301
|
Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A, Nakazawa T, Tatsumi N, Sakaguchi N, Takashima S, Shirakata T, Nishida S, Hosen N, Kawakami M, Tsuboi A, Oka Y, Itoh K, Sugiyama H. Wilms' tumor gene WT1 17AA(-)/KTS(-) isoform induces morphological changes and promotes cell migration and invasion in vitro. Cancer Sci 2006; 97:259-70. [PMID: 16630117 PMCID: PMC11160036 DOI: 10.1111/j.1349-7006.2006.00169.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wild-type Wilms' tumor gene WT1 is overexpressed in human primary leukemia and in a wide variety of solid cancers. All of the four WT1 isoforms are expressed in primary cancers and each is considered to have a different function. However, the functions of each of the WT1 isoforms in cancer cells remain unclear. The present study demonstrated that constitutive expression of the WT1 17AA(-)/KTS(-) isoform induces morphological changes characterized by a small-sized cell shape in TYK-nu.CP-r (TYK) ovarian cancer cells. In the WT1 17AA(-)/KTS(-) isoform-transduced TYK cells, cell-substratum adhesion was suppressed, and cell migration and in vitro invasion were enhanced compared to that in mock vector-transduced TYK cells. Constitutive expression of the WT1 17AA(-)/KTS(-) isoform also induced morphological changes in five (one gastric, one esophageal, two breast and one fibrosarcoma) of eight cancer cell lines examined. No WT1 isoforms other than the WT1 17AA(-)/KTS(-) isoform induced the phenotypic changes. A decrease in alpha-actinin 1 and cofilin expression and an increase in gelsolin expression were observed in WT1 17AA(-)/KTS(-) isoform-transduced TYK cells. In contrast, co-expression of alpha-actinin 1 and cofilin or knockdown of gelsolin expression by small interfering RNA restored WT1 17AA(-)/KTS(-) isoform-transduced TYK cells to a phenotype that was comparable to that of the parent TYK cells. These results indicated that the WT1 17AA(-)/KTS(-) isoform exerted its oncogenic functions through modulation of cytoskeletal dynamics. The present results may provide a novel insight into the signaling pathway of the WT1 gene for its oncogenic functions.
Collapse
Affiliation(s)
- Tanyarat Jomgeow
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Lo SH. Focal adhesions: what's new inside. Dev Biol 2006; 294:280-91. [PMID: 16650401 DOI: 10.1016/j.ydbio.2006.03.029] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 03/27/2006] [Indexed: 01/15/2023]
Abstract
The cytoplasmic side of focal adhesions is comprised of large molecular complexes that link transmembrane receptors, such as integrins, to the actin cytoskeleton and mediate signals modulating cell attachment, migration, proliferation, differentiation, and gene expression. These complexes are heterogeneous and dynamic structures that are apparent targets of regulatory signals that control the function of focal adhesions. Recent studies using genetic approaches in invertebrate and vertebrate systems have begun to reveal the structure and function of these complexes in vivo.
Collapse
Affiliation(s)
- Su Hao Lo
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery and Cancer Center, University of California-Davis, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
303
|
Singleton PA, Dudek SM, Chiang ET, Garcia JGN. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 2006; 19:1646-56. [PMID: 16195373 DOI: 10.1096/fj.05-3928com] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability observed in inflammation, tumor angiogenesis, and atherosclerosis. The platelet-derived phospholipid sphingosine-1-phosphate (S1P) decreases EC permeability in vitro and in vivo and thus has obvious therapeutic potential. We examined S1P-mediated human pulmonary artery EC signaling and barrier regulation in caveolin-enriched microdomains (CEM). Immunoblotting from S1P-treated EC revealed S1P-mediated rapid recruitment (1 microM, 5 min) to CEMs of the S1P receptors S1P1 and S1P3, p110 PI3 kinase alpha and beta catalytic subunits, the Rac1 GEF, Tiam1, and alpha-actinin isoforms 1 and 4. Immunoprecipitated p110 PI3 kinase catalytic subunits from S1P-treated EC exhibited PIP3 production in CEMs. Immunoprecipitation of S1P receptors from CEM fractions revealed complexes containing Tiam1 and S1P1. PI3 kinase inhibition (LY294002) attenuated S1P-induced Tiam1 association with S1P1, Tiam1/Rac1 activation, alpha-actinin-1/4 recruitment, and EC barrier enhancement. Silencing of either S1P1 or Tiam1 expression resulted in the loss of S1P-mediated Rac1 activation and alpha-actinin-1/4 recruitment to CEM. Finally, silencing S1P1, Tiam1, or both alpha-actinin isoforms 1/4 inhibits S1P-induced cortical F-actin rearrangement and S1P-mediated barrier enhancement. Taken together, these results suggest that S1P-induced recruitment of S1P1 to CEM fractions promotes PI3 kinase-mediated Tiam1/Rac1 activation required for alpha-actinin-1/4-regulated cortical actin rearrangement and EC barrier enhancement.
