury. The knockout of CXCL10 and depletion of Tregs inhibited tumor recurrence after hepatic IR injury. CONCLUSION CXCL10/CXCR3 signaling upregulated at liver graft injury directly induced the mobilization and intragraft recruitment of Tregs, which further promoted HCC recurrence after transplantation. LAY SUMMARY There were positive correlation among tumor recurrence, circulating Tregs and liver graft injury after human transplantation for HCC patients. The knockout of CXCL10 decreased hepatic recruitment of CXCR3+ Tregs and late phase tumor recurrence after hepatic IR injury.
Collapse
Affiliation(s)
- Chang Xian Li
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chang Chun Ling
- Department of Surgery, The University of Hong Kong, Hong Kong, China; Department of General Surgery, Affiliated Hospital of Nantong University, Nantong city, 226001, China
| | - Yan Shao
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Cheng Li
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yuen Yuen Ma
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xiang Qi
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Hui Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | - Xin Xiang Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, China; Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Sheng Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yin Fan Lam
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhai
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, China.
| |
Collapse
|
291
|
Hampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, Hillemanns P, Preus L, Knutson KL, Wallace PK, Hong CC, Friel G, Davis W, Nesline M, Pearce CL, Kelemen LE, Goodman MT, Bandera EV, Terry KL, Schoof N, Eng KH, Clay A, Singh PK, Joseph JM, Aben KK, Anton-Culver H, Antonenkova N, Baker H, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Despierre E, Dicks E, Doherty JA, du Bois A, Dürst M, Easton D, Eccles D, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hogdall C, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kelley JL, Kiemeney LA, Klapdor R, Kolomeyevskaya N, Krakstad C, Kjaer SK, Kruszka B, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Liu S, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, et alHampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, Hillemanns P, Preus L, Knutson KL, Wallace PK, Hong CC, Friel G, Davis W, Nesline M, Pearce CL, Kelemen LE, Goodman MT, Bandera EV, Terry KL, Schoof N, Eng KH, Clay A, Singh PK, Joseph JM, Aben KK, Anton-Culver H, Antonenkova N, Baker H, Bean Y, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bruinsma F, Butzow R, Campbell IG, Carty K, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Despierre E, Dicks E, Doherty JA, du Bois A, Dürst M, Easton D, Eccles D, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hogdall C, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kelley JL, Kiemeney LA, Klapdor R, Kolomeyevskaya N, Krakstad C, Kjaer SK, Kruszka B, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Liu S, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Moes-Sosnowska J, Narod SA, Nedergaard L, Nevanlinna H, Nickels S, Olson SH, Orlow I, Weber RP, Paul J, Pejovic T, Pelttari LM, Perkins B, Permuth-Wey J, Pike MC, Plisiecka-Halasa J, Poole EM, Risch HA, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schmitt K, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Tangen IL, Teo SH, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, Tyrer J, van Altena AM, Vergote I, Vierkant RA, Walsh C, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Gayther SA, Ramus SJ, Sellers TA, Schildkraut JM, Phelan CM, Berchuck A, Chenevix-Trench G, Cunningham JM, Pharoah PP, Ness RB, Odunsi K, Goode EL, Moysich KB. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget 2016; 7:69097-69110. [PMID: 27533245 PMCID: PMC5340115 DOI: 10.18632/oncotarget.10215] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 12/31/1969] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/immunology
- Adult
- Aged
- Carcinoma, Ovarian Epithelial
- Female
- Gene Expression Regulation, Neoplastic
- Gene Frequency
- Genetic Predisposition to Disease/genetics
- Genotype
- Humans
- Middle Aged
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Polymorphism, Single Nucleotide
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Risk Factors
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Shalaka S. Hampras
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rikki Cannioto
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Francesmary Modugno
- Department of Epidemiology and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Leah Preus
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul K. Wallace
- Department of Flow & Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Grace Friel
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mary Nesline
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Celeste L. Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Linda E. Kelemen
- Alberta Health Services-Cancer Care, Department of Population Health Research, Calgary, Alberta, Canada
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elisa V. Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Kathryn L. Terry
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nils Schoof
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kevin H. Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alyssa Clay
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Prashant K. Singh
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Janine M. Joseph
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Katja K.H. Aben
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hoda Anton-Culver
- Department of Epidemiology and School of Medicine, University of California Irvine, Irvine, California, USA
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | - Helen Baker
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Yukie Bean
- Department of Obstetrics & Gynecology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Maria Bisogna
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Natalia Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | - Karen Carty
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Linda S. Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Clinic of Opthalmology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joe Dennis
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Evelyn Despierre
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Ed Dicks
