301
|
Afacan O, Wallace TE, Warfield SK. Retrospective correction of head motion using measurements from an electromagnetic tracker. Magn Reson Med 2019; 83:427-437. [PMID: 31400036 DOI: 10.1002/mrm.27934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the feasibility of using an electromagnetic (EM) tracker to estimate rigid body head motion parameters, and using these measurements to retrospectively reduce motion artifacts. THEORY AND METHODS A clinically used MPRAGE sequence was modified to measure motion using the EM tracking system once per repetition time. A retrospective k-space based motion correction algorithm that corrects for phase ramps (translation in image domain) and rotation of 3D k-space (rotation in image domain) was developed, using the parameters recorded using an EM tracker. The accuracy of the EM tracker for the purpose of motion measurement and correction was tested in phantoms, volunteers, and pediatric patients. RESULTS Position localization was accurate to the order of 200 microns compared with registration localization in a phantom study. The quality of reconstructed images was assessed by computing the root mean square error, the structural similarity metric and average edge strength. Image quality improved consistently when motion correction was applied in both volunteer scans with deliberate head motion and in pediatric patient scans. In patients, the average edge strength improved significantly with retrospective motion correction, compared with images with no correction applied. CONCLUSIONS EM tracking was effective in measuring head motion in the MRI scanner with high accuracy, and enabled retrospective reconstruction to improve image quality by reducing motion artifacts.
Collapse
Affiliation(s)
- Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
302
|
Liu J, Wang Y, Wen Z, Feng L, Lima APS, Mahadevan VS, Bolger A, Saloner D, Ordovas K. Extending Cardiac Functional Assessment with Respiratory-Resolved 3D Cine MRI. Sci Rep 2019; 9:11563. [PMID: 31399608 PMCID: PMC6689015 DOI: 10.1038/s41598-019-47869-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/25/2019] [Indexed: 01/23/2023] Open
Abstract
This study aimed to develop a cardiorespiratory-resolved 3D magnetic resonance imaging (5D MRI: x-y-z-cardiac-respiratory) approach based on 3D motion tracking for investigating the influence of respiration on cardiac ventricular function. A highly-accelerated 2.5-minute sparse MR protocol was developed for a continuous acquisition of cardiac images through multiple cardiac and respiratory cycles. The heart displacement along respiration was extracted using a 3D image deformation algorithm, and this information was used to cluster the acquired data into multiple respiratory phases. The proposed approach was tested in 15 healthy volunteers (7 females). Cardiac function parameters, including the end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF), were measured for the left and right ventricle in both end-expiration and end-inspiration. Although with the proposed 5D cardiac MRI, there were no significant differences (p > 0.05, t-test) between end-expiration and end-inspiration measurements of the cardiac function in volunteers, incremental respiratory motion parameters that were derived from 3D motion tracking, such as the depth, expiration and inspiration distribution, correlated (p < 0.05, correlation coefficient, Mann-Whitney) with those volume-based parameters of cardiac function and varied between genders. The obtained initial results suggested that this new approach allows evaluation of cardiac function during specific respiratory phases. Thus, it can enable investigation of effects related to respiratory variability and better assessment of cardiac function for studying respiratory and/or cardiac dysfunction.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States.
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Zhaoying Wen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States.
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Li Feng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana Paula Santos Lima
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Vaikom S Mahadevan
- Department of Cardiology, University of California San Francisco, San Francisco, California, United States
| | - Ann Bolger
- Department of Cardiology, University of California San Francisco, San Francisco, California, United States
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
- Radiology Service, VA Medical Center, San Francisco, California, United States
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
303
|
Stroud RE, Piccini D, Schoepf UJ, Heerfordt J, Yerly J, Di Sopra L, Rollins JD, Fischer AM, Suranyi P, Varga-Szemes A. Correcting versus resolving respiratory motion in free-breathing whole-heart MRA: a comparison in patients with thoracic aortic disease. Eur Radiol Exp 2019; 3:29. [PMID: 31363865 PMCID: PMC6667582 DOI: 10.1186/s41747-019-0107-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022] Open
Abstract
Background Whole-heart magnetic resonance angiography (MRA) requires sophisticated methods accounting for respiratory motion. Our purpose was to evaluate the image quality of compressed sensing-based respiratory motion-resolved three-dimensional (3D) whole-heart MRA compared with self-navigated motion-corrected whole-heart MRA in patients with known thoracic aorta dilation. Methods Twenty-five patients were prospectively enrolled in this ethically approved study. Whole-heart 1.5-T MRA was acquired using a prototype 3D radial steady-state free-precession free-breathing sequence. The same data were reconstructed with a one-dimensional motion-correction algorithm (1D-MCA) and an extradimensional golden-angle radial sparse parallel reconstruction (XD-GRASP). Subjective image quality was scored and objective image quality was quantified (signal intensity ratio, SIR; vessel sharpness). Wilcoxon, McNemar, and paired t tests were used. Results Subjective image quality was significantly higher using XD-GRASP compared to 1D-MCA (median 4.5, interquartile range 4.5–5.0 versus 4.0 [2.25–4.75]; p < 0.001), as well as signal homogeneity (3.0 [3.0–3.0] versus 2.0 [2.0–3.0]; p = 0.003), and image sharpness (3.0 [2.0–3.0] vs 2.0 [1.25–3.0]; p < 0.001). SIR with the 1D-MCA and XD-GRASP was 6.1 ± 3.9 versus 7.4 ± 2.5, respectively (p < 0.001); while signal homogeneity was 274.2 ± 265.0 versus 199.8 ± 67.2 (p = 0.129). XD-GRASP provided a higher vessel sharpness (45.3 ± 10.7 versus 40.6 ± 101, p = 0.025). Conclusions XD-GRASP-based motion-resolved reconstruction of free-breathing 3D whole-heart MRA datasets provides improved image contrast, sharpness, and signal homogeneity and seems to be a promising technique that overcomes some of the limitations of motion correction or respiratory navigator gating.
Collapse
Affiliation(s)
- Robert E Stroud
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 7.84, 1010, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, EPFL QI-E, 1015, Lausanne, Switzerland
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA
| | - John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 7.84, 1010, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, EPFL QI-E, 1015, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 7.84, 1010, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Rue de Bugnon 46, BH 7.84, 1010, Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 7.84, 1010, Lausanne, Switzerland
| | - Jonathan D Rollins
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA
| | - Andreas M Fischer
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA.,Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, 29425, USA.
| |
Collapse
|
304
|
Walheim J, Dillinger H, Kozerke S. Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities. J Cardiovasc Magn Reson 2019; 21:42. [PMID: 31331353 PMCID: PMC6647085 DOI: 10.1186/s12968-019-0549-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/05/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times. METHODS Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min. 5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed. RESULTS While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%). CONCLUSIONS Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.
Collapse
Affiliation(s)
- Jonas Walheim
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| | - Hannes Dillinger
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland
| |
Collapse
|
305
|
Di Sopra L, Piccini D, Coppo S, Stuber M, Yerly J. An automated approach to fully self‐gated free‐running cardiac and respiratory motion‐resolved 5D whole‐heart MRI. Magn Reson Med 2019; 82:2118-2132. [DOI: 10.1002/mrm.27898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare Lausanne Switzerland
| | - Simone Coppo
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Center for Biomedical Imaging Lausanne Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology Lausanne University Hospital Lausanne Switzerland
- Center for Biomedical Imaging Lausanne Switzerland
| |
Collapse
|
306
|
|
307
|
Arif O, Afzal H, Abbas H, Amjad MF, Wan J, Nawaz R. Accelerated Dynamic MRI Using Kernel-Based Low Rank Constraint. J Med Syst 2019; 43:271. [DOI: 10.1007/s10916-019-1399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022]
|
308
|
|
309
|
Biswas S, Aggarwal HK, Jacob M. Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM. Magn Reson Med 2019; 82:485-494. [PMID: 30860286 PMCID: PMC7895318 DOI: 10.1002/mrm.27706] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE To introduce a novel framework to combine deep-learned priors along with complementary image regularization penalties to reconstruct free breathing & ungated cardiac MRI data from highly undersampled multi-channel measurements. METHODS Image recovery is formulated as an optimization problem, where the cost function is the sum of data consistency term, convolutional neural network (CNN) denoising prior, and SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of images in the dataset. An iterative algorithm, which alternates between denoizing of the image data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is trained using exemplar data. RESULTS The experimental results demonstrate that the proposed framework can offer fast recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s of acquisition time, offering a fivefold reduction in scan time. CONCLUSIONS The results show the benefit in combining deep learned CNN priors with complementary image regularization penalties. Specifically, this work demonstrates the benefit in combining the CNN prior that exploits local and population generalizable redundancies together with SToRM, which capitalizes on patient-specific information including cardiac and respiratory patterns. The synergistic combination is facilitated by the proposed framework.
Collapse
Affiliation(s)
- Sampurna Biswas
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa
| | - Hemant K Aggarwal
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
310
|
Zhang L, Armstrong T, Li X, Wu HH. A variable flip angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonant frequency shift and T 1 -based thermometry. Magn Reson Med 2019; 82:2062-2076. [PMID: 31257639 DOI: 10.1002/mrm.27883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively. METHODS The proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. RESULTS The proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. CONCLUSION The proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.
