301
|
Hierlmeier G, Wolf R. Diphosphorus Release and Heterocumulene Oligomerisation by Nickel Complexes. Eur J Inorg Chem 2022; 2022:e202101057. [PMID: 35915815 PMCID: PMC9314841 DOI: 10.1002/ejic.202101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Indexed: 11/11/2022]
Abstract
The generation of diphosphorus molecules P2 under mild conditions in solution is a useful strategy to generate diphosphines via [4+2] cycloadditions. We recently described the release of P2 units from the nickel butterfly complex [{(IMes)Ni(CO)}2(μ2,η2:η2-P2)] (IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) upon addition of CO gas. Herein, we developed an alternative protocol for the same process using heterocumulenes. In addition to formation of P4 (the dimerisation product of P2), the reactions afford nickel complexes of novel pincer-type ligands. Aryl isothiocyanates undergo a trimerisation within the coordination sphere of nickel and afford square planar nickel complexes with S-C-S pincer-ligand frameworks. Carbon disulfide coordinates to the [(IMes)Ni]-fragment in an η2-fashion, affording a dinuclear complex. Similar products are formed when the N-heterocyclic carbene nickel(0) complex [(IMes)Ni(vtms)2] is used as a precursor (vtms=vinyltrimethylsilane).
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Universität RegensburgInstitut für Anorganische Chemie93040RegensburgGermany
- Princeton UniversityDepartment of ChemistryFrick Laboratory 206PrincetonNJ 08544USA
| | - Robert Wolf
- Universität RegensburgInstitut für Anorganische Chemie93040RegensburgGermany
| |
Collapse
|
302
|
Litle ED, Gabbaï FP. Metal→Carbon Dative Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elishua D. Litle
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - François P. Gabbaï
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
303
|
Riesinger C, Dütsch L, Scheer M. Synthesis and Redox Chemistry of a Homoleptic Iron Arsenic Prismane Cluster. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Manfred Scheer
- University of Regensburg Inorganic Chemistry Universitätsstrasse 31 D-93040 Regensburg GERMANY
| |
Collapse
|
304
|
Mears KL, Stennett CR, Fettinger JC, Vasko P, Power PP. Inhibition of Alkali Metal Reduction of 1‐Adamantanol by London Dispersion Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristian L. Mears
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Cary R. Stennett
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Petra Vasko
- Department of Chemistry University of Helsinki P.O. Box 55 (A. I. Virtasen aukio 1) 00014 Helsinki Finland
| | - Philip P. Power
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
305
|
Tan DH, Xian SY, Li AY. Substituent Effects of Structures and Bonds of Noble Gas Compounds F–Rg–BR2 (Rg = Ar, Kr, Xe, and Rn; R = F, OH, CN, and CCH). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
306
|
Krüger J, Haak J, Wölper C, Cutsail GE, Haberhauer G, Schulz S. Single-Electron Oxidation of Carbene-Coordinated Pnictinidenes-Entry into Heteroleptic Radical Cations and Metalloid Clusters. Inorg Chem 2022; 61:5878-5884. [PMID: 35333051 DOI: 10.1021/acs.inorgchem.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable heavy main group element radicals are challenging synthetic targets. Although several strategies have been developed to stabilize such odd-electron species, the number of heavier pnictogen-centered radicals is limited. We report on a series of two-coordinated pnictogen-centered radical cations [(MecAAC)EGa(Cl)L][B(C6F5)4] (MecAAC = [H2C(CMe2)2NDipp]C; Dipp = 2,6-i-Pr2C6H3; E = As 1, Sb 2, Bi 3; L = HC[C(Me)NDipp]2) synthesized by one-electron oxidation of L(Cl)Ga-substituted pnictinidenes (MecAAC)EGa(Cl)L (E = As I, Sb II, Bi III). 1-3 were characterized by electron paramagnetic resonance (EPR) spectroscopy and single crystal X-ray diffraction (sc-XRD) (1, 2), while quantum chemical calculations support their description as carbene-coordinated pnictogen-centered radical cations. The low thermal stability of 3 enables access to metalloid bismuth clusters as shown by formation of [{LGa(Cl)}3Bi6][B(C6F5)4] (4).
