301
|
Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol 1996; 48:55-72. [PMID: 8830348 DOI: 10.1016/0301-0082(95)00047-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalamic relay nuclei play a pivotal role in gating and processing sensory information en route to the cerebral cortex. The major ascending sensory afferents and the descending cortico-fugal afferents to the thalamus almost certainly use the excitatory amino acid L-glutamate as their transmitter. This paper reviews the nature of this transmission in terms of the receptor types which may be used (NMDA, AMPA, kainate and metabotropic glutamate receptors), their electrophysiological and pharmacological properties, and their differential location in the thalamus on neurones, terminals and glial elements. Whilst AMPA receptors, probably of more than one variety, are likely to mediate fast transmission in the thalamus, the contributions of NMDA receptors and metabotropic glutamate receptors to sensory responses under different stimulus conditions may be more varied. This is discussed in the context of the possible functional significance of the interplay of L-glutamate-gated currents with intrinsic membrane currents of thalamic neurones. The interaction of L-glutamate transmission with other modulators (acetylcholine, noradrenaline, serotonin, glycine, D-serine, nitric oxide, arginine, redox agents) is considered.
Collapse
Affiliation(s)
- T E Salt
- Department of Visual Science, University College London, U.K
| | | |
Collapse
|
302
|
|
303
|
Bergmann M, Fox PA, Grabs D, Post A, Schilling K. Expression and subcellular distribution of glutamate receptor subunits 2/3 in the developing cerebellar cortex. J Neurosci Res 1996; 43:78-86. [PMID: 8838577 DOI: 10.1002/jnr.490430110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression and subcellular location of glutamate receptor subunits 2&3 was investigated in the developing postnatal cerebellum. Immunoblotting revealed that glutamate receptor subunits 2/3 is expressed in an identical pattern of immunoreactive bands of approximately 108 kDa from postnatal day zero to adult animals. Light microscopy showed that within the cerebellar cortex, GluR 2/3 immunoreactivity was essentially confined to Purkinje neurons. Strong immunostaining could be observed at postnatal days 1-3 within Purkinje cell bodies and primary dendrites. With ongoing development, the cell body and an increasingly elaborate dendritic tree was outlined by immunoreaction product. In adult animals, staining of Purkinje cell dendrites was patchy, and staining intensity of the cell body, in particular, was greatly reduced. Ultrastructural analysis revealed that during early postnatal development, immunoreaction product was localized to the cell membrane, but was not confined to postsynaptic densities. From the second postnatal week, glutamate receptor subunits 2/3 immunoreactivity was largely restricted to postsynaptic densities. These observations reveal a developmentally regulated refinement of the subcellular distribution of defining subunits of the AMPA-type glutamate receptor. The presence of membrane bond receptors prior to the formation of synapses also provides a rationale for the known transmitter-mediated modulation of Purkinje cell dendritogenesis.
Collapse
Affiliation(s)
- M Bergmann
- Institut für Anatomie (Charité), Humboldt-Universität zu Berlin, Germany
| | | | | | | | | |
Collapse
|
304
|
Paquet M, Smith Y. Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey. Eur J Neurosci 1996; 8:229-33. [PMID: 8713467 DOI: 10.1111/j.1460-9568.1996.tb01184.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The subthalamic nucleus has long been known as the main source of glutamatergic afferents to the pallidum and the substantia nigra in primates. Recent findings showed that the excitatory effects induced by the subthalamic nucleus in pallidal cells are mediated through the activation of non-NMDA receptors in the rat. The objective of the present study was to analyse the distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptor subunits in the external pallidum (GPe), the internal pallidum (GPi) and the substantia nigra pars reticulata (SNr) in squirrel monkeys (Saimiri sciureus). This was achieved by means of immunohistochemistry using antibodies raised against the GluR1 and the GluR2/3 subunits of the AMPA receptor. Our results show that all neuronal perikarya in GPe and GPi display immunoreactivity for GluR2/3 subunits whereas GluR1 is confined exclusively to cells in the GPe. The proportion of GluR1-immunoreactive neurons is not uniform throughout the rostrocaudal extent of GPe; in the rostral third all GPe cells display GluR1 immunoreactivity, whereas in the caudal third the proportion of GluR1-positive cells decreases to 50%. The intensity of GluR1 immunostaining associated with GPe cells is lower than that associated with neighbouring large-sized neurons in the nucleus basalis of Meynert. In contrast to GPi cells, the neurons in the SNr display immunoreactivity for both GluR1 and GluR2/3 subunits. In conclusion, our results provide the first evidence for a different distribution of the GluR1 subunit of the AMPA receptors in the two segments of the globus pallidus in monkeys. These findings imply that the control of the basal activity of GPe and GPi cells by the subthalamic nucleus is exerted via the activation of AMPA receptors composed of different subunits. These data reinforce the view that the two segments of the globus pallidus are different entities that possess their own functional characteristics in primates.
