301
|
Kong C, Xie H, Gao Z, Shao M, Li H, Shi R, Cai L, Gao S, Sun T, Li C. Binding between Prion Protein and Aβ Oligomers Contributes to the Pathogenesis of Alzheimer's Disease. Virol Sin 2019; 34:475-488. [PMID: 31093882 DOI: 10.1007/s12250-019-00124-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease (AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein (PrPC) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrPC contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrPC, which lead to high affinity binding between Aβ oligomers and PrPC. The interaction between PrPC and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system (CNS). Thus, silencing PrPC expression may turn out be an effective treatment for PrPC dependent AD.
Collapse
Affiliation(s)
- Chang Kong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenxing Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
302
|
Narang SS, Goyal D, Goyal B. Inhibition of Alzheimer’s amyloid-β42 peptide aggregation by a bi-functional bis-tryptoline triazole: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:1598-1611. [DOI: 10.1080/07391102.2019.1614093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
303
|
Jafari Z, Okuma M, Karem H, Mehla J, Kolb BE, Mohajerani MH. Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 77:66-86. [DOI: 10.1016/j.neurobiolaging.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
|
304
|
Wang F, Chen D, Wu P, Klein C, Jin C. Formaldehyde, Epigenetics, and Alzheimer's Disease. Chem Res Toxicol 2019; 32:820-830. [PMID: 30964647 DOI: 10.1021/acs.chemrestox.9b00090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The accumulation of β-amyloid plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau protein are two hallmarks of AD. The β-amyloid and tau proteins have been at the center of AD research and drug development for decades. However, most of the clinical trials targeting β-amyloid have failed. Whereas the safety and efficacy of most tau-targeting drugs have not yet been completely assessed, the first tau aggregation inhibitor, LMTX, failed in a late-stage trial, leading to further recognition of the complexities of AD and reconsideration of the amyloid hypothesis and perhaps the tau hypothesis as well. Multilevel complex interactions between genetic, epigenetic, and environmental factors contribute to the occurrence and progression of AD. Formaldehyde (FA) is a widespread environmental organic pollutant. It is also an endogenous metabolite in the human body. Recent studies suggest that elevation of FA in the body by endogenous and/or exogenous exposure may play important roles in AD development. We have demonstrated that FA reduces lysine acetylation of cytosolic histones, thereby compromising chromatin assembly and resulting in the loss of histone content in chromatin, a conserved feature of aging from yeast to humans. Aging is an important factor for AD progression. Therefore, FA-induced inhibition of chromatin assembly and the loss of histones may contribute to AD initiation and/or development. This review will briefly summarize current knowledge on mechanistic insights into AD, focusing on epigenetic alterations and the involvement of FA in AD development. The exploration of chemical exposures as contributing factors to AD may provide new insights into AD mechanisms and could identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Fei Wang
- School of Public Health , China Medical University , Shenyang 110122 , China
| | | | | | | | | |
Collapse
|
305
|
Grassi D, Diaz-Perez N, Volpicelli-Daley LA, Lasmézas CI. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiol Dis 2019; 124:248-262. [DOI: 10.1016/j.nbd.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
|
306
|
Tam C, Wong JH, Ng TB, Tsui SKW, Zuo T. Drugs for Targeted Therapies of Alzheimer's Disease. Curr Med Chem 2019; 26:335-359. [PMID: 29714133 DOI: 10.2174/0929867325666180430150940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/01/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is one type of neurodegenerative diseases, which is prevalent in the elderly. Beta-amyloid (Aβ) plaques and phosphorylated tau-induced neurofibrillary tangles are two pathological hallmarks of this disease and the corresponding pathological pathways of these hallmarks are considered as the therapeutic targets. There are many drugs scheduled for pre-clinical and clinical trial that target to inhibit the initiators of pathological Aβ and tau aggregates as well as critical Aβ secretases and kinases in tau hyperphosphorylation. In addition, studies in disease gene variations, and detection of key prognostic effectors in early development are also important for AD control. The discovery of potential drug targets contributed to targeted therapy in a stage-dependent manner, However, there are still some issues that cause concern such as the low bioavailability and low efficacy of candidate drugs from clinical trial reports. Therefore, modification of drug candidates and development of delivery agents are essential and critical. With other medical advancements like cell replacement therapy, there is hope for the cure of Alzheimer's disease in the foreseeable future.