Collapse
MESH Headings
- Actinin/metabolism
- Actinin/physiology
- Catalytic Domain
- Caveolin 1/chemistry
- Cells, Cultured
- Cholesterol/chemistry
- Chromones/pharmacology
- Cytoskeleton/metabolism
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic
- Guanine Nucleotide Exchange Factors/metabolism
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Immunoblotting
- Immunoprecipitation
- Inflammation
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Morpholines/pharmacology
- Neoplasm Proteins/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Protein Isoforms
- Protein Structure, Tertiary
- Pulmonary Artery/pathology
- RNA, Small Interfering/metabolism
- Receptors, Lysosphingolipid/physiology
- Signal Transduction
- T-Lymphoma Invasion and Metastasis-inducing Protein 1
- Transfection
- rac1 GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Patrick A Singleton
- Division of Pulmonary and Critical Care Medicine, Center for Translational Respiratory Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
304
|
Rachlin AS, Otey CA. Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J Cell Sci 2006; 119:995-1004. [PMID: 16492705 DOI: 10.1242/jcs.02825] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palladin is a recently described phosphoprotein with an important role in cytoskeletal organization. The major palladin isoform (90-92 kDa) binds to three actin-associated proteins (ezrin, VASP and alpha-actinin), suggesting that palladin functions as a cytoskeletal scaffold. Here, we describe the organization of the palladin gene, which encodes multiple isoforms, including one (140 kDa) with a similar localization pattern to 90 kDa palladin. Overexpression of the 90 kDa or 140 kDa isoforms in COS-7 cells results in rearrangements of the actin cytoskeleton into super-robust bundles and star-like arrays, respectively. Sequence analysis of 140 kDa palladin revealed a conserved binding site for SH3 domains, suggesting that it binds directly to the SH3-domain protein Lasp-1. Binding of 140 kDa palladin, but not 90 kDa palladin, to Lasp-1 was confirmed by yeast two-hybrid and GST-pull-down assays. Isoform-specific siRNA experiments suggested that 140 kDa palladin plays a role in recruiting Lasp-1 to stress fibers. These results add Lasp-1, an actin-binding protein with a crucial role in cell motility, to the growing list of palladin's binding partners, and suggest that 140 kDa palladin has a specialized function in organizing the actin arrays that participate in cell migration and/or cellular contractility.
Collapse
Affiliation(s)
- Andrew S Rachlin
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
305
|
Pham M, Chalovich JM. Smooth muscle alpha-actinin binds tightly to fesselin and attenuates its activity toward actin polymerization. J Muscle Res Cell Motil 2006; 27:45-51. [PMID: 16450054 DOI: 10.1007/s10974-005-9053-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
Fesselin is an actin binding protein from smooth muscle that nucleates actin polymerization in a Ca(++)-calmodulin dependent manner, bundles actin and inhibits the actin-activated ATPase activity of myosin S1. We now report that fesselin binds to smooth muscle alpha-actinin. Binding was measured by blot overlay, affinity chromatography and sedimentation methods. Binding was moderate with an association constant of 1-4 x 10(7) M(-1) assuming a 1:1 association of fesselin with alpha-actinin. Fesselin binds to the central spectrin domain repeat region of alpha-actinin but not to the CH1-CH2 domain. Fesselin accelerates the polymerization of actin. This activity of fesselin was attenuated by alpha-actinin. These observations support the role of fesselin in organizing the cytoskeleton.
