301
|
Missler M, Hammer RE, Südhof TC. Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem 1998; 273:34716-23. [PMID: 9856994 DOI: 10.1074/jbc.273.52.34716] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Neurexins (Ialpha, IIalpha, and IIIalpha) are receptor-like proteins expressed in hundreds of isoforms on the neuronal cell surface. The extracellular domains of alpha-neurexins are composed of six LNS repeats, named after homologous sequences in the Laminin A G domain, Neurexins, and Sex hormone-binding globulin, with three interspersed epidermal growth factor-like domains. Purification of neurexin Ialpha revealed that it is tightly complexed to a secreted glycoprotein called neurexophilin 1. Neurexophilin 1 is a member of a family of at least four genes and resembles a neuropeptide, suggesting a function as an endogenous ligand for alpha-neurexins. We have now used recombinant proteins and knockout mice to investigate which isoforms and domains of different neurexins and neurexophilins interact with each other. We show that neurexophilins 1 and 3 but not 4 (neurexophilin 2 is not expressed in rodents) bind to a single individual LNS domain, the second overall LNS domain in all three alpha-neurexins. Although this domain is alternatively spliced, all splice variants bind, suggesting that alternative splicing does not regulate binding. Using homologous recombination to disrupt the neurexophilin 1 gene, we generated mutant mice that do not express detectable neurexophilin 1 mRNA. Mice lacking neurexophilin 1 are viable with no obvious morbidity or mortality. However, homozygous mutant mice exhibit male sterility, probably because homologous recombination resulted in the co-insertion into the neurexophilin gene of herpes simplex virus thymidine kinase, which is known to cause male sterility. In the neurexophilin 1 knockout mice, neurexin Ialpha is complexed with neurexophilin 3 but not neurexophilin 4, suggesting that neurexophilin 1 is redundant with neurexophilin 3 and that neurexophilins 1 and 3 but not 4 bind to neurexins. This hypothesis was confirmed using expression experiments. Our data reveal that the six LNS and three epidermal growth factor domains of neurexins are independently folding ligand-binding domains that may interact with distinct targets. The results support the notion that neurexophilins represent a family of extracellular signaling molecules that interact with multiple receptors including all three alpha-neurexins.
Collapse
Affiliation(s)
- M Missler
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
302
|
Devireddy LR, Jones C. Alternative splicing of the latency-related transcript of bovine herpesvirus 1 yields RNAs containing unique open reading frames. J Virol 1998; 72:7294-301. [PMID: 9696825 PMCID: PMC109953 DOI: 10.1128/jvi.72.9.7294-7301.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The latency-related transcript (LRT) of bovine herpesvirus 1 (BHV-1) is the only abundant viral RNA detected during latency. A previous study (A. Hossain, L. M. Schang, and C. Jones, J. Virol. 69:5345-5352, 1995) concluded that splicing of polyadenylated [poly(A)+] and splicing of nonpolyadenylated [poly(A)-] LRT are different. In this study, splice junction sites of LRT were identified. In trigeminal ganglia of acutely infected calves (1, 7, or 15 days postinfection [p.i.]) or in latently infected calves (60 days p.i.), alternative splicing of poly(A)+ LRT occurred. Productive viral gene expression in trigeminal ganglia is readily detected from 2 to 7 days p.i. but not at 15 days p.i. (L. M. Schang and C. Jones, J. Virol. 71:6786-6795, 1997), suggesting that certain aspects of a lytic infection occur in neurons and that these factors influence LRT splicing. Splicing of poly(A)- LRT was also detected in transfected COS-7 cells or infected MDBK cells. DNA sequence analysis of spliced LRT cDNAs, poly(A)+ or poly(A)-, revealed nonconsensus splice signals at exon/intron and intron/exon boundaries. The GC-AG splicing signal utilized by the herpes simplex virus type 1 latency-associated transcript in latently infected mice is also used by LRT in latently infected calves. Taken together, these results led us to hypothesize that (i) poly(A)+ LRT is spliced in trigeminal ganglia by neuron-specific factors, (ii) viral or virus-induced factors participate in splicing, and (iii) alternative splicing of LRT may result in protein isoforms which have novel biological properties.
Collapse
Affiliation(s)
- L R Devireddy
- Center for Biotechnology, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | |
Collapse
|
303
|
Davletov BA, Meunier FA, Ashton AC, Matsushita H, Hirst WD, Lelianova VG, Wilkin GP, Dolly JO, Ushkaryov YA. Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J 1998; 17:3909-20. [PMID: 9670008 PMCID: PMC1170726 DOI: 10.1093/emboj/17.14.3909] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
alpha-Latrotoxin (LTX) stimulates massive neurotransmitter release by two mechanisms: Ca2+-dependent and -independent. Our studies on norepinephrine secretion from nerve terminals now reveal the different molecular basis of these two actions. The Ca2+-dependent LTX-evoked vesicle exocytosis (abolished by botulinum neurotoxins) is 10-fold more sensitive to external Ca2+ than secretion triggered by depolarization or A23187; it does not, however, depend on the cation entry into terminals but requires intracellular Ca2+ and is blocked by drugs depleting Ca2+ stores and by inhibitors of phospholipase C (PLC). These data, together with binding studies, prove that latrophilin, which is linked to G proteins and inositol polyphosphate production, is the major functional LTX receptor. The Ca2+-independent LTX-stimulated release is not inhibited by botulinum neurotoxins or drugs interfering with Ca2+ metabolism and occurs via pores in the presynaptic membrane, large enough to allow efflux of neurotransmitters and other small molecules from the cytoplasm. Our results unite previously contradictory data about the toxin's effects and suggest that LTX-stimulated exocytosis depends upon the co-operative action of external and intracellular Ca2+ involving G proteins and PLC, whereas the Ca2+-independent release is largely non-vesicular.