Collapse
Affiliation(s)
- Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tess Armstrong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California
| | - Xinzhou Li
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
311
|
Ippoliti M, Lukas M, Brenner W, Schaeffter T, Makowski MR, Kolbitsch C. 3D nonrigid motion correction for quantitative assessment of hepatic lesions in DCE-MRI. Magn Reson Med 2019; 82:1753-1766. [PMID: 31228296 PMCID: PMC6771884 DOI: 10.1002/mrm.27867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
Purpose To provide nonrigid respiratory motion‐corrected DCE‐MRI images with isotropic resolution of 1.5 mm, full coverage of abdomen, and covering the entire uptake curve with a temporal resolution of 6 seconds, for the quantitative assessment of hepatic lesions. Methods 3D DCE‐MRI data were acquired at 3 T during free breathing for 5 minutes using a 3D T1‐weighted golden‐angle radial phase‐encoding sequence. Nonrigid respiratory motion information was extracted and used in motion‐corrected image reconstruction to obtain high‐quality DCE‐MRI images with temporal resolution of 6 seconds and isotropic resolution of 1.5 mm. An extended Tofts model was fitted to the dynamic data sets, yielding quantitative parametric maps of endothelial permeability using the hepatic artery as input function. The proposed approach was evaluated in 11 patients (52 ± 17 years, 5 men) with and without known hepatic lesions, undergoing DCE‐MRI. Results Respiratory motion produced artifacts and misalignment between dynamic volumes (lesion average motion amplitude of 3.82 ± 1.11 mm). Motion correction minimized artifacts and improved average contrast‐to‐noise ratio of hepatic lesions in late phase by 47% (p < .01). Quantitative endothelial permeability maps of motion‐corrected data demonstrated enhanced visibility of different pathologies (e.g., metastases, hemangiomas, cysts, necrotic tumor substructure) and showed improved contrast‐to‐noise ratio by 62% (p < .01) compared with uncorrected data. Conclusion 3D nonrigid motion correction in DCE‐MRI improves both visual and quantitative assessment of hepatic lesions by ensuring accurate alignment between 3D DCE images and reducing motion blurring. This approach does not require breath‐holds and minimizes scan planning by using a large FOV with isotropic resolution.
Collapse
Affiliation(s)
- Matteo Ippoliti
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Lukas
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
312
|
Pednekar AS, Jadhav S, Noel C, Masand P. Free-breathing Cardiorespiratory Synchronized Cine MRI for Assessment of Left and Right Ventricular Volume and Function in Sedated Children and Adolescents with Impaired Breath-holding Capacity. Radiol Cardiothorac Imaging 2019; 1:e180027. [PMID: 33778501 PMCID: PMC7970102 DOI: 10.1148/ryct.2019180027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively compare left ventricular and right ventricular volume, function, and image quality of a free-breathing (FB) cardiorespiratory synchronized balanced steady-state free precession cine MRI sequence with that of a standard of reference breath-hold (BH) technique in sedated children and adolescents who are unable to perform BHs. MATERIALS AND METHODS Cohort 1 included 30 patients able to perform BHs (mean age, 19 years; age range, 9-69 years). Cohort 1 underwent both BH and FB cine short-axis imaging with identical acquisition parameters. Cohort 2 included 63 patients unable to perform BHs (50 sedated patients [mean age, 9 years; age range, 4 months to 28 years], 13 unsedated patients [mean age, 21 years; age range, 8-58 years]). Cohort 2 underwent FB cine imaging in multiple views with spatiotemporal resolution equivalent to BH imaging. Comparative quantitative analysis was performed for left ventricular and right ventricular volumes in cohort 1 and for qualitative image quality scores in all patients. RESULTS Global left ventricular and right ventricular volumetric indexes and image quality scores were comparable between BH and FB sequences in cohort 1. FB image quality was graded as excellent (37 sequences), good (197 sequences), adequate (26 sequences), and suboptimal (three sequences) for 263 cine sequences in cohort 2. In cohort 1, de facto image acquisition time for FB (6.1 minutes ± 1.9 [standard deviation]) was comparable to the equivalent for BH (6.1 minutes ± 2.6) for a stack of 14 sections. CONCLUSION In cohorts of sedated children, adolescents, and young adults unable to perform BHs consistently, left ventricular and right ventricular volumes and function were comparable and image quality was noninferior between FB and standard of reference BH techniques.© RSNA, 2019.
Collapse
Affiliation(s)
- Amol S. Pednekar
- From the Edward B. Singleton Department of Pediatric Radiology (A.S.P., S.J., P.M.) and Department of Pediatric Cardiology (C.N.), Texas Children’s Hospital, Mark A. Wallace Tower, 6701 Fannin St, Suite 470, Houston, TX 77030-2399
| | - Siddharth Jadhav
- From the Edward B. Singleton Department of Pediatric Radiology (A.S.P., S.J., P.M.) and Department of Pediatric Cardiology (C.N.), Texas Children’s Hospital, Mark A. Wallace Tower, 6701 Fannin St, Suite 470, Houston, TX 77030-2399
| | - Cory Noel
- From the Edward B. Singleton Department of Pediatric Radiology (A.S.P., S.J., P.M.) and Department of Pediatric Cardiology (C.N.), Texas Children’s Hospital, Mark A. Wallace Tower, 6701 Fannin St, Suite 470, Houston, TX 77030-2399
| | - Prakash Masand
- From the Edward B. Singleton Department of Pediatric Radiology (A.S.P., S.J., P.M.) and Department of Pediatric Cardiology (C.N.), Texas Children’s Hospital, Mark A. Wallace Tower, 6701 Fannin St, Suite 470, Houston, TX 77030-2399
| |
Collapse
|
313
|
Armstrong T, Ly KV, Ghahremani S, Calkins KL, Wu HH. Free-breathing 3-D quantification of infant body composition and hepatic fat using a stack-of-radial magnetic resonance imaging technique. Pediatr Radiol 2019; 49:876-888. [PMID: 31001664 DOI: 10.1007/s00247-019-04384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Body composition and hepatic fat correlate with future risk for metabolic syndrome. In children, many conventional techniques for quantifying body composition and hepatic fat have limitations. MRI is a noninvasive research tool to study body composition and hepatic fat in infants; however, conventional Cartesian MRI is sensitive to motion, particularly in the abdomen because of respiration. Therefore we developed a free-breathing MRI technique to quantify body composition and hepatic fat in infants. OBJECTIVE In infants, we aimed to (1) compare the image quality between free-breathing 3-D stack-of-radial MRI (free-breathing radial) and 3-D Cartesian MRI in the liver and (2) determine the feasibility of using free-breathing radial MRI to quantify body composition and hepatic proton-density fat fraction (PDFF). MATERIALS AND METHODS Ten infants ages 2-7 months were scanned with free-breathing radial (two abdominal; one head and chest) and Cartesian (one abdominal) MRI sequences. The median preparation and scan times were reported. To assess feasibility for hepatic PDFF quantification, a radiologist masked to the MRI technique scored abdominal scans for motion artifacts in the liver using a 3-point scale (1, or non-diagnostic, to 3, or no artifacts). Median visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and brown adipose tissue (BAT) volume and PDFF, and hepatic PDFF were measured using free-breathing radial MRI. We assessed repeatability of free-breathing radial hepatic PDFF (coefficient of repeatability) between back-to-back scans. We determined differences in the distribution of image-quality scores using McNemar-Bowker tests. P<0.05 was considered significant. RESULTS Nine infants completed the entire study (90% completion). For ten infants, the median preparation time was 32 min and scan time was 24 min. Free-breathing radial MRI demonstrated significantly higher image-quality scores compared to Cartesian MRI in the liver (radial scan 1 median = 2 and radial scan 2 median = 3 vs. Cartesian median = 1; P=0.01). Median measurements using free-breathing radial were VAT=52.0 cm3, VAT-PDFF=42.2%, SAT=267.7 cm3, SAT-PDFF=87.1%, BAT=1.4 cm3, BAT-PDFF=26.1% and hepatic PDFF=3.4% (coefficient of repeatability <2.0%). CONCLUSION In this study, free-breathing radial MRI in infants achieved significantly improved liver image quality compared to Cartesian MRI. It is feasible to use free-breathing radial MRI to quantify body composition and hepatic fat in infants.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA.,Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Karrie V Ly
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital, Los Angeles, CA, USA.,Physician Assistant Program, Midwestern University, Glendale, AZ, USA
| | - Shahnaz Ghahremani
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Ste. B119, Los Angeles, CA, 90095, USA. .,Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
314
|
Holst K, Fyrdahl A, Caidahl K, Ugander M, Sigfridsson A. Projection-based respiratory-resolved left ventricular volume measurements in patients using free-breathing double golden-angle 3D radial acquisition. MAGMA (NEW YORK, N.Y.) 2019; 32:331-341. [PMID: 30542953 PMCID: PMC6525134 DOI: 10.1007/s10334-018-0727-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022]
Abstract
Objective To refine a new technique to measure respiratory-resolved left ventricular end-diastolic volume (LVEDV) in mid-inspiration and mid-expiration using a respiratory self-gating technique and demonstrate clinical feasibility in patients. Materials and methods Ten consecutive patients were imaged at 1.5 T during 10 min of free breathing using a 3D golden-angle radial trajectory. Two respiratory self-gating signals were extracted and compared: from the k-space center of all acquired spokes, and from a superior–inferior projection spoke repeated every 64 ms. Data were binned into end-diastole and two respiratory phases of 15% respiratory cycle duration in mid-inspiration and mid-expiration. LVED volume and septal–lateral diameter were measured from manual segmentation of the endocardial border. Results Respiratory-induced variation in LVED size expressed as mid-inspiration relative to mid-expiration was, for volume, 1 ± 8% with k-space-based self-gating and 8 ± 2% with projection-based self-gating (P = 0.04), and for septal–lateral diameter, 2 ± 2% with k-space-based self-gating and 10 ± 1% with projection-based self-gating (P = 0.002). Discussion Measuring respiratory variation in LVED size was possible in clinical patients with projection-based respiratory self-gating, and the measured respiratory variation was consistent with previous studies on healthy volunteers. Projection-based self-gating detected a higher variation in LVED volume and diameter during respiration, compared to k-space-based self-gating.