Collapse
Affiliation(s)
- Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
307
|
Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur J Med Chem 2019; 168:58-77. [DOI: 10.1016/j.ejmech.2018.12.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
|
308
|
Chalatsa I, Arvanitis DA, Koulakiotis NS, Giagini A, Skaltsounis AL, Papadopoulou-Daifoti Z, Tsarbopoulos A, Sanoudou D. The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models. Front Neurosci 2019; 13:249. [PMID: 30971876 PMCID: PMC6443833 DOI: 10.3389/fnins.2019.00249] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Crocus sativus L. natural compounds have been extensively used in traditional medicine for thousands of years. Recent research evidence is now emerging in support of its therapeutic potential for different pathologies including neurodegenerative diseases. Herein, the C. sativus L. natural compounds trans-crocin 4 and trans-crocetin were selected for in depth molecular characterization of their potentially protective effects against Alzheimer’s Disease (AD), utilizing two AD neuronal cell culture models (SH-SY5Y overexpressing APP and PC12 expressing hyperphosphorylated tau). Biologically relevant concentrations, ranging from 0.1 μM to 1 mM, applied for 24 h or 72 h, were well tolerated by differentiated wild type SH-SY5Y and PC12 cells. When tested on neuronally differentiated SH-SY5Y-APP both trans-crocin 4 and trans-crocetin had significant effects against amyloidogenic pathways. Trans-crocin 4 significantly decreased of β-secretase, a key enzyme of the amyloidogenic pathway, and APP-C99, while it decreased γ-secretases that generate toxic beta-amyloid peptides. Similarly, trans-crocetin treatment led to a reduction in β- and γ-secretases, as well as to accumulation of cellular AβPP. When tested on the neuronally differentiated PC12-htau cells, both compounds proved effective in suppressing the active forms of GSK3β and ERK1/2 kinases, as well as significantly reducing total tau and tau phosphorylation. Collectively, our data demonstrate a potent effect of trans-crocin 4 and trans-crocetin in suppressing key molecular pathways of AD pathogenesis, rendering them a promising tool in the prevention and potentially the treatment of AD.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Athina Giagini
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- GAIA Research Center, Bioanalytical Department, The Goulandris Natural History Museum, Athens, Greece.,Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
309
|
Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019; 9:biom9030105. [PMID: 30884818 PMCID: PMC6468450 DOI: 10.3390/biom9030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Collapse
Affiliation(s)
- Kateřina Melková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vojtěch Zapletal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Subhash Narasimhan
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Séverine Jansen
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, 811 02 Bratislava, Slovakia.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
310
|
Development of tau-directed small molecule modulators for Alzheimer's disease: a recent patent review (2014-2018). Pharm Pat Anal 2019; 8:15-39. [PMID: 30870110 DOI: 10.4155/ppa-2019-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss and cognitive impairment. As this disease is becoming a serious global health issue, development of disease modifying therapeutics is urgently required. AD is characterized by deposits of two protein, amyloid β and tau. Although amyloid β-based therapeutics have been extensively investigated so far, tau has also received great attention as one of promising molecular targets for AD. In this review, a variety of tau-directed strategies to rescue tau-mediated neurotoxicity will be reviewed especially focusing on small molecules. Subsequently, recent patents published from 2014 to 2018 that integrate efforts to develop tau-directed small molecules for the treatment of AD will be reviewed.
Collapse
|
311
|
Alvariño R, Alonso E, Lacret R, Oves-Costales D, Genilloud O, Reyes F, Alfonso A, Botana LM. Caniferolide A, a Macrolide from Streptomyces caniferus, Attenuates Neuroinflammation, Oxidative Stress, Amyloid-Beta, and Tau Pathology in Vitro. Mol Pharm 2019; 16:1456-1466. [DOI: 10.1021/acs.molpharmaceut.8b01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Rodney Lacret
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| |
Collapse
|
312
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by extracellular β-amyloid plaques and intracellular neurofibrillary tangles (NFTs), which are considered as major targets for AD therapies. However, no effective therapy is available to cure or prevent the progression of AD up until now. Accumulation of NFTs, which consist of abnormally hyperphosphorylated tau, is directly correlated with the degree of dementia in AD patients. Emerging evidence indicates that the prion-like seeding and spreading of tau pathology may be the key driver of AD. In the past decades, greater understanding of tau pathway reveals new targets for the development of specific therapies. Here, we review the recent research progress in the mechanism underlying tau pathology in AD and briefly introduce tau-based therapeutics.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, United States
| |
Collapse
|
313
|
Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol Neurobiol 2019; 56:5815-5834. [PMID: 30684218 DOI: 10.1007/s12035-019-1475-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Current evidence suggests dementia and pathology in Alzheimer's Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple 'hits' on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition. Over 35 weeks, this induced classic signs of T2D (hyperglycemia and insulin dysfunction) and a modest, but stable deficit in spatial recognition memory, with very little long-term modification of proteins in or associated with IR/PI3K/Akt signalling in CA1 of the hippocampus. Intracerebroventricular infusion of soluble amyloid beta 42 (Aβ42) to mimic the early preclinical rise in Aβ alone induced a more severe, but short-lasting deficits in memory and deregulation of proteins. Infusion of Aβ on the T2D phenotype exacerbated and prolonged the memory deficits over approximately 4 months, and induced more severe aberrant regulation of proteins associated with autophagy, inflammation and glucose uptake from the periphery. A mild form of environmental enrichment transiently rescued memory deficits and could reverse the regulation of some, but not all protein changes. Together, these data identify mechanisms by which T2D could create a modest dysfunctional neuronal milieu via multiple and parallel inputs that permits the development of pathological events identified in AD and memory deficits when Aβ levels are transiently effective in the brain.