Collapse
Affiliation(s)
- B A Davletov
- Biochemistry Department, Imperial College, Exhibition Road, London SW7 2AY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Hsueh YP, Yang FC, Kharazia V, Naisbitt S, Cohen AR, Weinberg RJ, Sheng M. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol 1998; 142:139-51. [PMID: 9660869 PMCID: PMC2133027 DOI: 10.1083/jcb.142.1.139] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
CASK, the rat homolog of a gene (LIN-2) required for vulval differentiation in Caenorhabditis elegans, is expressed in mammalian brain, but its function in neurons is unknown. CASK is distributed in a punctate somatodendritic pattern in neurons. By immunogold EM, CASK protein is concentrated in synapses, but is also present at nonsynaptic membranes and in intracellular compartments. This immunolocalization is consistent with biochemical studies showing the presence of CASK in soluble and synaptosomal membrane fractions and its enrichment in postsynaptic density fractions of rat brain. By yeast two-hybrid screening, a specific interaction was identified between the PDZ domain of CASK and the COOH terminal tail of syndecan-2, a cell surface heparan sulfate proteoglycan (HSPG). The interaction was confirmed by coimmunoprecipitation from heterologous cells. In brain, syndecan-2 localizes specifically at synaptic junctions where it shows overlapping distribution with CASK, consistent with an interaction between these proteins in synapses. Cell surface HSPGs can bind to extracellular matrix proteins, and are required for the action of various heparin-binding polypeptide growth/differentiation factors. The synaptic localization of CASK and syndecan suggests a potential role for these proteins in adhesion and signaling at neuronal synapses.
Collapse
Affiliation(s)
- Y P Hsueh
- Howard Hughes Medical Institute and Department of Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
Neurexophilin was discovered as a neuronal glycoprotein that is copurified with neurexin Ialpha during affinity chromatography on immobilized alpha-latrotoxin (Petrenko et al., 1996). We have now investigated how neurexophilin interacts with neurexins, whether it is post-translationally processed by site-specific cleavage similar to neuropeptides, and whether related neuropeptide-like proteins are expressed in brain. Our data show that mammalian brains contain four genes for neurexophilins the products of which share a common structure composed of five domains: an N-terminal signal peptide, a variable N-terminal domain, a highly conserved central domain that is N-glycosylated, a short linker region, and a conserved C-terminal domain that is cysteine-rich. When expressed in pheochromocytoma (PC12) cells with a replication-deficient adenovirus, neurexophilin 1 was rapidly N-glycosylated and then slowly processed to a smaller mature form, probably by endoproteolytic cleavage. Similar expression experiments in other neuron-like cells and in fibroblastic cells revealed that N-glycosylation of neurexophilin 1 occurred in all cell types tested, whereas proteolytic processing was observed only in neuron-like cells. Finally, only recombinant neurexin Ialpha and IIIalpha but not neurexin Ibeta interacted with neurexophilin 1 and were preferentially bound to the processed mature form of neurexophilin. Together our data demonstrate that neurexophilins form a family of related glycoproteins that are proteolytically processed after synthesis and bind to alpha-neurexins. The structure and characteristics of neurexophilins indicate that they function as neuropeptides that may signal via alpha-neurexins.
Collapse
|
306
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
307
|
Gainer H, Chin H. Molecular diversity in neurosecretion: reflections on the hypothalamo-neurohypophysial system. Cell Mol Neurobiol 1998; 18:211-30. [PMID: 9535291 PMCID: PMC11560193 DOI: 10.1023/a:1022568904002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The diversity of molecules involved in various aspects of neurosecretion, such as proprotein processing, axonal transport of large dense core vesicles (LDCVs), and regulated secretion, is discussed in the context of the hypothalamo-neurohypophysial system (HNS). 2. Recent studies have uncovered a family of at least seven processing enzymes known as proprotein convertases (PCs) which are involved in proteolytically cleaving protein precursors at paired basic amino acid motifs to yield biologically active peptides. Three of these, PC1(3), 2, and 5, are found in neurons and are involved in producing regulated secretory peptide products. 3. The axonal transport of LDCVs occurs on microtubule tracks by still unknown mechanisms. There are over 11 distinct kinesin-related molecules that have now been identified as possible microtubule motor candidates. 4. Calcium channels in the nervous system are known to be derived from at least five alpha-subunit and four beta-subunit genes with multiple alternatively spliced isoforms in each case. These could account, in part, for the varied calcium currents found in the HNS. 5. The large number of proteins and isoforms now demonstrated to be involved in regulated secretion are discussed, with a focus on LDCV compositions and the synaptotagmin gene family.