Collapse
Affiliation(s)
- Karen Holst
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Alexander Fyrdahl
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
315
|
Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion Artifact Reduction Using a Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver. Magn Reson Med Sci 2019; 19:64-76. [PMID: 31061259 PMCID: PMC7067907 DOI: 10.2463/mrms.mp.2018-0156] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose: To improve the quality of images obtained via dynamic contrast enhanced MRI (DCE-MRI), which contain motion artifacts and blurring using a deep learning approach. Materials and Methods: A multi-channel convolutional neural network-based method is proposed for reducing the motion artifacts and blurring caused by respiratory motion in images obtained via DCE-MRI of the liver. The training datasets for the neural network included images with and without respiration-induced motion artifacts or blurring, and the distortions were generated by simulating the phase error in k-space. Patient studies were conducted using a multi-phase T1-weighted spoiled gradient echo sequence for the liver, which contained breath-hold failures occurring during data acquisition. The trained network was applied to the acquired images to analyze the filtering performance, and the intensities and contrast ratios before and after denoising were compared via Bland–Altman plots. Results: The proposed network was found to be significantly reducing the magnitude of the artifacts and blurring induced by respiratory motion, and the contrast ratios of the images after processing via the network were consistent with those of the unprocessed images. Conclusion: A deep learning-based method for removing motion artifacts in images obtained via DCE-MRI of the liver was demonstrated and validated.
Collapse
Affiliation(s)
- Daiki Tamada
- Department of Radiology, University of Yamanashi
| | | | | | | | | |
Collapse
|
316
|
Borman PTS, Bos C, Stemkens B, Moonen CTW, Raaymakers BW, Tijssen RHN. Assessment of 3D motion modeling performance for dose accumulation mapping on the MR-linac by simultaneous multislice MRI. Phys Med Biol 2019; 64:095004. [PMID: 30917353 DOI: 10.1088/1361-6560/ab13e3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hybrid MR-linac systems enable intrafraction motion monitoring during radiation therapy. Since time-resolved 3D MRI is still challenging, various motion models have been developed that rely on time-resolved 2D imaging. Continuous validation of these models is important for accurate dose accumulation mapping. In this study we used 2D simultaneous multislice (SMS) imaging to improve the PCA-based motion modeling method developed previously (Stemkens et al 2016 Phys. Med. Biol. 61 5335-55). From the additional simultaneously acquired slices, several independent motion models could be generated, which allowed for an assessment of the sensitivity of the motion model to the location of the time-resolved 2D slices. Additionally, the best model could be chosen at every time-point, increasing the method's robustness. Imaging experiments were performed in six healthy volunteers using three simultaneous slices, which generated three independent models per volunteer. For each model the motion traces of the liver tip and both kidneys were estimated. We found that the location of the 2D slices influenced the model's error in five volunteers significantly with a p -value <0.05, and that selecting the best model at every time-point can improve the method. This allows for more accurate and robust motion characterization in MR-guided radiotherapy.
Collapse
Affiliation(s)
- P T S Borman
- Department of Radiotherapy, University Medical Center Utrecht. Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. Imaging Division, University Medical Center Utrecht. Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
317
|
Reduction of Motion Artifacts in the Recovery of Undersampled DCE MR Images Using Data Binning and L+S Decomposition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6139785. [PMID: 31119178 PMCID: PMC6500698 DOI: 10.1155/2019/6139785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/14/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
Background Motion is a major source of blurring and ghosting in recovered MR images. It is more challenging in Dynamic Contrast Enhancement (DCE) MRI because motion effects and rapid intensity changes in contrast agent are difficult to distinguish from each other. Material and Methods In this study, we have introduced a new technique to reduce the motion artifacts, based on data binning and low rank plus sparse (L+S) reconstruction method for DCE MRI. For Data binning, radial k-space data is acquired continuously using the golden-angle radial sampling pattern and grouped into various motion states or bins. The respiratory signal for binning is extracted directly from radially acquired k-space data. A compressed sensing- (CS-) based L+S matrix decomposition model is then used to reconstruct motion sorted DCE MR images. Undersampled free breathing 3D liver and abdominal DCE MR data sets are used to validate the proposed technique. Results The performance of the technique is compared with conventional L+S decomposition qualitatively along with the image sharpness and structural similarity index. Recovered images are visually sharper and have better similarity with reference images. Conclusion L+S decomposition provides improved MR images with data binning as preprocessing step in free breathing scenario. Data binning resolves the respiratory motion by dividing different respiratory positions in multiple bins. It also differentiates the respiratory motion and contrast agent (CA) variations. MR images recovered for each bin are better as compared to the method without data binning.
Collapse
|
318
|
Taso M, Zhao L, Guidon A, Litwiller DV, Alsop DC. Volumetric abdominal perfusion measurement using a pseudo-randomly sampled 3D fast-spin-echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Magn Reson Med 2019; 82:680-692. [PMID: 30953396 DOI: 10.1002/mrm.27761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To improve image quality and spatial coverage for abdominal perfusion imaging by implementing an arterial spin labeling (ASL) sequence that combines variable-density 3D fast-spin-echo (FSE) with Cartesian trajectory and compressed-sensing (CS) reconstruction. METHODS A volumetric FSE sequence was modified to include background-suppressed pseudo-continuous ASL labeling and to support variable-density (VD) Poisson-disk sampling for acceleration. We additionally explored the benefits of center oversampling and variable outer k-space sampling. Fourteen healthy volunteers were scanned on a 3T scanner to test acceleration factors as well as the various sampling schemes described under synchronized-breathing to limit motion issues. A CS reconstruction was implemented using the BART toolbox to reconstruct perfusion-weighted ASL volumes, assessing the impact of acceleration, different reconstruction, and sampling strategies on image quality. RESULTS CS acceleration is feasible with ASL, and a strong renal perfusion signal could be observed even at very high acceleration rates (≈15). We have shown that ASL k-space complex subtraction was desirable before CS reconstruction. Although averaging of multiple highly accelerated images helped to reduce artifacts from physiologic fluctuations, superior image quality was achieved by interleaving of different highly undersampled pseudo-random spatial sampling patterns and using 4D-CS reconstruction. Combination of these enhancements produces high-quality ASL volumes in under 5 min. CONCLUSIONS High-quality isotropic ASL abdominal perfusion volumes can be obtained in healthy volunteers with a VD-FSE and CS reconstruction. This lays the groundwork for future developments toward whole abdomen free-breathing non-contrast perfusion imaging.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Li Zhao
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Arnaud Guidon
- Global MR applications and Workflow, GE Healthcare, Boston, Massachusetts
| | - Daniel V Litwiller
- Global MR applications and Workflow, GE Healthcare, New York City, New York
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
319
|
Radial MP2RAGE sequence for rapid 3D T 1 mapping of mouse abdomen: application to hepatic metastases. Eur Radiol 2019; 29:5844-5851. [PMID: 30888483 DOI: 10.1007/s00330-019-06081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The T1 longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T1 mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion. Consequently, a radial encoding scheme was implemented for the detection and T1 measurement of hepatic metastases in mice at 7T. METHODS A 3D radial encoding scheme was developed using a golden angle distribution for the k-space trajectories. As in that case, each projection contributes to the image contrast, the signal equations had to be modified. Phantoms containing increasing gadoteridol concentrations were used to determine the accuracy of the sequence in vitro. Healthy mice were repetitively scanned to assess the reproducibility of the T1 values. The growth of hepatic metastases was monitored. Undersampling robustness was also evaluated. RESULTS The accuracy of the T1 values obtained with the radial MP2RAGE sequence was > 90% compared to the Inversion-Recovery sequence. The motion robustness of this new sequence also enabled repeatable T1 measurements on abdominal organs. Hepatic metastases of less than 1-mm diameter were easily detected and T1 heterogeneities within the metastasis and between the metastases within the same animal were measured. With a twofold acceleration factor using undersampling, high-quality 3D T1 abdominal maps were achieved in 9 min. CONCLUSIONS The radial MP2RAGE sequence could be used for fast 3D T1 mapping, to detect and characterize metastases in regions subjected to respiratory motion. KEY POINTS • The Cartesian encoding of the MP2RAGE sequence was modified to a radial encoding. The modified sequence enabled accurate T 1 measurements on phantoms and on abdominal organs of mice. • Hepatic metastases were easily detected due to high contrast. Heterogeneity in T 1 was measured within the metastases and between each metastasis within the same animal. • As implementation of this sequence does not require specific hardware, we expect that it could be readily available for clinical practice in humans.
Collapse
|
320
|
Chitiboi T, Muckley M, Dane B, Huang C, Feng L, Chandarana H. Pancreas deformation in the presence of tumors using feature tracking from free-breathing XD-GRASP MRI. J Magn Reson Imaging 2019; 50:1633-1640. [PMID: 30854767 DOI: 10.1002/jmri.26714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Quantifying the biomechanical properties of pancreatic tumors could potentially help with assessment of tumor aggressiveness, prognosis, and prediction of therapy response. PURPOSE To quantify respiratory-induced deformation in the pancreas and pancreatic lesions using XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel), MRI. STUDY TYPE Retrospective study where patients undergoing clinically indicated abdominal MRI which included free-breathing radial T1 -weighted (T1 W) imaging were studied. SUBJECTS Thirty-two patients (12 male and 20 female) including nine with pancreatic lesions constituted our study cohort. FIELD STRENGTH/SEQUENCE 3.0 T with T1 WI contrast-enhanced gradient echo radial free-breathing acquisition. ASSESSMENT Using the XD-GRASP imaging technique, the acquired free-breathing radial data were sorted and binned into 10 consecutive respiratory motion states that were jointly reconstructed. 3D deformation fields along the respiratory dimension were computed using an optical flow method and were analyzed in the pancreas. STATISTICAL TESTS The Wilcoxon signed-rank test was used to assess the difference in average displacement across pancreatic regions, while the Wilcoxon rank-sum test was used for displacement differences between patients with and without tumors. The interclass correlation coefficient (ICC) was computed to assess consistency between observers for each image quality measure. RESULTS There was a significantly larger displacement in the pancreatic tail compared with the head (8.2 ± 3.7 mm > 5.8 ± 2.4 mm; P < 0.001) and body regions (8.2 ± 3.7 mm > 6.6 ± 2.9 mm; P < 0.001). Furthermore, there was reduced normalized average displacement in patients with pancreatic lesions compared with subjects without lesions (0.33 ± 0.1 < 0.69 ± 0.26, P < 0.001 for the head; 0.30 ± 0.1 < 0.84 ± 0.31, P < 0.001 for the body; and 0.44 ± 0.31 < 1.08 ± 0.53, P < 0.001 for the tail, respectively). DATA CONCLUSION Free-breathing respiratory motion-sorted XD-GRASP MRI has the potential to noninvasively characterize the biomechanical properties of the pancreas by quantifying breathing-induced mechanical displacement. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1633-1640.
