3251
|
Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L, Dani C, Ailhaud G, Amri EZ. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 2010; 27:2753-60. [PMID: 19697348 DOI: 10.1002/stem.200] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one (UCP1) and CIDEA mRNA. This switch is accompanied by an increase in oxygen consumption and uncoupling. The expression of UCP1 protein is associated to stimulation of respiration by beta-AR agonists, including beta3-AR agonist. Thus, hMADS cells represent an invaluable cell model to screen for drugs stimulating the formation and/or the uncoupling capacity of human brown adipocytes that could help to dissipate excess caloric intake of individuals.
Collapse
Affiliation(s)
- Christian Elabd
- IBDC, Université de Nice Sophia-Antipolis, CNRS, 06 107 Nice cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3252
|
Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. CT Hounsfield Units of Brown Adipose Tissue Increase with Activation: Preclinical and Clinical Studies. J Nucl Med 2010; 51:246-50. [DOI: 10.2967/jnumed.109.068775] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3253
|
Abstract
PURPOSE OF REVIEW Regulation of body weight, food intake and appetite is complex and the gastrointestinal tract represents a central organ participating in the regulation of energy homeostasis by signaling to other tissues relevant in this context. This update will provide information regarding recent advances in the understanding of the interaction of gastrointestinal peptides with adipocytes in fat tissue and which biological effects they may exert. RECENT FINDINGS Several gastrointestinal peptides signal to their functional cognate receptors on adipocytes in white adipose tissue (WAT) thereby regulating glucose homeostasis, lipogenesis, lipolysis, free fatty acid release and may also participate in adipocyte differentiation. SUMMARY Gastrointestinal peptides emanate from enteroendocrine cells in the luminal digestive tract and are critical regulators of energy homeostasis, food intake and appetite. Recent studies have identified that gastrointestinal peptides communicate with WAT and exert their biological effects on fat cells. Fundamental understanding of gastrointestinal peptides and their interaction with adipocytes will provide future insights for the development of pharmacological targets in the treatment of obesity and insulin resistant states.
Collapse
Affiliation(s)
- Ishita D Majumdar
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118-2518, USA
| | | |
Collapse
|
3254
|
Arruda AP, Milanski M, Romanatto T, Solon C, Coope A, Alberici LC, Festuccia WT, Hirabara SM, Ropelle E, Curi R, Carvalheira JB, Vercesi AE, Velloso LA. Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 2010; 151:683-94. [PMID: 19996183 DOI: 10.1210/en.2009-0865] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNFalpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNFalpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNFalpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNFalpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNFalpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNFalpha action to be important mediator of the wastage syndrome in cachexia.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Laboratory of Cell Signaling, University of Campinas, 13084-960 Campinas SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3255
|
Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 2010; 20:124-37. [PMID: 20101262 DOI: 10.1038/cr.2010.13] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.
Collapse
Affiliation(s)
- Yong-Xu Wang
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
3256
|
Camera DM, Anderson MJ, Hawley JA, Carey AL. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur J Appl Physiol 2010; 109:307-16. [PMID: 20084391 DOI: 10.1007/s00421-010-1356-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
Abstract
Endurance training results in adaptations that enhance regulation of energy storage and expenditure at rest and during exercise. While processes involved in skeletal muscle oxidative remodelling are well described, it is unknown whether oxidative capacity of human subcutaneous white adipose tissue (WAT) is modified by endurance training. Since human WAT retains rudimentary characteristics required for upregulation of oxidative function, we hypothesised that 10 days of intense endurance training would promote changes in WAT that favour an increase in oxidative capacity. Eleven untrained males (age 22 +/- 1 years, body mass 81 +/- 5 kg, peak oxygen uptake (VO(2peak)) 3.7 +/- 0.2 l/min) undertook a 10-day endurance training protocol. Subcutaneous adipose tissue biopsies were taken from the abdomen prior to and 1 day after completion of training and analysed for fatty acid oxidative capacity, citrate synthase activity, and mitochondrial content via electron microscopy and gene expression analyses. There was a reduction in whole-body rates of carbohydrate oxidation, and concomitant increases in fat oxidation rate measured during 20-min of submaximal cycling (70% of pre-training VO(2peak)) and an increase in basal GLUT4 protein in skeletal muscle. Despite these training-induced adaptations, there were no changes in WAT of ex-vivo fat oxidation rate, maximal citrate synthase activity, mitochondrial volume or in selected genes involved in adipose tissue oxidative capacity. We conclude that 10 days training in previously untrained subjects results in adaptations in skeletal muscle but does not increase the oxidative capacity of WAT.
Collapse
Affiliation(s)
- Donny M Camera
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | |
Collapse
|
3257
|
Madden CJ, Morrison SF. Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2010; 298:R776-83. [PMID: 20071609 DOI: 10.1152/ajpregu.00614.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons in the rostral raphe pallidus (RPa) play an essential role in the regulation of sympathetically mediated metabolism and thermogenesis in brown adipose tissue (BAT). The presence of serotonergic neurons in the RPa that are retrogradely labeled following pseudorabies virus injections into BAT suggests that these neurons play a role in the regulation of BAT. In urethane/chloralose-anesthetized rats, whole body cooling decreased skin (-5.7 +/- 2.3 degrees C) and core (-1.3 +/- 0.2 degrees C) temperatures and resulted in an increase in BAT sympathetic nerve activity (SNA; +1,026 +/- 344% of baseline activity). Serial microinjections of the 5-hydroxytryptamine (5-HT) receptor antagonist, methysergide (1.2 nmol/site), but not saline vehicle, into the intermediolateral cell column (IML) in spinal segments T2-T5 markedly attenuated the cooling-evoked increase in BAT SNA (remaining area under the curve, AUC: 36 +/- 9% of naive cooling response). Microinjections of the 5-HT(1A) receptor antagonist, WAY-100635 (1.2 nmol/site), or the 5-HT(7) receptor antagonist, SB-269970 (1.2 nmol/site), into the T2-T5 IML also attenuated the cold-evoked increase in BAT SNA (remaining activity at peak inhibition: 47 +/- 8% and 39 +/- 12% of the initial cold-evoked response, respectively). The increases in BAT SNA evoked by microinjection of N-methyl-d-aspartate (NMDA) (12 pmol) or bicuculline (30 pmol) into the RPa were attenuated following microinjections of methysergide, but not saline vehicle, into the T2-T5 IML (NMDA remaining AUC, 64 +/- 13% of naive response; bicuculline remaining AUC, 52 +/- 5% of naive response). These results are consistent with our earlier demonstration of a potentiating effect of 5-HT within the IML on BAT SNA and indicate that activation of 5-HT(1A) and 5-HT(7) receptors in the spinal cord contributes to increases in BAT SNA and thermogenesis.