Collapse
Affiliation(s)
- M Paquet
- Centre de Recherche en Neurobiologie, Hôpital de I'Enfant- Jésus and Université laval, Québec, Canada
| | | |
Collapse
|
305
|
Somogyi P, Fritschy JM, Benke D, Roberts JD, Sieghart W. The gamma 2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the alpha 1 and beta 2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 1996; 35:1425-44. [PMID: 9014159 DOI: 10.1016/s0028-3908(96)00086-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gamma 2 subunit is necessary for the expression of the full benzodiazepine pharmacology of GABAA receptors and is one of the major subunits in the brain. In order to determine the location of channels containing the gamma 2 subunit in relation to GABA-releasing terminals on the surface of neurons, a new polyclonal antipeptide antiserum was developed to the gamma 2 subunit and used in high resolution, postembedding, immunoelectron-microscopic procedures. Dual immunogold labelling of the same section for two subunits, and up to three sections of the same synapse reacted for different subunits, were used to characterize the subunit composition of synaptic receptors. The gamma 2 subunit was present in type 2, "symmetrical" synapses in each of the brain areas studied, with the exception of the granule cell layer of the cerebellum. The gamma 2 subunit was frequently co-localized in the same synaptic junction with the alpha 1 and beta 2/3 subunits. The immunolabelling of synapses was coincident with the junctional membrane specialization of the active zone. Immunolabelling for the receptor often occurred in multiple clusters in the synapses. In the hippocampus, the gamma 2 subunit was present in basket cell synapses on the somata and proximal dendrites and in axo-axonic cell synapses on the axon initial segment of pyramidal and granule cells. Some synapses on the dendrites of GABAergic interneurones were densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits. In the cerebellum, the gamma 2 subunit was present in both distal and proximal Purkinje cell dendritic synapses established by stellate and basket cell, respectively. On the soma of Purkinje cells, basket cell synapses were only weakly labelled. Synapses on interneuron dendrites were more densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits than synapses on Purkinje or granule cells. Although immunoperoxidase and immunofluorescence methods show an abundance of the gamma 2 subunit in granule cells, the labelling of Golgi synapses was much weaker with the immunogold method than that of the other cell types. In the globus pallidus, many type 2 synapses were labelled for the gamma 2 subunit together with alpha 1 and beta 2/3 subunits. The results show that gamma 2 and beta 2/3 subunits receptor channels are highly concentrated in GABAergic synapses that also contain the alpha 1 and beta 2/3 subunits. Channels containing the gamma 2 subunit are expressed in synapses on functionally distinct domains of the same neuron receiving GABA from different presynaptic sources. There are quantitative differences in the density of GABAA receptors at synapses on different cell types in the same brain area.