Collapse
Affiliation(s)
- Julia Krüger
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - George E Cutsail
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
307
|
Wallach C, Klein W, Fässler TF. Nonagermanide Zintl Clusters with Mg2+ Counter Ions. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Thomas Friedrich Fässler
- Technische Universität München: Technische Universitat Munchen Department of Chemistry Lichtenbergstr. 4 85747 Garching GERMANY
| |
Collapse
|
308
|
Ordyszewska A, Szynkiewicz N, Chojnacki J, Grubba R. Monomeric Triphosphinoboranes: Intramolecular Lewis Acid-Base Interactions between Boron and Phosphorus Atoms. Inorg Chem 2022; 61:4361-4370. [PMID: 35220712 PMCID: PMC8924927 DOI: 10.1021/acs.inorgchem.1c03618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Herein, we present the synthesis of the first fully characterized monomeric triphosphinoboranes. The simple reaction of boron tribromide with 3 equiv of bulky lithium phosphide tBu2PLi yielded triphosphinoborane (tBu2P)3B. Triphosphinoboranes with diversified phosphanyl substituents were obtained via a two-step reaction, in which isolable bromodiphosphinoborane (tBu2P)2BBr is first formed and then reacts with 1 equiv of less bulky phosphide R2PLi (R2P = Cy2P, iPr2P, tBuPhP, or Ph2P). By utilizing this method, we obtained a series of triphosphinoboranes with the general formula (tBu2P)2BPR2. On the basis of structural and theoretical studies, two main types of triphosphinoborane structures can be distinguished. In the first type, all three electron lone pairs interact with the formally empty p orbital of the central boron atom, resulting in delocalized π bonding, whereas in the second type, one localized P═B bond and two P-B bonds are observed. The Lewis acidic-basic properties of triphosphinoboranes during the reaction of (tBu2P)2BPiPr2 with H3B·SMe2 were analyzed. The P-B bond-containing compound mentioned above not only formed an adduct with BH3 but also activated the B-H bond of the borane molecule, resulting in the incorporation of the BH2 unit into two phosphorus atoms and migration of a hydride to the boron atom of the parent triphosphinoborane. The structures of the triphosphinoboranes were confirmed by single-crystal X-ray analysis, multinuclear nuclear magnetic resonance spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Anna Ordyszewska
- Department of Inorganic Chemistry,
Faculty of Chemistry, Gdańsk University
of Technology, 11/12 Gabriela Narutowicza Strasse, 80-233 Gdańsk, Poland
| | - Natalia Szynkiewicz
- Department of Inorganic Chemistry,
Faculty of Chemistry, Gdańsk University
of Technology, 11/12 Gabriela Narutowicza Strasse, 80-233 Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry,
Faculty of Chemistry, Gdańsk University
of Technology, 11/12 Gabriela Narutowicza Strasse, 80-233 Gdańsk, Poland
| | - Rafał Grubba
- Department of Inorganic Chemistry,
Faculty of Chemistry, Gdańsk University
of Technology, 11/12 Gabriela Narutowicza Strasse, 80-233 Gdańsk, Poland
| |
Collapse
|
309
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
310
|
Zou W, Fettinger JC, Vasko P, Power PP. The Unusual Structural Behavior of Heteroleptic Aryl Copper(I) Thiolato Molecules: Cis vs Trans Structures and London Dispersion Effects. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
311
|
Fu WJ, Li WL, Zhang YX, Zhang JX, Li J. Quantum Chemical Studies of the Electronic Structures of Anti-tumor Agents: AuIIIL+ (L = Porphine, Tetraphenylporphyrin). COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
312
|
First-principles screening in Cu-embedded PtSe2 monolayer as a potential gas sensor upon CO and HCHO in dry-type transformers. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
313
|
Evans MJ, Neale SE, Anker MD, McMullin CL, Coles MP. Potassium Aluminyl Promoted Carbonylation of Ethene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical Sciences Victoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | | | - Mathew D. Anker
- School of Chemical and Physical Sciences Victoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| | | | - Martyn P. Coles
- School of Chemical and Physical Sciences Victoria University of Wellington PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
314
|
Lin J, Yang D, Huang S, Chen X, Wang X, Zhang Y, Xiao B, Jiang X. Cubine Monolayer as a Super Sensor for NO
2
Molecule Detection and Capture. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiayang Lin
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Dongdong Yang
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Shiming Huang
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Xin Chen
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Xianglong Wang
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Yifan Zhang
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Beibei Xiao
- School of Energy and Power Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Xiaobao Jiang
- Department of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 China
| |
Collapse
|
315
|
Rummel L, Seidl M, Timoshkin A, Scheer M. Reactivity of the stibinidene complex [ClSb{Cr(CO)5}2(thf)]. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Manfred Scheer
- University of Regensburg Inorganic Chemistry Universitätsstrasse 31 D-93040 Regensburg GERMANY
| |
Collapse
|
316
|
Lee VY, Sugasawa H, Gapurenko OA, Minyaev RM, Minkin VI, Gornitzka H, Sekiguchi A. 1-Chloroalumole. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vladimir Ya. Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Haruka Sugasawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Olga A. Gapurenko
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Ruslan M. Minyaev
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical
and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation
| | - Heinz Gornitzka
- CNRS, LCC, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077 CEDEX 4 Toulouse, France
| | - Akira Sekiguchi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
317
|
Ghosh A, Jonnalgadda PN. Ab initio and DFT benchmark study for the calculations of isotopic shifts of fundamental frequencies for 2,3-dihydropyran. Struct Chem 2022. [DOI: 10.1007/s11224-021-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
318
|
Wu H, Zhang B, Li X, Hu X. First-principles screening upon Pd-doped HfSe2 monolayer as an outstanding gas sensor for DGA in transformers. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
319
|
Magnoux C, Mills DP. Metallocene anions: From electrochemical curiosities to isolable complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - David P. Mills
- The University of Manchester School of Chemistry Oxford Road M13 9PL Manchester UNITED KINGDOM
| |
Collapse
|
320
|
Dankert F, Hering-Junghans C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem Commun (Camb) 2022; 58:1242-1262. [PMID: 35014640 DOI: 10.1039/d1cc06518a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heavier group 13/15 multiple bonds have been under investigation since the late 80s and to date, several examples have been published, which shows the obsoleteness of the so-called double bond rule. Especially in the last few years, more and more group 13/15 multiple bonds became synthetically feasible and their application in terms of small molecule activation has been demonstrated. Our group has recently shown that the combination of the pnictinidene precursor DipTer-Pn(PMe3) (Pn = P, As) in combination with Al(I) synthons afforded the first examples of phospha- and arsaalumenes as isolable and thermally robust compounds. This feature article is intended to show the recent developments in the field, to outline early synthetic approaches and to discuss strategies to unlock the synthetic potential of these elusive chemical bonds.