Collapse
Affiliation(s)
- Teodora Chitiboi
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Siemens Healthineers, Princeton, New Jersey, USA
| | - Matthew Muckley
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Bari Dane
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
321
|
Stemkens B, Prins FM, Bruijnen T, Kerkmeijer LGW, Lagendijk JJW, van den Berg CAT, Tijssen RHN. A dual-purpose MRI acquisition to combine 4D-MRI and dynamic contrast-enhanced imaging for abdominal radiotherapy planning. Phys Med Biol 2019; 64:06NT02. [PMID: 30695759 DOI: 10.1088/1361-6560/ab0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For successful abdominal radiotherapy it is crucial to have a clear tumor definition and an accurate characterization of the motion. While dynamic contrast-enhanced (DCE) MRI aids tumor visualization, it is often hampered by motion artifacts. 4D-MRI characterizes this motion, but often lacks the contrast to clearly visualize the tumor. This dual requirement is challenging due to time constraints. Here, we propose combining both into a single acquisition by reconstructing the data in various ways in order to achieve both high spatio-temporal resolution DCE-MRI and accurate 4D-MRI motion estimates. A 5 min T1-weigthed DCE acquisition was collected in five renal-cell carcinoma patients and simulated in a digital phantom. Data were acquired continuously using a 3D golden angle radial stack-of-stars acquisition. This enabled three types of reconstruction; (1) a high spatio-temporal resolution DCE time series, (2) a 5D reconstruction and (3) a contrast-enhanced 4D-MRI for motion characterization. Motion extracted from the 4D- and 5D-MRI was compared with a separately acquired 4D-MRI and additional 2D cine MR imaging. Simulations on XCAT showed that 5D reconstructions severely underestimated motion ([Formula: see text]), whereas contrast-enhanced 4D-MRI only underestimated motion by [Formula: see text]. This was confirmed in the in vivo data where motion of the contrast-enhanced 4D-MRI was approximately [Formula: see text] smaller than the motion in the 2D cine MRI (5.8 mm versus 6.5 mm), but equal to a separately acquired 4D-MRI (5.8 mm versus 5.9 mm). 5D reconstructions underestimated the motion by more than [Formula: see text], but minimized respiratory-induced blurring in the contrast enhanced images. DCE time-series demonstrated clear tumor visualization and contrast enhancement throughout the entire field-of-view. DCE- and 4D-MRI can be integrated into a single acquisition that enables different reconstructions with complementary information for abdominal radiotherapy planning and, in an MRI-guided treatment, precise motion information, input for motion models, and rapid feedback on the contrast enhancement.
Collapse
Affiliation(s)
- Bjorn Stemkens
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. MR Code B.V., Zaltbommel, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
322
|
Analytical validation of single-kidney glomerular filtration rate and split renal function as measured with magnetic resonance renography. Magn Reson Imaging 2019; 59:53-60. [PMID: 30849485 DOI: 10.1016/j.mri.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
323
|
Ma LE, Markl M, Chow K, Huh H, Forman C, Vali A, Greiser A, Carr J, Schnell S, Barker AJ, Jin N. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 2019; 81:3675-3690. [PMID: 30803006 DOI: 10.1002/mrm.27684] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.
Collapse
Affiliation(s)
- Liliana E Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Kelvin Chow
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Chicago, Illinois
| | - Hyungkyu Huh
- Daegu-Gyeongbuk Medical Innovation Foundation, Medical Device Development Center, Daegu, South Korea
| | | | - Alireza Vali
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Denver, Colorado.,Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, Ohio
| |
Collapse
|
324
|
Rassam F, Zhang T, Cieslak KP, Lavini C, Stoker J, Bennink RJ, van Gulik TM, van Vliet LJ, Runge JH, Vos FM. Comparison between dynamic gadoxetate-enhanced MRI and 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT for quantitative assessment of liver function. Eur Radiol 2019; 29:5063-5072. [PMID: 30796575 PMCID: PMC6682576 DOI: 10.1007/s00330-019-06029-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Objectives To compare Gd-EOB-DTPA dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) with 99mTc-mebrofenin hepatobiliary scintigraphy (HBS) as quantitative liver function tests for the preoperative assessment of patients undergoing liver resection. Methods Patients undergoing liver surgery and preoperative assessment of future remnant liver (FRL) function using 99mTc-mebrofenin HBS were included. Patients underwent DHCE-MRI. Total liver uptake function was calculated for both modalities: mebrofenin uptake rate (MUR) and Ki respectively. The FRL was delineated with both SPECT-CT and MRI to calculate the functional share. Blood samples were taken to assess biochemical liver parameters. Results A total of 20 patients were included. The HBS-derived MUR and the DHCE-MRI-derived mean Ki correlated strongly for both total and FRL function (Pearson r = 0.70, p = 0.001 and r = 0.89, p < 0.001 respectively). There was a strong agreement between the functional share determined with both modalities (ICC = 0.944, 95% CI 0.863–0.978, n = 20). There was a significant negative correlation between liver aminotransferases and bilirubin for both MUR and Ki. Conclusions Assessment of liver function with DHCE-MRI is comparable with that of 99mTc-mebrofenin HBS and has the potential to be combined with diagnostic MRI imaging. This can therefore provide a one-stop-shop modality for the preoperative assessment of patients undergoing liver surgery. Key Points • Quantitative assessment of liver function using hepatobiliary scintigraphy is performed in the preoperative assessment of patients undergoing liver surgery in order to prevent posthepatectomy liver failure. • Gd-EOB-DTPA dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) is an emerging method to quantify liver function and can serve as a potential alternative to hepatobiliary scintigraphy. • Assessment of liver function with dynamic gadoxetate-enhanced MRI is comparable with that of hepatobiliary scintigraphy and has the potential to be combined with diagnostic MRI imaging. Electronic supplementary material The online version of this article (10.1007/s00330-019-06029-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Rassam
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - T Zhang
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - K P Cieslak
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Lavini
- Departments of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J Stoker
- Departments of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R J Bennink
- Departments of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - T M van Gulik
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - L J van Vliet
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - J H Runge
- Departments of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F M Vos
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.,Departments of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
325
|
Raptis CA, Ludwig DR, Hammer MM, Luna A, Broncano J, Henry TS, Bhalla S, Ackman JB. Building blocks for thoracic MRI: Challenges, sequences, and protocol design. J Magn Reson Imaging 2019; 50:682-701. [PMID: 30779459 DOI: 10.1002/jmri.26677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022] Open
Abstract
Thoracic MRI presents important and unique challenges. Decreased proton density in the lung in combination with respiratory and cardiac motion can degrade image quality and render poorly executed sequences uninterpretable. Despite these challenges, thoracic MRI has an important clinical role, both as a problem-solving tool and in an increasing array of clinical indications. Advances in scanner and sequence design have also helped to drive this development, presenting the radiologist with improved techniques for thoracic MRI. Given this evolving landscape, radiologists must be familiar with what thoracic MR has to offer. The first step in developing an effective thoracic MRI practice requires the creation of efficient and malleable protocols that can answer clinical questions. To do this, radiologists must have a working knowledge of the MR sequences that are used in the thorax, many of which have been adapted from use elsewhere in the body. These sequences can be broadly divided into three categories: traditional/anatomic, functional, and cine based. Traditional/anatomic sequences allow for the depiction of anatomy and pathologic processes with the ability for characterization of signal intensity and contrast enhancement. Functional sequences, including diffusion-weighted imaging, and high temporal resolution dynamic contrast enhancement, allow for the noninvasive measurement of tissue-specific parameters. Cine-based sequences can depict the motion of structures in the thorax, either with retrospective ECG gating or in real time. The purpose of this article is to review these categories, the building block sequences that comprise them, and identify basic questions that should be considered in thoracic MRI protocol design. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:682-701.
Collapse
Affiliation(s)
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, St. Louis, Missouri, USA
| | - Mark M Hammer
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Luna
- Health Time, Clinica Las Nieves, Jaen, Spain.,University Hospitals, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jordi Broncano
- Health Time, Hospital de la Cruz Roja and San Juan de Dios, Cordoba, Spain
| | - Travis S Henry
- University of California-San Francisco, San Francisco, California, USA
| | - Sanjeev Bhalla
- Mallinckrodt Institute of Radiology, St. Louis, Missouri, USA
| | - Jeanne B Ackman
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
326
|
Bush MA, Ahmad R, Jin N, Liu Y, Simonetti OP. Patient specific prospective respiratory motion correction for efficient, free-breathing cardiovascular MRI. Magn Reson Med 2019; 81:3662-3674. [PMID: 30761599 DOI: 10.1002/mrm.27681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a patient-specific respiratory motion correction technique with true 100% acquisition efficiency. METHODS A short training scan consisting of a series of single heartbeat images, each acquired with a preceding diaphragmatic navigator, was performed to fit a model relating the patient-specific 3D respiratory motion of the heart-to-diaphragm position. The resulting motion model was then used to update the imaging plane in real-time to correct for translational motion based on respiratory position provided by the navigator. The method was tested in a group of 11 volunteers with 5 separate free-breathing acquisitions: FB, no motion correction; FB-TF, free breathing with a linear tracking factor; Nav Gate, navigator gating; Nav Gate-TF, navigator gating with a tracking factor; and PROCO, prospective motion correction (proposed). Each acquisition lasted for 50 accepted heartbeats, where non-gated scans had a 100% acceptance rate, and gated scans accepted data only within a ±4 mm navigator window. Retrospective image registration was used to measure residual motion and determine the effectiveness of each method. RESULTS PROCO reduced the range/RMSE of residual motion to 4.08 ± 1.4/0.90 ± 0.3 mm, compared to 10.78 ± 6.9/2.97 ± 2.2 mm for FB, 5.32 ± 2.92/1.24 ± 0.8 mm for FB-TF, 4.08 ± 1.6/0.93 ± 0.4 mm for Nav Gate, and 2.90 ± 1.0/0.63 ± 0.2 mm for Nav Gate-TF. Nav Gate and Nav Gate-TF reduced scan efficiency to 48.84 ± 9.31% and 54.54 ± 10.12%, respectively. CONCLUSION PROCO successfully limited the residual motion in single-shot imaging to the level of traditional navigator gating while maintaining 100% acquisition efficiency.