Collapse
|
3258
|
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and can uncouple oxidative phosphorylation to produce heat as a by-product of fatty acid metabolism. This thermogenic effect helps to maintain body temperature and also plays a critical role in energy homeostasis and the regulation of body weight. Both cyclic adenosine monophosphate and cyclic guanosine monophosphate (cGMP) contribute to the intracellular regulation of mitochondrial biogenesis and the differentiation of BAT. New evidence has defined the essential role of the cGMP-dependent protein kinase I in a pathway that modulates the RhoA-ROCK pathway and insulin receptor signaling to elicit BAT differentiation and stimulate thermogenesis.
Collapse
Affiliation(s)
- Paul S Amieux
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
3259
|
Mitochondrial ion transport pathways: role in metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:832-8. [PMID: 20044972 DOI: 10.1016/j.bbabio.2009.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 12/22/2022]
Abstract
Mitochondria are the central coordinators of energy metabolism and alterations in their function and number have long been associated with metabolic disorders such as obesity, diabetes and hyperlipidemias. Since oxidative phosphorylation requires an electrochemical gradient across the inner mitochondrial membrane, ion channels in this membrane certainly must play an important role in the regulation of energy metabolism. However, in many experimental settings, the relationship between the activity of mitochondrial ion transport and metabolic disorders is still poorly understood. This review briefly summarizes some aspects of mitochondrial H+ transport (promoted by uncoupling proteins, UCPs), Ca2+ and K+ uniporters which may be determinant in metabolic disorders.
Collapse
|
3260
|
Wu Y, Zhou S, Smas CM. Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech Dev 2010; 127:183-202. [PMID: 20043993 DOI: 10.1016/j.mod.2009.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022]
Abstract
Obesity is a public health crisis in the United States. Targeting preadipocyte to adipocyte conversion may be an effective approach to regulate adipose mass. Using differential screening we identified Fstl1, a secreted glycoprotein with roles in immunomodulation, cell growth, cardioprotection, and vascularization, as a "preadipokine". Fstl1 is highly expressed in 3T3-L1 preadipocytes and dramatically downregulated early in their differentiation to adipocytes. Northern blot analysis of murine tissues reveals white adipose tissue (WAT), lung and heart as primary sites of Fstl1 transcript expression. In WAT, Fstl1 transcript is restricted to the preadipocyte-containing stromal-vascular cell population. Time course studies in multiple adipogenesis models reveal downregulation of Fstl1 is a hallmark of white and brown adipocyte conversion. By Western blot, we show culture media of 3T3-L1 preadipocytes contains high levels of Fstl1 protein that rapidly decline in adipocyte conversion. Moreover, we observe a correlation between preadipocyte phenotype and Fstl1 expression in that TNFalpha-mediated de-differentiation of 3T3-L1 adipocytes is accompanied by re-expression of Fstl1 transcript and protein. Treatment of 3T3-L1 preadipocytes with a panel of 18 hormones and other agents revealed the demethylating agent 5-aza-cytidine decreases Fstl1 transcript and protein levels by approximately 90%. Furthermore, of 10 additional preadipocyte-expressed genes analyzed we find Pref-1, Col1A1, Sca-1/Ly6a, Lox and Thbs2, are also downregulated by 5-aza-cytidine. Using luciferase reporter constructs containing 791 or 3922 bp of the Fstl1 5' flanking region, we determine negative transcriptional regulation by Kruppel-like factor 15. Together, our data suggest downregulation of Fstl1 expression may be an important feature of preadipocyte to adipocyte conversion.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
3261
|
Israel D, Chua S. Leptin receptor modulation of adiposity and fertility. Trends Endocrinol Metab 2010; 21:10-6. [PMID: 19854659 PMCID: PMC2818174 DOI: 10.1016/j.tem.2009.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/28/2022]
Abstract
The leptin receptor was discovered as a leptin binding protein, which is highly expressed in the choroid plexus. Mapping of the gene's chromosomal locations in rodents revealed that mutations in Lepr were the basis of obesity/diabetes mutations in rodents and humans. Genetic manipulations that target Lepr expression in specific neurons or hypothalamic areas have generated insights into the modes by which body composition and reproductive function are modulated by the leptin receptor. These animal models have also been instrumental in identifying diabetes susceptibility genes. In this review we discuss the evidence that supports the concept of networked functions of leptin receptor as it pertains to feeding, substrate utilization and reproduction.
