301
|
Quinn LS, Steinmetz B, Maas A, Ong L, Kaleko M. Type-1 insulin-like growth factor receptor overexpression produces dual effects on myoblast proliferation and differentiation. J Cell Physiol 1994; 159:387-98. [PMID: 8188756 DOI: 10.1002/jcp.1041590302] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using a retroviral vector, we developed a line of C2 mouse skeletal myoblasts, C2-LISN, which expressed high levels of the human type-1 insulin-like growth factor (IGF) receptor. When switched to low serum medium, C2-LISN myoblasts underwent terminal differentiation extremely rapidly compared to control C2 myoblasts. In high serum conditions which were not permissive for differentiation, C2-LISN myoblasts expressed ten-fold higher levels of the myogenic transcription factor myogenin than did control C2 myoblasts. When cultured in low serum medium with both transforming growth factor-beta (TGF-beta) and high concentrations of IGF-I, C2-LISN myoblasts failed to differentiate and grew to very high saturation densities, forming multilayers. Upon removal of TGF-beta, multilayered C2-LISN myoblasts differentiated within 2 days. These results demonstrate that overexpression of the type-1 IGF receptor can amplify signals which stimulate myogenic differentiation. Overexpressed type-1 IGF receptors can also mediate strong mitogenic signals if differentiation is inhibited by TGF-beta. The C2-LISN myoblast cell line may be a useful model to investigate the intracellular pathways which stimulate myogenic differentiation. Additionally, overexpression of the type-1 IGF receptor could provide a strategy to expand populations of differentiation-competent myoblasts for experimental or clinical applications.
Collapse
Affiliation(s)
- L S Quinn
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
302
|
Morgan L, Jessen KR, Mirsky R. Negative regulation of the P0 gene in Schwann cells: suppression of P0 mRNA and protein induction in cultured Schwann cells by FGF2 and TGF beta 1, TGF beta 2 and TGF beta 3. Development 1994; 120:1399-409. [PMID: 7519543 DOI: 10.1242/dev.120.6.1399] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of peripheral nerves, Schwann cells are induced to form myelin sheaths round the larger axons. This process involves a complex series of events and the nature of the molecular signals that regulate and control myelin formation in Schwann cells is not well understood. Our previous experiments on rat Schwann cells in vitro, using serum-free defined medium, showed that a myelin-related protein phenotype could be induced in early postnatal Schwann cells in culture by elevation of intracellular cyclic AMP levels in the absence of growth factors, conditions under which the cells are not dividing. Cells with this phenotype expressed the major myelin glycoprotein P0 and expression of p75 NGF receptor, N-CAM, GFAP and A5E3 proteins was down-regulated. These changes are all characteristics associated with myelination in vivo. In contrast, when cyclic AMP levels were elevated in the presence of serum, suppression of cyclic AMP-induced differentiation resulted and DNA synthesis was induced. In this paper, we have used this model system and extended our analysis to explore the relationship between defined growth factors and suppression of myelination. We have used pure recombinant growth factors normally present in peripheral nerves, i.e. FGF1 and FGF2 and TGF beta 1, TGF beta 2, and TGF beta 3 and shown that, like serum, they can strongly suppress the forskolin-mediated induction of the P0 gene, both at the level of mRNA and protein synthesis. For both growth factor families, the suppression of P0 gene expression is dose-dependent and takes place in serum-starved cells that are mitotically quiescent. In the case of FGF2, however, even more complete suppression is obtained when the cells are simultaneously allowed to enter the cell cycle by inclusion of high concentrations of insulin in the culture medium. The present results raise the possibility that, in addition to the positive axonal signals that are usually envisaged to control the onset of myelination, growth factors present in the nerve may exert negative regulatory signals during development and thus help control the time of onset and the rate of myelination in peripheral nerves.