Collapse
Affiliation(s)
- Michael A Bush
- Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Rizwan Ahmad
- Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA Inc, Columbus, Ohio
| | - Yingmin Liu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Orlando P Simonetti
- Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,Internal Medicine, The Ohio State University, Columbus, Ohio.,Radiology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
327
|
Delacoste J, Feliciano H, Yerly J, Dunet V, Beigelman‐Aubry C, Ginami G, van Heeswijk RB, Piccini D, Stuber M, Sauty A. A black‐blood ultra‐short echo time (UTE) sequence for 3D isotropic resolution imaging of the lungs. Magn Reson Med 2019; 81:3808-3818. [DOI: 10.1002/mrm.27679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jean Delacoste
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Helene Feliciano
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Jérôme Yerly
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Vincent Dunet
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Catherine Beigelman‐Aubry
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Giulia Ginami
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Ruud B. van Heeswijk
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Davide Piccini
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
| | - Matthias Stuber
- Department of Radiology University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne Switzerland
| | - Alain Sauty
- Adult CF unit, Neuchatelois‐Pourtales Hospital Neuchatel Switzerland
- Service of Pneumology, Department of Medicine University Hospital (CHUV) Lausanne Switzerland
| |
Collapse
|
328
|
Malavé MO, Baron CA, Addy NO, Cheng JY, Yang PC, Hu BS, Nishimura DG. Whole-heart coronary MR angiography using a 3D cones phyllotaxis trajectory. Magn Reson Med 2019; 81:1092-1103. [PMID: 30370941 PMCID: PMC6715422 DOI: 10.1002/mrm.27475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE To develop a 3D cones steady-state free precession sequence with improved robustness to respiratory motion while mitigating eddy current artifacts for free-breathing whole-heart coronary magnetic resonance angiography. METHOD The proposed sequence collects cone interleaves using a phyllotaxis pattern, which allows for more distributed k-space sampling for each heartbeat compared to a typical sequential collection pattern. A Fibonacci number of segments is chosen to minimize eddy current effects with the trade-off of an increased number of acquisition heartbeats. For verification, phyllotaxis-cones is compared to sequential-cones through simulations, phantom studies, and in vivo coronary scans with 8 subjects using 2D image-based navigators for retrospective motion correction. RESULTS Simulated point spread functions and moving phantom results show less coherent motion artifacts for phyllotaxis-cones compared to sequential-cones. Assessment of the right and left coronary arteries using reader scores and the image edge profile acutance vessel sharpness metric indicate superior image quality and sharpness for phyllotaxis-cones. CONCLUSION Phyllotaxis 3D cones results in improved qualitative image scores and coronary vessel sharpness for free-breathing whole-heart coronary magnetic resonance angiography compared to standard sequential ordering when using a steady-state free precession sequence.
Collapse
Affiliation(s)
- Mario O. Malavé
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| | - Corey A. Baron
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| | - Nii Okai Addy
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| | - Joseph Y. Cheng
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
- Department of Radiology, Stanford University, Palo Alto, California, United States
| | - Phillip C. Yang
- Cardiovascular Medicine, Stanford University, Stanford, California, United States
| | - Bob S. Hu
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
- Cardiology, Palo Alto Medical Foundation, Palo Alto, California, United States
| | - Dwight G. Nishimura
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| |
Collapse
|
329
|
Hamilton JI, Jiang Y, Ma D, Chen Y, Lo WC, Griswold M, Seiberlich N. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction. NMR IN BIOMEDICINE 2019; 32:e4041. [PMID: 30561779 PMCID: PMC7755311 DOI: 10.1002/nbm.4041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 05/02/2023]
Abstract
This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardial T1, T2 , and M0 . The single-slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice-specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single-slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision in T1 and T2 for both single-slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardial T1 and T2 mapping compared with both single-slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole-heart simultaneous T1 and T2 quantification with cMRF.
Collapse
Affiliation(s)
- Jesse I. Hamilton
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Corresponding author at 10900 Euclid Avenue, Wickenden 516, Cleveland, OH, 44106, USA,
| | - Yun Jiang
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Dan Ma
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yong Chen
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Wei-Ching Lo
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mark Griswold
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nicole Seiberlich
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
330
|
Chen C, Liu Y, Schniter P, Jin N, Craft J, Simonetti O, Ahmad R. Sparsity adaptive reconstruction for highly accelerated cardiac MRI. Magn Reson Med 2019; 81:3875-3887. [PMID: 30666694 DOI: 10.1002/mrm.27671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE To enable parameter-free, accelerated cardiovascular magnetic resonance (CMR). METHODS Regularized reconstruction methods, such as compressed sensing (CS), can significantly accelerate MRI data acquisition but require tuning of regularization weights. In this work, a technique, called Sparsity adaptive Composite Recovery (SCoRe) that exploits sparsity in multiple, disparate sparsifying transforms is presented. A data-driven adjustment of the relative contributions of different transforms yields a parameter-free CS recovery process. SCoRe is validated in a dynamic digital phantom as well as in retrospectively and prospectively undersampled cine CMR data. RESULTS The results from simulation and 6 retrospectively undersampled datasets indicate that SCoRe with auto-tuned regularization weights yields lower root-mean-square error (RMSE) and higher structural similarity index (SSIM) compared to state-of-the-art CS methods. In 45 prospectively undersampled datasets acquired from 15 volunteers, the image quality was scored by 2 expert reviewers, with SCoRe receiving a higher average score (p < 0.01) compared to other CS methods. CONCLUSIONS SCoRe enables accelerated cine CMR from highly undersampled data. In contrast to other acceleration techniques, SCoRe adapts regularization weights based on noise power and level of sparsity in each transform, yielding superior performance without admitting any free parameters.
Collapse
Affiliation(s)
- Chong Chen
- Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Yingmin Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Philip Schniter
- Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA Inc., Columbus, Ohio
| | - Jason Craft
- Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Orlando Simonetti
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio.,Internal Medicine, The Ohio State University, Columbus, Ohio.,Radiology, The Ohio State University, Columbus, Ohio
| | - Rizwan Ahmad
- Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio.,Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
331
|
Godino-Moya A, Royuela-Del-Val J, Usman M, Menchón-Lara RM, Martín-Fernández M, Prieto C, Alberola-López C. Space-time variant weighted regularization in compressed sensing cardiac cine MRI. Magn Reson Imaging 2019; 58:44-55. [PMID: 30654163 DOI: 10.1016/j.mri.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/02/2018] [Accepted: 01/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To analyze the impact on image quality and motion fidelity of a motion-weighted space-time variant regularization term in compressed sensing cardiac cine MRI. METHODS k-t SPARSE-SENSE with temporal total variation (tTV) is used as the base reconstruction algorithm. Motion in the dynamic image is estimated by means of a robust registration technique for non-rigid motion. The resulting deformation fields are used to leverage the regularization term. The results are compared with standard k-t SPARSE-SENSE with tTV regularization as well as with an improved version of this algorithm that makes use of tTV and temporal Fast Fourier Transform regularization in x-f domain. RESULTS The proposed method with space-time variant regularization provides higher motion fidelity and image quality than the two previously reported methods. Difference images between undersampled reconstruction and fully sampled reference images show less systematic errors with the proposed approach. CONCLUSIONS Usage of a space-time variant regularization offers reconstructions with better image quality than the state of the art approaches used for comparison.
Collapse
Affiliation(s)
- Alejandro Godino-Moya
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., Valladolid 47011, Spain.
| | - Javier Royuela-Del-Val
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., Valladolid 47011, Spain
| | - Muhammad Usman
- Department of Computer Science, University College London, London, United Kingdom
| | - Rosa-María Menchón-Lara
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., Valladolid 47011, Spain
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., Valladolid 47011, Spain
| | - Claudia Prieto
- King's College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
| | - Carlos Alberola-López
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., Valladolid 47011, Spain
| |
Collapse
|
332
|
Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI. Magn Reson Imaging 2019; 58:56-66. [PMID: 30658071 DOI: 10.1016/j.mri.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 01/12/2019] [Indexed: 02/03/2023]
Abstract
Liver dynamic contrast-enhanced MRI (DCE-MRI) requires high spatiotemporal resolution and large field of view to clearly visualize all relevant enhancement phases and detect early-stage liver lesions. The low-rank plus sparse (L + S) reconstruction outperforms standard sparsity-only-based reconstruction through separation of low-rank background component (L) and sparse dynamic components (S). However, the L + S decomposition is sensitive to respiratory motion so that image quality is compromised when breathing occurs during long time data acquisition. To enable high quality reconstruction for free-breathing liver 4D DCE-MRI, this paper presents a novel method called SMC-LS, which incorporates Sliding Motion Compensation into the standard L + S reconstruction. The global superior-inferior displacement of the internal abdominal organs is inferred directly from the undersampled raw data and then used to correct the breathing induced sliding motion which is the dominant component of respiratory motion. With sliding motion compensation, the reconstructed temporal frames are roughly registered before applying the standard L + S decomposition. The proposed method has been validated using free-breathing liver 4D MRI phantom data, free-breathing liver 4D DCE-MRI phantom data, and in vivo free breathing liver 4D MRI dataset. Results demonstrated that SMC-LS reconstruction can effectively reduce motion blurring artefacts and preserve both spatial structures and temporal variations at a sub-second temporal frame rate for free-breathing whole-liver 4D DCE-MRI.