Collapse
Affiliation(s)
| | - Streamson Chua
- Corresponding author Phone : 718-430-2986 Fax : 718-430-8557
| |
Collapse
|
3262
|
|
3263
|
Sekizawa N, Yoshimoto T, Izumiyama H, Hirata Y. Distinct uptake of 18F-fluorodeoxyglucose by brown adipose tissue with a catecholamine-secreting tumor. Intern Med 2010; 49:2363. [PMID: 21048377 DOI: 10.2169/internalmedicine.49.4293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Naoko Sekizawa
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo
| | | | | | | |
Collapse
|
3264
|
Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, Cochran C, Solomon J, Chen C, Gorden P. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab 2010; 95:256-62. [PMID: 19897683 PMCID: PMC2805496 DOI: 10.1210/jc.2009-0543] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Brown adipose tissue (BAT) found by positron emission/computed tomography (PET-CT) using flouro-deoxyglucose (FDG) is inducible by cold exposure in men. Factors leading to increased BAT are of great interest for its potential role in the treatment of diabetes and obesity. OBJECTIVE We tested whether thyroid hormone (TH) levels are related to the volume and activity of BAT in a patient with a mutation in the insulin receptor gene. DESIGN/SETTING/INTERVENTION: Our work was based on the case report of a patient in an observational study at the National Institutes of Health. PATIENT The patient discontinued insulin and oral antidiabetics after thyroidectomy and suppressive-dose levothyroxine therapy for thyroid cancer. PET-CT uptake in BAT was confirmed by histology and molecular analysis. OUTCOMES PET-CT studies were performed, and we measured hemoglobin A1c and resting energy expenditure before and after levothyroxine discontinuation for thyroid cancer testing. Molecular studies of BAT and white adipose samples are presented. RESULT Supraclavicular and periumbilical sc adipose tissue demonstrated molecular features of BAT including uncoupling protein-1, type 2 deiodinase, and PR domain containing 16 by quantitative PCR. Activity of type 2 deiodinase activity was increased. The discontinuation of levothyroxine resulted in decreased FDG uptake and diminished volume of BAT depots accompanied by worsening of diabetic control. CONCLUSIONS This case demonstrates the TH effect on BAT activity and volume in this patient and an association between BAT activity and glucose levels in this patient. Because the contribution of TH on skeletal muscle energy expenditure and fuel metabolism was not assessed, an association between BAT activity and glucose homeostasis can only be suggested.
Collapse
Affiliation(s)
- Monica C Skarulis
- Clinical Endocrine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-1613, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3265
|
Mattson MP. Perspective: Does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9:69-76. [PMID: 19969105 DOI: 10.1016/j.arr.2009.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 01/01/2023]
Abstract
The most commonly studied laboratory rodents possess a specialized form of fat called brown adipose tissue (BAT) that generates heat to help maintain body temperature in cold environments. In humans, BAT is abundant during embryonic and early postnatal development, but is absent or present in relatively small amounts in adults where it is located in paracervical and supraclavicular regions. BAT cells can 'burn' fatty acid energy substrates to generate heat because they possess large numbers of mitochondria in which oxidative phosphorylation is uncoupled from ATP production as a result of a transmembrane proton leak mediated by uncoupling protein 1 (UCP1). Studies of rodents in which BAT levels are either increased or decreased have revealed a role for BAT in protection against diet-induced obesity. Data suggest that individuals with low levels of BAT are prone to obesity, insulin resistance and cardiovascular disease, whereas those with higher levels of BAT maintain lower body weights and exhibit superior health as they age. BAT levels decrease during aging, and dietary energy restriction increases BAT activity and protects multiple organ systems including the nervous system against age-related dysfunction and degeneration. Future studies in which the effects of specific manipulations of BAT levels and thermogenic activity on disease processes in animal models (diabetes, cardiovascular disease, cancers, neurodegenerative diseases) are determined will establish if and how BAT affects the development and progression of age-related diseases. Data from animal studies suggest that BAT and mitochondrial uncoupling can be targeted for interventions to prevent and treat obesity and age-related diseases. Examples include: diet and lifestyle changes; specific regimens of mild intermittent stress; drugs that stimulate BAT formation and activity; induction of brown adipose cell progenitors in muscle and other tissues; and transplantation of brown adipose cells.
Collapse
|
3266
|
Ribeiro MO, Bianco SDC, Kaneshige M, Schultz JJ, Cheng SY, Bianco AC, Brent GA. Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology 2010; 151:432-40. [PMID: 19906816 PMCID: PMC2817565 DOI: 10.1210/en.2009-0667] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cold-induced adaptive (or nonshivering) thermogenesis in small mammals is produced primarily in brown adipose tissue (BAT). BAT has been identified in humans and becomes more active after cold exposure. Heat production from BAT requires sympathetic nervous system stimulation, T(3), and uncoupling protein 1 (UCP1) expression. Our previous studies with a thyroid hormone receptor-beta (TR beta) isoform-selective agonist demonstrated that after TR beta stimulation alone, adaptive thermogenesis was markedly impaired, although UCP-1 expression in BAT was normal. We used mice with a dominant-negative TR beta PV mutation (frameshift mutation in resistance to thyroid hormone patient PV) to determine the role of TR beta in adaptive thermogenesis and UCP1 expression. Wild-type and PV mutant mice were made hypothyroid and replaced with T(3) (7 ng/g x d) for 10 d to produce similar serum thyroid hormone concentration in the wild-type and mutant mice. The thermogenic response of interscapular BAT, as determined by heat production during iv infusions of norepinephrine, was reduced in PV beta heterozygous and homozygous mutant mice. The level of UCP1, the key thermogenic protein in BAT, was progressively reduced in PV beta(+/-) and PV beta(-/-) mutant mice. Brown adipocytes isolated from PV mutant mice had some reduction in cAMP and glycerol production in response to adrenergic stimulation. Defective adaptive thermogenesis in TR beta PV mutant mice is due to reduced UCP1 expression and reduced adrenergic responsiveness. TR beta mediates T(3) regulation of UCP1 in BAT and is required for adaptive thermogenesis.