Collapse
Affiliation(s)
- L Morgan
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
303
|
Filvaroff EH, Ebner R, Derynck R. Inhibition of myogenic differentiation in myoblasts expressing a truncated type II TGF-beta receptor. Development 1994; 120:1085-95. [PMID: 8026322 DOI: 10.1242/dev.120.5.1085] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is thought to play a role in mesenchymal cell development and, specifically, in muscle differentiation, yet its precise role in the latter process remains unclear. TGF-beta has been shown to both inhibit and induce myoblast maturation in vitro, depending on the culture conditions. Whether the type I or type II TGF-beta receptor mediates the various TGF-beta effects on myogenesis is not known. In the present study, C2C12 myoblasts were transfected with an expression vector for a truncated type II TGF-beta receptor, which has been shown to act as a dominant negative inhibitor of type II receptor signaling. In contrast to the parental cells, the transfected clones did not efficiently form myotubes or induce expression of MyoD, myogenin and several other differentiation markers following incubation in low serum media. However, some muscle differentiation markers continued to be expressed in the transfected cells suggesting that at least two pathways are involved in muscle cell differentiation. These cells could still growth arrest in low serum media, showing that decreased proliferation can be dissociated from differentiation. Unlike several oncogenes known to block myogenic differentiation, expression of the truncated TGF-beta receptor did not result in myoblast transformation. Injection of the parental or the transfected C2C12 cells into the limb muscle of nude mice revealed quantitative and qualitative differences in their behavior, and suggested that myoblasts expressing the truncated TGF-beta receptor cannot fuse in vivo. Finally, retrovirus-mediated expression of MyoD in the transfected cells restored their ability to form myotubes in vitro, indicating that inhibition of myoblast differentiation by the truncated TGF-beta receptor may depend on decreased MyoD expression. We propose that TGF-beta signaling through the type II receptor is required for several distinct aspects of myogenic differentiation and that TGF-beta acts as a competence factor in this multistep process.
Collapse
Affiliation(s)
- E H Filvaroff
- Department of Growth and Development, University of California at San Francisco 94143-0640
| | | | | |
Collapse
|
304
|
Williams BA, Ordahl CP. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 1994; 120:785-96. [PMID: 7600957 DOI: 10.1242/dev.120.4.785] [Citation(s) in RCA: 271] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153–160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957–971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
Collapse
Affiliation(s)
- B A Williams
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
305
|
Wey E, Lyons GE, Schäfer BW. A human POU domain gene, mPOU, is expressed in developing brain and specific adult tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:753-62. [PMID: 7908264 DOI: 10.1111/j.1432-1033.1994.tb18676.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
POU domain genes constitute a family of transcription factors that exhibit distinct temporal and spatial patterns of expression. To investigate the possible functions that POU proteins may have in muscle development we have isolated four novel POU-domain-encoding sequences from human muscle tissue. One of these sequences, referred to as mPOU, encodes a new member of subclass VI of the POU family. In the embryo, mPOU is expressed exclusively in the developing brain, whereas in the adult its expression is restricted to brain, heart, skeletal muscle and lung. In the brain, the highest expression levels were found in specific cell layers of the cortex, the olfactory bulb, the hippocampus and the cerebellum. mPOU is shown to bind to DNA sequences containing the octamer motif and other POU factor target sites. The distinct expression pattern and divergent DNA-binding characteristics indicate that mPOU may regulate a distinct set of genes.
Collapse
Affiliation(s)
- E Wey
- Department of Pediatrics, University of Zurich, Switzerland
| | | | | |
Collapse
|
306
|
Muscat GE, Mynett-Johnson L, Dowhan D, Downes M, Griggs R. Activation of myoD gene transcription by 3,5,3'-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Nucleic Acids Res 1994; 22:583-91. [PMID: 8127707 PMCID: PMC307847 DOI: 10.1093/nar/22.4.583] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Thyroid hormones are major determinants of skeletal muscle differentiation in vivo. Triiodo-L-thyronine treatment promotes terminal muscle differentiation and results in increased MyoD gene transcription in myogenic cell lines; furthermore myoD and fast myosin heavy chain gene expression are activated in rodent slow twitch muscle fibers (Molecular Endocrinology 6: 1185-1194, 1992; Development 118: 1137-1147, 1993). We have identified a T3 response element (TRE) in the mouse MyoD promoter between nucleotide positions -337 and -309 (5' CTGAGGTCAGTACAGGCTGGAGGAGTAGA 3'). This sequence conferred an appropriate T3 response to an enhancerless SV40 promoter. In vitro binding studies showed that the thyroid hormone receptor alpha (TR alpha) formed a heterodimeric complex, with either the retinoid X receptor alpha or gamma 1 isoforms (RXR alpha, RXR gamm), on the MyoD TRE that was specifically competed by other well characterised TREs and not by other response elements. Analyses of this heterodimer with a battery of steroid hormone response elements indicated that the complex was efficiently competed by a direct repeat of the AGGTCA motif separated by 4 nucleotides as predicted by the 3-4-5 rule. EMSA experiments demonstrated that the nuclear factor(s) present in muscle cells that bound to the myoD TRE were constitutively expressed during myogenesis; this complex was competed by the myosin heavy chain, DR-4 and PAL-0 TREs in a sequence specific fashion. Western blot analysis indicated that TR alpha 1 was constitutively expressed during C2C12 differentiation. Mutagenesis of the myoD TRE indicated that the sequence of the direct repeats (AGGTCA) and the 4 nucleotide gap were necessary for efficient binding to the TR alpha/RXR alpha heterodimeric complex. In conclusion our data suggest that the TRE in the helix loop helix gene, myoD, is a target for the direct heterodimeric binding of TR alpha and RXR alpha/gamma. These results provide a molecular mechanism/model for the effects of triiodo-L-thyronine on in vitro myogenesis; the activation of myoD gene expression in the slow twitch fibres and the cascade of myogenic events regulated by thyroid hormone.