Collapse
Affiliation(s)
- F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| |
Collapse
|
321
|
Wu Z, Nußbruch I, Nier S, Dehnen S. Ionothermal Access to Defined Oligomers of Supertetrahedral Selenido Germanate Clusters. JACS AU 2022; 2:204-213. [PMID: 35098237 PMCID: PMC8790736 DOI: 10.1021/jacsau.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 06/14/2023]
Abstract
Supertetrahedral chalcogenido (semi)metalate clusters have been in the focus of inorganic and materials chemistry for many years owing to a variety of outstanding physical and chemical properties. However, a critical drawback in the canon of studying corresponding compounds has been the lack of control in assembling the supertetrahedral units, which have been known as either highly charged monomeric cluster anions or lower charged, yet extended anionic substructures of linked clusters. The latter is the reason for the predominance of applications of such materials in heterogeneous environment, or their solubilization by organic shielding, which in turn was unfavorable regarding the optical properties. Recently, we reported a partial alkylation of such clusters, which allowed for a significantly enhanced solubility at a marginal impact on the optical gap. Herein we showcase the formation of finite cluster oligomers of supertetrahedral architectures by ionothermal syntheses. We were successful in generating the unprecedented dimers and tetramers of the [Ge4Se10]4- anion in salts with imidazolium-based ionic liquid counterions. The oligomers exhibit lower average negative charges and thus reduced electrostatic interactions between anionic clusters and cationic counterions. As a consequence, the salts readily dissolve in common solvents like DMF. Besides, the tetrameric [Ge16Se36]8- anion represents the largest discrete chalcogenide cluster of a group 14 element. We prove that undestroyed cluster oligomers can be transferred into solution by means of electrospray ionization (ESI) mass spectrometry and provide a full set of characteristics of the compounds including crystal structures and optical properties.
Collapse
|
322
|
Heald LF, Garcia JM, Sayres SG. Oxygen Deficiencies in Titanium Oxide Clusters as Models for Bulk Defects. J Phys Chem A 2022; 126:211-220. [PMID: 35005962 DOI: 10.1021/acs.jpca.1c07733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TD-DFT calculations were performed on neutral TinO2n, TinO2n-1, and TinO2n-2 clusters, where n ≤ 7. Calculations show the TinO2n clusters are closed shell systems containing empty d orbitals and that the partially filled d orbitals of the suboxide clusters have a profound effect on their structural, electronic, and topological properties. The low energy photoexcitations of TinO2n clusters are all O-2p to Ti-3d transitions, while the open-shell suboxide clusters are all characterized by d-d transitions that occur at a much smaller optical gap. Upon low energy photoabsorption, the localization of the hole is accompanied by a local bond elongation, i.e., polaron formation, whereas d-electrons are generally delocalized around the cluster. The properties of the clusters, including the oxygen binding energies and structures, were calculated to account for the variation in relative populations found in experimental cluster distributions. Several TinO2n-2 clusters contain higher symmetry which is reflected in their relative stability. In particular, the tetrahedral symmetry of Ti4O6 inhibits charge carrier localization and therefore exhibits higher stability.
Collapse
Affiliation(s)
- Lauren F Heald
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | - Jacob M Garcia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | - Scott G Sayres
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
323
|
Sharma MK, Wölper C, Schulz S. Selective 1,2 addition of polar X-H bonds to the Ga-P double bond of gallaphosphene L(Cl)GaPGaL. Dalton Trans 2022; 51:1612-1616. [PMID: 34994365 DOI: 10.1039/d1dt04299h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gallaphosphene L(Cl)GaPGaL 1 (L = HC[C(Me)N(2,6-i-Pr2-C6H3)]2) reacts at ambient temperature with a series of polar X-H bonds, i.e. ammonia, primary amines, water, phenol, thiophenol, and selenophenol, selectively with 1,2 addition at the polar Ga-P double bond. The gallium atom serves as electrophile and the phosphorous atom is protonated in all reactions. The resulting complexes L(Cl)GaP(H)Ga(X)L (X = NH22, NHi-Pr 3, NHPh 4, OH 5, OXyl 6, SPh 7, SePh 8) were characterized by IR and heteronuclear (1H, 13C{1H}, 31P{1H}) NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| |
Collapse
|
324
|
El-Hendawy MM, Kamel AM, Mohamed MMA. The anti-corrosive behavior of benzo-fused N-heterocycles: an in silico study toward developing organic corrosion inhibitors. Phys Chem Chem Phys 2022; 24:743-756. [PMID: 34935799 DOI: 10.1039/d1cp04820a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work provides a computational protocol to predict the anti-corrosive performance of organic molecules through three successive phases of calculations; electron propagator theory (EPT), Monte Carlo (MC) simulations, and the density functional based tight-binding (DFTB) method. The protocol was applied to investigate the influence of two structural factors on the anti-corrosive performance of benzo fused-N-heterocycles (BFNHs) against the Fe(110) surface in an acidic medium; positional isomerism and the gradual insertion of nitrogen atoms in the heterocycle ring. The choice of BFNHs is attributed to their anti-corrosion activity and their use as building blocks in the molecular structure of many organic inhibitors. The findings indicate that EPT is a safe method for calculating the quantum chemical descriptors of the isolated molecules. Besides, the current work recommends using MC simulations and the DFTB method to describe the physical and chemical adsorption, respectively. Unexpected results were observed, as the gradual insertion of nitrogen atoms is not a specific factor for improving the inhibition efficiency of BFNHs. The findings were crystallized in equations linking the physical and chemical adsorption energies with the quantum chemical descriptors with a correlation exceeding 0.75. Besides, the peri steric hindrance plays an influential role in chemical adsorption. Intriguingly, the continuous introduction of nitrogen atoms does not increase the efficiency of the inhibitor along the way. For example, phthalazine exhibited better efficiency than benzotetrazine. In light of the above, the present protocol helps understand the anti-corrosive behavior of organic inhibitors and provides a feasible method to develop novel corrosion inhibitors.