Collapse
Affiliation(s)
- H Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
308
|
Ward RE, Lamb RS, Fehon RG. A conserved functional domain of Drosophila coracle is required for localization at the septate junction and has membrane-organizing activity. J Cell Biol 1998; 140:1463-73. [PMID: 9508778 PMCID: PMC2132682 DOI: 10.1083/jcb.140.6.1463] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Revised: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
The protein 4.1 superfamily is comprised of a diverse group of cytoplasmic proteins, many of which have been shown to associate with the plasma membrane via binding to specific transmembrane proteins. Coracle, a Drosophila protein 4.1 homologue, is required during embryogenesis and is localized to the cytoplasmic face of the septate junction in epithelial cells. Using in vitro mutagenesis, we demonstrate that the amino-terminal 383 amino acids of Coracle define a functional domain that is both necessary and sufficient for proper septate junction localization in transgenic embryos. Genetic mutations within this domain disrupt the subcellular localization of Coracle and severely affect its genetic function, indicating that correct subcellular localization is essential for Coracle function. Furthermore, the localization of Coracle and the transmembrane protein Neurexin to the septate junction display an interdependent relationship, suggesting that Coracle and Neurexin interact with one another at the cytoplasmic face of the septate junction. Consistent with this notion, immunoprecipitation and in vitro binding studies demonstrate that the amino-terminal 383 amino acids of Coracle and cytoplasmic domain of Neurexin interact directly. Together these results indicate that Coracle provides essential membrane-organizing functions at the septate junction, and that these functions are carried out by an amino-terminal domain that is conserved in all protein 4.1 superfamily members.
Collapse
Affiliation(s)
- R E Ward
- Developmental, Cell, and Molecular Biology Group, Department of Zoology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
309
|
Single neuron mosaics of the drosophila gigas mutant project beyond normal targets and modify behavior. J Neurosci 1998. [PMID: 9437021 DOI: 10.1523/jneurosci.18-03-00999.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
gigas is a lethal mutant that differentiates enlarged cells, including the nucleus. This trait manifests only after the completion of the mitotic program. We have taken advantage of this phenotype to test in vivo the capacity of normal target cells to arrest the growth of mutant sensory axons. Single neuron connectivity changes have been analyzed in mosaics after horseradish peroxidase retrograde tracings. A mutant mechanoreceptor neuron, growing over a genetically normal substrate, contacts its normal target, and in addition projects to novel areas of the CNS. The mutant axon does terminate its growth eventually, and the new additional targets that are reached correspond to mechanoreceptor domains in other ganglia, indicating that this territorial constraint is operational in the mutant. gigas neurons maintain their stereotyped profile and represent an expanded version of the normal branching pattern. The ultrastructure of the invading projections does not reveal gliotic or necrotic reactions from the new cell contacts. The functional consequences of the connectivity changes produced by the mutant mechanoreceptors have been studied in grooming behavior. Mosaic flies carrying a single gigas mechanoreceptor show modified, albeit context-coherent, grooming responses after stimulation of the mutant bristle, whereas the response from neighboring normal sensory neurons remains unchanged. All of these experiments indicate that target recognition and growth arrest are two dissectible processes of neural development, and they highlight the autonomous features of the growth cone during pathfinding.
Collapse
|
310
|
Geppert M, Khvotchev M, Krasnoperov V, Goda Y, Missler M, Hammer RE, Ichtchenko K, Petrenko AG, Südhof TC. Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem 1998; 273:1705-10. [PMID: 9430716 DOI: 10.1074/jbc.273.3.1705] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
alpha-Latrotoxin is a potent neurotoxin from black widow spider venom that binds to presynaptic receptors and causes massive neurotransmitter release. A surprising finding was the biochemical description of two distinct cell surface proteins that bind alpha-latrotoxin with nanomolar affinities; Neurexin I alpha binds alpha-latrotoxin in a Ca(2+)-dependent manner, and CIRL/latrophilin binds in a Ca(2+)-independent manner. We have now generated and analyzed mice that lack neurexin I alpha to test its importance in alpha-latrotoxin action. alpha-Latrotoxin binding to brain membranes from mutant mice was decreased by almost 50% compared with wild type membranes; the decrease was almost entirely due to a loss of Ca(2+)-dependent alpha-latrotoxin binding sites. In cultured hippocampal neurons, alpha-latrotoxin was still capable of activating neurotransmission in the absence of neurexin I alpha. Direct measurements of [3H]glutamate release from synaptosomes, however, showed a major decrease in the amount of release triggered by alpha-latrotoxin in the presence of Ca2+. Thus neurexin I alpha is not essential for alpha-latrotoxin action but contributes to alpha-latrotoxin action when Ca2+ is present. Viewed as a whole, our results show that mice contain two distinct types of alpha-latrotoxin receptors with similar affinities and abundance but different properties and functions. The action of alpha-latrotoxin may therefore be mediated by independent parallel pathways, of which the CIRL/latrophilin pathway is sufficient for neurotransmitter release, whereas the neurexin I alpha pathway contributes to the Ca(2+)-dependent action of alpha-latrotoxin.
Collapse
Affiliation(s)
- M Geppert
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Abstract
The human brain has approximately 10(12) neurons, three orders of magnitude more than there are basepairs in the human genome. Each neuron is connected to other neurons by thousands of synapses, creating a dense network of communicating neurons. Cell-recognition events between neurons at, and outside of synapses, are likely to guide the development and maintenance of the complex network formed by neurons. However, little is known about which proteins are important for neuronal cell recognition. Neurexins, a family of polymorphic cell-surface proteins, might mediate some of these cell recognition events. Thousands of neurexin isoforms are generated from three genes by usage of alternative promoters and alternative splicing. These isoforms are displayed on the neuronal cell surface, with different classes of neurons expressing distinct combinations of isoforms. Neurexins probably have a multitude of ligands, some of which interact only with subsets of neurexin isoforms. This review describes the properties of the neurexin protein family and their potential roles in neuronal cell adhesion and intercellular signaling.