Collapse
Affiliation(s)
- P Somogyi
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK
| | | | | | | | | |
Collapse
|
306
|
Nakazawa K, Tadakuma T, Nokihara K, Ito M. Antibody specific for phosphorylated AMPA-type glutamate receptors at GluR2 Ser-696. Neurosci Res 1995; 24:75-86. [PMID: 8848293 DOI: 10.1016/0168-0102(95)00977-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Possible phosphorylation sites on the Purkinje cell alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor subunits were identified using in vitro kinase assays of 17 synthetic peptides derived from the transmembrane-3 (TM3) domain to the end of C-terminal of a rat glutamate receptor 2 (GluR2). Only two peptides containing Ser-662 and Ser-696 were found to be efficiently phosphorylated by protein kinase C (PKC). The peptide including Ser-696 was also phosphorylated by protein kinase G (PKG). Another peptide containing Thr-692 of a rat GluRA, clone almost identical to GluR1, was phosphorylated by PKC but not by PKG. Antisera recognizing phosphorylated AMPA receptor subunits at GluR2 Ser-696 or the homologous sites of GluR1/3/4 were produced, and the specificity of one of them, named 12P3, was established by enzyme-linked immunosorbent assay (ELISA), immunoblot and immunoprecipitation analyses. 12P3-immunocytochemistry on cerebellar slices demonstrated an AMPA-induced transient AMPA receptor phosphorylation, which appeared in Purkinje cell dendrites as well as somata immediately after AMPA treatment and disappeared after 20 min. This antibody may be a useful tool to study the role of AMPA receptor phosphorylation in producing synaptic plasticity.
Collapse
Affiliation(s)
- K Nakazawa
- Laboratory for Synaptic Function, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
307
|
Little Z, Grover LM, Teyler TJ. Metabotropic glutamate receptor antagonist, (R,S)-alpha-methyl-4-carboxyphenyglycine, blocks two distinct forms of long-term potentiation in area CA1 of rat hippocampus. Neurosci Lett 1995; 201:73-6. [PMID: 8830317 DOI: 10.1016/0304-3940(95)12141-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The necessity of metabotropic glutamate receptors (mGluRs) in the induction of long-term potentiation (LTP) has recently been questioned. We examined the effect of (R,S)-alpha-methyl-4-caboxyphenylglycine (MCPG), a selective mGluR antagonist, on two independent forms of LTP. One form induced by a 25 Hz/1 s tetanus is solely N-methyl-D-aspartate (NMDA) receptor-dependent. The other form induced by four 200 Hz/0.5 s bursts in the presence of APV is NMDA receptor-independent. In both paradigms the presence of MCPG prevented the induction of LTP by afferent activation.
Collapse
Affiliation(s)
- Z Little
- Neurobiology Department, Northeastern Ohio Universities College of Medicine, Rootstown 44272, USA.
| | | | | |
Collapse
|
308
|
Baude A, Nusser Z, Molnár E, McIlhinney RA, Somogyi P. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 1995; 69:1031-55. [PMID: 8848093 DOI: 10.1016/0306-4522(95)00350-r] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular and subcellular localization of the GluRA, GluRB/C and GluRD subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptor was determined in the rat hippocampus using polyclonal antipeptide antibodies in immunoperoxidase and immunogold procedures. For the localization of the GluRD subunit a new polyclonal antiserum was developed using the C-terminal sequence of the protein (residues 869-881), conjugated to carrier protein and absorbed to colloidal gold for immunization. The purified antibodies immunoprecipitated about 25% of 3[H]AMPA binding activity from the hippocampus, cerebellum or whole brain, but very little from neocortex. These antibodies did not precipitate a significant amount of 3[H]kainate binding activity. The antibodies also recognize the GluRD subunit, but not the other AMPA receptor subunits, when expressed in transfected COS-7 cells and only when permeabilized with detergent, indicating an intracellular epitope. All subunits were enriched in the neuropil of the dendritic layers of the hippocampus and in the molecular layer of the dentate gyrus. The cellular distribution of the GluRD subunit was studied more extensively. The strata radiatum, oriens and the dentate molecular layer were more strongly immunoreactive than the stratum lacunosum moleculare, the stratum lucidum and the hilus. However, in the stratum lucidum of the CA3 area and in the hilus the weakly reacting dendrites were surrounded by immunopositive rosettes, shown in subsequent electron microscopic studies to correspond to complex dendritic spines. In the stratum radiatum, the weakly reacting apical dendrites contrasted with the surrounding intensely stained neuropil. The cell bodies of pyramidal and granule cells were moderately reactive. Some non-principal cells and their dendrites in the pyramidal cell layer and in the alveus also reacted very strongly for the GluRD subunit. At the subcellular level, silver intensified immunogold particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.