Collapse
|
314
|
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, DuttKonar A. Unravelling the potency of 4,5-diamino-4H-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. NEW J CHEM 2019. [DOI: 10.1039/c8nj04205e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This report describes the design of potent kinase inhibitors by simply fine tuning the surroundings of triazole core with diversified derivatization.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - C. Karthikeyan
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Kyle Douglas McIntosh
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics
- College of Pharmacy and Pharmaceutical Sciences
- University of Toledo
- USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| | - Anita DuttKonar
- School of Pharmaceutical Sciences
- Rajiv Gandhi Technological University
- Bhopal
- Gandhinagar
- India
| |
Collapse
|
315
|
Yu S, Du Z, Dong C, Ren J. In situ study of RSK2 kinase activity in a single living cell by combining single molecule spectroscopy with activity-based probes. Analyst 2019; 144:3756-3764. [DOI: 10.1039/c9an00178f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FCS with the ABP strategy is a very promising method for studying endogenous protein kinases in living cells.
Collapse
Affiliation(s)
- Shengrong Yu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
316
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
317
|
Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2018; 294:7137-7150. [PMID: 30587571 DOI: 10.1074/jbc.tm118.001189] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid-liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (Arg)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as "friend or foe," they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario Hofweber
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried.,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and
| | - Dorothee Dormann
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, .,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and.,the Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| |
Collapse
|
318
|
Lee SH, Suk K. Kinase-Based Taming of Brain Microglia Toward Disease-Modifying Therapy. Front Cell Neurosci 2018; 12:474. [PMID: 30568577 PMCID: PMC6289980 DOI: 10.3389/fncel.2018.00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells residing in the central nervous system (CNS), where they play essential roles in the health and disease. Depending on the CNS inflammatory milieu, they exist in either resting or activated states. Chronic neuroinflammation mediated by activated microglia is now considered to be a common characteristic shared by many neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, which currently pose a significant socioeconomic burden to the global healthcare system. Accumulating evidence has indicated protein kinases (PKs) as important drug targets for therapeutic interventions of these detrimental diseases. Here, we review recent findings suggesting that selected PKs potentially participate in microglia-mediated neuroinflammation. Taming microglial phenotypes by modulating the activity of these PKs holds great promise for the development of disease-modifying therapies for many neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
319
|
Administration of Momordica charantia Enhances the Neuroprotection and Reduces the Side Effects of LiCl in the Treatment of Alzheimer's Disease. Nutrients 2018; 10:nu10121888. [PMID: 30513908 PMCID: PMC6316175 DOI: 10.3390/nu10121888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, the use of natural food supplements to reduce the side effects of chemical compounds used for the treatment of various diseases has become popular. Lithium chloride (LiCl) has some protective effects in neurological diseases, including Alzheimer’s disease (AD). However, its toxic effects on various systems and some relevant interactions with other drugs limit its broader use in clinical practice. In this study, we investigated the in vitro and in vivo pharmacological functions of LiCl combined with Momordica charantia (MC) in the treatment of AD. The in vitro results show that the order of the neuroprotective effect is MC5, MC3, MC2, and MC5523 under hyperglycemia or tau hyperphosphorylation. Therefore, MC5523 (80 mg/kg; oral gavage) and/or LiCl (141.3 mg/kg; intraperitoneal injection) were applied to ovariectomized (OVX) 3×Tg-AD female and C57BL/6J (B6) male mice that received intracerebroventricular injections of streptozotocin (icv-STZ, 3 mg/kg) for 28 days. We found that the combined treatment not only increased the survival rate by reducing hepatotoxicity but also increased neuroprotection associated with anti-gliosis in the icv-STZ OVX 3×Tg-AD mice. Furthermore, the cotreatment with MC5523 and LiCl prevented memory deficits associated with reduced neuronal loss, gliosis, oligomeric Aβ level, and tau hyperphosphorylation and increased the expression levels of synaptic-related protein and pS9-GSK3β (inactive form) in the icv-STZ B6 mice. Therefore, MC5523 combined with LiCl could be a potential strategy for the treatment of AD.