Collapse
Affiliation(s)
- G E Muscat
- University of Queensland, Centre for Molecular Biology and Biotechnology, Ritchie Research Laboratories, St. Lucia, Australia
| | | | | | | | | |
Collapse
|
307
|
Yao Y, Kirinoki M, Hirabayashi T. Persistent expression of tissue-specific troponin T isoforms in transplanted chicken skeletal muscle. J Muscle Res Cell Motil 1994; 15:21-8. [PMID: 8182106 DOI: 10.1007/bf00123829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study attempted to investigate the expression of skeletal muscle troponin T isoforms in chicken reared for six months after muscle transplantations of breast muscle into leg muscle, leg muscle into breast muscle, and slow muscle into breast and leg muscles of the same animal. The regenerated muscle after transplantation was studied by histological observation, two-dimensional SDS-polyacrylamide gel electrophoresis, and immunoblotting with anti-troponin T antibodies. Persistent expression of troponin T isoforms specific to donor tissue was observed in the regenerated muscle, and compared with their expression in the normal developing muscles. During the regeneration, the cells grew up and expressed troponin T isoforms in a manner similar to that in normal developing muscles, and on around the 178th day after the transplantation, the regenerated muscle expressed the adult type troponin T isoforms. Based on the troponin T isoforms expressed in the transplants, we consider that one type of skeletal muscle has some inherent potential to grow in and coexist with other types for a long term.
Collapse
Affiliation(s)
- Y Yao
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
308
|
Vandromme M, Carnac G, Gauthier-Rouvière C, Fesquet D, Lamb N, Fernandez A. Nuclear import of the myogenic factor MyoD requires cAMP-dependent protein kinase activity but not the direct phosphorylation of MyoD. J Cell Sci 1994; 107 ( Pt 2):613-20. [PMID: 8207083 DOI: 10.1242/jcs.107.2.613] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MyoD is a nuclear phosphoprotein that belongs to the family of myogenic regulatory factors and acts in the transcriptional activation of muscle-specific genes. We have investigated the role of cAMP-dependent protein kinase (A-kinase) in modulating the nuclear locale of MyoD. Purified MyoD protein microinjected into the cytoplasm of rat embryo fibroblasts is rapidly translocated into the nucleus. Inhibition of A-kinase activity through injection of the specific inhibitory peptide PKI prevents this nuclear localisation. This inhibition of nuclear location is specifically reversed by injection of purified A-kinase catalytic subunit, showing the requirement for A-kinase in the nuclear import of MyoD. Site-directed mutagenesis of all the putative sites for A-kinase-dependent phosphorylation on MyoD, substituting serine or threonine residues for the non-phosphorylatable amino acid alanine, had no effect on nuclear import of mutated MyoD. These data exclude the possibility that the effect of A-kinase on the nuclear translocation of MyoD is mediated by direct phosphorylation of MyoD and imply that A-kinase operates through phosphorylation of components involved in the nuclear transport of MyoD.