Collapse
Affiliation(s)
- A Baude
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | | | |
Collapse
|
309
|
Agnati LF, Zoli M, Strömberg I, Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 1995; 69:711-26. [PMID: 8596642 DOI: 10.1016/0306-4522(95)00308-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the past two decades several revisions of the concepts underlying interneuronal communication in the central nervous system have been advanced. We propose here to classify communicational phenomena between cells of the central neural tissue under two general frames: "wiring" and "volume" transmission. "Wiring" transmission is defined as intercellular communication occurring through a well-defined connecting structure. Thus, wiring transmission is characterized by the presence of physically identifiable communication channels within the neuronal and/or glial cell network. It includes synaptic transmission but also other types of intercellular communication through a connecting structure (e.g., gap junctions). "Volume" transmission is characterized by signal diffusion in a three-dimensional fashion within the brain extracellular fluid. Thus, multiple, structurally often not well characterized extracellular pathways connect intercommunicating cells. Volume transmission includes short- (but larger than synaptic cleft, i.e. about 20 nm) and long-distance diffusion of signals through the extracellular and cerebrospinal fluid. It must be underlined that the definitions of wiring and volume transmission focus on the modality of transmission and are neutral with respect to the source and target of the transmission, as well as type of informational substance transmitted. Therefore, any cell present in the neural tissue (neurons, astroglia, microglia, ependyma, tanycytes, etc.) can be a source or a target of wiring and volume transmission. In this paper we discuss the basic definitions and some distinctive characteristics of the two types of transmission. In addition, we review the evidence for different types of intercellular communication besides synaptic transmission in the central nervous system during phylogeny, and in vertebrates in physiological and pathological conditions.
Collapse
Affiliation(s)
- L F Agnati
- Department of Biomedical Sciences, University of Modena, Italy
| | | | | | | |
Collapse
|
310
|
Abstract
The contribution of in vivo monitoring to the study of glutamate release is reviewed. Physiological stimulation increases both glutamate and aspartate in the extracellular compartment of the brain and both amino acids show Ca(2+)-dependent K(+)-evoked release. However, the finding that only glutamate is stored in synaptic vesicles implies that glutamate is the excitatory transmitter. Released glutamate is taken up into both neurones and glia by glutamate transporters. Uptake of glutamate, in addition to clearing the synapse, has a number of additional functions. Uptake into glia leads to the release of glutamine, which is involved in the recycling of transmitter glutamate; uptake into both neurones and glia leads to the release of ascorbate; uptake into glia leads to an increase glycolysis and export of lactate, an energy substrate for neuronal metabolism. Reversal of the glutamate transporter accounts for the parallel release of glutamate and aspartate from the cytoplasmic compartment. The basal concentration of extracellular glutamate is in the micromolar range. Such levels could lead to desensitisation of both NMDA and non-NMDA receptors. The functional implications of the level of basal glutamate are difficult to assess at present in view of the existence of multiple glutamate receptor subunits with different functional properties and distributions.
Collapse
Affiliation(s)
- M Fillenz
- University Laboratory of Physiology, Oxford, UK.