Collapse
Affiliation(s)
- Minh Pham
- Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA
| | | |
Collapse
|
306
|
Kelly DF, Taylor DW, Bakolitsa C, Bobkov AA, Bankston L, Liddington RC, Taylor KA. Structure of the alpha-actinin-vinculin head domain complex determined by cryo-electron microscopy. J Mol Biol 2006; 357:562-73. [PMID: 16430917 DOI: 10.1016/j.jmb.2005.12.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/21/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
The vinculin binding site on alpha-actinin was determined by cryo-electron microscopy of 2D arrays formed on phospholipid monolayers doped with a nickel chelating lipid. Chicken smooth muscle alpha-actinin was cocrystallized with the beta1-integrin cytoplasmic domain and a vinculin fragment containing residues 1-258 (vinculin(D1)). Vinculin(D1) was located at a single site on alpha-actinin with 60-70% occupancy. In these arrays, alpha-actinin lacks molecular 2-fold symmetry and the two ends of the molecule, which contain the calmodulin-like and actin binding domains, are held in distinctly different environments. The vinculin(D1) difference density has a shape very suggestive of the atomic structure. The atomic model of the complex juxtaposes the alpha-actinin binding site on vinculin(D1) with the N-terminal lobe of the calmodulin-like domain on alpha-actinin. The results show that the interaction between two species with weak affinity can be visualized in a membrane-like environment.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 2006; 84:446-68. [PMID: 16416311 DOI: 10.1007/s00109-005-0033-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/23/2005] [Indexed: 12/11/2022]
Abstract
The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
308
|
Rönty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O. Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res 2005; 310:88-98. [PMID: 16125169 DOI: 10.1016/j.yexcr.2005.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/28/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
Palladin and alpha-actinin are major components of stress fiber dense bodies, cardiomyocyte Z-discs and neuronal synapses. They function as structural molecules and cytoskeletal regulators but also as docking sites to other proteins. Both antisense and transient overexpression experiments have shown that palladin plays an important role in the regulation of actin cytoskeleton. ArgBP2 is a multi-domain scaffolding protein which shares both the tissue distribution and subcellular localization with palladin. ArgBP2 is directly linked to intracellular signaling cascades by its interaction with Abl family kinases, Pyk2 and the ubiquitin ligase Cbl. It has several actin associated binding partners and has been shown to regulate cytoskeletal dynamics. Here, we show by in vivo and in vitro methods that palladin's amino-terminal poly-proline sequences directly interact with the first carboxy-terminal SH3 domain of ArgBP2. We further demonstrate a direct interaction between alpha-actinin and the amino-terminal segment of ArgBP2. Immunoprecipitation and targeting assays suggest that a three-way complex of the proteins occurs in vivo. The interactions provide an explanation to the previously observed Z-disc-specific localization of ArgBP2 and indicate interplay between signaling adaptors and structural proteins of the Z-disc.
Collapse
Affiliation(s)
- Mikko Rönty
- Biomedicum Helsinki, Department of Pathology and Neuroscience Program, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
309
|
Baldini G, Martelli AM, Tabellini G, Horn C, Machaca K, Narducci P, Baldini G. Rabphilin Localizes with the Cell Actin Cytoskeleton and Stimulates Association of Granules with F-actin Cross-linked by α-Actinin. J Biol Chem 2005; 280:34974-84. [PMID: 16043482 DOI: 10.1074/jbc.m502695200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In endocrine cell, granules accumulate within an F-actin-rich region below the plasma membrane. The mechanisms involved in this process are largely unknown. Rabphilin is a cytosolic protein that is expressed in neurons and neuroendocrine cells and binds with high affinity to members of the Rab3 family of GTPases localized to synaptic vesicles and dense core granules. Rabphilin also interacts with alpha-actinin, a protein that cross-links F-actin into bundles and networks and associates with the granule membrane. Here we asked whether rabphilin, in addition to its granule localization, also interacts with the cell actin cytoskeleton. Immunofluorescence and immunoelectron microscopy show that rabphilin localizes to the sub-plasmalemmal actin cytoskeleton both in neuroendocrine and unspecialized cells. By using purified components, it is found that association of rabphilin with F-actin is dependent on added alpha-actinin. In an in vitro assay, granules, unlike endosomes or mitochondria, associate with F-actin cross-linked by alpha-actinin. Rabphilin is shown to stimulate this process. Rabphilin enhances by approximately 8-fold the granule ability to localize within regions of elevated concentration of cross-linked F-actin. These results suggest that rabphilin, by interacting with alpha-actinin, organizes the cell cytoskeleton to facilitate granule localization within F-actin-rich regions.