Collapse
|
320
|
Zhao J, Li X, Chen X, Cai Y, Wang Y, Sun W, Mai H, Yang J, Fan W, Tang P, Ou M, Zhang Y, Huang X, Zhao B, Cui L. GRK5 influences the phosphorylation of tau via GSK3β and contributes to Alzheimer's disease. J Cell Physiol 2018; 234:10411-10420. [PMID: 30511419 DOI: 10.1002/jcp.27709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase whose dysfunction results in cognitive impairment and Alzheimer-like pathology, including tau hyperphosphorylation. However, the mechanisms whereby GRK5 influences tau phosphorylation remain incompletely understood. In the current study, we showed that GRK5 influenced the phosphorylation of tau via glycogen synthase kinase 3β (GSK3β). The activity of both tau and GSK3β in the hippocampus was increased in aged GRK5-knockout mice, which is consistent with what occurs in APP/PS1 transgenic mice. Furthermore, GRK5 regulated the activity of GSK3β and phosphorylated tau in vitro. Regardless of changes of GRK5 protein levels, tau hyperphosphorylation remained reduced after GSK3β activity was inhibited, suggesting that GRK5 may specifically influence tau hyperphosphorylation by modulating GSK3β activity. Taken together, our findings suggest that GRK5 deficiency contributes to the pathogenesis of Alzheimer's disease by influencing the hyperphosphorylation of tau through the activation of GSK3β.
Collapse
Affiliation(s)
- Jianghao Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Dongguan People's Hospital, Dongguan, China
| | - Xiaohui Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life, Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Sun
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Hui Mai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Pei Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
321
|
Zhou Q, Reekie TA, Abbassi RH, Indurthi Venkata D, Font JS, Ryan RM, Munoz L, Kassiou M. Synthesis and in vitro evaluation of diverse heterocyclic diphenolic compounds as inhibitors of DYRK1A. Bioorg Med Chem 2018; 26:5852-5869. [PMID: 30401502 DOI: 10.1016/j.bmc.2018.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022]
Abstract
Dual-specificity tyrosine phosphorylation-related kinase 1A (DYRK1A) is a dual-specificity protein kinase that catalyses phosphorylation and autophosphorylation. Higher DYRK1A expression correlates with cancer, in particular glioblastoma present within the brain. We report here the synthesis and biological evaluation of new heterocyclic diphenolic derivatives designed as novel DYRK1A inhibitors. The generation of these heterocycles such as benzimidazole, imidazole, naphthyridine, pyrazole-pyridines, bipyridine, and triazolopyrazines was made based on the structural modification of the lead DANDY and tested for their ability to inhibit DYRK1A. None of these derivatives showed significant DYRK1A inhibition but provide valuable knowledge around the importance of the 7-azaindole moiety. These data will be of use for developing further structure-activity relationship studies to improve the selective inhibition of DYRK1A.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Tristan A Reekie
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Dinesh Indurthi Venkata
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Josep S Font
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | - Renae M Ryan
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | - Lenka Munoz
- School of Medical Sciences, Discipline of Pathology and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
322
|
Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158:359-375. [DOI: 10.1016/j.bcp.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
|
323
|
Julien C, Tomberlin C, Roberts CM, Akram A, Stein GH, Silverman MA, Link CD. In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathol Commun 2018; 6:131. [PMID: 30497524 PMCID: PMC6263551 DOI: 10.1186/s40478-018-0634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to the β-amyloid peptide (Aβ) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aβ oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aβ oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aβ exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aβ induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aβ Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aβ multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aβ-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.
Collapse
|
324
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
325
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
326
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Kororamides, Convolutamines, and Indole Derivatives as Possible Tau and Dual-Specificity Kinase Inhibitors for Alzheimer's Disease: A Computational Study. Mar Drugs 2018; 16:md16100386. [PMID: 30332805 PMCID: PMC6213646 DOI: 10.3390/md16100386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is becoming one of the most disturbing health and socioeconomic problems nowadays, as it is a neurodegenerative pathology with no treatment, which is expected to grow further due to population ageing. Actual treatments for AD produce only a modest amelioration of symptoms, although there is a constant ongoing research of new therapeutic strategies oriented to improve the amelioration of the symptoms, and even to completely cure the disease. A principal feature of AD is the presence of neurofibrillary tangles (NFT) induced by the aberrant phosphorylation of the microtubule-associated protein tau in the brains of affected individuals. Glycogen synthetase kinase-3 beta (GSK3β), casein kinase 1 delta (CK1δ), dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) and dual-specificity kinase cdc2-like kinase 1 (CLK1) have been identified as the principal proteins involved in this process. Due to this, the inhibition of these kinases has been proposed as a plausible therapeutic strategy to fight AD. In this study, we tested in silico the inhibitory activity of different marine natural compounds, as well as newly-designed molecules from some of them, over the mentioned protein kinases, finding some new possible inhibitors with potential therapeutic application.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
- Mind the Byte S.L., 08007 Barcelona, Catalonia, Spain.