Collapse
|
333
|
Kamesh Iyer S, Moon B, Hwuang E, Han Y, Solomon M, Litt H, Witschey WR. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing. J Cardiovasc Magn Reson 2019; 21:5. [PMID: 30626437 PMCID: PMC6327532 DOI: 10.1186/s12968-018-0507-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endogenous contrast T1ρ cardiovascular magnetic resonance (CMR) can detect scar or infiltrative fibrosis in patients with ischemic or non-ischemic cardiomyopathy. Existing 2D T1ρ techniques have limited spatial coverage or require multiple breath-holds. The purpose of this project was to develop an accelerated, free-breathing 3D T1ρ mapping sequence with whole left ventricle coverage using a multicoil, compressed sensing (CS) reconstruction technique for rapid reconstruction of undersampled k-space data. METHODS We developed a cardiac- and respiratory-gated, free-breathing 3D T1ρ sequence and acquired data using a variable-density k-space sampling pattern (A = 3). The effect of the transient magnetization trajectory, incomplete recovery of magnetization between T1ρ-preparations (heart rate dependence), and k-space sampling pattern on T1ρ relaxation time error and edge blurring was analyzed using Bloch simulations for normal and chronically infarcted myocardium. Sequence accuracy and repeatability was evaluated using MnCl2 phantoms with different T1ρ relaxation times and compared to 2D measurements. We further assessed accuracy and repeatability in healthy subjects and compared these results to 2D breath-held measurements. RESULTS The error in T1ρ due to incomplete recovery of magnetization between T1ρ-preparations was T1ρhealthy = 6.1% and T1ρinfarct = 10.8% at 60 bpm and T1ρhealthy = 13.2% and T1ρinfarct = 19.6% at 90 bpm. At a heart rate of 60 bpm, error from the combined effects of readout-dependent magnetization transients, k-space undersampling and reordering was T1ρhealthy = 12.6% and T1ρinfarct = 5.8%. CS reconstructions had improved edge sharpness (blur metric = 0.15) compared to inverse Fourier transform reconstructions (blur metric = 0.48). There was strong agreement between the mean T1ρ estimated from the 2D and accelerated 3D data (R2 = 0.99; P < 0.05) acquired on the MnCl2 phantoms. The mean R1ρ estimated from the accelerated 3D sequence was highly correlated with MnCl2 concentration (R2 = 0.99; P < 0.05). 3D T1ρ acquisitions were successful in all human subjects. There was no significant bias between undersampled 3D T1ρ and breath-held 2D T1ρ (mean bias = 0.87) and the measurements had good repeatability (COV2D = 6.4% and COV3D = 7.1%). CONCLUSIONS This is the first report of an accelerated, free-breathing 3D T1ρ mapping of the left ventricle. This technique may improve non-contrast myocardial tissue characterization in patients with heart disease in a scan time appropriate for patients.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brianna Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Eileen Hwuang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
334
|
Rigie D, Vahle T, Zhao T, Czekella B, Frohwein LJ, Schäfers K, Boada FE. Cardiorespiratory motion-tracking via self-refocused rosette navigators. Magn Reson Med 2019; 81:2947-2958. [PMID: 30615208 DOI: 10.1002/mrm.27609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a flexible method for tracking respiratory and cardiac motions throughout MR and PET-MR body examinations that requires no additional hardware and minimal sequence modification. METHODS The incorporation of a contrast-neutral rosette navigator module following the RF excitation allows for robust cardiorespiratory motion tracking with minimal impact on the host sequence. Spatial encoding gradients are applied to the FID signal and the desired motion signals are extracted with a blind source separation technique. This approach is validated with an anthropomorphic, PET-MR-compatible motion phantom as well as in 13 human subjects. RESULTS Both respiratory and cardiac motions were reliably extracted from the proposed rosette navigator in phantom and patient studies. In the phantom study, the MR-derived motion signals were additionally validated against the ground truth measurement of diaphragm displacement and left ventricle model triggering pulse. CONCLUSION The proposed method yields accurate respiratory and cardiac motion-state tracking, requiring only a short (1.76 ms) additional navigator module, which is self-refocusing and imposes minimal constraints on sequence design.
Collapse
Affiliation(s)
- David Rigie
- Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine, New York, New York
| | | | - Tiejun Zhao
- Siemens Medical Solutions, New York, New York
| | - Björn Czekella
- European Institute for Molecular Imaging, Münster, Germany
| | | | - Klaus Schäfers
- European Institute for Molecular Imaging, Münster, Germany
| | - Fernando E Boada
- Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine, New York, New York
| |
Collapse
|
335
|
Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med 2019; 81:140-152. [PMID: 30058079 PMCID: PMC6258350 DOI: 10.1002/mrm.27357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Li Feng
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Ricardo Otazo
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
336
|
Weller DS, Wang L, Mugler JP, Meyer CH. Motion-compensated reconstruction of magnetic resonance images from undersampled data. Magn Reson Imaging 2019; 55:36-45. [PMID: 30213754 PMCID: PMC6242755 DOI: 10.1016/j.mri.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 09/08/2018] [Indexed: 02/03/2023]
Abstract
Magnetic resonance imaging of patients who find difficulty lying still or holding their breath can be challenging. Unresolved intra-frame motion yields blurring artifacts and limits spatial resolution. To correct for intra-frame non-rigid motion, such as in pediatric body imaging, this paper describes a multi-scale technique for joint estimation of the motion occurring during the acquisition and of the desired uncorrupted image. This technique regularizes the motion coefficients to enforce invertibility and minimize numerical instability. This multi-scale approach takes advantage of variable-density sampling patterns used in accelerated imaging to resolve large motion from a coarse scale. The resulting method improves image quality for a set of two-dimensional reconstructions from data simulated with independently generated deformations, with statistically significant increases in both peak signal to error ratio and structural similarity index. These improvements are consistent across varying undersampling factors and severities of motion and take advantage of the variable density sampling pattern.
Collapse
Affiliation(s)
| | - Luonan Wang
- University of Virginia, Charlottesville, VA 22904, USA.
| | - John P Mugler
- University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Craig H Meyer
- University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
337
|
Yu Z, Zhao T, Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging 2018; 54:241-248. [PMID: 30193953 PMCID: PMC6215476 DOI: 10.1016/j.mri.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the motion sensitivity of magnetic resonance fingerprinting (MRF), we performed experiments with different types of motion at various time intervals during multiple scans. Additionally, we investigated the possibility to correct the motion artifacts based on redundancy in MRF data. METHODS A radial version of the FISP-MRF sequence was used to acquire one transverse slice through the brain. Three subjects were instructed to move in different patterns (in-plane rotation, through-plane wiggle, complex movements, adjust head position, and pretend itch) during different time intervals. The potential to correct motion artifacts in MRF by removing motion-corrupted data points from the fingerprints and dictionary was evaluated. RESULTS Morphological structures were well preserved in multi-parametric maps despite subject motion. Although the bulk T1 values were not significantly affected by motion, fine structures were blurred when in-plane motion was present during the first part of the scan. On the other hand, T2 values showed a considerable deviation from the motion-free results, especially when through-plane motion was present in the middle of the scan (-44% on average). Explicitly removing the motion-corrupted data from the scan partially restored the T2 values (-10% on average). CONCLUSION Our experimental results showed that different kinds of motion have distinct effects on the precision and effective resolution of the parametric maps measured with MRF. Although MRF-based acquisitions can be relatively robust to motion effects occurring at the beginning or end of the sequence, relying on redundancy in the data alone is not sufficient to assure the accuracy of the multi-parametric maps in all cases.
Collapse
Affiliation(s)
- Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Tiejun Zhao
- Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; Siemens Medical Solutions USA Inc., 40 Liberty Boulevard, Malvern, PA 19355, USA
| | - Jakob Assländer
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Martijn A Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
338
|
Zhang X, Xie G, Lu N, Zhu Y, Wei Z, Su S, Shi C, Yan F, Liu X, Qiu B, Fan Z. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Magn Reson Med 2018; 81:3234-3244. [PMID: 30474151 DOI: 10.1002/mrm.27612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate an accelerated 3D self-gated cardiac cine imaging technique at 3 Tesla without the use of external electrocardiogram triggering or respiratory gating. METHODS A 3D stack-of-stars balanced steady-state free precession sequence with a tiny golden angle sampling scheme was developed to reduced eddy current effect-related artefacts at 3 Tesla. Respiratory and cardiac motion were derived from a central 5-point self-gating signal extraction approach. The data acquired around the end-expiration phases were then sorted into individual cardiac bins and used for reconstruction with compressed sensing. To evaluate the performance of the proposed method, image quality (1: the best; 4: the worst) was quantitatively compared using both the proposed method and the conventional 3D golden-angle self-gated method. Linear regression and Bland-Altman analysis were used to assess the functional measurements agreement between the proposed method and the routine 2D breath-hold multi-slice technique. RESULTS Compared to the conventional 3D golden-angle self-gated method, the proposed method yielded images with much less streaking artifact and higher myocardium edge sharpness (0.50 ± 0.06 vs. 0.45 ± 0.05, P = 0.004). The proposed method provided an inferior image quality score to the routine 2D technique (2.13 ± 0.35 vs. 1.38 ± 0.52, P = 0.063) but a superior one to the conventional self-gated method (2.13 ± 0.35 vs. 3.13 ± 0.64, P = 0.031). Left ventricular functional measurements between the proposed method and routine 2D technique were all well in agreement. CONCLUSION This study presents a novel self-gating approach to realize rapid 3D cardiac cine imaging at 3 Tesla.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China.,MR Collaborations NE Asia, Siemens Healthcare, Shenzhen, People's Republic of China
| | - Guoxi Xie
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Na Lu
- Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanchun Zhu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Zijun Wei
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Shi Su
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Caiyun Shi
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Liu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Departments of Medicine and Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
339
|
Paganelli C, Whelan B, Peroni M, Summers P, Fast M, van de Lindt T, McClelland J, Eiben B, Keall P, Lomax T, Riboldi M, Baroni G. MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Phys Med Biol 2018; 63:22TR03. [PMID: 30457121 DOI: 10.1088/1361-6560/aaebcf] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability of magnetic resonance imaging (MRI) to provide radiation-free images with high-resolution and superb soft tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and motion management. In addition, these advantageous properties motivated several recent developments towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment adaptation. The aim of this review is to provide an overview of the state-of-the-art in MRI-based image guidance for organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion management are reviewed and their application in treatment planning, in-room guidance and adaptive radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future challenges are discussed.