Collapse
Affiliation(s)
- Morad M El-Hendawy
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.
| | - Asmaa M Kamel
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.
| |
Collapse
|
325
|
Mazarei E, Barker JR. CH 2 + O 2: reaction mechanism, biradical and zwitterionic character, and formation of CH 2OO, the simplest Criegee intermediate. Phys Chem Chem Phys 2022; 24:914-927. [PMID: 34913447 DOI: 10.1039/d1cp04372b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet 3CH2OO (the simplest Criegee intermediate) and 3CH2O2 (dioxirane) have mostly polar biradical character, while singlet 1CH2OO has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of 1CH2 + 3O2 is more than ten times as fast as the reaction of 3CH2 (X3B1) + 3O2 and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the 1CH2O + 3O product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system.
Collapse
Affiliation(s)
- Elham Mazarei
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - John R Barker
- Department of Climate and Space Sciences & Engineering, The University of Michigan, Ann Arbor, MI 48109-2143, USA
| |
Collapse
|
326
|
Krämer F, Radius M, Hinz A, Dilanas MEA, Breher F. Accessing Cationic α-Silylated and α-Germylated Phosphorus Ylides. Chemistry 2022; 28:e202103974. [PMID: 34817892 PMCID: PMC9299657 DOI: 10.1002/chem.202103974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The synthesis and full characterization of α-silylated (α-SiCPs; 1-7) and α-germylated (α-GeCPs; 11-13) phosphorus ylides bearing one chloride substituent R3 PC(R1 )E(Cl)R2 2 (R=Ph; R1 =Me, Et, Ph; R2 =Me, Et, iPr, Mes; E=Si, Ge) is presented. The molecular structures were determined by X-ray diffraction studies. The title compounds were applied in halide abstraction studies in order to access cationic species. The reaction of Ph3 PC(Me)Si(Cl)Me2 (1) with Na[B(C6 F5 )4 ] furnished the dimeric phosphonium-like dication [Ph3 PC(Me)SiMe2 ]2 [B(C6 F5 )4 ]2 (8). The highly reactive, mesityl- or iPr-substituted cationic species [Ph3 PC(Me)SiMes2 ][B(C6 F5 )4 ] (9) and [Ph3 PC(Et)SiiPr2 ][B(C6 F5 )4 ] (10) could be characterized by NMR spectroscopy. Carrying out the halide abstraction reaction in the sterically demanding ether iPr2 O afforded the protonated α-SiCP [Ph3 PCH(Et)Si(Cl)iPr2 ][B(C6 F5 )4 ] (6 dec) by sodium-mediated basic ether decomposition, whereas successfully synthesized [Ph3 PC(Et)SiiPr2 ][B(C6 F5 )4 ] (10) readily cleaves the F-C bond in fluorobenzene. Thus, the ambiphilic character of α-SiCPs is clearly demonstrated. The less reactive germanium analogue [Ph3 PC(Me)GeMes2 ][B{3,5-(CF3 )2 C6 H3 }4 ] (14) was obtained by treating 11 with Na[B{3,5-(CF3 )2 C6 H3 }4 ] and fully characterized including by X-ray diffraction analysis. Structural parameters indicate a strong CYlide -Ge interaction with high double bond character, and consequently the C-E (E=Si, Ge) bonds in 9, 10 and 14 were analyzed with NBO and AIM methods.
Collapse
Affiliation(s)
- Felix Krämer
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry, Division Molecular ChemistryEngesserstraße 1576131KarlsruheGermany
| | - Michael Radius
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry, Division Molecular ChemistryEngesserstraße 1576131KarlsruheGermany
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry, Division Molecular ChemistryEngesserstraße 1576131KarlsruheGermany
| | - Melina E. A. Dilanas
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry, Division Molecular ChemistryEngesserstraße 1576131KarlsruheGermany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry, Division Molecular ChemistryEngesserstraße 1576131KarlsruheGermany
| |
Collapse
|
327
|
Yuan S, Xu B, Li S, Zhu W, Lei S, Guo W, Ren H. Highly efficient photocatalytic reduction of nitrogen into ammonia by single Ru atom catalyst supported by BeO monolayer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
328
|
Lin L, Hu C, deng C, Xu Y, Tao H, Chen Z, Zhang Z. Adsorption of CO and H2S onto pristine and metal (Ni, Pd, Pt, Cu, Ag, and Au)-mediated SnS monolayer: A first-principles study. Phys Chem Chem Phys 2022; 24:19895-19910. [DOI: 10.1039/d2cp02257e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnS monolayer is a new two-dimensional material with a black phosphorous structure, with high carrier mobility and large surface-to-volume ratios, and is an ideal candidate material for gas sensors. The...
Collapse
|
329
|
Bujak M, Stammler HG, Vishnevskiy YV, Mitzel NW. Very close I⋯As and I⋯Sb interactions in trimethylpnictogen-pentafluoroiodobenzene cocrystals. CrystEngComm 2022. [DOI: 10.1039/d1ce01268a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unusually short, for any experimentally characterized molecular (co)crystal, directional C–I⋯As and C–I⋯Sb halogen bonds have been engineered in the supramolecular reactions of the in situ cocrystallized (CH3)3E (E = As or Sb) with C6F5I.