Collapse
Affiliation(s)
- M Vandromme
- Cell Biology Unit, CRBM, CNRS-INSERM, Montpellier, France
| | | | | | | | | | | |
Collapse
|
309
|
Olwin BB, Hannon K, Kudla AJ. Are fibroblast growth factors regulators of myogenesis in vivo? PROGRESS IN GROWTH FACTOR RESEARCH 1994; 5:145-58. [PMID: 7919221 DOI: 10.1016/0955-2235(94)90002-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent advances in understanding of skeletal muscle differentiation implicate fibroblast growth factors (FGFs) as regulators of myogenesis; however, the identity and actions of factors that repress myogenesis in vivo remain to be established. This review will focus on the fibroblast growth factor family and the evidence for its role in regulating myogenesis in culture and in vivo.
Collapse
Affiliation(s)
- B B Olwin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
310
|
Olson EN, Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 1994; 8:1-8. [PMID: 8288123 DOI: 10.1101/gad.8.1.1] [Citation(s) in RCA: 490] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E N Olson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
311
|
Hall PA, Lane DP. Genetics of growth arrest and cell death: key determinants of tissue homeostasis. Eur J Cancer 1994; 30A:2001-12. [PMID: 7734214 DOI: 10.1016/0959-8049(94)00394-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P A Hall
- Department of Pathology, Ninewells Hospital, University of Dundee, U.K
| | | |
Collapse
|
312
|
Koyabu S, Imanaka-Yoshida K, Ioshii SO, Nakano T, Yoshida T. Switching of the dominant calcium sequestering protein during skeletal muscle differentiation. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:259-70. [PMID: 7895290 DOI: 10.1002/cm.970290309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A major Ca(2+)-storing protein in endoplasmic reticulum (ER) of non-muscle cells is calreticulin (CR), which is considered to be functionally homologous to calsequestrin. Calsequestrin is a Ca(2+)-binding protein in sarcoplasmic reticulum (SR) of striated muscle, which stores Ca2+ during muscle relaxation. In order to investigate the expression and distribution of calsequestrin and calreticulin during skeletal muscle differentiation, cultured chick embryonic skeletal muscles were observed by immunofluorescence using anti-calsequestrin, anti-calreticulin, anti-desmin, and anti-sarcomeric myosin antibodies and rhodamine-phalloidin. Within 6 hours in culture, myoblasts started to express desmin. Desmin-positive cells demonstrated the reticular staining of calreticulin, as did desmin-negative cells. Around fusion, calsequestrin and sarcomeric myosin started to appear in desmin-positive cells. The expression of calsequestrin slightly preceded that of sarcomeric myosin. As the myotubes matured, the fluorescent dots of calsequestrin increased and spread to the cell periphery along the myofibrils, while the reticular pattern of calreticulin gradually disappeared. Double labeling showed that calsequestrin colocalized with calreticulin. In mature myotubes, anti-calsequestrin staining demonstrated many dots along myofibrils, whereas calreticulin was barely seen except at the perinuclear region. These results suggest that the expression of calsequestrin and calreticulin are switched during skeletal muscle differentiation.
Collapse
Affiliation(s)
- S Koyabu
- First Department of Internal Medicine, Mie University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
313
|
Buonanno A, Edmondson DG, Hayes WP. Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice. Nucleic Acids Res 1993; 21:5684-93. [PMID: 8284216 PMCID: PMC310536 DOI: 10.1093/nar/21.24.5684] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myogenin, as well as other MyoD-related skeletal muscle-specific transcription factors, regulate a large number of skeletal muscle genes during myogenic differentiation. During later development, innervation suppresses myogenin expression in the fetal hind limb musculature. Denervation of skeletal muscle reverses the effects of the nerve, and results in the reactivation of myogenin expression, as well as of other embryonic muscle proteins. Here we report that myogenin upstream sequences confer tissue- and developmental-specific expression in transgenic mice harboring a myogenin/chloramphenicol acetyltransferase (CAT) reporter construct. Using in situ hybridization to analyze serial sections of E12.5 embryos, we found colocalization of CAT and endogenous myogenin transcripts in the primordial muscle of the head and limbs, in the intercostal muscle masses, and in the most caudal somites. Later in development, we observed that the expression of the transgene and endogenous myogenin gene continued to be restricted to skeletal muscle but decreased shortly after birth; a period that coincides with the innervation of secondary myotubes. Furthermore, denervation of the mouse hind limbs induced a 10-fold accumulation of CAT and endogenous myogenin transcripts by 1 day after sciatic nerve resection; a 25-fold increase was observed by 4 days after denervation. Interestingly, we observed that the accumulation of CAT enzyme activity lagged considerably with respect to the increase in CAT transcripts. Our results indicate that the cis-acting elements that temporally and spatially confine transcription of the gene during embryonic development, and that mediate the responses to innervation and denervation of muscle, lie within the upstream sequences analyzed in these studies.