| |
Collapse
|
311
|
Burns ME, Augustine GJ. Synaptic structure and function: dynamic organization yields architectural precision. Cell 1995; 83:187-94. [PMID: 7585936 DOI: 10.1016/0092-8674(95)90160-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M E Burns
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
312
|
Nakazawa K, Mikawa S, Hashikawa T, Ito M. Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells. Neuron 1995; 15:697-709. [PMID: 7546748 DOI: 10.1016/0896-6273(95)90157-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We generated a polyclonal antibody, 12P3, specifically recognizing rat AMPA-type glutamate receptor (GluR) subunits phosphorylated at Ser-696 of GluR2 or at the homologous sites in GluR1, GluR3, and GluR4. Using 12P3, we demonstrate that a brief exposure of a rat cerebellar slice to AMPA leads to transient phosphorylation of the GluR subunits in Purkinje cell dendrites. Persistent phosphorylation over 30 min was obtained when exposure to AMPA was preceded by a 15 min perfusion of the slice with 8-bromo-cGMP, dibutyryl-cGMP, or calyculin A but not phorbol 12,13-diacetate. These results indicate that Ser-696 of GluR2, or the corresponding sites in other AMPA receptor subunits, is a specific site at which phosphorylation takes place when AMPA-type GluRs are activated by agonists, especially under the influence of certain second messenger activities.
Collapse
Affiliation(s)
- K Nakazawa
- Laboratory for Synaptic Function, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
313
|
Stjärne L, Stjärne E. Geometry, kinetics and plasticity of release and clearance of ATP and noradrenaline as sympathetic cotransmitters: roles for the neurogenic contraction. Prog Neurobiol 1995; 47:45-94. [PMID: 8570853 DOI: 10.1016/0301-0082(95)00018-q] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The paper compares the microphysiology of sympathetic neuromuscular transmission in three model preparations: the guinea-pig and mouse vas deferens and rat tail artery. The first section describes the quantal release of ATP and noradrenaline from individual sites. The data are proposed to support a string model in which: (i) most sites (> or = 99%) ignore the nerve impulse and a few (< or = 1%) release a single quantum of ATP and noradrenaline; (ii) the probability of monoquantal release is extremely non-uniform; (iii) high probability varicosities form 'active' strings; and (iv) an impulse train causes repeated quantal release from these sites. Analogy with molecular mechanisms regulating transmitter exocytosis in other systems is proposed to imply that coincidence of at least two factors at the active zone, Ca2+ and specific cytosolic protein(s), may be required to remove a 'fusion clamp', form a 'fusion complex' and trigger exocytosis of a sympathetic transmitter quantum, and that the availability of these proteins may regulate the release probability. The second section shows that clearance of noradrenaline in rat tail artery is basically > or = 30-fold slower than of co-released ATP, and that saturation of local reuptake and binding to local buffering sites maintain the noradrenaline concentration at the receptors, in spite of a profound decline in per pulse release during high frequency trains. The third section describes differences in the strategies by which mouse vas deferens and rat tail artery use ATP and noradrenaline to trigger and maintain the neurogenic contraction.
Collapse
Affiliation(s)
- L Stjärne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
314
|
Vázquez E, Herrero I, Miras-Portugal MT, Sánchez-Prieto J. Developmental change from inhibition to facilitation in the presynaptic control of glutamate exocytosis by metabotropic glutamate receptors. Neuroscience 1995; 68:117-24. [PMID: 7477917 DOI: 10.1016/0306-4522(95)00121-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have addressed the role of presynaptic metabotropic glutamate receptors in the control of glutamate release from cerebrocortical nerve terminals. The metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid enhances the release evoked by a submaximal depolarization in the presence of low concentrations of arachidonic acid and in a staurosporine-sensitive manner. In contrast, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid and L(+)-2-amino-4-phosphonobutyrate inhibit the release evoked by a maximal depolarization, in the absence of arachidonic acid and by a staurosporine-insensitive mechanism. Interestingly, the effects of the metabotropic glutamate receptors that inhibit glutamate release are only observed in the nerve terminals from young rats (one to three weeks), while the facilitatory effects are better seen in latter developmental stages (three to four weeks) and adult (two to three months) rats, coinciding with the development of the maximal capacity of glutamate uptake. These results indicate the existence of important developmental changes in the presynaptic control of glutamate release.