Collapse
Affiliation(s)
- Giovanna Baldini
- Dipartimento di Morfologia Umana Normale, via Manzoni 16, Trieste, Universita' di Trieste, Trieste I-34138, Italy.
| | | | | | | | | | | | | |
Collapse
|
310
|
Virel A, Backman L. Characterization of Entamoeba histolytica alpha-actinin. Mol Biochem Parasitol 2005; 145:11-7. [PMID: 16219372 DOI: 10.1016/j.molbiopara.2005.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/18/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
We have cloned, expressed and characterized a alpha-actinin-like protein of Entamoeba histolytica. Analysis of the primary structure reveals that the essential domains of the alpha-actinin protein family are conserved: an N-terminus actin-binding domain, a C-terminus calcium-binding domain and a central helical rod domain. However, the rod domain of this Entamoeba protein is considerably shorter than the rod domain in alpha-actinins of higher organisms. The cloned Entamoeba 63 kDa protein is recognized by conventional alpha-actinin antibodies as well as binds and cross-links filamentous actin and calcium ions in the same manner as alpha-actinins. Despite the shorter rod domain this protein has conserved the most important functions of alpha-actinins. Therefore, it is suggested that this 63 kDa protein is an atypical and ancestral alpha-actinin.
Collapse
Affiliation(s)
- Ana Virel
- Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
311
|
Rosslenbroich V, Dai L, Baader SL, Noegel AA, Gieselmann V, Kappler J. Collapsin response mediator protein-4 regulates F-actin bundling. Exp Cell Res 2005; 310:434-44. [PMID: 16181627 DOI: 10.1016/j.yexcr.2005.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 12/20/2022]
Abstract
Collapsin response mediator proteins (CRMPs) form a family of cytosolic phosphoproteins which are involved in the signal transduction of semaphorin 3A leading to growth cone collapse. These proteins interact with a variety of cytosolic proteins including tubulin heterodimers. Here, we show that CRMP-4 co-localizes with F-actin in regular rib-like structures within lamellipodia of B35 neuroblastoma cells. Furthermore, depolymerization of actin fibers changed the distribution of GFP-CRMP-4 in vivo. In vitro, recombinant CRMP-4 formed homo-oligomers, bound to F-actin and organized F-actin into tight bundles. Both oligomerization and F-actin bundling depended on the C-terminal part of CRMP-4. The stoichiometry of actin and CRMP-4 in bundles was approximately 1:1 and the apparent equilibrium constant of the microfilament-CRMP-4 interaction was estimated from bundling assays as K(app) = 730 mM(-1). CRMP-4 was abundant in the cytosol of B35 neuroblastoma cells and its concentration was measured as approximately 1.7 microM. Overexpression of CRMP-4 inhibited the migration of B35 neuroblastoma cells, while knockdown of CRMP-4 enhanced cell migration and disturbed rib-like actin-structures in lamellipodia. Taken together, our data indicate that CRMP-4 promotes bundling of F-actin in vitro, that it is an important component of rib-like actin bundles in lamellipodia in vivo and that it functionally regulates the actin cytoskeleton in motile cells. These findings suggest a specific regulatory role of CRMP-4 towards the actin cytoskeleton which may by be relevant for growth cone collapse.
Collapse
Affiliation(s)
- Volker Rosslenbroich
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
312
|
Röper K, Mao Y, Brown NH. Contribution of sequence variation inDrosophilaactins to their incorporation into actin-based structures in vivo. J Cell Sci 2005; 118:3937-48. [PMID: 16105877 DOI: 10.1242/jcs.02517] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin is a highly conserved protein important for many cellular functions including motility, contraction in muscles and intracellular transport. Many eukaryotic genomes encode multiple actin protein isoforms that differ from each other by only a few residues. We addressed whether the sequence differences between actin paralogues in one species affect their ability to integrate into the large variety of structures generated by filamentous actin. We thus ectopically expressed all six Drosophila actins as fusion proteins with green fluorescent protein (GFP) in a variety of embryonic, larval and adult fly tissues. We found that each actin was able to integrate into most actin structures analysed. For example, in contrast to studies in mammalian cells, the two Drosophila cytoplasmic actins were incorporated into muscle sarcomeres. However, there were differences in the efficiency with which each actin was incorporated into specific actin structures. The most striking difference was observed within the Z-lines of the sarcomeres: one actin was specifically excluded and we mapped this feature to one or both of two residues within the C-terminal half of the protein. Thus, in Drosophila, the primary sequence of different actins does affect their ability to incorporate into actin structures, and so specific GFPactins may be used to label certain actin structures particularly well.