Collapse
Affiliation(s)
- Miriam O Ribeiro
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, California 90073, USA
| | | | | | | | | | | | | |
Collapse
|
3267
|
Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J, Holmberg KH, Klein I, Klaus J, Gomez LF, Kolb H, Secrest J, Jochems J, Myashiro K, Buckley P, Hadcock JR, Eberwine J, Conti B, Bartfai T. Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 2010; 59:43-50. [PMID: 19846801 PMCID: PMC2797943 DOI: 10.2337/db09-1128] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[(18)F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor-positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor-expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3-kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Iustin V. Tabarean
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Olivia Osborn
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
- Corresponding author: Olivia Osborn,
| | - Kayo Mitsukawa
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Izabella Klein
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Joe Klaus
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Luis F. Gomez
- Siemens Medical Solutions, Healthcare Imaging and Information Technology, Molecular Imaging Biomarker Research, Culver City, California
| | - Hartmuth Kolb
- Siemens Medical Solutions, Healthcare Imaging and Information Technology, Molecular Imaging Biomarker Research, Culver City, California
| | - James Secrest
- Siemens Medical Solutions, Healthcare Imaging and Information Technology, Molecular Imaging Biomarker Research, Culver City, California
| | - Jeanine Jochems
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Myashiro
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter Buckley
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - James Eberwine
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruno Conti
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Tamas Bartfai
- The Harold L. Dorris Neurological Research Institute, Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
3268
|
|
3269
|
VandenBerg P. The Canadian Diabetes Association Invests More Than $6.8 Million in Research. Can J Diabetes 2010. [DOI: 10.1016/s1499-2671(10)43005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3270
|
Kozak LP, Koza RA. The genetics of brown adipose tissue. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 94:75-123. [PMID: 21036323 DOI: 10.1016/b978-0-12-375003-7.00004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue is highly differentiated and has evolved as a mechanism for heat production based upon uncoupling of mitochondrial oxidative phosphorylation. Additionally, large amounts of lipid can be stored in the cells to provide fuel necessary for heat production upon adrenergic stimulation from the central nervous system, and a highly developed vascular system evolved to rapidly deliver heat to vital organs. For unknown reasons, the development of brown adipocytes has two independent pathways: one originates from muscle progenitor cells in the fetus and leads to a fully functional cell at birth (interscapular-type brown fat), while the other transiently emerges in traditional white fat depots at weaning, regresses, and then can be induced in adult mice upon adrenergic stimulation. No genetic variants have been found for interscapular fat, but naturally occurring alleles at eight genetic loci in mice lead to over 100-fold variation for brown adipocytes in white fat upon adrenergic stimulation. The ability to activate this potential for energy expenditure is of great interest in obesity research.
Collapse
Affiliation(s)
- Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
3271
|
Murholm M, Dixen K, Qvortrup K, Hansen LHL, Amri EZ, Madsen L, Barbatelli G, Quistorff B, Hansen JB. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment. PLoS One 2009; 4:e8458. [PMID: 20107496 PMCID: PMC2809086 DOI: 10.1371/journal.pone.0008458] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/03/2009] [Indexed: 11/19/2022] Open
Abstract
Background Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1) and a remarkably higher mitochondrial abundance in brown adipocytes. Methodology/Principal Findings Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset of the same genes were induced during white adipose conversion. In addition, PR domain containing 16 (PRDM16) was found to be expressed at substantially higher levels in brown compared to white pre-adipocytes and adipocytes. We demonstrate that forced expression of Tfam but not Tfb2m in brown adipocyte precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. Conclusions/Significance Using both in vitro and in vivo model systems of white and brown fat cell differentiation, we report a detailed characterisation of gene expression linked to mitochondrial biogenesis and function. We find significant differences in differentiating white and brown adipocytes, which might explain the notable increase in mitochondrial content observed during brown adipose conversion. In addition, our data support a key role of PRDM16 in triggering brown adipocyte differentiation, including mitochondrial biogenesis and expression of UCP1.
Collapse
Affiliation(s)
- Maria Murholm
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karen Dixen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lillian H. L. Hansen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ez-Zoubir Amri
- IBDC, Université de Nice Sophia-Antipolis, CNRS, UMR 6543, Nice, France
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Giorgio Barbatelli
- Department of Molecular Pathology and Innovative Therapies, School of Medicine, University of Ancona, Ancona, Italy
| | - Bjørn Quistorff
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jacob B. Hansen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
3272
|
Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2009; 285:7153-64. [PMID: 20028987 DOI: 10.1074/jbc.m109.053942] [Citation(s) in RCA: 1030] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classic brown adipocytes (adipomyocytes), and these cells therefore constitute a subset of adipocytes ("brite" adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.
Collapse
Affiliation(s)
- Natasa Petrovic
- Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
3273
|
Miranda S, González-Rodríguez A, Revuelta-Cervantes J, Rondinone CM, Valverde AM. Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal 2009; 22:645-59. [PMID: 20026400 DOI: 10.1016/j.cellsig.2009.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
Abstract
Insulin is an inducer of brown fat adipogenesis through the activation of a signalling network that involves positive/negative modulators. Given the importance of brown adipose tissue (BAT) for basal thermogenic energy expenditure, we investigated the role of PTP1B in the acquisition of terminal differentiated phenotype and in the apoptotic responses of brown adipocytes. Immortalized brown preadipocytes lacking (PTP1B(-/-)) or expressing (PTP1B(+/+)) PTP1B have been generated. PTP1B deficiency accelerated a full program of brown adipogenesis including induction of transcription factors, coactivators, adipogenic markers and signalling molecules. Fully differentiated PTP1B(-/-) brown adipocytes were resistant to tumor necrosis factor (TNFalpha)-induced apoptosis as these cells were protected against caspase-8 activation, FLIP degradation, Bid cleavage and caspase-3 activation compared to wild-type controls. These events were recovered by PTP1B rescue. Survival signalling including phosphorylation of IRS-1 and Akt/PKB and BclxL expression were decreased in TNFalpha-treated PTP1B(-/-) cells but not in the wild-type. Similarly, PTP1B(-/-) brown adipocytes were protected against resveratrol-induced apoptosis. Phosphorylation of Akt/PKB and Foxo1 phosphorylation/acetylation decreased exclusively in resveratrol-treated wild-type cells, leading to nuclear localization of Foxo1 and up-regulation of Bim. Thus, PTP1B inhibition could be of benefit against obesity by counteracting TNFalpha-induced brown fat atrophy, and combined with resveratrol might improve low-grade inflammation.