Collapse
Affiliation(s)
- Maciej Bujak
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yury V. Vishnevskiy
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
330
|
Afonin AV, Semenov VA, Vashchenko AV. Digitization of the electron shell via the localized orbital locator formalism: trends in the size and electronegativity changes of atoms across the periodic table. Phys Chem Chem Phys 2022; 24:28127-28133. [DOI: 10.1039/d2cp04203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The parameters of the (3,−3) critical point in the topology of the localized orbital locator inside the electron shell reflect regularity in the change of basic atom properties across the periodic table.
Collapse
Affiliation(s)
- Andrei V. Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation
| | - Valentin A. Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation
| | - Alexander V. Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation
| |
Collapse
|
331
|
Caldeweyher E, Bauer C, Tehrani AS. An open-source framework for fast-yet-accurate calculation of quantum mechanical features. Phys Chem Chem Phys 2022; 24:10599-10610. [DOI: 10.1039/d2cp01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the open-source framework kallisto that enables the efficient and robust calculation of quantum mechanical features for atoms and molecules. For a benchmark set of 49 experimental molecular polarizabilities,...
Collapse
|
332
|
Lindl FD, Fantuzzi F, Mailänder L, Hörl C, Bélanger-Chabot G, Braunschweig H. Azidoborolate anions and azidoborole adducts: isolable forms of an unstable borole azide. Chem Commun (Camb) 2022; 58:4735-4738. [DOI: 10.1039/d2cc00543c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boroles are well known to undergo ring expansion reactions with organic azides to yield 1,2-azaborinines. A synthon featuring both azide and borole moieties within the same molecule, 1-azido-2,3,4,5-tetraphenylborole, was found...
Collapse
|
333
|
Ya. Lee V, Meguro T, Gapurenko OA, Minyaev RM, Minkin VI, Gornitzka H, Sekiguchi A. Phosphatetrasilatricyclo[2.1.0.02,5]pentane. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
334
|
Lou P, Lee JY. Bulk Photovoltaic Effect in GaNGeC Quaternary Compound Semiconductors. Phys Chem Chem Phys 2022; 24:17098-17104. [DOI: 10.1039/d1cp05775h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to the p-n junction photovoltaic effect, the bulk photovoltaic effect is a potential way to overcome the external limitations of solar energy conversion. It is challenging to find new...
Collapse
|
335
|
Reinholdt A, Kwon S, Jafari MG, Gau MR, Caroll PJ, Lawrence C, Gu J, Baik MH, Mindiola DJ. An Isolable Azide Adduct of Titanium(II) Follows Bifurcated Deazotation Pathways to an Imide. J Am Chem Soc 2021; 144:527-537. [PMID: 34963052 DOI: 10.1021/jacs.1c11215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AdN3 (Ad = 1-adamantyl) reacts with the tetrahedral TiII complex [(TptBu,Me)TiCl] (TptBu,Me = hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) to generate a mixture of an imide complex, [(TptBu,Me)TiCl(NAd)] (4), and an unusual and kinetically stable azide adduct of the group 4 metal, namely, [(TptBu,Me)TiCl(γ-N3Ad)] (3). In these conversions, the product distribution is determined by the relative concentration of reactants. In contrast, the azide adduct 3 forms selectively when a masked TiII complex (N2 or AdNC adduct) reacts with AdN3. Upon heating, 3 extrudes dinitrogen in a unimolecular process proceeding through a titanatriazete intermediate to form the imide complex 4, but the observed thermal stability of the azide adduct (t1/2 = 61 days at 25 °C) is at odds with the large fraction of imide complex formed directly in reactions between AdN3 and [(TptBu,Me)TiCl] at room temperature (∼50% imide with a 1:1 stoichiometry). A combination of theoretical and experimental studies identified an additional deazotation pathway, proceeding through a bimetallic complex bridged by a single azide ligand. The electronic origin of this deazotation mechanism lies in the ability of azide adduct 3 to serve as a π-backbonding metallaligand toward free [(TptBu,Me)TiCl]. These findings unveil a new class of azide-to-imide conversions for transition metals, highlighting that the mechanisms underlying this common synthetic methodology may be more complex than conventionally assumed, given the concentration dependence in the conversion of an azide into an imide complex. Lastly, we show how significantly different AdN3 reacts when treated with [(TptBu,Me)VCl].