Collapse
Affiliation(s)
- Katja Röper
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
313
|
Abstract
Alpha-actinin and vinculin orchestrate reorganization of the actin cytoskeleton following the formation of adhesion junctions. alpha-Actinin interacts with vinculin through the binding of an alpha-helix (alphaVBS) present within the R4 spectrin repeat of its central rod domain to vinculin's N-terminal seven-helical bundle domain (Vh1). The Vh1:alphaVBS structure suggests that alphaVBS first unravels from its buried location in the triple-helical R4 repeat to allow it to bind to vinculin. alphaVBS binding then induces novel conformational changes in the N-terminal helical bundle of Vh1, which disrupt its intramolecular association with vinculin's tail domain and which differ from the alterations in Vh1 provoked by the binding of talin. Surprisingly, alphaVBS binds to Vh1 in an inverted orientation compared to the binding of talin's VBSs to vinculin. Importantly, the binding of alphaVBS and talin's VBSs to vinculin's Vh1 domain appear to also trigger distinct conformational changes in full-length vinculin, opening up distant regions that are buried in the inactive molecule. The data suggest a model where vinculin's Vh1 domain acts as a molecular switch that undergoes distinct structural changes provoked by talin and alpha-actinin binding in focal adhesions versus adherens junctions, respectively.
Collapse
Affiliation(s)
- Philippe R J Bois
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
314
|
Hu H, Gao X, Sun Y, Zhou J, Yang M, Xu Z. Alpha-actinin-2, a cytoskeletal protein, binds to angiogenin. Biochem Biophys Res Commun 2005; 329:661-7. [PMID: 15737636 DOI: 10.1016/j.bbrc.2005.01.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 12/20/2022]
Abstract
Angiogenin is an angiogenic factor which is involved in tumorigenesis. However, no particular intracellular protein is known to interact directly with angiogenin. In the present study, we reported the identification of alpha-actinin-2, an actin-crosslinking protein, as a potential angiogenin-interacting partner by yeast two-hybrid screening. This interaction was confirmed by different approaches. First, angiogenin was pulled down together with His-tagged alpha-actinin-2 by Ni(2+)-agarose resins. Second, alpha-actinin-2 was coimmunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody. Third, the in vivo interaction of these two proteins was revealed by fluorescence resonance energy transfer analysis. Since members of alpha-actinin family play pivotal roles in cell proliferation, migration, and invasion, the interaction between alpha-actinin-2 and angiogenin may underline one possible mechanism of angiogenin in angiogenesis. Our finding presents the first evidence of an interaction of a cytosolic protein with angiogenin, which might be a novel interference target for anti-angiogenesis and anti-tumor therapy.