Collapse
Affiliation(s)
- A Buonanno
- Laboratory of Developmental Neurobiology, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
314
|
|
315
|
Abstract
myf5 is one of a family of four myogenic determination genes that control skeletal muscle differentiation. To study the role of myf5 in vivo, we generated transgenic mice harboring the bovine homolog, bmyf, under control of the murine sarcoma virus promoter. Ectopic expression of the full-length bmyf transgene was detected in brain and heart tissue samples of F1 progeny from transgenic founder mice. Ectopic bmyf expression activated endogenous skeletal myogenic determination genes in the hearts and brains of transgenic animals. Incomplete skeletal myogenesis in most hearts gave rise to cardiomegaly and focal areas of cardiomyopathy. In brains in which ectopic expression led to a more complete myogenesis, focal areas of multinucleated, striated myotubes containing actin, desmin, and myosin were observed. These unexpected results show that myf5 can initiate myogenic differentiation in vivo, supporting the hypothesis that myf5 is responsible for determination of cells to the myogenic lineage in normal embryogenesis.
Collapse
|
316
|
Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol Cell Biol 1993. [PMID: 8413199 DOI: 10.1128/mcb.13.10.5943] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MRF4 is a member of the muscle-specific basic helix-loop-helix transcription factor family that also includes MyoD, myogenin, and Myf-5. Each of these proteins, when overexpressed in fibroblasts, converts the cells to differentiated muscle fibers that express several skeletal muscle genes, such as those for alpha-actin, muscle creatine kinase, and troponin I. Despite the fact that MRF4 functions as a positive transcriptional regulator, the MRF4 protein is subject to negative regulation by a variety of agents, most notably by exposure of cells to purified growth factors, such as basic fibroblast growth factor (bFGF). In an effort to establish whether bFGF inhibits MRF4 activity through specific posttranslational modifications, we examined whether MRF4 exists in vivo as a phosphoprotein and whether the phosphorylation status of the protein regulates its activity. Our results indicate that MRF4 is phosphorylated predominantly on serine residues, with weak phosphorylation occurring on threonine residues. Both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) phosphorylate MRF4 in vitro as well as in vivo, and the overexpression of each kinase inhibits MRF4 activity and thus blocks terminal differentiation. PKC-directed phosphorylation of a conserved threonine residue (T-99) situated within the DNA-binding domain inhibits MRF4 from binding in vitro to specific DNA targets. However, although T-99 itself is essential for myogenic activity, our studies demonstrate that the phosphorylation status of T-99 does not play a major role in regulating MRF4 activity in vivo, since PKA, PKC, and bFGF inhibit the activity of MRF4 proteins in which the identified PKA and PKC sites have been mutated. We suggest that the negative regulation of MRF4 imposed by bFGF does not involve a direct modification of the protein at the identified PKA and PKC sites but instead may involve the modification of specific coregulators that interact with this muscle regulatory factor.