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Caroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Chad Lawrence
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jun Gu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
336
|
Wilson DWN, Jones DDL, Smith CD, Mehta M, Jones C, Goicoechea JM. Reduction of tert-butylphosphaalkyne and trimethylsilylnitrile with magnesium(I) dimers. Dalton Trans 2021; 51:898-903. [PMID: 34935022 DOI: 10.1039/d1dt03990c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the reactivity of magnesium(I) dimers, [Mg(nacnac)]2 (nacnac = HC[C(Me)N(2,6-iPr2C6H3)]2 ([DippLMg]2) and HC[C(Me)N(2,4,6-Me3C6H2)]2 ([MesLMg]2)), towards the phosphaalkyne tBuCP. The steric profile of the magnesium(I) dimer results in selectivity for different products. The larger diisopropylphenyl derivative yields exclusively the monomeric dimagnesiated phosphaalkene [DippLMg]PC(tBu)([DippLMg]) (1), while the mesityl derivative facilitates reductive coupling of two phosphaalkyne equivalents to give access to the 1,3-diphosphacyclobutadienediide [MesLMg]2[(tBu)2C2P2](2). The reactivity differs in coordinating solvents such as THF, which allowed for the observation of C-P coupled products. For sake of comparison, reactions of magnesium(I) compounds with Me3SiCN were carried out. In contrast to the reactions involving tBuCP, these afforded 1,3-diazabutadienediyl complexes via reductive coupling and silyl migration processes.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| | - Dafydd D L Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Cory D Smith
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Cameron Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|
337
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ‐Donating and Doubly σ/π‐Accepting Ligand Features for Transition Metals**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
338
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ-Donating and Doubly σ/π-Accepting Ligand Features for Transition Metals*. Angew Chem Int Ed Engl 2021; 60:27062-27069. [PMID: 34614275 DOI: 10.1002/anie.202111975] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Indexed: 12/15/2022]
Abstract
We report herein the synthesis, characterization, and coordination chemistry of a free N-aluminylene, namely a carbazolylaluminylene 2 b. This species is prepared via a reduction reaction of the corresponding carbazolyl aluminium diiodide. The coordination behavior of 2 b towards transition metal centers (W, Cr) is shown to afford a series of novel aluminylene complexes 3-6 with diverse coordination modes. We demonstrate that the tri-active ambiphilic Al center in 2 b can behave as: 1. a σ-donating and doubly π-accepting ligand; 2. a σ-donating, σ-accepting and π-accepting ligand; and 3. a σ-donating and doubly σ-accepting ligand. Additionally, we show ligand exchange at the aluminylene center providing access to the modulation of electronic properties of transition metals without changing the coordinated atoms. Investigations of 2 b with IDippCuCl (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) show an unprecedented aluminylene-alumanyl transformation leading to a rare terminal Cu-alumanyl complex 8. The electronic structures of such complexes and the mechanism of the aluminylene-alumanyl transformation are investigated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
339
|
Fang F, Kang JX, Xu CQ, Chang J, Zhang J, Li S, Chen X. Which Type of Pincer Complex Is Thermodynamically More Stable? Understanding the Structures and Relative Bond Strengths of Group 10 Metal Complexes Supported by Benzene-Based PYCYP Pincer Ligands. Inorg Chem 2021; 60:18924-18937. [PMID: 34878759 DOI: 10.1021/acs.inorgchem.1c02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of the pincer platform composition and substitution on the reactivity and physical properties of pincer complexes can be easily explored through different experimental techniques. However, the influence of these factors on the molecular structures and thermodynamic stability of pincer complexes is usually very subtle and cannot always be unambiguously established. To rationalize this subtle influence, a survey of crystallographic data from 130 group 10 metal pincer complexes supported by benzene-based PYCYP pincer ligands, [2,6-(R2PY)2C6H3-nR'n]MX (Y = CH2, NH, O, S; M = Ni, Pd, Pt; R = tBu, iPr, Ph, Cy, Me; R' = CO2Me, tBu, CF3, Ac; n = 0-2; X = F, Cl, Br, I, H, SH, SPh, SBn, Ph, Me, N3, NCS), was carried out. Theoretical calculations for some selected complexes were performed to evaluate the relative bond strength. It was found that the M-Cipso bond length decreases following the linker series of CH2 > NH > O and that the relative M-Cipso bond strength increases following the linker series of CH2 < NH < O. In most cases, the M-P bond length decreases following the linker series of NH > CH2 > O. The relative M-P bond strength increases following the linker series of CH2 < NH < O. A comparison of the thermochemical balance for the isodesmic displacement of the side-arm interactions with PH3 as a probe ligand indicated that the Ni-P bond in a PCCCP-type pincer complex is far less difficult to break compared with that in a POCOP-type complex. As a result, with the same donor substituents and the same auxiliary ligand, the POCOP-type pincer complexes are thermodynamically more stable than the PCCCP complexes. The influence of other backbone and donor substitutions as well as the pincer platform composition on the M-Cipso, M-P, and M-X bond lengths, relative bond strengths, and P-M-P bite angles was also discussed.
Collapse
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Xin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
340
|
García-Romero Á, Martín-Álvarez JM, Miguel D, Wright DS, Álvarez CM, García-Rodríguez R. Cation- and Anion-Mediated Supramolecular Assembly of Bismuth and Antimony Tris(3-pyridyl) Complexes. Inorg Chem 2021; 60:19206-19218. [PMID: 34882394 PMCID: PMC8693195 DOI: 10.1021/acs.inorgchem.1c03004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antimony
and bismuth in supramolecular chemistry has
been largely overlooked in comparison to the lighter elements of Group
15, and the coordination chemistry of the tripodal ligands [Sb(3-py)3] and [Bi(3-py)3] (L) containing the heaviest p-block
element bridgehead atoms has been unexplored. We show that these ligands
form a common hybrid metal–organic framework (MOF) structure
with Cu(I) and Ag(I) (M) salts of weakly coordinating anions (PF6–, SbF6–, and
OTf–), composed of a cationic substructure of rhombic
cage (M)4(L)4 units linked by Sb/Bi–M
bonding. The greater Lewis acidity of Bi compared to Sb can, however,
allows anion···Bi interactions to overcome Bi–metal
bonding in the case of BF4–, leading
to collapse of the MOF structure (which is also seen where harder
metals like Li+ are employed). This study therefore provides
insight into the way in which the electronic effects of the bridgehead
atom in these ligand systems can impact their supramolecular chemistry. The Lewis acidity of the Group 15 bridgehead
atoms (E =
Sb vs Bi) proves to be a decisive structural directing factor in the
coordination of tris(3-pyridyl) ligands E(3-py)3, being
responsible for promoting or disfavoring E−metal or E···anion
interactions.