Collapse
Affiliation(s)
- Huajun Hu
- Research Center for Environmental Genomics, Zhejiang University School of Medicine, Hangzhou 310031, China
| | | | | | | | | | | |
Collapse
|
315
|
Wahlström G, Lahti VP, Pispa J, Roos C, Heino TI. Drosophila non-muscle alpha-actinin is localized in nurse cell actin bundles and ring canals, but is not required for fertility. Mech Dev 2005; 121:1377-91. [PMID: 15454267 DOI: 10.1016/j.mod.2004.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Developmental Biology Program/Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
316
|
Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, Reiser J, Mundel P. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J Clin Invest 2005; 115:1188-98. [PMID: 15841212 PMCID: PMC1070637 DOI: 10.1172/jci23371] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/08/2005] [Indexed: 11/17/2022] Open
Abstract
Synaptopodin is the founding member of a novel class of proline-rich actin-associated proteins highly expressed in telencephalic dendrites and renal podocytes. Synaptopodin-deficient (synpo(-/-)) mice lack the dendritic spine apparatus and display impaired activity-dependent long-term synaptic plasticity. In contrast, the ultrastructure of podocytes in synpo(-/-) mice is normal. Here we show that synpo(-/-) mice display impaired recovery from protamine sulfate-induced podocyte foot process (FP) effacement and LPS-induced nephrotic syndrome. Similarly, synpo(-/-) podocytes show impaired actin filament reformation in vitro. We further demonstrate that synaptopodin exists in 3 isoforms, neuronal Synpo-short (685 AA), renal Synpo-long (903 AA), and Synpo-T (181 AA). The C terminus of Synpo-long is identical to that of Synpo-T. All 3 isoforms specifically interact with alpha-actinin and elongate alpha-actinin-induced actin filaments. synpo(-/-) mice lack Synpo-short and Synpo-long expression but show an upregulation of Synpo-T protein expression in podocytes, though not in the brain. Gene silencing of Synpo-T abrogates stress-fiber formation in synpo(-/-) podocytes, demonstrating that Synpo-T serves as a backup for Synpo-long in synpo(-/-) podocytes. In concert, synaptopodin regulates the actin-bundling activity of alpha-actinin in highly dynamic cell compartments, such as podocyte FPs and the dendritic spine apparatus.
Collapse
Affiliation(s)
- Katsuhiko Asanuma
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Fraley TS, Pereira CB, Tran TC, Singleton C, Greenwood JA. Phosphoinositide Binding Regulates α-Actinin Dynamics. J Biol Chem 2005; 280:15479-82. [PMID: 15710624 DOI: 10.1074/jbc.m500631200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active association-dissociation of dynamic protein-protein interactions is critical for the ability of the actin cytoskeleton to remodel. To determine the influence of phosphoinositide binding on the dynamic interaction of alpha-actinin with actin filaments and integrin adhesion receptors, fluorescence recovery after photobleaching (FRAP) microscopy was carried out comparing wild-type green fluorescent protein (GFP)-alpha-actinin and a GFP-alpha-actinin mutant with a decreased affinity for phosphoinositides (Fraley, T. S., Tran, T. C., Corgan, A. M., Nash, C. A., Hao, J., Critchley, D. R., and Greenwood, J. A. (2003) J. Biol. Chem. 278, 24039-24045). In fibroblasts, recovery of the mutant alpha-actinin protein was 2.2 times slower than the wild type along actin stress fibers and 1.5 times slower within focal adhesions. FRAP was also measured in U87MG glioblastoma cells, which have higher levels of 3-phosphorylated phosphoinositides. As expected, alpha-actinin turnover for both the stress fiber and focal adhesion populations was faster in U87MG cells compared with fibroblasts with recovery of the mutant protein slower than the wild type along actin stress fibers. To understand the influence of alpha-actinin turnover on the modulation of the actin cytoskeleton, wild-type or mutant alpha-actinin was co-expressed with constitutively active phosphoinositide (PI) 3-kinase. Co-expression with the alpha-actinin mutant inhibited actin reorganization with the appearance of enlarged alpha-actinin containing focal adhesions. These results demonstrate that the binding of phosphoinositides regulates the association-dissociation rate of alpha-actinin with actin filaments and integrin adhesion receptors and that the dynamics of alpha-actinin is important for PI 3-kinase-induced reorganization of the actin cytoskeleton. In conclusion, phosphoinositide regulation of alpha-actinin dynamics modulates the plasticity of the actin cytoskeleton influencing remodeling.
Collapse
Affiliation(s)
- Tamara S Fraley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
318
|
Franzot G, Sjöblom B, Gautel M, Djinović Carugo K. The Crystal Structure of the Actin Binding Domain from α-Actinin in its Closed Conformation: Structural Insight into Phospholipid Regulation of α-Actinin. J Mol Biol 2005; 348:151-65. [PMID: 15808860 DOI: 10.1016/j.jmb.2005.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Alpha-actinin is the major F-actin crosslinking protein in both muscle and non-muscle cells. We report the crystal structure of the actin binding domain of human muscle alpha-actinin-3, which is formed by two consecutive calponin homology domains arranged in a "closed" conformation. Structural studies and available biochemical data on actin binding domains suggest that two calponin homology domains come in a closed conformation in the native apo-form, and that conformational changes involving the relative orientation of the two calponin homology domains are required for efficient binding to actin filaments. The actin binding activity of muscle isoforms is supposed to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which binds to the second calponin homology domain. On the basis of structural analysis we propose a distinct binding site for PtdIns(4,5)P2, where the fatty acid moiety would be oriented in a direction that allows it to interact with the linker sequence between the actin binding domain and the first spectrin-like repeat, regulating thereby the binding of the C-terminal calmodulin-like domain to this linker.