Collapse
Affiliation(s)
- Soledad Miranda
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC/UAM), C/ Arturo Pérez Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
3274
|
Baffy G. Uncoupling protein-2 and cancer. Mitochondrion 2009; 10:243-52. [PMID: 20005987 DOI: 10.1016/j.mito.2009.12.143] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/12/2009] [Accepted: 12/07/2009] [Indexed: 02/06/2023]
Abstract
Cancer cells respond to unfavorable microenvironments such as nutrient limitation, hypoxia, oxidative stress, and host defense by comprehensive metabolic reprogramming. Mitochondria are linked to this complex adaptive response and emerging evidence indicates that uncoupling protein-2 (UCP2), a mitochondrial inner membrane anion carrier, may contribute to this process. Effects of UCP2 on mitochondrial bioenergetics, redox homeostasis, and oxidant production in cancer cells may modulate molecular pathways of macromolecular biosynthesis, antioxidant defense, apoptosis, cell growth and proliferation, enhancing robustness and promoting chemoresistance. Elucidation of these interactions may identify novel anti-cancer strategies.
Collapse
Affiliation(s)
- Gyorgy Baffy
- VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3275
|
Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 2009; 35:298-307. [PMID: 20006514 DOI: 10.1016/j.tibs.2009.11.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 12/15/2022]
Abstract
Mitochondrial uncoupling proteins disengage substrate oxidation from ADP phosphorylation by dissipating the proton electrochemical gradient that is required for ATP synthesis. In doing this, the archetypal uncoupling protein, UCP1, mediates adaptive thermogenesis. By contrast, its paralogues UCP2 and UCP3 are not thought to mediate whole body thermogenesis in mammals. Instead, they have been implicated in a variety of physiological and pathological processes, including protection from oxidative stress, negative regulation of glucose sensing systems and the adaptation of fatty acid oxidation capacity to starving. Although much work has been devoted to how these proteins are activated, little is known of the mechanisms that reverse this activation.
Collapse
Affiliation(s)
- Vian Azzu
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | |
Collapse
|
3276
|
Komatsu M, Tong Y, Li Y, Nakajima T, Li G, Hu R, Sugiyama E, Kamijo Y, Tanaka N, Hara A, Aoyama T. Multiple roles of PPARalpha in brown adipose tissue under constitutive and cold conditions. Genes Cells 2009; 15:91-100. [PMID: 20002497 DOI: 10.1111/j.1365-2443.2009.01368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor family, regulating fatty acid degradation in many organs. Two-dimensional SDS-PAGE of brown adipose tissue (BAT) from PPARalpha-null mice produced a higher-density spot. Proteomic analysis indicated that the protein was pyruvate dehydrogenase beta (PDHbeta). To observe PDHbeta regulation in BAT, the organ was stimulated by long-term cold exposure, and the activities of associated enzymes were investigated. Histological and biochemical analyses of BAT showed a significant decrease in the triglyceride content in wild-type mice and some degree of decrease in PPARalpha-null mice on cold exposure. Analyses of molecules related to glucose metabolism showed that the expression of PDHbeta is under PPARalpha-specific regulation, and that glucose degradation ability may decrease on cold exposure. In contrast, analyses of molecules related to fatty acid metabolism showed that numerous PPARalpha/gamma target molecules are induced on cold exposure, and that fatty acid degradation ability in wild-type mice is markedly enhanced and also increases to same degree in PPARalpha-null mice on cold exposure. Thus, this study proposes novel and multiple roles of PPARalpha in BAT.
Collapse
Affiliation(s)
- Makiko Komatsu
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3277
|
Pfeifer A, VanHook AM. Science Signaling
Podcast: 1 December 2009. Sci Signal 2009. [DOI: 10.1126/scisignal.299pc22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein kinase G is required for the differentiation and fat-burning function of brown adipose tissue.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53113 Bonn, Germany
- Pharma-Center, University of Bonn, 53113 Bonn, Germany
| | - Annalisa M. VanHook
- Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| |
Collapse
|
3278
|
McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ. Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 2009; 109:27-33. [DOI: 10.1007/s00421-009-1295-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
3279
|
|
3280
|
Baxter RC, Twigg SM. Actions of IGF binding proteins and related proteins in adipose tissue. Trends Endocrinol Metab 2009; 20:499-505. [PMID: 19801194 DOI: 10.1016/j.tem.2009.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factors (IGFs), their binding proteins (IGFBPs) and structurally related proteins have been identified in adipose tissue but their roles in adipose tissue are poorly understood. IGF-I and IGFBP-3 expression increase during human preadipocyte differentiation. However, whereas IGF-I stimulates this process, IGFBP-3 is inhibitory both to preadipocyte differentiation and to differentiated adipocyte function. The direct interaction of IGFBP-3 with peroxisome proliferator-activated receptor-gamma is believed to contribute to its inhibitory effect on differentiation. Connective tissue growth factor (CTGF/CCN2) shares weak structural homology and functional similarities with IGFBP-3, including inhibition of preadipocyte differentiation. This review examines the current knowledge of IGFBP regulation and actions in adipocytes and proposes a common regulatory pathway involving IGFBP-3 and CTGF/CCN2.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards NSW 2065, Australia.
| | | |
Collapse
|
3281
|
McLeod KJ, Lesperance LM, Laramee C. Influence of indoor cooling on heat balance and body weight gain in Americans over recent decades. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3282
|
Haas B, Mayer P, Jennissen K, Scholz D, Berriel Diaz M, Bloch W, Herzig S, Fässler R, Pfeifer A. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci Signal 2009; 2:ra78. [PMID: 19952371 DOI: 10.1126/scisignal.2000511] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brown adipose tissue (BAT) is a primary site of energy expenditure through thermogenesis, which is mediated by the uncoupling protein-1 (UCP-1) in mitochondria. Here, we show that protein kinase G (PKG) is essential for brown fat cell differentiation. Induction of adipogenic markers and fat storage was impaired in the absence of PKGI. Furthermore, PKGI mediated the ability of nitric oxide (NO) and guanosine 3',5'-monophosphate (cGMP) to induce mitochondrial biogenesis and increase the abundance of UCP-1. Mechanistically, we found that PKGI controlled insulin signaling in BAT by inhibiting the activity of RhoA and Rho-associated kinase (ROCK), thereby relieving the inhibitory effects of ROCK on insulin receptor substrate-1 and activating the downstream phosphoinositide 3-kinase-Akt cascade. Thus, PKGI links NO and cGMP signaling with the RhoA-ROCK and the insulin pathways, thereby controlling induction of adipogenic and thermogenic programs during brown fat cell differentiation.