Collapse
|
317
|
Hardy S, Kong Y, Konieczny SF. Fibroblast growth factor inhibits MRF4 activity independently of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol Cell Biol 1993; 13:5943-56. [PMID: 8413199 PMCID: PMC364639 DOI: 10.1128/mcb.13.10.5943-5956.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MRF4 is a member of the muscle-specific basic helix-loop-helix transcription factor family that also includes MyoD, myogenin, and Myf-5. Each of these proteins, when overexpressed in fibroblasts, converts the cells to differentiated muscle fibers that express several skeletal muscle genes, such as those for alpha-actin, muscle creatine kinase, and troponin I. Despite the fact that MRF4 functions as a positive transcriptional regulator, the MRF4 protein is subject to negative regulation by a variety of agents, most notably by exposure of cells to purified growth factors, such as basic fibroblast growth factor (bFGF). In an effort to establish whether bFGF inhibits MRF4 activity through specific posttranslational modifications, we examined whether MRF4 exists in vivo as a phosphoprotein and whether the phosphorylation status of the protein regulates its activity. Our results indicate that MRF4 is phosphorylated predominantly on serine residues, with weak phosphorylation occurring on threonine residues. Both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) phosphorylate MRF4 in vitro as well as in vivo, and the overexpression of each kinase inhibits MRF4 activity and thus blocks terminal differentiation. PKC-directed phosphorylation of a conserved threonine residue (T-99) situated within the DNA-binding domain inhibits MRF4 from binding in vitro to specific DNA targets. However, although T-99 itself is essential for myogenic activity, our studies demonstrate that the phosphorylation status of T-99 does not play a major role in regulating MRF4 activity in vivo, since PKA, PKC, and bFGF inhibit the activity of MRF4 proteins in which the identified PKA and PKC sites have been mutated. We suggest that the negative regulation of MRF4 imposed by bFGF does not involve a direct modification of the protein at the identified PKA and PKC sites but instead may involve the modification of specific coregulators that interact with this muscle regulatory factor.
Collapse
Affiliation(s)
- S Hardy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | | | |
Collapse
|
318
|
Santerre RF, Bales KR, Janney MJ, Hannon K, Fisher LF, Bailey CS, Morris J, Ivarie R, Smith CK. Expression of bovine myf5 induces ectopic skeletal muscle formation in transgenic mice. Mol Cell Biol 1993; 13:6044-51. [PMID: 8413206 PMCID: PMC364664 DOI: 10.1128/mcb.13.10.6044-6051.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
myf5 is one of a family of four myogenic determination genes that control skeletal muscle differentiation. To study the role of myf5 in vivo, we generated transgenic mice harboring the bovine homolog, bmyf, under control of the murine sarcoma virus promoter. Ectopic expression of the full-length bmyf transgene was detected in brain and heart tissue samples of F1 progeny from transgenic founder mice. Ectopic bmyf expression activated endogenous skeletal myogenic determination genes in the hearts and brains of transgenic animals. Incomplete skeletal myogenesis in most hearts gave rise to cardiomegaly and focal areas of cardiomyopathy. In brains in which ectopic expression led to a more complete myogenesis, focal areas of multinucleated, striated myotubes containing actin, desmin, and myosin were observed. These unexpected results show that myf5 can initiate myogenic differentiation in vivo, supporting the hypothesis that myf5 is responsible for determination of cells to the myogenic lineage in normal embryogenesis.
Collapse
Affiliation(s)
- R F Santerre
- Biotechnology Research, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Sunyer T, Merlie JP. Cell type- and differentiation-dependent expression from the mouse acetylcholine receptor epsilon-subunit promoter. J Neurosci Res 1993; 36:224-34. [PMID: 8263973 DOI: 10.1002/jnr.490360213] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) in adult skeletal muscle is composed of alpha-, beta-, epsilon-, and delta-subunits and is localized at the neuromuscular junction; in contrast, the more diffusely distributed fetal form is composed of alpha-, beta-, gamma-, and delta-subunits. To define sequences necessary for the transcriptional regulation of the mouse epsilon-subunit gene, we sequenced and analyzed 1036 bp upstream of the transcription start site. Using deletion analysis of the 5'-flanking region linked to the bacterial chloramphenicol acetyltransferase (CAT) gene and transfection of the resulting constructs into established cell lines, we demonstrate that a 151 bp fragment exhibits cell type- and differentiation-specific promoter activity. This activity was independent of a myogenic factor putative binding site (E-box). However, transactivation experiments with recombinant myoD, myogenin, or MRF4 showed that the E-box was functional and that MRF4 preferentially transactivates the epsilon-promoter. Thus, like other AChR promoters, the proximal region of the epsilon-promoter contains information for cell type-specific and developmental regulation of CAT and can be transactivated by myogenic factors in cultured cell lines. Unlike the other AChR promoters characterized to date, epsilon-promoter function can be partially independent of myogenic factors of the helix-loop-helix class.