Collapse
Affiliation(s)
- M Missler
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| | | |
Collapse
|
312
|
Tole S, Christian C, Grove EA. Early specification and autonomous development of cortical fields in the mouse hippocampus. Development 1997; 124:4959-70. [PMID: 9362459 DOI: 10.1242/dev.124.24.4959] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of the specification of distinct areas in the developing cerebral cortex have until now focused mainly on neocortex. We demonstrate that the hippocampus, an archicortical structure, offers an elegant, alternative system in which to explore cortical area specification. Individual hippocampal areas, called CA fields, display striking molecular differences in maturity. We use these distinct patterns of gene expression as markers of CA field identity, and show that the two major hippocampal fields, CA1 and CA3, are specified early in hippocampal development, during the period of neurogenesis. Two field-specific markers display consistent patterns of expression from the embryo to the adult. Presumptive CA1 and CA3 fields (Pca1, Pca3) can therefore be identified between embryonic days 14.5 and 15.5 in the mouse, a week before the fields are morphologically distinct. No other individual cortical areas have been detected by gene expression as early in development. Indeed, other features that distinguish between the CA fields appear after birth, indicating that mature CA field identity is acquired over at least 3 weeks. To determine if Pca1 and Pca3 are already specified to acquire mature CA field identities, the embryonic fields were isolated from further potential specification cues by maintaining them in slice culture. CA field development proceeds in slices of the entire embryonic hippocampus. More strikingly, slices restricted to Pca1 or Pca3 alone also develop appropriate mature features of CA1 or CA3. Pca1 and Pca3 are therefore able to develop complex characteristics of mature CA field identity autonomously, that is, without contact or innervation from other fields or other parts of the brain. Because Pca1 and Pca3 can be identified before major afferents grow into the hippocampus, innervation may also be unnecessary for the initial division of the hippocampus into separate fields. Providing a clue to the source of the true specifying signals, the earliest field markers appear first at the poles of the hippocampus, then progress inwards. General hippocampal development does not follow this pronounced pattern. We suggest that the sources of signals that specify hippocampal field identity lie close to the hippocampal poles, and that the signals operate first on cells at the poles, then move inwards.
Collapse
Affiliation(s)
- S Tole
- Department of Pharmacological and Physiological Sciences, Pritzker School of Medicine, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
313
|
Martínez-Padrón M, Ferrús A. Patch-clamp recordings from Drosophila presynaptic terminals. Curr Top Dev Biol 1997; 36:303-12. [PMID: 9342536 DOI: 10.1016/s0070-2153(08)60510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
314
|
Nguyen T, Südhof TC. Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem 1997; 272:26032-9. [PMID: 9325340 DOI: 10.1074/jbc.272.41.26032] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Neurexins and neuroligins are plasma membrane proteins that are displayed on the neuronal cell surface. We have now investigated the interaction of neurexin 1beta with neuroligin 1 to evaluate their potential to function as heterophilic cell adhesion molecules. Using detergent-solubilized neuroligins and secreted neurexin 1beta-IgG fusion protein, we observed binding of these proteins to each other only in the presence of Ca2+ and in no other divalent cation tested. Only neurexin 1beta lacking an insert in splice site 4 bound neuroligins, whereas neurexin 1beta containing an insert was inactive. Half-maximal binding required 1-3 microM free Ca2+, which probably acts by binding to neuroligin 1 but not to neurexin 1beta. To determine if neurexin 1beta and neuroligin 1 can also interact with each other when present in a native membrane environment on the cell surface, we generated transfected cell lines expressing neuroligin 1 and neurexin 1beta. Upon mixing different cell populations, we found that cells aggregate only if cells expressing neurexin 1beta are mixed with cells expressing neuroligin 1. Aggregation was dependent on Ca2+ and was inhibited by the addition of soluble neurexin 1beta lacking an insert in splice site 4 but not by the addition of neurexin 1beta containing an insert in splice site 4. We conclude that neurexin 1beta and neuroligin 1 (and, by extension, other beta-neurexins and neuroligins) function as heterophilic cell adhesion molecules in a Ca2+-dependent reaction that is regulated by alternative splicing of beta-neurexins.
Collapse
Affiliation(s)
- T Nguyen
- Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
315
|
Wilke K, Gaul R, Klauck SM, Poustka A. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics 1997; 45:1-10. [PMID: 9339354 DOI: 10.1006/geno.1997.4885] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced a novel human gene (GABRE) of the GABAA neurotransmitter receptor family. A cDNA sequence of the gene coding for a 506 amino acid protein was identified, representing a member of a putative new class (epsilon) of the GABAA receptor. The gene is transcribed at least at low level in several different tissues, with the highest levels being detected in adult heart and placenta. Alternative splicing of GABRE transcripts isolated from different tissues was observed at multiple positions of the gene, yielding an unusually complex variety of cDNA variants. The structure of the 5' region of most cDNAs is compatible with expression of protein sequence epsilon only in adult brain, whereas in other tissues, the majority of transcripts code for truncated protein sequences. The GABRE gene extends over 14 kb and is clustered together with the alpha 3 and the putative beta 4 GABAA receptor subunit genes in an approximately 0.8-Mb interval in chromosome band Xq28, located in the candidate regions of two different neurologic diseases. Based on features of conservation of protein sequences, gene structure, and genomic organization of GABAA receptor gene clusters, we propose that the epsilon and gamma subunit genes have a common ancestor and that GABAA receptor gene clusters in the human genome have diverged by multiple duplication events of an ancestral gene cluster containing one each alpha, beta, and gamma/epsilon precursor gene.