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | | |
Collapse
|
327
|
Tian Y, Lu W, Deng H, Yang F, Guo Y, Gao L, Xu Y. Phlorizin administration ameliorates cognitive deficits by reducing oxidative stress, tau hyper‐phosphorylation, and neuroinflammation in a rat model of Alzheimer’s disease. J Food Biochem 2018. [DOI: 10.1111/jfbc.12644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Tian
- Department of Endocrinology Zhongnan Hospital of Wuhan University Wuhan China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Weibing Lu
- Qingdao Women and Children’s Hospital Qingdao China
- The Institute of Human Nutrition, Qingdao University of Medicine Qingdao China
| | - Haohua Deng
- Department of Endocrinology Zhongnan Hospital of Wuhan University Wuhan China
| | - Fan Yang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji MedicalCollege Huazhong University of Science and Technology Wuhan China
| | - Yan Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Ling Gao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Yancheng Xu
- Department of Endocrinology Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
328
|
Alvariño R, Alonso E, Lacret R, Oves-Costales D, Genilloud O, Reyes F, Alfonso A, Botana LM. Streptocyclinones A and B ameliorate Alzheimer's disease pathological processes in vitro. Neuropharmacology 2018; 141:283-295. [PMID: 30205103 DOI: 10.1016/j.neuropharm.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a pathology characterized by the abnormal accumulation of amyloid-beta (Aβ) and hyperphosphorylated tau. Oxidative stress and neuroinflammation are also strongly related to this disease. The ability of two new glycosylated angucyclinones, streptocyclinones A and B (1 and 2), isolated from Streptomyces sp to improve AD hallmarks was evaluated. Compounds were able to protect SH-SY5Y neuroblastoma cells from H2O2-induced oxidative injury by activating the nuclear factor E2-related factor (Nrf2). Their capacity to modulate neuroinflammation was tested in lipopolysaccharide-activated BV2 microglial cells. Compounds reduced the release of pro-inflammatory factors, inhibited the activation of NFκB and mitogen activated kinases (MAPK), and induced the translocation of Nrf2 to the nucleus of microglial cells. A trans-well co-culture was established to determine the effect of microglia treated with streptocyclinones on the survival of SH-SY5Y cells. The cell viability of neuroblastoma cells increased when the compounds were added to BV2 cells. SH-SY5Y-TMHT441 cells were used to determine the effect of compounds on tau phosphorylation. Both compounds reduced tau hyperphophorylation by targeting MAPK kinases. Moreover, streptocyclinone B (2) was able to inhibit the activity of β-secretase 1 and decrease the release of reactive oxygen species in BV2 cells stimulated with Aβ. With the same co-culture trans-well system, the treatment of Aβ-stimulated microglia with compound 2 augmented the viability of SH-SY5Y-TMHT441 cells. The results presented in this work provide evidences of the multitarget activities displayed by these new Streptomyces compounds, making them good candidates for further studies in the treatment of AD.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain.
| | - Rodney Lacret
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain.
| |
Collapse
|
329
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
330
|
Couly F, Harari M, Dubouilh-Benard C, Bailly L, Petit E, Diharce J, Bonnet P, Meijer L, Fruit C, Besson T. Development of Kinase Inhibitors via Metal-Catalyzed C⁻H Arylation of 8-Alkyl-thiazolo[5,4- f]-quinazolin-9-ones Designed by Fragment-Growing Studies. Molecules 2018; 23:E2181. [PMID: 30158487 PMCID: PMC6225322 DOI: 10.3390/molecules23092181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Efficient metal catalyzed C⁻H arylation of 8-alkyl-thiazolo[5,4-f]-quinazolin-9-ones was explored for SAR studies. Application of this powerful chemical tool at the last stage of the synthesis of kinase inhibitors allowed the synthesis of arrays of molecules inspired by fragment-growing studies generated by molecular modeling calculations. Among the potentially active compounds designed through this strategy, FC162 (4c) exhibits nanomolar IC50 values against some kinases, and is the best candidate for the development as a DYRK kinase inhibitor.