Collapse
Affiliation(s)
- Bodo Haas
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3283
|
Abstract
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Fundamental for the development of novel therapeutics for obesity and its associated metabolic syndromes is an understanding of the regulation of fat cell development. Recent computational and experimental studies have shown that microRNAs (miRNAs) play a role in metabolic tissue development, lipid metabolism and glucose homeostasis. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. In this review we summarize the current state of understanding of the roles of miRNAs in metabolic tissues under normal development and obese conditions, and discuss the potential use of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Huangming Xie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
3284
|
Vriens D, Visser EP, de Geus-Oei LF, Oyen WJG. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging 2009; 37:1408-25. [PMID: 19936745 PMCID: PMC2886126 DOI: 10.1007/s00259-009-1306-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
Purpose This review aims to provide insight into the factors that influence quantification of glucose metabolism by FDG PET images in oncology as well as their influence on repeated measures studies (i.e. treatment response assessment), offering improved understanding both for clinical practice and research. Methods Structural PubMed searches have been performed for the many factors affecting quantification of glucose metabolism by FDG PET. Review articles and references lists have been used to supplement the search findings. Results Biological factors such as fasting blood glucose level, FDG uptake period, FDG distribution and clearance, patient motion (breathing) and patient discomfort (stress) all influence quantification. Acquisition parameters should be adjusted to maximize the signal to noise ratio without exposing the patient to a higher than strictly necessary radiation dose. This is especially challenging in pharmacokinetic analysis, where the temporal resolution is of significant importance. The literature is reviewed on the influence of attenuation correction on parameters for glucose metabolism, the effect of motion, metal artefacts and contrast agents on quantification of CT attenuation-corrected images. Reconstruction settings (analytical versus iterative reconstruction, post-reconstruction filtering and image matrix size) all potentially influence quantification due to artefacts, noise levels and lesion size dependency. Many region of interest definitions are available, but increased complexity does not necessarily result in improved performance. Different methods for the quantification of the tissue of interest can introduce systematic and random inaccuracy. Conclusions This review provides an up-to-date overview of the many factors that influence quantification of glucose metabolism by FDG PET.
Collapse
Affiliation(s)
- Dennis Vriens
- Department of Nuclear Medicine (internal postal code 444), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
3285
|
Schulz TJ, Tseng YH. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20:523-31. [PMID: 19896888 DOI: 10.1016/j.cytogfr.2009.10.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in embryonic development as well as in the maintenance of normal tissue function later in adult life. However, the role of this family of proteins in formation of adipose tissue has been underappreciated in the field of developmental biology. With the growing epidemic of obesity, improved knowledge of adipocyte development and function is urgently needed. Recently, there have been significant advances in understanding the role of different members of the BMP superfamily in control of adipocyte differentiation and systemic energy homeostasis. This review summarizes recent progress in understanding how BMPs specify adipose cell fate in stem/progenitor cells and their potential role in energy metabolism. We propose that BMPs provide instructive signals for adipose cell fate determination and regulate adipocyte function. These findings have opened up exciting opportunities for developing new therapeutic approaches for the treatment of obesity and its many associated metabolic disorders.
Collapse
Affiliation(s)
- Tim J Schulz
- Joslin Diabetes Center, One Joslin Place, and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
3286
|
Solak Y, Atalay H. Nebivolol in the treatment of metabolic syndrome: making the fat more brownish. Med Hypotheses 2009; 74:614-5. [PMID: 19892472 DOI: 10.1016/j.mehy.2009.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 10/04/2009] [Indexed: 01/25/2023]
|
3287
|
Abstract
Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Saverio Cinti
- Faculty of Medicine, Univ. of Ancona (Politecnica delle Marche Via Tronto 10a, 60020 Ancona, Italy.
| |
Collapse
|
3288
|
Brown adipose tissue: A novel marker for non-alcoholic fatty liver disease. Med Hypotheses 2009; 73:864. [DOI: 10.1016/j.mehy.2009.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 04/12/2009] [Accepted: 04/18/2009] [Indexed: 11/19/2022]
|
3289
|
Abstract
OBJECTIVE Brown adipose tissue (BAT) is present in adult humans where it may be important in the prevention of obesity, although the main factors regulating its abundance are not well established. BAT demonstrates seasonal variation relating to ambient temperature and photoperiod in mammals. The objective of our study was therefore to determine whether seasonal variation in BAT activity in humans was more closely related to the prevailing photoperiod or temperature. RESEARCH DESIGN AND METHODS We studied 3,614 consecutive patients who underwent positron emission tomography followed by computed tomography scans. The presence and location of BAT depots were documented and correlated with monthly changes in photoperiod and ambient temperature. RESULTS BAT activity was demonstrated in 167 (4.6%) scans. BAT was demonstrated in 52/724 scans (7.2%) in winter compared with 27/1,067 (2.5%) in summer months (P < 0.00001, chi(2) test). Monthly changes in the occurrence of BAT were more closely related to differences in photoperiod (r(2) = 0.876) rather than ambient temperature (r(2) = 0.696). Individuals with serial scans also demonstrated strong seasonal variation in BAT activity (average standardized uptake value [SUV(max)] 1.5 in July and 9.4 in January). BAT was also more common in female patients (female: n = 107, 7.2%; male: n = 60, 2.8%; P < 0.00001, chi(2) test). CONCLUSIONS Our study demonstrates a very strong seasonal variation in the presence of BAT. This effect is more closely associated with photoperiod than ambient temperature, suggesting a previously undescribed mechanism for mediating BAT function in humans that could now potentially be recruited for the prevention or reversal of obesity.