Collapse
Affiliation(s)
- C Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Author to whom any correspondence should be addressed. www.cartcas.polimi.it
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Shaw JL, Yang Q, Zhou Z, Deng Z, Nguyen C, Li D, Christodoulou AG. Free-breathing, non-ECG, continuous myocardial T 1 mapping with cardiovascular magnetic resonance multitasking. Magn Reson Med 2018; 81:2450-2463. [PMID: 30450749 DOI: 10.1002/mrm.27574] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate the accuracy and repeatability of a free-breathing, non-electrocardiogram (ECG), continuous myocardial T1 and extracellular volume (ECV) mapping technique adapted from the Multitasking framework. METHODS The Multitasking framework is adapted to quantify both myocardial native T1 and ECV with a free-breathing, non-ECG, continuous acquisition T1 mapping method. We acquire interleaved high-spatial resolution image data and high-temporal resolution auxiliary data following inversion-recovery pulses at set intervals and perform low-rank tensor imaging to reconstruct images at 344 inversion times, 20 cardiac phases, and 6 respiratory phases. The accuracy and repeatability of Multitasking T1 mapping in generating native T1 and ECV maps are compared with conventional techniques in a phantom, a simulation, 12 healthy subjects, and 10 acute myocardial infarction patients. RESULTS In phantoms, Multitasking T1 mapping correlated strongly with the gold-standard spin-echo inversion recovery (R2 = 0.99). A simulation study demonstrated that Multitasking T1 mapping has similar myocardial sharpness to the fully sampled ground truth. In vivo native T1 and ECV values from Multitasking T1 mapping agree well with conventional MOLLI values and show good repeatability for native T1 and ECV mapping for 60 seconds, 30 seconds, or 15 seconds of data. Multitasking native T1 and ECV in myocardial infarction patients correlate positively with values from MOLLI. CONCLUSION Multitasking T1 mapping can quantify native T1 and ECV in the myocardium with free-breathing, non-ECG, continuous scans with good image quality and good repeatability in vivo in healthy subjects, and correlation with MOLLI T1 and ECV in acute myocardial infarction patients.
Collapse
Affiliation(s)
- Jaime L Shaw
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California.,Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qi Yang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Radiology, Xuanwu Hospital, Beijing, China
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | | |
Collapse
|
341
|
Wang N, Christodoulou AG, Xie Y, Wang Z, Deng Z, Zhou B, Lee S, Fan Z, Chang H, Yu W, Li D. Quantitative 3D dynamic contrast-enhanced (DCE) MR imaging of carotid vessel wall by fast T1 mapping using Multitasking. Magn Reson Med 2018; 81:2302-2314. [PMID: 30368891 DOI: 10.1002/mrm.27553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a dynamic contrast-enhanced (DCE) MRI method capable of high spatiotemporal resolution, 3D carotid coverage, and T1-based quantification of contrast agent concentration for the assessment of carotid atherosclerosis using a newly developed Multitasking technique. METHODS 5D imaging with 3 spatial dimensions, 1 T1 recovery dimension, and 1 DCE time dimension was performed using MR Multitasking based on low-rank tensor modeling, which allows direct T1 quantification with high spatiotemporal resolution (0.7 mm isotropic and 595 ms, respectively). Saturation recovery preparations followed by 3D segmented fast low angle shot readouts were implemented with Gaussian-density random 3D Cartesian sampling. A bulk motion removal scheme was developed to improve image quality. The proposed protocol was tested in phantom and human studies. In vivo scans were performed on 14 healthy subjects and 7 patients with carotid atherosclerosis. Kinetic parameters including area under the concentration versus time curve (AUC), vp , Ktrans , and ve were evaluated for each case. RESULTS Phantom experiments showed that T1 measurements using the proposed protocol were in good agreement with reference value ( R 2 = 0.96 ). In vivo studies demonstrated that AUC, vp , and Ktrans in the patient group were significantly higher than in the control group (0.63 ± 0.13 versus 0.42 ± 0.12, P < 0.001; 0.14 ± 0.05 versus 0.11 ± 0.03, P = 0.034; and 0.13 ± 0.04 versus 0.08 ± 0.02, P < 0.001, respectively). Results from repeated subjects showed good interscan reproducibility (intraclass correlation coefficient: vp , 0.83; Ktrans , 0.87; ve , 0.92; AUC, 0.94). CONCLUSION Multitasking DCE is a promising approach for quantitatively assessing the vascularity properties of the carotid vessel wall.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | | | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhenjia Wang
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bill Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sangeun Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Severance Cardiovascular Hospital, Seoul, Korea.,College of Medicine, Yonsei University, Seoul, Korea
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyukjae Chang
- Severance Cardiovascular Hospital, Seoul, Korea.,College of Medicine, Yonsei University, Seoul, Korea
| | - Wei Yu
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
342
|
Chava R, Assis F, Herzka D, Kolandaivelu A. Segmented radial cardiac MRI during arrhythmia using retrospective electrocardiogram and respiratory gating. Magn Reson Med 2018; 81:1726-1738. [PMID: 30362588 DOI: 10.1002/mrm.27533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE To improve segmented cardiac MRI image quality during arrhythmia. METHODS Electrocardiogram (ECG) and respiratory waveforms were recorded during imaging. Imaging readouts were retrospectively classified into heartbeat-types based on the RR interval of the current and preceding beats, QRS morphology, and respiratory phase. Image data were sorted by these classifiers to generate separate cine images of different heartbeat-types during sinus rhythm and arrhythmia. A simulation study evaluated the efficiency of K-space sampling over a range of heart rhythms, heart rates, and respiratory rates. In vivo imaging was performed in volunteers with sinus rhythm, swine with arrhythmia simulated by pacing, and a human subject with spontaneous premature beats. RESULTS K-space sampling uniformity and image quality incrementally improve with additional occurrences of the desired normal sinus or arrhythmia heartbeat-type. To approach the image quality of breath-hold imaging, sufficiently restrictive gating parameters are required. Compared with real-time imaging, retrospective gated images had reduced noise and improved sharpness while maintaining desired cine temporal resolution. Variations of cardiac function between arrhythmia heartbeats could be observed in arrhythmia imaging cases that are not captured by conventional segmented imaging. CONCLUSION Retrospective ECG and respiratory gating permits imaging of various heartbeats during arrhythmia with fewer resolution restrictions compared to real-time imaging. For a fixed imaging time, imaging quality depends on frequency of the imaged heartbeat-type. Imaging additional heartbeats permits incremental improvement in image quality.
Collapse
Affiliation(s)
- Raghuram Chava
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fabrizio Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Herzka
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aravindan Kolandaivelu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
343
|
Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. ACTA ACUST UNITED AC 2018; 63:21TR01. [DOI: 10.1088/1361-6560/aae56d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
344
|
Smith DS, Sengupta S, Smith SA, Brian Welch E. Trajectory optimized NUFFT: Faster non-Cartesian MRI reconstruction through prior knowledge and parallel architectures. Magn Reson Med 2018; 81:2064-2071. [PMID: 30329181 PMCID: PMC6347498 DOI: 10.1002/mrm.27497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
Purpose The non‐uniform fast Fourier transform (NUFFT) involves interpolation of non‐uniformly sampled Fourier data onto a Cartesian grid, an interpolation that is slowed by complex, non‐local data access patterns. A faster NUFFT would increase the clinical relevance of the plethora of advanced non‐Cartesian acquisition methods. Methods Here we customize the NUFFT procedure for a radial trajectory and GPU architecture to eliminate the bottlenecks encountered when allowing for arbitrary trajectories and hardware. We call the result TRON, for TRajectory Optimized NUFFT. We benchmark the speed and accuracy TRON on a Shepp‐Logan phantom and on whole‐body continuous golden‐angle radial MRI. Results TRON was 6–30× faster than the closest competitor, depending on test data set, and was the most accurate code tested. Conclusions Specialization of the NUFFT algorithm for a particular trajectory yielded significant speed gains. TRON can be easily extended to other trajectories, such as spiral and PROPELLER. TRON can be downloaded at http://github.com/davidssmith/TRON.