Collapse
Affiliation(s)
- Florence Couly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Marine Harari
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | | | - Laetitia Bailly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Emilie Petit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Peninsula, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Thierry Besson
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| |
Collapse
|
331
|
A Closer Look into the Role of Protein Tau in the Identification of Promising Therapeutic Targets for Alzheimer's Disease. Brain Sci 2018; 8:brainsci8090162. [PMID: 30149687 PMCID: PMC6162660 DOI: 10.3390/brainsci8090162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
One of the most commonly known chronic neurodegenerative disorders, Alzheimer's disease (AD), manifests the common type of dementia in 60⁻80% of cases. From a clinical standpoint, a patent cognitive decline and a severe change in personality, as caused by a loss of neurons, is usually evident in AD with about 50 million people affected in 2016. The disease progression in patients is distinguished by a gradual plummet in cognitive functions, eliciting symptoms such as memory loss, and eventually requiring full-time medical care. From a histopathological standpoint, the defining characteristics are intracellular aggregations of hyper-phosphorylated tau protein, known as neurofibrillary tangles (NFT), and depositions of amyloid β-peptides (Aβ) in the brain. The abnormal phosphorylation of tau protein is attributed to a wide gamut of neurological disorders known as tauopathies. In addition to the hyperphosphorylated tau lesions, neuroinflammatory processes could occur in a sustained manner through astro-glial activation, resulting in the disease progression. Recent findings have suggested a strong interplay between the mechanism of Tau phosphorylation, disruption of microtubules, and synaptic loss and pathology of AD. The mechanisms underlying these interactions along with their respective consequences in Tau pathology are still ill-defined. Thus, in this review: (1) we highlight the interplays existing between Tau pathology and AD; and (2) take a closer look into its role while identifying some promising therapeutic advances including state of the art imaging techniques.
Collapse
|
332
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
333
|
Jiang Y, Xu B, Chen J, Sui Y, Ren L, Li J, Zhang H, Guo L, Sun X. Micro-RNA-137 Inhibits Tau Hyperphosphorylation in Alzheimer's Disease and Targets the CACNA1C Gene in Transgenic Mice and Human Neuroblastoma SH-SY5Y Cells. Med Sci Monit 2018; 24:5635-5644. [PMID: 30102687 PMCID: PMC6104547 DOI: 10.12659/msm.908765] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) results in cognitive impairment. The calcium voltage-gated channel subunit alpha-1 C CACNA1C gene encodes an alpha-1 C subunit of L-type calcium channel (LTCC). The aim of this study was to investigate the role of micro-RNA-137 (miR-137) and the CACNA1C gene in APPswe/PS1ΔE9 (APP/PS1) double-transgenic AD mice and in human neuroblastoma SH-SY5Y cells. Material/Methods Six-month-old APP/PS1 double-transgenic AD mice (N=6) and age-matched normal C57BL/6 mice (N=6) underwent a Morris water maze (MWM) test, expression levels of amyloid-β (Aβ), LTCC, the CACNA1C gene, and miR-137 were measured in the rat hippocampus and cerebral cortex in both groups of mice. A luciferase assay was used to evaluate the effect of miR-137 on the expression of CACNA1C in SH-SY5Y human neuroblastoma SH-SY5Y cells. Western blotting was used to detect the CACNA1C, phosphorylated-tau (p-tau), and Aβ proteins. Results In APP/PS1 transgenic AD mice, spatial learning and memory was significantly reduced, levels of Aβ1–40 and Aβ1–42 were increased in the serum, hippocampus, and cerebral cortex, expression levels of miR-137 were reduced, expression of CACNA1C protein was increased in the hippocampus and cerebral cortex, compared with normal control mice. miR-137 regulated the expression of the CACNA1C gene. Increased expression levels of p-tau (Ser202, Ser396, and Ser404) induced by Aβ1–42 were inhibited by miR-137 mimics in SH-SY5Y human neuroblastoma cells in vitro. Conclusions In a transgenic mouse model of AD, miR-137 and expression of the CACNA1C gene inhibited the hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Bing Xu
- Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Jing Chen
- Department of Neurology and Neuroscience, henyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China (mainland)
| | - Yi Sui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Li Ren
- Department of Neurology and Neuroscience, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, Liaoning, China (mainland)
| | - Jing Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Huiyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Liqing Guo
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
334
|
Kolaj I, Imindu Liyanage S, Weaver DF. Phenylpropanoids and Alzheimer's disease: A potential therapeutic platform. Neurochem Int 2018; 120:99-111. [PMID: 30098379 DOI: 10.1016/j.neuint.2018.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive dementia, neuroinflammation and the accumulation of intracellular neurofibrillary tangles and extracellular plaques. The etiology of AD is unclear, but is generally attributed to four leading hypotheses: (i) abnormal folding and aggregation of amyloid-β (Aβ)/tau proteins (ii) activation of the innate immune system, (iii) mitochondrial dysfunction, and (iv) oxidative stress. To date, therapeutic strategies have largely focused on Aβ-centric targets; however, the repeated failure of clinical trials and the continued lack of a disease-modifying therapy demand novel, multifaceted approaches. Natural products are common molecular platforms in drug development; in AD, compounds from the plant phenylpropanoid metabolic pathway have yielded promising associations. Herein, we review developments in the pathogenesis of AD and the metabolism of phenylpropanoids in plants. We further discuss the role of these metabolites as relevant to the four leading mechanisms of AD pathogenesis, and observe multiple protective effects among phenylpropanoids against AD onset and progression.