Collapse
Affiliation(s)
- K Wilke
- Deutsches Krebsforschungszentrum, Abteilung Molekulare Genomanalyse, Heidelberg, Germany
| | | | | | | |
Collapse
|
316
|
Abstract
The knowledge accumulated about the biochemistry of the synapsis in the last decades completely changes the notion of brain processing founded exclusively over an electrical mechanism, toward that supported by a complex chemical message exchange occurring both locally, at the synaptic site, as well as at other localities, depending on the solubility of the involved chemical substances in the extracellular compartment. These biochemical transactions support a rich symbolic processing of the information both encoded by the genes and provided by actual data collected from the surrounding environment, by means of either special molecular or cellular receptor systems. In this processing, molecules play the role of symbols and chemical affinity shared by them specifies the syntax for symbol manipulation in order to process and to produce chemical messages. In this context, neurons are conceived as message-exchanging agents. Chemical strings are produced and stored at defined places, and ionic currents are used to speed up message delivery. Synaptic transactions can no longer be assumed to correspond to a simple process of propagating numbers powered by a factor measuring the presynaptic capacity to influence the postsynaptic electrical activity, but they must be modeled by more powerful formal tools supporting both numerical and symbolic calculations. It is proposed here that formal language theory is the adequate mathematical tool to handle such symbolic processing. The purpose of the present review is therefore: (a) to discuss the relevant and recent literature about trophic factors, signal transduction mechanisms, neuromodulators and neurotransmitters in order (b) to point out the common features of these correlated processes; and (c) to show how they may be organized into a formal model supported by the theory of fuzzy formal languages (d) to model the brain as a distributed intelligent problem solver.
Collapse
Affiliation(s)
- A F Rocha
- RANI-Research on Artificial and Natural Intelligence, UNICAMP Brazil, Jundiaí, Brazil.
| |
Collapse
|
317
|
Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Südhof TC. Binding of neuroligins to PSD-95. Science 1997; 277:1511-5. [PMID: 9278515 DOI: 10.1126/science.277.5331.1511] [Citation(s) in RCA: 564] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.
Collapse
Affiliation(s)
- M Irie
- Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, 2-2-10, Murotani, Nishi-ku, Kobe, 651-22, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Menegoz M, Gaspar P, Le Bert M, Galvez T, Burgaya F, Palfrey C, Ezan P, Arnos F, Girault JA. Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 1997; 19:319-31. [PMID: 9292722 DOI: 10.1016/s0896-6273(00)80942-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ranvier nodes are flanked by paranodal regions, at the level of which oligodendrocytes or Schwann cells interact closely with axons. Paranodes play a critical role in the physiological properties of myelinated nerve fibers. Paranodin, a prominent 180 kDa transmembrane neuronal glycoprotein, was purified and cloned from adult rat brain, and found to be highly concentrated in axonal membranes at their junction with myelinating glial cells, in paranodes of central and peripheral nerve fibers. The large extracellular domain of paranodin is related to neurexins, and its short intracellular tail binds protein 4.1, a cytoskeleton-anchoring protein. Paranodin may be a critical component of the macromolecular complex involved in the tight interactions between axons and myelinating glial cells characteristic of the paranodal region.
Collapse
Affiliation(s)
- M Menegoz
- Institut National de la Santé et la Recherche Médicale, U 114, Collège de France, Paris
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Joseph DR. Sequence and functional relationships between androgen-binding protein/sex hormone-binding globulin and its homologs protein S, Gas6, laminin, and agrin. Steroids 1997; 62:578-88. [PMID: 9292933 DOI: 10.1016/s0039-128x(97)00045-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Androgen-binding protein/sex hormone-binding globulin (ABP/SHBG) is an extracellular binding protein that regulates the bioavailability of sex steroids. ABP/SHBG is closely related to the globular (G) domain of vitamin K-dependent protein S family of proteins and more distantly related to the G domains of several extracellular matrix proteins. ABP/SHBG appears to have evolved from the fusion of two ancestral G domains. Expanding evidence suggests that ABP/SHBG has other functions that are mediated through membrane binding, including signal transduction; however, the types of binding proteins (receptors) have not been identified. Sequence comparisons of ABP/SHBG with G domains of its homologs protein S, Gas6, laminin, and agrin have identified regions of ABP/SHBG that may bind receptors related to homolog receptors. These membrane receptors include beta-integrins, alpha-dystroglycan, and receptor tyrosine kinases. The G domains of laminin and related proteins have clearly evolved from a common ancestor to interact with specific receptors and binding proteins. It remains to be determined if ABP/SHBG followed this evolutionary pathway.