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jennifer A. Doherty
- Department of Community and Family Medicine, Section of Biostatistics & Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Doug Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Diana Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology & Reproductive Sciences and Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Aleksandra Gentry-Maharaj
- Institute for Women's Health, Population Health Sciences, University College - London, London, United Kingdom
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Rosalind Glasspool
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Patricia Harrington
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Hanis Nazihah Hasmad
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | | | - Claus Hogdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Edwin S. Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Beth Y. Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melissa Kellar
- Department of Obstetrics & Gynecology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph L. Kelley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rüdiger Klapdor
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nonna Kolomeyevskaya
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Susanne K. Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bridget Kruszka
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jolanta Kupryjanczyk
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Alice W. Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Shashikant Lele
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Lubinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon F.A.G. Massuger
- Department of Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Valeria McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - John R. McLaughlin
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ian McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- Women's Cancer, UCL EGA Institute for Women's Health, London, UK
| | - Joanna Moes-Sosnowska
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Steven A. Narod
- Women's College Research Institute, Toronto, Ontario, Canada
| | - Lotte Nedergaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Stefan Nickels
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - James Paul
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Tanja Pejovic
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Liisa M. Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Barbara Perkins
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jenny Permuth-Wey
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Joanna Plisiecka-Halasa
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Elizabeth M. Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mary Anne Rossing
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Iwona K. Rzepecka
- Department of Pathology and Labolatory Diagnostic, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Eva Schernhammer
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristina Schmitt
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ira Schwaab
- Institut für Humangenetik Wiesbaden, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yurii B Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, Scotland, UK
| | - Weiva Sieh
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Honglin Song
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Ingvild L. Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Agnieszka Timorek
- Department of Obstetrics, Gynecology and Oncology, Warsaw Medical University and Brodnowski Hospital, Warsaw, Poland
| | - Ya-Yu Tsai
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Tyrer
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Anna M. van Altena
- Department of Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Belgium
| | - Robert A. Vierkant
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shan Wang-Gohrke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California, USA
| | - Kristine G. Wicklund
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, Affiliated with UM Cancer Research Institute, Faculty of Medicine, University of Malaya, Malaysia
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Argyrios Ziogas
- Department of Epidemiology and School of Medicine, University of California Irvine, Irvine, California, USA
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Joellen M. Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine M. Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia Chenevix-Trench
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- On behalf of the Australian Ovarian Cancer Study Group
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Roberta B. Ness
- School of Public Health, The University of Texas, Houston, Texas, USA
| | - Kunle Odunsi
- Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
292
|
Tu JF, Ding YH, Ying XH, Wu FZ, Zhou XM, Zhang DK, Zou H, Ji JS. Regulatory T cells, especially ICOS + FOXP3 + regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016; 6:35056. [PMID: 27725696 PMCID: PMC5057140 DOI: 10.1038/srep35056] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumour, especially in Asia. Its prognosis is poor, and there are limited methods for predicting patient survival. This study was carried out to analyse the prognostic value of tumour-infiltrating lymphocytes (TILs), especially regulatory T cells (Tregs), in HCC patients. TILs were analysed in 57 randomly selected HCC patients. The prognostic effects of groups with high and low numbers were evaluated by the Kaplan-Meier and Cox model analyses. Although higher densities of CD3+, CD4+, and CD8+ cytotoxic lymphocytes (CTLs) as well as CD56+ NK cells and CD68+ macrophages were observed in peritumoural tissue, increased numbers of forkhead/winged helix transcription factor P3+ (FOXP3+) Tregs were found in intratumoural tissue. Additionally, regarding ICOS+ FOXP3+ Tregs, an increased prevalence in carcinoma was not only associated with the absolute number but also with the percentage of FOXP3+ cells. Higher Treg levels in tumour tissues indicated a worse prognosis, and the FOXP3+ Tregs/CD4+ T cells ratio was an independent prognostic factor for OS. Therefore, FOXP3+ Tregs, especially ICOS+ FOXP3+ Tregs, contribute to the immunosuppressive HCC microenvironment. High tumour-infiltrating Tregs are thought to be an unfavourable prognostic indicator of HCC.