Collapse
Affiliation(s)
- T Sunyer
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
320
|
Neuhold LA, Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 1993; 74:1033-42. [PMID: 7691411 DOI: 10.1016/0092-8674(93)90725-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Basic-helix-loop-helix (bHLH) class transcription factors bind DNA as hetero- and homodimers. In murine myogenic cells the HLH network includes multiple members of the E protein, MyoD, and Id families; changes in the network characterize muscle determination and differentiation and have been proposed as causal for these developmental transitions. To test the importance of HLH partner choice in these cellular decisions, we have designed a strategy in which the identity of a bHLH dimer is specified by joining two monomers via a flexible polypeptide linker. A MyoD-E47 polyprotein avidly bound the same DNA targets as its unlinked counterpart, but, unlike intermolecular dimers that are very sensitive to inhibition by Id, MyoD-E47 was resistant to Id challenge. In cells MyoD-E47 acted as a dominant positive myogenic factor, capable of initiating myogenic determination and also substantially bypassing negative regulation of differentiation by serum growth factors.
Collapse
Affiliation(s)
- L A Neuhold
- Biology Division, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
321
|
Quinn LS, Ehsan M, Steinmetz B, Kaleko M. Ligand-dependent inhibition of myoblast differentiation by overexpression of the type-1 insulin-like growth factor receptor. J Cell Physiol 1993; 156:453-61. [PMID: 7689569 DOI: 10.1002/jcp.1041560304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The insulin-like growth factors (IGFs) have paradoxical effects on skeletal myoblast differentiation. While low concentrations of IGF stimulate myoblast differentiation, high concentrations of IGF induce a progressive decrease in myoblast differentiation. The mechanism of this inhibition is unknown. Using a retroviral expression vector, we developed a subline of mouse P2 mouse myoblasts (P2-LISN) which expressed 7.5 times higher levels of type-1 IGF receptors than control (P2-LNL6) myoblasts, which were infected with a virus lacking the type-1 IGF receptor sequence. Overexpression of the type-1 IGF receptor caused the IGF dose-response curves of stimulation and progressive inhibition of differentiation to shift to the left. Additionally, at high insulin and IGF-I concentrations, complete inhibition of P2-LISN myoblast differentiation occurred. These results suggest that inhibition of differentiation at high ligand concentrations was not due to the primary involvement of other species of receptors for IGF. Type-1 IGF receptor downregulation as a mechanism for inhibition of differentiation was also ruled out since P2-LISN myoblasts constitutively expressed high levels of type-1 IGF receptors. Additionally, inhibition of differentiation at high concentrations of IGF-I was not correlated with overt stimulation of proliferation or with IGF binding protein (IGF-BP) release into the culture medium. These results indicate that the type-1 IGF receptor mediates two conflicting signal pathways in myogenic cells, differentiation-inducing and differentiation-inhibitory, which predominate at different ligand concentrations.
Collapse
Affiliation(s)
- L S Quinn
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
322
|
Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993; 364:532-5. [PMID: 8393146 DOI: 10.1038/364532a0] [Citation(s) in RCA: 693] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myogenin is a member of the basic helix-loop-helix (bHLH) gene family and converts multipotential mesodermal cells to myoblasts. The four members of the myoD family show unique spatio-temporal expression patterns and therefore may have different functions during myogenesis. Here we inactivate the myogenin gene in order to understand its role in myogenesis. Homozygous mutations are lethal perinatally owing to the resulting major defects in skeletal muscle. The extent of disorganization of muscle tissue differs in three regions. In the latero-ventral body wall, most cells, including myogenic cells, disappear and there is rapid accretion of fluid. In the limbs, cells of the myogenic lineage exist, but they are severely disrupted, and some of them are mono-nucleate with properties of myoblasts. In contrast, there are many axial, intercostal and back muscle fibres to be seen, although fibres are mainly disorganized and Z-lines are not present in most myofibrils. These findings are evidence that myogenin is crucial for muscle development in utero and demonstrate that other members of the myogenic gene family cannot compensate for the defect.