Collapse
Affiliation(s)
- Iain T.H. Au-Yong
- Departments of Radiology and Nuclear Medicine, Queens Medical Centre, University Hospitals, Nottingham, U.K
| | - Natasha Thorn
- Departments of Radiology and Nuclear Medicine, Queens Medical Centre, University Hospitals, Nottingham, U.K
- Early Life Nutrition Research Unit, Academic Child Health, Division of Human Development, Queens Medical Centre, University Hospitals, Nottingham, U.K
| | - Rakesh Ganatra
- Departments of Radiology and Nuclear Medicine, Queens Medical Centre, University Hospitals, Nottingham, U.K
| | - Alan C. Perkins
- Departments of Radiology and Nuclear Medicine, Queens Medical Centre, University Hospitals, Nottingham, U.K
- Digestive Diseases Biomedical Research Unit, Queens Medical Centre, University Hospitals, Nottingham, U.K
| | - Michael E. Symonds
- Early Life Nutrition Research Unit, Academic Child Health, Division of Human Development, Queens Medical Centre, University Hospitals, Nottingham, U.K
- Respiratory Biomedical Research Unit, School of Clinical Sciences, Queens Medical Centre, University Hospitals, Nottingham, U.K
- Corresponding author: Michael E. Symonds,
| |
Collapse
|
3290
|
Zennaro MC, Caprio M, Fève B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab 2009; 20:444-51. [PMID: 19800255 DOI: 10.1016/j.tem.2009.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 12/21/2022]
Abstract
The mineralocorticoid receptor (MR) mediates aldosterone effects on salt homeostasis and blood pressure regulation. MR activation also promotes inflammation, cardiovascular remodelling and endothelial dysfunction, and affects adipose tissue differentiation and function. Some of these effects derive from MR activation by glucocorticoids. Recent epidemiological studies show that the incidence of metabolic syndrome increases across quartiles of aldosterone, implicating the MR as a central player in metabolic homeostasis, involving electrolyte, water and energy balance. This review summarizes the current understanding of MR-mediated effects in diverse tissues and the role of aldosterone as a cardiometabolic risk factor, and discusses the possible relationship between inappropriate MR activation (by both mineralocorticoids and glucocorticoids) and the development of metabolic syndrome.
Collapse
|
3291
|
Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, Anderson SI. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. SCOLIOSIS 2009; 4:24. [PMID: 19878575 PMCID: PMC2781798 DOI: 10.1186/1748-7161-4-24] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 10/31/2009] [Indexed: 12/24/2022]
Abstract
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Ranjit K Aujla
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Michael P Grevitt
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | | | - Alan Moulton
- Department of Orthopaedic Surgery, King's Mill Hospital, Mansfield, UK
| | - Tabitha L Randell
- Department of Child Health, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Susan I Anderson
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3292
|
Frühbeck G, Becerril S, Sáinz N, Garrastachu P, García-Velloso MJ. BAT: a new target for human obesity? Trends Pharmacol Sci 2009; 30:387-96. [PMID: 19595466 DOI: 10.1016/j.tips.2009.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/03/2009] [Accepted: 05/07/2009] [Indexed: 01/04/2023]
Abstract
Two types of adipose tissue can be distinguished histologically and functionally: white (WAT) and brown adipose tissue (BAT). Whereas BAT is specialized in the production of heat, WAT stores excess energy as triacylglycerols. BAT is present throughout life in rodents, whereas in humans it was thought to involute rapidly postnatally, having essentially disappeared within the first years after birth. However, positron emission tomography has provided evidence that adults retain metabolically active BAT depots that can be induced in response to cold and sympathetic nervous system activation. These findings together with the recent identification of specific molecular determinants (PRDM16 and BMP7) activating brown adipogenesis highlights BAT as a potential relevant target for pharmacological and gene expression manipulation to combat human obesity.
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | | | |
Collapse
|
3293
|
Lindinger A, Peterli R, Peters T, Kern B, von Flüe M, Calame M, Hoch M, Eberle AN, Lindinger PW. Mitochondrial DNA content in human omental adipose tissue. Obes Surg 2009; 20:84-92. [PMID: 19826890 DOI: 10.1007/s11695-009-9987-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/22/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND Impairment of mitochondrial function plays an important role in obesity and the development of insulin resistance. The aim of this project was to investigate the mitochondrial DNA copy number in human omental adipose tissue with respect to obesity. METHODS The mitochondrial DNA (mtDNA) content per single adipocyte derived from abdominal omental adipose tissue was determined by quantitative RT-PCR in a group of 75 patients, consisting of obese and morbidly obese subjects, as well as non-obese controls. Additionally, basal metabolic rate and fat oxidation rate were recorded and expressed as total values or per kilogram fat mass. RESULTS MtDNA content is associated with obesity. Higher body mass index (BMI) resulted in a significantly elevated mtDNA count (ratio = 1.56; p = 0.0331) comparing non-obese (BMI < 30) to obese volunteers (BMI >or= 30). The mtDNA count per cell was not correlated with age or gender. Diabetic patients showed a trend toward reduced mtDNA content. A seasonal change in mtDNA copy number could not be identified. In addition, a substudy investigating the basal metabolic rate and the fasting fat oxidation did not reveal any associations to the mtDNA count. CONCLUSIONS The mtDNA content per cell of omental adipose tissue did not correlate with various clinical parameters but tended to be reduced in patients with diabetes, which may partly explain the impairment of mitochondrial function observed in insulin resistance. Furthermore, the mtDNA content was significantly increased in patients suffering from obesity (BMI above 30). This might reflect a compensatory response to the development of obesity, which is associated with impairment of mitochondrial function.
Collapse
|
3294
|
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119:3329-39. [PMID: 19855132 DOI: 10.1172/jci39228] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 08/26/2009] [Indexed: 12/11/2022] Open
Abstract
The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, beta-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat.