Collapse
Affiliation(s)
- Álvaro García-Romero
- GIR MIOMeT-IU, Cinquima, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Jose M Martín-Álvarez
- GIR MIOMeT-IU, Cinquima, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT-IU, Cinquima, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Dominic S Wright
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Celedonio M Álvarez
- GIR MIOMeT-IU, Cinquima, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT-IU, Cinquima, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| |
Collapse
|
341
|
Milasheuskaya Y, Schwarz J, Dostál L, Růžičková Z, Bouška M, Olmrová Zmrhalová Z, Syrový T, Jambor R. Synthesis and optical properties of N→Ga coordinated gallium boroxines. Dalton Trans 2021; 50:18164-18172. [PMID: 34859799 DOI: 10.1039/d1dt02975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of the N,C,N-chelated organogallium amide LGa(NEt2)2 (1), where L is {2,6-(Me2NCH2)2C6H3}-, with organoboronic acids RB(OH)2 yielded molecular gallium boroxines LGa(O3B2R2) (2: R = OH, 3: R = Ph, 4: R = 4-MeO-C6H4, 5: R = 4-CHO-C6H4, 6: R = Fc), neutral analogues of gallaborates. The molecular structures revealed the presence of a six-membered central GaB2O3 ring. The film forming properties of 5 allowed the deposition of transparent thin films by a spin coating method. The thicknesses, refractive index, energy of the optical gap (Eoptg), activation energy of surface electrical conductivity (Esa) and pre-exponential factor (σ0) of the thin layers of 5 were measured and they are close to those found for related oxygen glass. Finally, GBO 5 was also used as an additive to printing ink and a thin film of 5 was prepared by the gravure printing technique.
Collapse
Affiliation(s)
- Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Jiří Schwarz
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Zuzana Olmrová Zmrhalová
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Tomáš Syrový
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
342
|
Conradie J, Alemayehu AB, Ghosh A. Iridium(VII)-Corrole Terminal Carbides Should Exist as Stable Compounds. ACS ORGANIC & INORGANIC AU 2021; 2:159-163. [PMID: 36855452 PMCID: PMC9955125 DOI: 10.1021/acsorginorgau.1c00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scalar-relativistic DFT calculations with multiple exchange-correlation functionals and large basis sets foreshadow the existence of stable iridium(VII)-corrole terminal carbide derivatives. For the parent compound Ir[Cor](C), OLYP/STO-TZ2P calculations predict a short Ir-C bond distance of 1.69 Å, a moderately domed macrocycle with no indications of ligand noninnocence, a surprisingly low electron affinity of ∼1.1 eV, and a substantial singlet-triplet gap of ∼1.8 eV. These results, and their essential invariance with respect to the choice of the exchange-correlation functional, lead us to posit that Ir(VII)-corrole terminal carbide complexes should be isolable and indefinitely stable under ambient conditions.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,
| |
Collapse
|
343
|
Zou W, Zhu Q, Fettinger JC, Power PP. Dimeric Copper and Lithium Thiolates: Comparison of Copper Thiolates with Their Lithium Congeners. Inorg Chem 2021; 60:17641-17648. [PMID: 34812614 DOI: 10.1021/acs.inorgchem.1c02226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct reactions of the large terphenyl thiols HSAriPr4 (AriPr4= -C6H3-2,6-(C6H3-2,6-iPr2)2) and HSAriPr6 (AriPr6= -C6H3-2,6-(C6H2-2,4,6-iPr3)2) with stoichiometric amounts of mesitylcopper(I) in THF at ca. 80 °C afforded the first well-characterized dimeric copper thiolato species {CuSAriPr4}2 (1) and {CuSAriPr6}2 (2) with elimination of mesitylene. The complexes 1 and 2 were characterized by NMR and electronic spectroscopy as well as by X-ray crystallography. They have dimeric Cu2S2 core structures in which the two copper atoms are bridged by the sulfurs from the thiolato ligands and feature short Cu--Cu distances near 2.4 Å as well as a weak copper-flanking aryl ring interaction from a terphenyl substituent. The structures of the planar Cu2S2 cores bear a resemblance to the CuA site in nitrous oxide reductase in which two cysteines also bridge two copper atoms. The related dimeric Li2S2 structural motif was also observed in the lithium congeners {LiSAriPr4}2 (3) and {LiSAriPr6}2 (4) which were synthesized directly from the thiols and n-BuLi in hexanes. However, despite the very similar effective ionic radii of the Li+ (0.59 Å) and Cu+ (0.60 Å) ions, the Li--Li structures display very much longer (by more than ca. 0.5 Å) separations than the corresponding Cu--Cu distances in 1 and 2, which may be due to weaker dispersion interactions.