Collapse
Affiliation(s)
- Jian-Fei Tu
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Xi-Hui Ying
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Fa-Zong Wu
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Xin-Mu Zhou
- Department of Pathology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Deng-Ke Zhang
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Jian-Song Ji
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
293
|
Nocera NF, Lee MC, De La Cruz LM, Rosemblit C, Czerniecki BJ. Restoring Lost Anti-HER-2 Th1 Immunity in Breast Cancer: A Crucial Role for Th1 Cytokines in Therapy and Prevention. Front Pharmacol 2016; 7:356. [PMID: 27766079 PMCID: PMC5052279 DOI: 10.3389/fphar.2016.00356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
The ErbB/B2 (HER-2/neu) oncogene family plays a critical role in the development and metastatic spread of several tumor types including breast, ovarian and gastric cancer. In breast cancer, HER-2/neu is expressed in early disease development in a large percentage of DCIS lesions and its expression is associated with an increased risk of invasion and recurrence. Targeting HER-2 with antibodies such as trastuzumab or pertuzumab has improved survival, but patients with more extensive disease may develop resistance to therapy. Interestingly, response to HER-2 targeted therapies correlates with presence of immune response genes in the breast. Th1 cell production of the cytokines interferon gamma (IFNγ) and TNFα can enhance MHC class I expression, PD-L1 expression, augment apoptosis and tumor senescence, and enhances growth inhibition of many anti-breast cancer agents, including anti-estrogens and HER-2 targeted therapies. Recently, we have identified that a loss of anti-HER-2 CD4 Th1 in peripheral blood occurs during breast tumorigenesis and is dramatically diminished, even in Stage I breast cancers. The loss of anti-HER-2 Th1 response is specific and not readily reversed by standard therapies. In fact, this loss of anti-HER-2 Th1 response in peripheral blood correlates with lack of complete response to neoadjuvant therapy and diminished disease-free survival. This defect can be restored with HER-2 vaccinations in both DCIS and IBC. Correcting the anti-HER-2 Th1 response may have significant impact in improving response to HER-2 targeted therapies. Development of immune monitoring systems for anti-HER-2 Th1 to identify patients at risk for recurrence could be critical to improving outcomes, since the anti-HER-2 Th1 response can be restored by vaccination. Correction of the cellular immune response against HER-2 may prevent recurrence in high-risk patients with DCIS and IBC at risk of developing new or recurrent breast cancer.
Collapse
Affiliation(s)
- Nadia F. Nocera
- Department of Surgery, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| | - M. Catherine Lee
- Comprehensive Breast Program, H. Lee Moffitt Cancer CenterTampa, FL, USA
| | - Lucy M. De La Cruz
- Department of Surgery, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| | - Cinthia Rosemblit
- Department of Surgery, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| | | |
Collapse
|
294
|
Tuo W, Li L, Lv Y, Carrillo J, Brown D, Davis WC, Song J, Zarlenga D, Xiao Z. Abomasal mucosal immune responses of cattle with limited or continuous exposure to pasture-borne gastrointestinal nematode parasite infection. Vet Parasitol 2016; 229:118-125. [DOI: 10.1016/j.vetpar.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/29/2022]
|
295
|
Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res 2016; 2016:4757405. [PMID: 27777963 PMCID: PMC5061970 DOI: 10.1155/2016/4757405] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment consists of malignant cells, stroma, and immune cells. Prominent tumour-infiltrating lymphocytes (TILs) in breast cancer are associated with a good prognosis and are predictors of a pathological complete response (pCR) with neoadjuvant chemotherapy (NAC). The contribution of different T effector/regulatory cells and cytokines to tumour cell death with NAC requires further characterisation and was investigated in this study. Breast tumours from 33 women with large and locally advanced breast cancers undergoing NAC were immunohistochemically (intratumoural, stromal) assessed for T cell subsets and cytokine expression using labelled antibodies, employing established semiquantitative methods. Prominent levels of TILs and CD4+, CD8+, and CTLA-4+ (stromal) T cells and CD8+ : FOXP3+ ratios were associated with a significant pCR; no association was seen with FOXP3+, CTLA-4+ (intratumoural), and PD-1+ T cells. NAC significantly reduced CD4+, FOXP3+, CTLA-4+ (stromal) (concurrently blood FOXP3+, CTLA-4+ Tregs), and PD-1+ T cells; no reduction was seen with CD8+ and CTLA-4+ (intratumoural) T cells. High post-NAC tumour levels of FOXP3+ T cells, IL-10, and IL-17 were associated with a failed pCR. Our study has characterised further the contribution of T effector/regulatory cells and cytokines to tumour cell death with NAC.