Collapse
Affiliation(s)
- D R Joseph
- Applied Genetics Laboratories, Inc., University of Florida, Alachua 32615, USA
| |
Collapse
|
320
|
Andres C, Beeri R, Friedman A, Lev-Lehman E, Henis S, Timberg R, Shani M, Soreq H. Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin Ibeta gene expression followed by late-onset neuromotor deterioration. Proc Natl Acad Sci U S A 1997; 94:8173-8. [PMID: 9223334 PMCID: PMC21576 DOI: 10.1073/pnas.94.15.8173] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1997] [Accepted: 05/09/1997] [Indexed: 02/04/2023] Open
Abstract
To explore the possibility that overproduction of neuronal acetylcholinesterase (AChE) confers changes in both cholinergic and morphogenic intercellular interactions, we studied developmental responses to neuronal AChE overexpression in motoneurons and neuromuscular junctions of AChE-transgenic mice. Perikarya of spinal cord motoneurons were consistently enlarged from embryonic through adult stages in AChE-transgenic mice. Atypical motoneuron development was accompanied by premature enhancement in the embryonic spinal cord expression of choline acetyltransferase mRNA, encoding the acetylcholine-synthesizing enzyme choline acetyltransferase. In contrast, the mRNA encoding for neurexin-Ibeta, the heterophilic ligand of the AChE-homologous neuronal cell surface protein neuroligin, was drastically lower in embryonic transgenic spinal cord than in controls. Postnatal cessation of these dual transcriptional responses was followed by late-onset deterioration in neuromotor performance that was associated with gross aberrations in neuromuscular ultrastructure and with pronounced amyotrophy. These findings demonstrate embryonic feedback mechanisms to neuronal AChE overexpression that are attributable to both cholinergic and cell-cell interaction pathways, suggesting that embryonic neurexin Ibeta expression is concerted in vivo with AChE levels and indicating that postnatal changes in neuronal AChE-associated proteins may be involved in late-onset neuromotor pathologies.
Collapse
Affiliation(s)
- C Andres
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Israel
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Tsutsui K, Maeda Y, Tsutsui K, Seki S, Tokunaga A. cDNA cloning of a novel amphiphysin isoform and tissue-specific expression of its multiple splice variants. Biochem Biophys Res Commun 1997; 236:178-83. [PMID: 9223448 DOI: 10.1006/bbrc.1997.6927] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphiphysin, an SH3-domain containing protein concentrated in nerve terminals, is believed to be involved in the synaptic vesicle recycling. We have cloned cDNAs of a novel isoform of amphiphysin (amphiphysin II) by exploiting sequence information for homologous ESTs deposited in databases. At least 9 different subtypes of the isoform with 50-60% amino acid identity to the human amphiphysin were identified by a conventional library screening and PCR amplification of cDNA libraries. Each subtype probably represents a splice variant of a single gene transcript. Analysis of mRNA expression in various tissues by RT-PCR showed that the isoform is ubiquitously distributed. The expression spectrum of the isoform subtypes, however, is significantly different in several tissues examined, suggesting that they are involved in the regulation of endocytic processes that are unique to each cell type.
Collapse
Affiliation(s)
- K Tsutsui
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Shikata-cho, Japan
| | | | | | | | | |
Collapse
|
322
|
Abstract
We have performed direct electrophysiological recordings from Drosophila peptidergic synaptic boutons in situ, taking advantage of a mutation, ecdysone, which causes an increase in size of these terminals. Using patch-clamp techniques, we have analyzed voltage-dependent potassium currents at the macroscopic and single-channel level. The synaptic membrane contained at least two distinct voltage-activated potassium currents with different kinetics and voltage sensitivity: an IA-like current with fast activation and inactivation kinetics and voltage-dependent steady-state inactivation; a complex delayed current that includes a slowly inactivating component, resembling the IK described in other preparations; and a noninactivating component. The IA-like current in these peptidergic boutons is not encoded by the gene Shaker, because it is not affected by null mutations at this locus. Rather, synaptic IA has properties similar to those of the Shal-encoded IA. Single-channel recordings revealed the presence in synaptic membranes of three different potassium channel types (A2, KD, KL), with biophysical properties that could account for the macroscopic currents and resemble those of the Shal, Shab, and Shaw channels described in heterologous expression systems and Drosophila neuronal somata. A2 channels (6-9 pS) have brief open times, and like the macroscopic IA they exhibited voltage-dependent steady-state inactivation and a rapidly inactivating ensemble average current profile. KD channels (13-16 pS) had longer open times, activate and inactivate with much slower kinetics, and may account for the slowly inactivating component of the macroscopic current. KL (44-54 pS) channels produced a noninactivating ensemble average and may contribute to the delayed macroscopic current observed.
Collapse
|
323
|
Abstract
The Hu proteins are a group of antigens targeted in an immune-mediated neurodegenerative disorder associated with cancer. We have cloned and characterized four members of the Hu gene family from mouse. We find that the Hu genes encode a large number of alternatively spliced transcripts to produce a series of related neuron-specific RNA binding proteins. Despite this complexity, we have discerned several ordered features of Hu expression. In the embryo, specific Hu genes are expressed in a hierarchy during early neurogenesis. In the E16 developing cortex, mHuB is induced in very early postmitotic neurons exiting the ventricular zone, mHuD is expressed in migrating neurons of the intermediate zone, and mHuC is expressed in mature cortical plate neurons. Such a hierarchy suggests distinct functional roles for each gene in developing neurons. In the adult, all neurons express some set of Hu mRNA and protein. However, specific patterns are evident such that individual neuronal types in the hippocampus, cerebellum, olfactory cortex, neocortex, and elsewhere express from one to several Hu genes. The complexity of potential protein variants within a gene family and of different Hu family members within a neuron suggests a diverse array of function. Given the strong homologies among the Hu proteins, the Drosophila neurogenic gene elav, and the Drosophila splicing factor sxl, we predict that different combinations of Hu proteins determine different neuron-specific aspects of post-transcriptional RNA regulation. Our findings of specific developmental patterns of expression and the correlation between immune targeting of the Hu proteins and adult neurodegenerative disease suggest that the Hu proteins are critical in both the proper development and function of mature neurons.