Collapse
Affiliation(s)
- Igri Kolaj
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada; Department of Chemistry, University of Toronto, 80 St.George Street, Toronto, ON, M5S 3H6, Canada.
| | - S Imindu Liyanage
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada.
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada; Department of Chemistry, University of Toronto, 80 St.George Street, Toronto, ON, M5S 3H6, Canada; Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
335
|
Joshi A, Kumar R, Sharma A. Molecular Docking Studies, Bioactivity Score Prediction, Drug Likeness Analysis of GSK-3 β Inhibitors: A Target Protein Involved in Alzheimer’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycogen synthase kinase 3 β (GSK-3 Beta) is a potential target for developing an effective therapeutic effect in Alzheimer's disease (AD). Currently, no such drug or molecules has been found till date which can cure AD completely. Few drugs such as acetylcholinesterase inhibitors and memantine are ineffective in the later stages of the disease. Therefore, with the advancements in computational biology approaches, it is possible to combat alzheimer’s disease by targeting one of the kinases i.e. GSK-3 β involved in hyper phosphorylation of tau (a reliable marker of neurodegenerative disorders). In this study, we have carried out alzheimer’s structure-based drug designing with GSK-3 β. By applying appropriate docking methodology, we have identified few plant-derived compounds which show enhanced target selectivity than the conventional alzheimer's drug (such as memantine). Here we enumerate the comparison among the current and future AD therapy on the basis of their binding affinities. As a result, a large library of compounds has been screened as potent drug targets. It was also observed that withanolide–A (extracted from roots of withania somnifera) has the potential to emerge as the eventual drug for the AD. Moreover, few other phytocompounds such as celastrol, kenpaullone, quercetin, alsterpaullone have also shown enhanced activity in the decreasing order of their binding affinities.
Collapse
Affiliation(s)
- Akanksha Joshi
- Department of Biotechnology, University Institute of Engineering and Technology, Kurukshetra University Kurukshetra, India
| | - Rajesh Kumar
- Department of Biotechnology, University Institute of Engineering and Technology, Kurukshetra University Kurukshetra, India
| | | |
Collapse
|
336
|
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 2018; 293:13297-13309. [PMID: 29925592 DOI: 10.1074/jbc.ra118.001769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/18/2018] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and α-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.
Collapse
Affiliation(s)
- Kateřina Melková
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Zapletal
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Séverine Jansen
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Erik Nomilner
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Milan Zachrdla
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jozef Hritz
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Nováček
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic
| | - Markus Zweckstetter
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,the German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany, and
| | | | | | - Lukáš Žídek
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic, .,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
337
|
Maïza A, Chantepie S, Vera C, Fifre A, Huynh MB, Stettler O, Ouidja MO, Papy-Garcia D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592:3806-3818. [PMID: 29729013 DOI: 10.1002/1873-3468.13082] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Auriane Maïza
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Cecilia Vera
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Alexandre Fifre
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Minh Bao Huynh
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Olivier Stettler
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Mohand Ouidir Ouidja
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| |
Collapse
|
338
|
Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. J Biol Chem 2018; 293:11179-11194. [PMID: 29802198 DOI: 10.1074/jbc.ra117.001519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/06/2018] [Indexed: 01/09/2023] Open
Abstract
Striatin-1, a subunit of the serine/threonine phosphatase PP2A, is preferentially expressed in neurons in the striatum. As a member of the striatin family of B subunits, striatin-1 is a core component together with PP2A of a multiprotein complex called STRIPAK, the striatin-interacting phosphatase and kinase complex. Little is known about the function of striatin-1 or the STRIPAK complex in the mammalian striatum. Here, we identify a selective role for striatin-1 in striatal neuron maturation. Using a small hairpin RNA (shRNA) knockdown approach in primary striatal neuronal cultures, we determined that reduced expression of striatin-1 results in increased dendritic complexity and an increased density of dendritic spines, classified as stubby spines. The dendritic phenotype was rescued by co-expression of a striatin-1 mutant construct insensitive to the knockdown shRNA but was not rescued by co-expression of PP2A- or Mob3-binding deficient striatin-1 constructs. Reduction of striatin-1 did not result in deficits in neuronal connectivity in this knockdown model, as we observed no abnormalities in synapse formation or in spontaneous excitatory postsynaptic currents. Thus, this study suggests that striatin-1 is a regulator of neuronal development in striatal neurons.