Collapse
Affiliation(s)
- Giacomo Franzot
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste in Area Science Park, S.S. 14 Km 163,5 34012 Trieste, Italy
| | | | | | | |
Collapse
|
319
|
Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, Reiser J, Mundel P. Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner. J Clin Invest 2005. [DOI: 10.1172/jci200523371] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
320
|
Abstract
Spectrin family proteins represent an important group of actin-bundling and membrane-anchoring proteins found in diverse structures from yeast to man. Arising from a common ancestral alpha-actinin gene through duplications and rearrangements, the family has increased to include the spectrins and dystrophin/utrophin. The spectrin family is characterized by the presence of spectrin repeats, actin binding domains, and EF hands. With increasing divergence, new domains and functions have been added such that spectrin and dystrophin also contain specialized protein-protein interaction motifs and regions for interaction with membranes and phospholipids. The acquisition of new domains also increased the functional complexity of the family such that the proteins perform a range of tasks way beyond the simple bundling of actin filaments by alpha-actinin in S. pombe. We discuss the evolutionary, structural, functional, and regulatory roles of the spectrin family of proteins and describe some of the disease traits associated with loss of spectrin family protein function.
Collapse
Affiliation(s)
- M J F Broderick
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
321
|
Otey CA, Rachlin A, Moza M, Arneman D, Carpen O. The palladin/myotilin/myopalladin family of actin-associated scaffolds. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:31-58. [PMID: 16164966 DOI: 10.1016/s0074-7696(05)46002-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The dynamic remodeling of the actin cytoskeleton plays a critical role in cellular morphogenesis and cell motility. Actin-associated scaffolds are key to this process, as they recruit cohorts of actin-binding proteins and associated signaling complexes to subcellular sites where remodeling is required. This review is focused on a recently discovered family of three proteins, myotilin, palladin, and myopalladin, all of which function as scaffolds that regulate actin organization. While myotilin and myopalladin are most abundant in skeletal and cardiac muscle, palladin is ubiquitously expressed in the organs of developing vertebrates. Palladin's function has been investigated primarily in the central nervous system and in tissue culture, where it appears to play a key role in cellular morphogenesis. The three family members each interact with specific molecular partners: all three bind to alpha-actinin; in addition, palladin also binds to vasodilator-stimulated phosphoprotein (VASP) and ezrin, myotilin binds to filamin and actin, and myopalladin also binds to nebulin and cardiac ankyrin repeat protein (CARP). Since mutations in myotilin result in two forms of muscle disease, an essential role for this family member in organizing the skeletal muscle sarcomere is implied.
Collapse
Affiliation(s)
- Carol A Otey
- Department of Cell and Molecular Physiology and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
322
|
Rönty M, Taivainen A, Moza M, Otey CA, Carpén O. Molecular analysis of the interaction between palladin and alpha-actinin. FEBS Lett 2004; 566:30-4. [PMID: 15147863 DOI: 10.1016/j.febslet.2004.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/30/2004] [Accepted: 04/02/2004] [Indexed: 12/11/2022]
Abstract
Palladin is a novel component of stress fiber dense regions. Antisense and transient overexpression studies have indicated an important role for palladin in the regulation of actin cytoskeleton. Palladin colocalizes and coimmunoprecipitates with alpha-actinin, a dense region component, but the molecular details and functional significance of the interaction have not been studied. We show here a direct association between the two proteins and have mapped the binding site within a short sequence of palladin and in the carboxy-terminal calmodulin domain of alpha-actinin. Using transfection-based targeting assays, we show that palladin is involved in targeting of alpha-actinin to specific subcellular foci indicating a functional interplay between the two actin-associated proteins.
Collapse
Affiliation(s)
- Mikko Rönty
- Biomedicum Helsinki, Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | |
Collapse
|