Collapse
Affiliation(s)
- Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, New York, New York10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3295
|
Fernández-Veledo S, Nieto-Vazquez I, Vila-Bedmar R, Garcia-Guerra L, Alonso-Chamorro M, Lorenzo M. Molecular mechanisms involved in obesity-associated insulin resistance: therapeutical approach. Arch Physiol Biochem 2009; 115:227-39. [PMID: 19673658 DOI: 10.1080/13813450903164330] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insulin resistance is an important contributor to the pathogenesis of T2D and obesity is a risk factor for its development. It has been demonstrated that these obesity-related metabolic disorders are associated with a state of chronic low-intensity inflammation. Several mediators released from adipocytes and macrophages, such as the pro-inflammatory cytokines TNF-alpha and IL-6, have been suggested to impair insulin action in peripheral tissues, including fat and skeletal muscle. Such insulin resistance can initially be compensated by increased insulin secretion, but the prolonged presence of the hormone is detrimental for insulin sensitivity. Stress and pro-inflammatory kinases as well as more recent players, phosphatases, seem to be involved in the molecular mechanisms by which pro-inflammatory cytokines and hyperinsulinemia disrupt insulin signalling at the level of IRSs. Pharmacological approaches, such as treatment with PPAR and LXR agonists, overcome such insulin resistance, exerting anti-inflammatory properties as well as controlling the expression of cytokines with tissular specificity.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
3296
|
Festuccia WT, Deshaies Y. Depot specificities of PPARγ ligand actions on lipid and glucose metabolism and their implication in PPARγ-mediated body fat redistribution. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3297
|
Dietrich MO, Horvath TL. The role of mitochondrial uncoupling proteins in lifespan. Pflugers Arch 2009; 459:269-75. [PMID: 19760284 DOI: 10.1007/s00424-009-0729-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/26/2009] [Indexed: 11/27/2022]
Abstract
The increased longevity in modern societies raised the attention to biological interventions that could promote a healthy aging. Mitochondria are main organelles involved in the production of adenosine triphosphate (ATP), the energetic substrate for cellular biochemical reactions. The production of ATP occurs through the oxidative phosphorylation of intermediate substrates derived from the breakdown of lipids, sugars, and proteins. This process is coupled to production of oxygen reactive species (ROS) that in excess will have a deleterious role in cellular function. The damage promoted by ROS has been emphasized as one of the main processes involved in senescence. In the last decades, the discovery of specialized proteins in the mitochondrial inner membrane that promote the uncoupling of proton flux (named uncoupling proteins-UCPs) from the ATP synthase shed light on possible mechanisms implicated in the buffering of ROS and consequently in the process of aging. UCPs are responsible for a physiological uncoupling that leads to decrease in ROS production inside the mitochondria. Thus, induction of uncoupling through UCPs could decrease the cellular damage that occurs during aging due to excess of ROS. This review will focus on the evidence supporting these mechanisms.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
3298
|
Vernochet C, Peres SB, Farmer SR. Mechanisms of obesity and related pathologies: transcriptional control of adipose tissue development. FEBS J 2009; 276:5729-37. [PMID: 19754874 DOI: 10.1111/j.1742-4658.2009.07302.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Obesity and its associated disorders, including diabetes and cardiovascular disease, have now reached epidemic proportions in the Western world, resulting in dramatic increases in healthcare costs. Understanding the processes and metabolic perturbations that contribute to the expansion of adipose depots accompanying obesity is central to the development of appropriate therapeutic strategies. This minireview focuses on a discussion of the recent identification of molecular mechanisms controlling the development and function of adipose tissues, as well as how these mechanisms contribute to the regulation of energy balance in mammals.
Collapse
Affiliation(s)
- Cecile Vernochet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
3299
|
Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, Karas J, Optican R, Bahouth SW, Garrett E, Wolf RY, Carter RA, Robbins T, Wolford D, Samaha J. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 2009; 94:3611-5. [PMID: 19567523 DOI: 10.1210/jc.2009-0571] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Uncoupling protein-1 (UCP-1) is the inner mitochondrial membrane protein that is a specific marker for and mediator of nonshivering thermogenesis in brown adipocytes. OBJECTIVE This study was performed to better understand the putative thermogenic function of human epicardial fat. DESIGN We measured the expression of UCP-1 and brown adipocyte differentiation transcription factors PR-domain-missing 16 (PRDM16) and peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) in epicardial, substernal, and sc thoracic, abdominal, and leg fat. SETTING The study was conducted at a tertiary care hospital cardiac center. PATIENTS Forty-four patients had coronary artery bypass surgery, and six had heart valve replacement. INTERVENTIONS Fat samples were taken at open heart surgery. RESULTS UCP-1 expression was 5-fold higher in epicardial fat than substernal fat and barely detectable in sc fat. Epicardial fat UCP-1 expression decreased with age, increased with body mass index, was similar in women and men and patients on and not on statin therapy, and showed no relationship to epicardial fat volume or waist circumference. UCP-1 expression was similar in patients without and with severe coronary atherosclerosis and metabolic syndrome or type 2 diabetes. PRDM16 and PGC-1 alpha expression was 2-fold greater in epicardial than sc fat. Epicardial fat UCP-1, PRDM16, and PGC1-alpha mRNAs were similar in diabetics treated with thiazolidinediones compared to diabetics not treated with thiazolidinediones. CONCLUSION Because UCP-1 is expressed at high levels in epicardial fat as compared to other fat depots, the possibility should be considered that epicardial fat functions like brown fat to defend the myocardium and coronary vessels against hypothermia. This process could be blunted in the elderly.
Collapse
Affiliation(s)
- Harold S Sacks
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3300
|
Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H, Scherer PE, Farmer SR. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Mol Cell Biol 2009; 29:4714-28. [PMID: 19564408 PMCID: PMC2725706 DOI: 10.1128/mcb.01899-08] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/23/2009] [Accepted: 06/18/2009] [Indexed: 01/02/2023] Open
Abstract
White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor gamma (PPARgamma) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes ("visceral white"), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the "visceral white" genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARgamma prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARgamma in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPalpha and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPalpha, to the minimal promoter of the corresponding genes in response to the PPARgamma ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders.
Collapse
Affiliation(s)
- Cecile Vernochet
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|