Collapse
Affiliation(s)
- David S Smith
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Saikat Sengupta
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seth A Smith
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E Brian Welch
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
345
|
Continuous Hepatic Arterial Multiphase Magnetic Resonance Imaging During Free-Breathing. Invest Radiol 2018; 53:596-601. [DOI: 10.1097/rli.0000000000000459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
346
|
Feng L, Delacoste J, Smith D, Weissbrot J, Flagg E, Moore WH, Girvin F, Raad R, Bhattacharji P, Stoffel D, Piccini D, Stuber M, Sodickson DK, Otazo R, Chandarana H. Simultaneous Evaluation of Lung Anatomy and Ventilation Using 4D Respiratory-Motion-Resolved Ultrashort Echo Time Sparse MRI. J Magn Reson Imaging 2018; 49:411-422. [PMID: 30252989 DOI: 10.1002/jmri.26245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Computed tomography (CT) and spirometry are the current standard methods for assessing lung anatomy and pulmonary ventilation, respectively. However, CT provides limited ventilation information and spirometry only provides global measures of lung ventilation. Thus, a method that can enable simultaneous examination of lung anatomy and ventilation is of clinical interest. PURPOSE To develop and test a 4D respiratory-resolved sparse lung MRI (XD-UTE: eXtra-Dimensional Ultrashort TE imaging) approach for simultaneous evaluation of lung anatomy and pulmonary ventilation. STUDY TYPE Prospective. POPULATION In all, 23 subjects (11 volunteers and 12 patients, mean age = 63.6 ± 8.4). FIELD STRENGTH/SEQUENCE 3T MR; a prototype 3D golden-angle radial UTE sequence, a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence. ASSESSMENT All subjects were scanned using the 3D golden-angle radial UTE sequence during normal breathing. Ten subjects underwent an additional scan during alternating normal and deep breathing. Respiratory-motion-resolved sparse reconstruction was performed for all the acquired data to generate dynamic normal-breathing or deep-breathing image series. For comparison, BH-VIBE was performed in 12 subjects. Lung images were visually scored by three experienced chest radiologists and were analyzed by two observers who segmented the left and right lung to derive ventilation parameters in comparison with spirometry. STATISTICAL TESTS Nonparametric paired two-tailed Wilcoxon signed-rank test; intraclass correlation coefficient, Pearson correlation coefficient. RESULTS XD-UTE achieved significantly improved image quality compared both with Cartesian BH-VIBE and radial reconstruction without motion compensation (P < 0.05). The global ventilation parameters (a sum of the left and right lung measures) were in good correlation with spirometry in the same subjects (correlation coefficient = 0.724). There were excellent correlations between the results obtained by two observers (intraclass correlation coefficient ranged from 0.8855-0.9995). DATA CONCLUSION Simultaneous evaluation of lung anatomy and ventilation using XD-UTE is demonstrated, which have shown good potential for improved diagnosis and management of patients with heterogeneous lung diseases. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:411-422.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jean Delacoste
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Smith
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Joseph Weissbrot
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Eric Flagg
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - William H Moore
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Francis Girvin
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Roy Raad
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Priya Bhattacharji
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - David Stoffel
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Davide Piccini
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAIR), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
347
|
Dietz B, Fallone BG, Wachowicz K. Nomenclature for real‐time magnetic resonance imaging. Magn Reson Med 2018; 81:1483-1484. [DOI: 10.1002/mrm.27487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Bryson Dietz
- Division of Medical Physics, Department of Oncology University of Alberta, Cross Cancer Institute Edmonton Canada
| | - B. Gino Fallone
- Department of Medical Physics Cross Cancer Institute Edmonton Canada
- Departments of Oncology and Physics University of Alberta Edmonton Canada
| | - Keith Wachowicz
- Department of Medical Physics Cross Cancer Institute Edmonton Canada
- Departments of Oncology and Physics University of Alberta Edmonton Canada
| |
Collapse
|
348
|
Haji-Valizadeh H, Collins JD, Aouad PJ, Serhal AM, Lindley MD, Pang J, Naresh NK, Carr JC, Kim D. Accelerated, free-breathing, noncontrast, electrocardiograph-triggered, thoracic MR angiography with stack-of-stars k-space sampling and GRASP reconstruction. Magn Reson Med 2018; 81:524-532. [PMID: 30229565 DOI: 10.1002/mrm.27409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE To develop an accelerated, free-breathing, noncontrast, electrocardiograph-triggered, thoracic MR angiography (NC-MRA) pulse sequence capable of achieving high spatial resolution at clinically acceptable scan time and test whether it produces clinically acceptable image quality in patients with suspected aortic disease. METHODS We modified a "coronary" MRA pulse sequence to use a stack-of-stars k-space sampling pattern and combined it with golden-angle radial sparse parallel (GRASP reconstruction to enable self-navigation of respiratory motion and high data acceleration. The performance of the proposed NC-MRA was evaluated in 13 patients, where clinical standard contrast-enhanced MRA (CE-MRA) was used as control. For visual analysis, two readers graded the conspicuity of vessel lumen, artifacts, and noise level on a 5-point scale (overall score index = sum of three scores). The aortic diameters were measured at seven standardized locations. The mean visual scores, inter-observer variability, and vessel diameters were compared using appropriate statistical tests. RESULTS The overall mean visual score index (12.1 ± 1.7 for CE-MRA versus 12.1 ± 1.0 for NC-MRA) scores were not significantly different (P > 0.16). The two readers' scores were significantly different for CE-MRA (P = 0.01) but not for NC-MRA (P = 0.21). The mean vessel diameters were not significantly different, except at the proximal aortic arch (P < 0.03). The mean diameters were strongly correlated (R2 ≥ 0.96) and in good agreement (absolute mean difference ≤ 0.01 cm and 95% confidence interval ≤ 0.62 cm). CONCLUSION This study shows that the proposed NC-MRA produces clinically acceptable image quality in patients at high spatial resolution (1.5 mm × 1.5 mm × 1.5 mm) and clinically acceptable scan time (~6 min).
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Pascale J Aouad
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ali M Serhal
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marc D Lindley
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jianing Pang
- Siemens Medical Solutions USA Inc, Chicago, Illinois
| | - Nivedita K Naresh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
349
|
Johansson A, Balter JM, Cao Y. Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys 2018; 45:4529-4540. [PMID: 30098044 DOI: 10.1002/mp.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Abdominal dynamic contrast-enhanced (DCE) MRI suffers from motion-induced artifacts that can blur images and distort contrast-agent uptake curves. For liver perfusion analysis, image reconstruction with rigid-body motion correction (RMC) can restore distorted portal-venous input functions (PVIF) to higher peak amplitudes. However, RMC cannot correct for liver deformation during breathing. We present a reconstruction algorithm with deformable motion correction (DMC) that enables correction of breathing-induced deformation in the whole abdomen. METHODS Raw data from a golden-angle stack-of-stars gradient-echo sequence were collected for 54 DCE-MRI examinations of 31 patients. For each examination, a respiratory motion signal was extracted from the data and used to reconstruct 21 breathing states from inhale to exhale. The states were aligned with deformable image registration to the end-exhale state. Resulting deformation fields were used to correct back-projection images before reconstruction with view sharing. Images with DMC were compared to uncorrected images and images with RMC. RESULTS DMC significantly increased the PVIF peak amplitude compared to uncorrected images (P << 0.01, mean increase: 8%) but not compared to RMC. The increased PVIF peak amplitude significantly decreased estimated portal-venous perfusion in the liver (P << 0.01, mean decrease: 8 ml/(100 ml·min)). DMC also removed artifacts in perfusion maps at the liver edge and reduced blurring of liver tumors for some patients. CONCLUSIONS DCE-MRI reconstruction with DMC can restore motion-distorted uptake curves in the abdomen and remove motion artifacts from reconstructed images and parameter maps but does not significantly improve perfusion quantification in the liver compared to RMC.
Collapse
Affiliation(s)
- Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
350
|
Armstrong T, Liu D, Martin T, Masamed R, Janzen C, Wong C, Chanlaw T, Devaskar SU, Sung K, Wu HH. 3D R 2 * mapping of the placenta during early gestation using free-breathing multiecho stack-of-radial MRI at 3T. J Magn Reson Imaging 2018; 49:291-303. [PMID: 30142239 DOI: 10.1002/jmri.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Multiecho gradient-echo Cartesian MRI characterizes placental oxygenation by quantifying R 2 * . Previous research was performed at 1.5T using breath-held 2D imaging during later gestational age (GA). PURPOSE To evaluate the accuracy and repeatability of a free-breathing (FB) 3D multiecho gradient-echo stack-of-radial technique (radial) for placental R 2 * mapping at 3T and report placental R 2 * during early GA. STUDY TYPE Prospective. POPULATION Thirty subjects with normal pregnancies and three subjects with ischemic placental disease (IPD) were scanned twice: between 14-18 and 19-23 weeks GA. FIELD STRENGTH 3T. SEQUENCE FB radial. ASSESSMENT Linear correlation (concordance coefficient, ρc ) and Bland-Altman analyses (mean difference, MD) were performed to evaluate radial R 2 * mapping accuracy compared to Cartesian in a phantom. Radial R 2 * mapping repeatability was characterized using the coefficient of repeatability (CR) between back-to-back scans. The mean and spatial coefficient of variation (CV) of R 2 * was determined for all subjects, and separately for anterior and posterior placentas, at each GA range. STATISTICAL TESTS ρc was tested for significance. Differences in mean R 2 * and CV were tested using Wilcoxon Signed-Rank and Rank-Sum tests. P < 0.05 was considered significant. Z-scores for the IPD subjects were determined. RESULTS FB radial demonstrated accurate (ρc ≥0.996; P < 0.001; |MD|<0.2s-1 ) and repeatable (CR<4s-1 ) R 2 * mapping in a phantom, and repeatable (CR≤4.6s-1 ) R 2 * mapping in normal subjects. At 3T, placental R 2 * mean ± standard deviation was 12.9s-1 ± 2.7s-1 for 14-18 and 13.2s-1 ± 1.9s-1 for 19-23 weeks GA. The CV was significantly greater (P = 0.043) at 14-18 (0.63 ± 0.12) than 19-23 (0.58 ± 0.13) weeks GA. At 19-23 weeks, the CV was significantly lower (P < 0.001) for anterior (0.49 ± 0.08) than posterior (0.67 ± 0.11) placentas. One IPD subject had a lower mean R 2 * than normal subjects at both GA ranges (Z<-2). DATA CONCLUSION FB radial provides accurate and repeatable 3D R 2 * mapping for the entire placenta at 3T during early GA. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:291-303.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Dapeng Liu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas Martin
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cass Wong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Teresa Chanlaw
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kyunghyun Sung
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|