Collapse
Affiliation(s)
- E Vázquez
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
315
|
Jaarsma D, Wenthold RJ, Mugnaini E. Glutamate receptor subunits at mossy fiber-unipolar brush cell synapses: light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat. J Comp Neurol 1995; 357:145-60. [PMID: 7673463 DOI: 10.1002/cne.903570113] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study provides a survey of the immunolocalization of ionotropic glutamate receptor subunits throughout the rat and cat cerebellar cortex, with emphasis on the unipolar brush cell (UBC), a hitherto neglected cerebellar cell that is densely concentrated in the granular layer of the vestibulocerebellum and that forms giant synapses with mossy fibers. An array of nine previously characterized antibodies has been used, each of which stained a characteristic profile of cerebellar cells. The UBCs of both rat and cat were strongly immunostained by an antibody against the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptor subunits, GluR2 and GluR3; were moderately immunostained by a monoclonal antibody to kainate receptor subunits, GluR5/6/7; were weakly immunostained by antibodies to NR1 subunits; and were not stained by antibodies to GluR1, GluR4, GluR6/7, KA-2, and NR2A/B. Postsynaptic densities of the giant mossy fiber-UBC synapses were GluR2/3, GluR5/6/7, and NR1 immunoreactive. The other cerebellar neurons were all immunolabeled to some extent with the GluR2/3 and NR1 antibodies. In addition, Purkinje cells were immunopositive for GluR1 and GluR5/6/7; granule cells were immunopositive for GluR5/6/7, GluR6/7, KA-2, and NR2A/B. The Golgi-Bergmann glia was densely stained by GluR1 and GluR4 antibodies, whereas astrocytes of the granular layer were stained by the GluR4 antiserum. Data provided herein may guide further electrophysiological and pharmacological studies of cerebellar cells in general and the UBCs in particular.
Collapse
Affiliation(s)
- D Jaarsma
- Laboratory of Neuromorphology, University of Connecticut, Storrs 06269-4154, USA
| | | | | |
Collapse
|
316
|
Young HM, Furness JB. Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol 1995; 356:101-14. [PMID: 7629305 DOI: 10.1002/cne.903560107] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Serotonin neurons are descending interneurons in the myenteric plexus of the guinea pig small intestine. Preembedding single- and double-label immunocytochemistries at the ultrastructural level were used to identify the targets of these serotonin interneurons. Serial ultrathin sections were taken through a myenteric ganglion that had been processed for serotonin immunocytochemistry. The ganglion contained the cell bodies of 69 neurons, including 2 serotonin neurons and 6 neurons with the ultrastructural features of Dogiel type II cells. For each cell body in the ganglion, the number of serotonin inputs (synapses and close contacts) was determined. About 59% of the cell bodies did not receive any serotonin inputs. The most abundant serotonin terminals were related to two targets: other serotonin descending interneurons and a population of neurons with Dogiel type I morphology, but whose neurochemistry and function is unknown. The serotonin inputs to the serotonin cell bodies were located predominantly on the lamellar dendrites. Each of the Dogiel type II neurons received 3 or fewer serotonin inputs, and none of the serotonin inputs to Dogiel type II neurons formed a synapse. Overall, about 40% of the serotonin inputs formed synapses. The serotonin inputs to neurons that received many serotonin inputs were more likely to show synaptic specializations than serotonin inputs to neurons that received few serotonin inputs. Inhibitory motor neurons contain nitric oxide synthase (NOS). At the light microscope level, serotonin nerve fibers do not form dense pericellular baskets around NOS cell bodies. To determine whether there are serotonin inputs to NOS neurons, serial ultrathin sections were taken through a myenteric ganglion that had been processed for preembedding double-label immunocytochemistry, in which the NOS neurons were labeled with peroxidase-diaminobenzidine and the serotonin neurons with silver-intensified 1 nm gold. Only 1 out of 9 NOS cells examined in serial section received more than 5 serotonin inputs. The results suggest that, in the guinea pig small intestine, the serotonin descending interneurons are not an essential element of the descending inhibitory reflex.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
317
|
Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 1995; 65:709-30. [PMID: 7609871 DOI: 10.1016/0306-4522(94)00536-e] [Citation(s) in RCA: 408] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The modulatory actions of dopamine on the flow of cortical information through the basal ganglia are mediated mainly through two subtypes of receptors, the D1 and D2 receptors. In order to examine the precise cellular and subcellular location of these receptors, immunocytochemistry using subtype specific antibodies was performed on sections of rat basal ganglia at both the light and electron microscopic levels. Both peroxidase and pre-embedding immunogold methods were utilized. Immunoreactivity for both D1 and D2 receptors was most abundant in the neostriatum where it was mainly contained within spiny dendrites and in perikarya. Although some of the immunoreactive perikarya had characteristics of interneurons, most were identified as medium-sized spiny neurons. Immunoreactivity for D1 receptor but not D2 receptor was associated with the axons of the striatonigral pathway and axons and terminals in the substantia nigra pars reticulata and the entopeduncular nucleus. In contrast, D2 immunoreactivity but not D1 immunoreactivity was present in the dopaminergic neurons in the substantia nigra pars compacta and ventral pars reticulata. In the globus pallidus, little immunoreactivity for either D1 or D2 receptor was detected. At the subcellular level, D1 and D2 receptor immunoreactivity was found to be mainly associated with the internal surface of cell membranes. In dendrites and spines immunoreactivity was seen in contact with the membranes postsynaptic to terminals forming symmetrical synapses and less commonly, asymmetrical synapses. The morphological features and membrane specializations of the terminals forming symmetrical synapses are similar to those of dopaminergic terminals previously identified by immunocytochemistry for tyrosine hydroxylase. In addition to immunoreactivity associated with synapses, a high proportion of the immunoreactivity was also on membranes at non-synaptic sites. It is concluded that dopamine receptor immunoreactivity is mainly associated with spiny output neurons of the neostriatum and that there is a selective association of D1 receptors with the so-called direct pathway of information flow through the basal ganglia, i.e. the striatoentopeduncular and striatonigral pathways. Although there is an association of receptor immunoreactivity with afferent synaptic inputs a high proportion is located at extrasynaptic sites.
Collapse
Affiliation(s)
- K K Yung
- MRC Anatomical Neuropharmacology Unit, Oxford, U.K
| | | | | | | | | | | |
Collapse
|
318
|
Nusser Z, Roberts JD, Baude A, Richards JG, Sieghart W, Somogyi P. Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur J Neurosci 1995; 7:630-46. [PMID: 7620614 DOI: 10.1111/j.1460-9568.1995.tb00667.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dentate granule cells receive spatially segregated GABAergic innervation from at least five types of local circuit neurons, and express mRNA for at least 11 subunits of the GABAA receptor. At most two to four different subunits are required to make a functional pentamer, raising the possibility that cells have on their surface several types of GABAA receptor channel, which may not be uniformly distributed. In order to establish the subcellular location of GABAA receptors on different parts of dentate neurons, the distribution of immunoreactivity for the alpha 1 and beta 2/3 subunits of the receptor was studied using high-resolution immunocytochemistry. Light microscopic immunoperoxidase reactions revealed strong GABAA receptor immunoreactivity in the molecular layer of the dentate gyrus. Pre-embedding immunogold localization of the alpha 1 and beta 2/3 subunits consistently showed extrasynaptic location of the GABAA receptor on the somatic, dendritic and axon initial segment membrane of granule cells, but failed to show receptors in synaptic junctions. Using a postembedding immunogold technique on freeze-substituted, Lowicryl-embedded tissue, synaptic enrichment of immunoreactivity for these subunits was found on both granule and non-principal cells. Only the postembedding immunogold method is suitable for revealing relative differences in receptor density at the subcellular level, giving approximately 20 nm resolution. The immunolabelling for GABAA receptor occupied the whole width of synaptic junctions, with a sharp decrease in labelling at the edge of the synaptic membrane specialization. Both subunits have been localized in the synaptic junctions between basket cell terminals and somata, and between axo-axonic cell terminals and axon initial segments of granule cells, with no qualitative difference in labelling. Receptor-immunopositive synapses were found at all depths of the molecular layer. Some of the boutons forming these dendritic synapses