Collapse
|
324
|
Affiliation(s)
- J T Littleton
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
325
|
Peles E, Joho K, Plowman GD, Schlessinger J. Close similarity between Drosophila neurexin IV and mammalian Caspr protein suggests a conserved mechanism for cellular interactions. Cell 1997; 88:745-6. [PMID: 9118217 DOI: 10.1016/s0092-8674(00)81920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
326
|
Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 1996; 87:1059-68. [PMID: 8978610 DOI: 10.1016/s0092-8674(00)81800-0] [Citation(s) in RCA: 333] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Septate and tight junctions are thought to seal neighboring cells together and to function as barriers between epithelial cells. We have characterized a novel member of the neurexin family, Neurexin IV (NRX), which is localized to septate junctions (SJs) of epithelial and glial cells. NRX is a transmembrane protein with a cytoplasmic domain homologous to glycophorin C, a protein required for anchoring protein 4.1 in the red blood cell. Absence of NRX results in mislocalization of Coracle, a Drosophila protein 4.1 homolog, at SJs and causes dorsal closure defects similar to those observed in coracle mutants. nrx mutant embryos are paralyzed, and electrophysiological studies indicate that the lack of NRX in glial-glial SJs causes a breakdown of the blood-brain barrier. Electron microscopy demonstrates that nrx mutants lack the ladder-like intercellular septa characteristic of pleated SJs (pSJs). These studies identify NRX as the first transmembrane protein of SJ and demonstrate a requirement for NRX in the formation of septate-junction septa and intercellular barriers.
Collapse
|
327
|
Abstract
Using affinity chromatography on immobilized alpha-latrotoxin, we have purified a novel 29 kDa protein, neurexophilin, in a complex with neurexin l alpha. Cloning revealed that rat and bovine neurexophilins are composed of N-terminal signal peptides, nonconserved N-terminal domains (20% identity over 80 residues), and highly homologous C-terminal sequences (85% identity over 169 residues). Analysis of genomic clones from mice identified two distinct neurexophilin genes, one of which is more homologous to rat neurexophilin and the other to bovine neurexophilin. The first neurexophilin gene is expressed abundantly in adult rat and mouse brain, whereas no mRNA corresponding to the second gene was detected in rodents despite its abundant expression in bovine brain, suggesting that rodents and cattle primarily express distinct neurexophilin genes. RNA blots and in situ hybridizations revealed that neurexophilin is expressed in adult rat brain at high levels only in a scattered subpopulation of neurons that probably represent inhibitory interneurons; by contrast, neurexins are expressed in all neurons. Neurexophilin contains a signal sequence and is N-glycosylated at multiple sites, suggesting that it is secreted and binds to the extracellular domain of neurexin l alpha. This hypothesis was confirmed by binding recombinant neurexophilin to the extracellular domains of neurexin l alpha. Together our data suggest that neurexophilin constitutes a secreted glycoprotein that is synthesized in a subclass of neurons and may be a ligand for neurexins.
Collapse
|
328
|
Ichtchenko K, Nguyen T, Südhof TC. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 1996; 271:2676-82. [PMID: 8576240 DOI: 10.1074/jbc.271.5.2676] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neuroligin 1 is a neuronal cell surface protein that binds to a subset of neurexins, polymorphic cell surface proteins that are also localized on neurons (Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., and Südhof, T. C. (1995) Cell 81, 435-443). We now describe two novel neuroligins called neuroligins 2 and 3 that are similar in structure and sequence to neuroligin 1. All neuroligins contain an N-terminal hydrophobic sequence with the characteristics of a cleaved signal peptide followed by a large esterase homology domain, a highly conserved single transmembrane region, and a short cytoplasmic domain. The three neuroligins are alternatively spliced at the same position and are expressed at high levels only in brain. Binding studies demonstrate that all three neuroligins bind to beta-neurexins both as native brain proteins and as recombinant proteins. Tight binding of the three neuroligins to beta-neurexins is observed only for beta-neurexins lacking an insert in splice site 4. Thus, neuroligins constitute a multigene family of brain-specific proteins with distinct isoforms that may have overlapping functions in mediating recognition processes between neurons.