Collapse
|
296
|
Abstract
The immune system has evolved to defend the organism against an almost infinite number of pathogens in a locally confined and antigen-specific manner while at the same time preserving tolerance to harmless antigens and self. Regulatory T (Treg) cells essentially contribute to an immunoregulatory network preventing excessive immune responses and immunopathology. There is emerging evidence that Treg cells not only operate in secondary lymphoid tissue but also regulate immune responses directly at the site of inflammation. Hence, the classification of Treg cells might need to be further extended by Treg cell subsets that are functionally and phenotypically polarized by their residency. In this review, we discuss recent findings on these tissue-resident Treg cell subsets and how these cells may operate in a tissue- and context-dependent manner.
Collapse
|
297
|
Shou J, Zhang Z, Lai Y, Chen Z, Huang J. Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs : a systematic review and meta-analysis. BMC Cancer 2016; 16:687. [PMID: 27566250 PMCID: PMC5002190 DOI: 10.1186/s12885-016-2732-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/01/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Forkhead box P3(FOXP3) is known as the optimum maker for regulatory T cells(Tregs), which are conventionally thought to induce immune tolerance to disturb the antitumor immunity. However, the research on the prognostic significance of tumor-infiltrating FOXP3+ Tregs in breast cancer is still limited and the results are controversial. METHODS We searched for studies in PubMed, EMBASE and Web of Science prior to January 2015. The correlation between FOXP3+ tumor-infiltrating lymphocytes(TILs) and breast cancer prognosis was analyzed. The meta-analysis was performed using STATA 11.0. Pooled hazard ratios (HRs) with 95 % confidence intervals (CIs) were used to estimate the degree of the association between FOXP3+ TILs and prognosis of breast cancers, while relative ratios (RRs) were used to evaluate the relationship between FOXP3+ TILs and clinicopathological features of breast cancers. RESULT A total of 15 studies comprising 8666 breast cancer patients met the inclusion criteria. Our results showed that higher FOXP3+ TILs level was significantly associated with poor prognosis in terms of overall survival (OS) (pooled HR:1.60, 95 % CI:1.06-2.42; P < 0.05). We found that breast cancer with higher FOXP3+ TILs level was positively correlated with c-erbB-2 positive status (pooled RR:1.52, 95 % CI:1.32-1.75; P < 0.05), lymph node positive status(pooled RR:1.17, 95 % CI:1.04-1.32; P < 0.05) while there was a negative association with ER positive status(pooled RR:0.65, 95 % CI:0.56-0.76; P < 0.05) and PR positive status(pooled RR:0.66, 95 % CI:0.51-0.87; P < 0.05). CONCLUSION The present results of meta-analysis showed that higher FOXP3+ TILs level in patients with breast cancer led to poor overall survival (OS) and was significantly associated with c-erbB-2 status, lymph node status, ER status and PR status. FOXP3+ TILs level is a promising prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Jiafeng Shou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in MedicalSciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31009 China
| | - Zhigang Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in MedicalSciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31009 China
| | - Yucheng Lai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in MedicalSciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31009 China
| | - Zhigang Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in MedicalSciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31009 China
- Department of Oncology, Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009 China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in MedicalSciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31009 China
- Department of Oncology, Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009 China
| |
Collapse
|
298
|
Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE, Kwon ES, Lee KP, Yang S, Kwon KS, Kim DU, Kang TH, Park YY, Chang S, Cho HJ, Kim SC, Koh SS, Kim S. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 2016; 7:51840-51853. [PMID: 27322081 PMCID: PMC5239518 DOI: 10.18632/oncotarget.10123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is characterized by an immunosuppressive tumor microenvironment (TME) with a profound immune infiltrate populated by a significant number of myeloid-derived suppressor cells (MDSCs). MDSCs have been increasingly recognized for their role in immune evasion and cancer progression as well as their potential as a target for immunotherapy. However, not much is known about the mechanisms regulating their behavior and function in the pancreatic TME. Here we report that pancreatic adenocarcinoma up-regulated factor (PAUF), a soluble protein involved in pancreatic tumorigenesis and metastasis, plays a role as an enhancer of tumor-infiltrating MDSC and its functional activity. We show that PAUF enhanced the accumulation of MDSCs in the spleen and tumor tissues of PAUF-overexpressing tumor cell-injected mice. In addition, PAUF was found to enhance the immunosuppressive function of MDSCs via the TLR4-mediated signaling pathway, which was demonstrated by PAUF-induced increased levels of arginase, nitric oxide (NO), and reactive oxygen species (ROS). The role of PAUF in modulating the functional properties of MDSCs was further demonstrated by the use of a PAUF-neutralizing antibody that caused a decreased number of tumor-infiltrating MDSCs and reduced MDSC immunosuppressive activity. The observations made in mice were confirmed in human pancreatic cancer patient-derived MDSCs, supporting the clinical relevance of our findings. Collectively, we conclude that the PAUF is a powerful and multifunctional promoter of tumor growth through increase and functional activation of MDSCs, suggesting therapeutic potential for targeting PAUF in pancreatic cancers.