Collapse
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Qihao Zhu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
344
|
Xu H, Weetman C, Hanusch F, Inoue S. Isolation of Cyclic Aluminium Polysulfides by Stepwise Sulfurization. Chemistry 2021; 28:e202104042. [PMID: 34850996 PMCID: PMC9305517 DOI: 10.1002/chem.202104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Despite the notable progress in aluminium chalcogenides, their sulfur congeners have rarely been isolated under mild conditions owing to limited synthetic precursors and methods. Herein, facile isolation of diverse molecular aluminium sulfides is achievable, by the reaction of N‐heterocyclic carbene‐stabilized terphenyl dihydridoaluminium (1) with various thiation reagents. Different to the known dihydridoaluminium 1Tipp, 1 features balanced stability and reactivity at the Al center. It is this balance that enables the first monomeric aluminium hydride hydrogensulfide 2, the six‐membered cyclic aluminium polysulfide 4 and the five‐membered cyclic aluminium polysulfide 6 to be isolated, by reaction with various equivalents of elemental sulfur. Moreover, a rare aluminium heterocyclic sulfide with Al−S−P five‐membered ring (7) was obtained in a controlled manner. All new compounds were fully characterized by multinuclear NMR spectroscopy and elemental analysis. Their structures were confirmed by single‐crystal X‐ray diffraction studies.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Catherine Weetman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St, G1 1XL, Glasgow, Scotland
| | - Franziska Hanusch
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| |
Collapse
|
345
|
Cao GJ. Electronic structures and bonding properties of MSi12− anions (M = V, Nb, and Ta). COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
346
|
Halder P, Prerna, Singh JK. Building Unit Extractor for Metal-Organic Frameworks. J Chem Inf Model 2021; 61:5827-5840. [PMID: 34793154 DOI: 10.1021/acs.jcim.1c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have relevance in extensive applications such as gas adsorption, separation, and energy storage. The tunability demonstrated by MOFs has encouraged research on MOF database generation via distinct methodologies. One of the crucial stages of these procedures is pre-processing, which often includes extraction of the building units (BUs). The process of BU extraction is intricate, and it is further amplified with the presence of solvent molecules/ions in the structure. This work presents MOF BU developer (mBUD), a platform to deconstruct the BUs, such as metal nodes, organic linkers, and functional groups of the MOF structure. The deconstruction algorithm has been assessed on the MOF structures of the CoRE MOF 2019 database. A total of 2,580 BUs have been extracted and provided as a database. This platform has been utilized to create a ready-to-use database of unique BUs deconstructed from the CoRE MOF database. We have also provided the web version of mBUD that can be easily used to extract BUs. These BUs can be employed to develop hypothetical MOF structures. It is envisaged that the BU database built with the deconstruction platform will aid the design of novel application-specific MOFs.
Collapse
Affiliation(s)
- Prosun Halder
- Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna
- Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jayant K Singh
- Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Prescience Insilico Private Limited, Old Madras Road, Bangalore 560049, India
| |
Collapse
|
347
|
Fang W, Carpentier A, Sun X, Zhao Y, Maron L, Zhu C. Redox-induced reversible P-P coupling in a uranium complex. Chem Commun (Camb) 2021; 57:12175-12178. [PMID: 34726673 DOI: 10.1039/d1cc04765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthesized redox-active multidentate N-P ligand reacted with UCl4 in the presence of KHMDS or nBuLi, where two novel U(IV) complexes with or without P-P coupling were formed, respectively. The reversible P-P coupling in these complexes was observed in redox-induced reactions.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Ambre Carpentier
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
348
|
Kano N, O'Brien NJ, Aoki K, Matsuda Y, Morofuji T. Synthesis and structure of a phosphinoboronic ester in a fused bicyclic framework. Dalton Trans 2021; 50:16003-16012. [PMID: 34734937 DOI: 10.1039/d1dt02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first phosphinoboronic ester bearing a fused bicyclic framework was synthesised by either deprotonation and hydride abstraction or Rh-catalysed dehydrogenation of a hydrophosphineboronic ester. The phosphinoboronic ester reacted as a Lewis acid with KF/18-crown-6, pyridine and DMAP to give the corresponding adducts. Furthermore, its crystal structure shows a remarkably short P-B bond in comparison with other P-B bonded derivatives in spite of the trigonal pyramidal geometry of the phosphorus. Consistent with the phosphorus pyramidality, the π-type donor-acceptor interaction of the P-B bond is small as revealed by the DFT calculations. The P-B bond shared within the fused six-membered rings has to shorten because of the geometrical requirement and high s-character of the boron.
Collapse
Affiliation(s)
- Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Nathan J O'Brien
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosuke Aoki
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Yui Matsuda
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
349
|
Dutta S, Singh K, Koley D. Computational Exploration of Mechanistic Avenues in Metal-Free CO 2 Reduction to CO by Disilyne Bisphosphine Adduct and Phosphonium Silaylide. Chem Asian J 2021; 16:3492-3508. [PMID: 34499404 DOI: 10.1002/asia.202100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Indexed: 01/18/2023]
Abstract
Recent years have seen a growing interest in metal-free CO2 activation by silylenes, silylones, and silanones. However, compared to mononuclear silicon species, CO2 reduction mediated by dinuclear silicon compounds, especially disilynes, has been less explored. We have carried out extensive computational investigations to explore the mechanistic avenues in CO2 reduction to CO by donor-stabilized disilyne bisphosphine adduct (R1M ) and phosphonium silaylide (R2) using density functional theory calculations. Theoretical calculations suggest that R1M exhibits donor-stabilized bis(silylene) bonding features with unusual Si-Si multiple bonding. Various modes of CO2 coordination to R1M have been investigated and the coordination of CO2 by the carbon center to R1M is found to be kinetically more facile than that by oxygen involving only one or both the silicon centers. Both the theoretically predicted reaction mechanisms of R1M and R2-mediated CO2 reduction reveal the crucial role of silicon-centered lone pairs in CO2 activations and generation of key intermediates possessing enormous strain in the Si-C-O ring, which plays the pivotal role in CO extrusion.
Collapse
Affiliation(s)
- Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Kalyan Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| |
Collapse
|
350
|
A quest for the universal atomic radii. Struct Chem 2021. [DOI: 10.1007/s11224-021-01850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|