Collapse
Affiliation(s)
- K Ichtchenko
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
329
|
Massoulié J, Legay C, Anselmet A, Krejci E, Coussen F, Bon S. Biosynthesis and integration of acetylcholinesterase in the cholinergic synapse. PROGRESS IN BRAIN RESEARCH 1996; 109:55-65. [PMID: 9009693 DOI: 10.1016/s0079-6123(08)62088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Massoulié
- Laboratorie de Neurobiologie Moléculaire et Cellulaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
330
|
Ullrich B, Südhof TC. Differential distributions of novel synaptotagmins: comparison to synapsins. Neuropharmacology 1995; 34:1371-7. [PMID: 8606786 DOI: 10.1016/0028-3908(95)00132-p] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptotagmins and synapsins are prototypical synaptic vesicle proteins that are regulated by Ca2+: Synaptotagmins directly via Ca2+ binding, and synapsins indirectly via phosphorylation by Ca(2+)-dependent protein kinases. Recently, a bewildering multiplicity in the expression of isoforms of these proteins has become apparent. Thus, mammalian brains express at least 8 isoforms of synaptotagmin and 4 isoforms of synapsin if variants arising by differential splicing are included. We have now used in situ hybridization to determine the relative localization of the expression of multiple isoforms of synapsins and synaptotagmins to complement previous studies on their distribution. Our results demonstrate that almost all brain regions co-express all four synapsins at similar levels, suggesting that they are not functionally alternative but complementary. The different isoforms of synaptotagmin exhibit two distinct expression patterns: synaptotagmins that are expressed in a highly differential manner (synaptotagmins I, II and VI), and synaptotagmins with a relatively even distribution of expression similar to synapsins (synaptotagmins III, IV and VII). Our data are consistent with a functional specialization of synaptic vesicle protein isoforms that could result in differential properties of the respective classes of neurons that express them.
Collapse
Affiliation(s)
- B Ullrich
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
331
|
Affiliation(s)
- P A Garrity
- Department of Biological Chemistry, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
332
|
Davletov BA, Krasnoperov V, Hata Y, Petrenko AG, Südhof TC. High affinity binding of alpha-latrotoxin to recombinant neurexin I alpha. J Biol Chem 1995; 270:23903-5. [PMID: 7592578 DOI: 10.1074/jbc.270.41.23903] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
alpha-Latrotoxin is a potent neurotoxin from black widow spider venom that stimulates neurotransmitter release. alpha-Latrotoxin is thought to act by binding to a high affinity receptor on presynaptic nerve terminals. In previous studies, high affinity alpha-latrotoxin binding proteins were isolated and demonstrated to contain neurexin I alpha as a major component. Neurexin I alpha is a cell surface protein that exists in multiple differentially spliced isoforms and belongs to a large family of neuron-specific proteins. Using a series of neurexin I-IgG fusion proteins, we now show that recombinant neurexin I alpha binds alpha-latrotoxin directly with high affinity (Kd approximately 4 nM). Binding of alpha-latrotoxin to recombinant neurexin I alpha is dependent on Ca2+ (EC50 approximately 30 microM). Our data suggest that neurexin I alpha is a Ca(2+)-dependent high affinity receptor for alpha-latrotoxin.
Collapse
Affiliation(s)
- B A Davletov
- Department of Molecular Genetics, University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | |
Collapse
|
333
|
Hossain A, Schang LM, Jones C. Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol 1995; 69:5345-52. [PMID: 7636978 PMCID: PMC189375 DOI: 10.1128/jvi.69.9.5345-5352.1995] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bovine herpesvirus 1 (BHV-1) establishes a latent infection in sensory ganglionic neurons of infected animals. Expression of latency-related (LR) gene products is controlled by a 980-bp fragment (LR promoter). DNA sequence analysis revealed that two major open reading frames (ORFs) are in the LR gene. Antibodies directed against both ORFs were generated in rabbits by using synthetic peptides. Antibody P2, which is directed to sequences near the amino terminus of ORF 2, recognized a 41-kDa protein in lytically infected cells, suggesting that ORF 2 encodes a protein. When the LR gene was inserted into a mammalian expression vector and subsequently transfected into COS-7 cells, a 41-kDa protein was detected by use of silver-stained sodium dodecyl sulfate-polyacrylamide gels and by the P2 antibody. In contrast, this protein was not detected in mock-transfected cells. Deletion of DNA sequences containing ORF 2 blocked synthesis of the 41-kDa protein in COS-7 cells. Reverse transcriptase-mediated PCRs indicated that splicing occurs near the C terminus of ORF 2. Further studies indicated that LR RNA was alternatively spliced in latently infected cattle and that a fraction of LR RNA was poly(A)+. Taken together, these studies suggested that a spliced LR transcript has the potential to encode a 41-kDa protein.
Collapse
Affiliation(s)
- A Hossain
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | | | |
Collapse
|
334
|
Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof TC. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 1995; 81:435-43. [PMID: 7736595 DOI: 10.1016/0092-8674(95)90396-8] [Citation(s) in RCA: 521] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurexins are neuronal cell surface proteins with hundreds of isoforms generated by alternative splicing. Here we describe neuroligin 1, a neuronal cell surface protein that is enriched in synaptic plasma membranes and acts as a splice site-specific ligand for beta-neurexins. Neuroligin 1 binds to beta-neurexins only if they lack an insert in the alternatively spliced sequence of the G domain, but not if they contain an insert. The extracellular sequence of neuroligin 1 is composed of a catalytically inactive esterase domain homologous to acetylcholinesterase. In situ hybridization reveals that alternative splicing of neurexins at the site recognized by neuroligin 1 is highly regulated. These findings support a model whereby alternative splicing of neurexins creates a family of cell surface receptors that confers interactive specificity onto their resident neurons.
Collapse
Affiliation(s)
- K Ichtchenko
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas 75235, USA
| | | | | | | | | | | | | |
Collapse
|