have been shown to contain GABA, providing evidence that some of the GABAergic cells that terminate only on the dendrites of granule cells also act through GABAA receptors. Double immunolabelling experiments demonstrated that a population of GABA-immunopositive neurons expresses a higher density of immunoreactive GABAA receptor on their surface than principal cells. Interneurons were found to receive GABAA receptor-positive synapses on their dendrites in the hilus, molecular and granule cell layers. Receptor-immunopositive synapses were also present throughout the hilus on presumed mossy cells. The results demonstrate that both granule cells and interneurons exhibit a compartmentalized distribution of the GABAA receptor on their surface, the postjunctional membrane to GABAergic terminals having the highest concentration of receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Z Nusser
- Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
319
|
Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 1994; 63:911-5. [PMID: 7535396 DOI: 10.1016/0306-4522(94)90558-4] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, acts through two broad classes of receptors: ion channel-linked (ionotropic) receptors, which include N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and metabotropic receptors which couple via G-proteins to intracellular messenger cascades. Seven subtypes of mGluR are known to exist but their roles in synaptic physiology are poorly understood. In cerebellar Purkinje cells, application of the mGluR agonist, trans-1-aminocyclopentane-1,3-dicarboxylic acid, or the active enantiomer, 1S,3R-ACPD, results in a depolarization associated with an inward current and an elevation of intracellular Ca2+ (for review see Ref. 29). Moreover, using an extracellular (grease-gap) technique that monitors population responses, we have previously discovered that, in Purkinje cells of adult rat cerebellum, brief tetanic stimulation of the glutamatergic parallel fibre input gives rise to a slow depolarising synaptic potential that is resistant to ionotropic glutamate receptor blockers and to antagonists acting at GABA receptors. It was suggested that this novel potential is mediated by metabotropic receptors. The advent of antagonists for metabotropic receptors has allowed us to test this hypothesis. We find that the S-enantiomer of alpha-methyl-4-carboxyphenylglycine stereoselectively antagonizes the slow synaptic potential recorded using the grease-gap method. The results were confirmed by intracellular recording from Purkinje cells. To our knowledge this is the first direct evidence of an mGluR-mediated EPSP in intact brain tissue.
Collapse
Affiliation(s)
- A M Batchelor
- Neuroscience Research Group, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | | | |
Collapse
|
320
|
Huntley GW, Vickers JC, Morrison JH. Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. Trends Neurosci 1994; 17:536-43. [PMID: 7532339 DOI: 10.1016/0166-2236(94)90158-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excitatory amino acid (EAA) receptors are an important component of neocortical circuitry as a result of their role as the principal mediators of excitatory synaptic activity, as well as their involvement in use-dependent modifications of synaptic efficacy, excitoxicity and cell death. The diversity in the effects generated by EAA-receptor activation can be attributed to multiple receptor subtypes, each of which is composed of multimeric assemblies of functionally distinct receptor subunits. The use of subunit-specific antibodies and molecular probes now makes it feasible to localize individual receptor subunits anatomically with a high level of cellular and synaptic resolution. Initial studies of the distribution of immunocytochemically localized EAA-receptor subunits suggest that particular subunit combinations exhibit a differential cellular, laminar and regional distribution in the neocortex. While such patterns might indicate that the functional heterogeneity of EAA-receptor-linked circuits, and the cell types in which they operate, are based partly on differential subunit parcellation, a definitive integration of these anatomical details into current schemes of cortical circuitry and organization awaits many further studies. Ideally, such studies should link a high level of molecular precision regarding subunit localization with synaptic details of identified connections and neurochemical features of neocortical cells.
Collapse
Affiliation(s)
- G W Huntley
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, NY 10029
| | | | | |
Collapse
|
321
|
Affiliation(s)
- S Nakanishi
- Institute for Immunology, Kyoto University Faculty of Medicine, Japan
| |
Collapse
|