Collapse
Affiliation(s)
- Jinhoi Song
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jaemin Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jinsil Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seongyea Jo
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yeon Jeong Kim
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Ji Eun Baek
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Eun-Soo Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Siyoung Yang
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yun-Yong Park
- Department of Biomedical Sciences and Physiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suhwan Chang
- Departments of Biomedical Sciences and Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
299
|
Hutcheson J, Balaji U, Porembka MR, Wachsmann MB, McCue PA, Knudsen ES, Witkiewicz AK. Immunologic and Metabolic Features of Pancreatic Ductal Adenocarcinoma Define Prognostic Subtypes of Disease. Clin Cancer Res 2016; 22:3606-17. [PMID: 26858311 PMCID: PMC4947442 DOI: 10.1158/1078-0432.ccr-15-1883] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is associated with an immunosuppressive microenvironment that supports the growth of the malignancy as well as immune system evasion. Here we examine markers of immunosuppression in PDA within the context of the glycolytic tumor microenvironment, their interrelationship with tumor biology and association with overall survival. EXPERIMENTAL DESIGN We utilized tissue microarrays consisting of 223 PDA patients annotated for clinical stage, tumor size, lymph node involvement, and survival. Expression of CD163, FoxP3, PD-L1, and MCT4 was assessed by IHC and statistical associations were evaluated by univariate and multivariate analysis. Multimarker subtypes were defined by random forest analysis. Mechanistic interactions were evaluated using PDA cell lines and models for myeloid differentiation. RESULTS PDA exhibits discrete expression of CD163, FoxP3, and PD-L1 with modest individual significance. However, combined low expression of these markers was associated with improved prognosis (P = 0.02). PDA tumor cells altered macrophage phenotype and function, which supported enhanced invasiveness in cell-based models. Lactate efflux mediated by MCT4 was associated with, and required for, the selective conversion of myeloid cells. Correspondingly, MCT4 expression correlated with immune markers in PDA cases, and increased the significance of prognostic subtypes (P = 0.002). CONCLUSIONS There exists a complex interplay between PDA tumor cells and the host immune system wherein immunosuppression is associated with negative outcome. MCT4 expression, representative of the glycolytic state of PDA, contributes to the phenotypic conversion of myeloid cells. Thus, metabolic status of PDA tumors is an important determinant of the immunosuppressive environment. Clin Cancer Res; 22(14); 3606-17. ©2016 AACR.
Collapse
Affiliation(s)
- Jack Hutcheson
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Uthra Balaji
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Matthew R Porembka
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas. Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Megan B Wachsmann
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Erik S Knudsen
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Agnieszka K Witkiewicz
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas. Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
300
|
Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology 2016; 16:1069-1079. [PMID: 27424476 DOI: 10.1016/j.pan.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/26/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) still has a poor prognosis and current treatments including immunotherapy often fail. This might be due to the pronounced immunosuppressive milieu impairing infiltration and function of immune effector cells. This study aimed at a comprehensive analysis of immune cells in PDAC patients by determining absolute and relative peripheral blood cell numbers of immune cell subsets along with their functional capacity. METHODS Whole blood cells or isolated peripheral blood mononuclear cells were characterized by flow cytometry. PDAC tissues were analyzed by immunohistochemistry. Anti-tumor activity of immune effector cells was determined by RTCA system. RESULTS Our data demonstrate that relative CD4+ memory- and regulatory T cell numbers were enhanced, whereas determination of absolute cell numbers revealed generally lower immune cell numbers in PDAC patients compared to healthy controls. γδ T cells accumulated at higher numbers compared to αβ T cells in the malignant ductal epithelium of PDAC tissues indicating that γδ T cells infiltrate into the tumor. Cytotoxicity against tumor cells of even small numbers of T- and NK cells could be induced by a bispecific antibody targeting CD3+ T cells to human epidermal growth factor receptor (HER)2 expressing PDAC cells or Trastuzumab. Importantly, a critical number of γδ T cells was required for significant tumor cell killing by a bispecific antibody engaging the γδ T cell receptor on γδ T cells and HER2 on tumor cells. CONCLUSION Monitoring immune cells along with the determination of their functional capacity provides a comprehensive assessment as a prerequisite for a personalized immunotherapeutic PDAC treatment.
Collapse
|