Collapse
Affiliation(s)
- Y Nabeshima
- Department of Molecular Genetics, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
323
|
Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 1993; 118:1137-47. [PMID: 8269844 DOI: 10.1242/dev.118.4.1137] [Citation(s) in RCA: 282] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each of the myogenic helix-loop-helix transcription factors (MyoD, Myogenin, Myf-5, and MRF4) is capable of activating muscle-specific gene expression, yet distinct functions have not been ascribed to the individual proteins. We report here that MyoD and Myogenin mRNAs selectively accumulate in hindlimb muscles of the adult rat that differ in contractile properties: MyoD is prevalent in fast twitch and Myogenin in slow twitch muscles. The distribution of MyoD and Myogenin transcripts also differ within a single muscle and correlate with the proportions of fast glycolytic and slow oxidative muscle fibres, respectively. Furthermore, the expression of a transgene consisting of a muscle-specific cis-regulatory region from the myoD gene controlling lacZ was primarily associated with the fast glycolytic fibres. Alteration of the fast/slow fibre type distribution by thyroid hormone treatment or by cross-reinnervation resulted in a corresponding alteration in the MyoD/Myogenin mRNA expression pattern. These findings show that the expression of specific myogenic helix-loop-helix regulators is under the control of innervation and humoral factors and may mediate differential control of contractile protein gene expression in adult muscle.
Collapse
Affiliation(s)
- S M Hughes
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock
| | | | | | | | | | | |
Collapse
|
324
|
Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 1993; 118:1095-106. [PMID: 8269842 DOI: 10.1242/dev.118.4.1095] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from multipotent mesodermal precursor to committed myoblast and its differentiation into a mature myocyte involve molecular events that enable the cell to activate muscle-specific genes. Among the participants in this process is the myocyte-specific enhancer factor 2 (MEF2) family of tissue-restricted transcription factors. These factors, which share a highly conserved DNA-binding domain including a MADS box, are essential for the expression of multiple muscle genes with cognate target MEF2 sites in cis. We report here a new human MEF2 factor, hMEF2D, which is unique among the members of this family in that it is present not only in myotubes but also in undifferentiated myoblasts, even before the appearance of myogenin. hMEF2D comprises several alternatively spliced products of a single gene, one of which is the human homolog of the Xenopus SRF-related factor SL-1. Like its relatives, cloned hMEF2D is capable of activating transcription via sequence-specific binding to the MEF2 site, recapitulating endogenous tissue-specific MEF2 activity. Indeed, while MEF2D mRNAs are ubiquitous, the protein is highly restricted to those cell types that contain this activity, implicating posttranscriptional mechanisms in the regulation of MEF2D expression. Alternative splicing may be important in this process: two alternative MEF2D domains, at least one of which is specifically included during myogenic differentiation, also correlate precisely with endogenous MEF2 activity. These findings provide compelling evidence that MEF2D is an integral link in the regulatory network for muscle gene expression. Its presence in undifferentiated myoblasts further suggests that it may be a mediator of commitment in the myogenic lineage.
Collapse
Affiliation(s)
- R E Breitbart
- Howard Hughes Medical Institute, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
325
|
Herman IM. Controlling the expression of smooth muscle contractile protein isoforms: a role for the extracellular matrix? Am J Respir Cell Mol Biol 1993; 9:3-4. [PMID: 8338675 DOI: 10.1165/ajrcmb/9.1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- I M Herman
- Program in Cell, Molecular, and Developmental Biology, Tufts University Health Science Schools, Boston, Massachusetts 02111
| |
Collapse
|
326
|
|
327
|
Edmondson D, Olson E. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53995-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
328
|
Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 1992; 71:1181-94. [PMID: 1335366 DOI: 10.1016/s0092-8674(05)80066-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenin belongs to a family of myogenic helix-loop-helix (HLH) proteins that activate muscle transcription through binding to a conserved DNA sequence associated with numerous muscle-specific genes. Fibroblast growth factor (FGF) inhibits myogenesis by inactivating myogenic HLH proteins. We show that activated protein kinase C (PKC) can substitute for FGF and inhibit transcriptional activity of myogenic HLH proteins. In transfected cells, FGF induces phosphorylation of a conserved site in the DNA-binding domain of myogenin. This site is phosphorylated by PKC in vivo and in vitro and mediates repression of the myogenic program through a loss in DNA binding activity. A myogenin mutant lacking the PKC phosphorylation site is not repressed by FGF, confirming this site as a molecular target for FGF-dependent repression of muscle transcription. These results establish a direct link between the signal transduction pathways that inhibit myogenesis and the transcription factors directly activating muscle-specific genes.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
329
|
Olson EN. Regulatory mechanisms for skeletal muscle differentiation and their relevance to gene expression in the heart. Trends Cardiovasc Med 1992; 2:163-70. [DOI: 10.1016/1050-1738(92)90044-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|