Collapse
Affiliation(s)
- Daniel Li
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Veronica Musante
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Wenliang Zhou
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Marina R Picciotto
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| | - Angus C Nairn
- From the Department of Psychiatry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
339
|
Li Z, Xiong Z, Manor LC, Cao H, Li T. Integrative computational evaluation of genetic markers for Alzheimer's disease. Saudi J Biol Sci 2018; 25:996-1002. [PMID: 30108454 PMCID: PMC6088103 DOI: 10.1016/j.sjbs.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Recent studies have reported hundreds of genes linked to Alzheimer’s Disease (AD). However, many of these candidate genes may be not identified in different studies when analyses were replicated. Moreover, results could be controversial. Here, we proposed a computational workflow to curate and evaluate AD related genes. The method integrates large scale literature knowledge data and gene expression data that were acquired from postmortem human brain regions (AD case/control: 31/32 and 22/8). Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analysis were conducted to study the pathogenic profile of the candidate genes, with 4 metrics proposed and validated for each gene. By using our approach, a scalable AD genetic database was developed, including AD related genes, pathways, diseases and info of supporting references. The AD case/control classification supported the effectiveness of the 4 proposed metrics, which successfully identified 21 well-studied AD genes (i.g. TGFB1, CTNNB1, APP, IL1B, PSEN1, PTGS2, IL6, VEGFA, SOD1, AKT1, CDK5, TNF, GSK3B, TP53, CCL2, BDNF, NGF, IGF1, SIRT1, AGER and TLR) and highlighted one recently reported AD gene (i.g. ITGB1). The computational biology approach and the AD database developed in this study provide a valuable resource which may facilitate the understanding of the AD genetic profile.
Collapse
Affiliation(s)
- Zhe Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,The Mental Rehabilitation Center, Karamay Municipal People's Hospital, Karamay, Xinjiang 830054, China
| | - ZhenZhen Xiong
- School of Nursing, Chengdu Medical College, Chengdu, Sichuan 610083, China
| | - Lydia C Manor
- Department of Bioinformatics, American Informatics Consultant LLC, Rockville, MD 20852, USA
| | - Hongbao Cao
- Unit on Statistical Genomics, National Institute of Mental Health, NIH, Bethesda 20892, USA.,Department of Genomics Research, R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA
| | - Tao Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
340
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Li SD, Chougule M, Shoyele SA, Gupta U, Ajazuddin, Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15:589-617. [DOI: 10.1080/17425247.2018.1471058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Swarnlata Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailendra Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- Durg University, Govt. Vasudev Vaman Patankar Girls’ P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, India
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, 26510, Greece
- Department of Pharmacy, FORTH/ICE-HT, Institute of Chemical Engineering, Rio, Patras, 25104, Greece
| | - Nobuhito Hamano
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Mahavir Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer – 305817, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| |
Collapse
|
341
|
Liang Z, Li QX. Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable Glycogen Synthase Kinase-3β Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling of New C-Glycosylflavones. ACS Chem Neurosci 2018; 9:1166-1183. [PMID: 29381861 DOI: 10.1021/acschemneuro.8b00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a key enzyme responsible for tau hyperphosphorylation and is a viable therapeutic target of Alzheimer's disease (AD). We developed a new class of GSK-3β inhibitors based on the 6- C-glycosylflavone isoorientin (1). The new inhibitors are passive membrane permeable and constitutively attenuate GSK-3β mediated tau hyperphosphorylation and amyloid neurotoxicity in an AD cellular model. Enzymatic assays and kinetic studies demonstrated that compound 30 is a GSK-3β substrate-competitive inhibitor with distinct kinase selectivity, isoform-selectivity and over 310-fold increased potency as compared to 1. Structure-activity relationship analyses and in silico modeling suggest the mechanism of actions by which the hydrophobic, π-cation, and orthogonal multipolar interactions of 30 with the substrate site are critical for the GSK-3β inhibition and selectivity. The results provide new insights into GSK-3β drug discovery. The new inhibitors are valuable chemical probes and drug leads with therapeutic potential to tackle AD and other GSK-3β relevant diseases.
Collapse
Affiliation(s)
- Zhibin Liang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
342
|
Haj-Yahya M, Lashuel HA. Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. J Am Chem Soc 2018; 140:6611-6621. [DOI: 10.1021/jacs.8b02668] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mahmood Haj-Yahya
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
343
|
Neuroimmune Tau Mechanisms: Their Role in the Progression of Neuronal Degeneration. Int J Mol Sci 2018; 19:ijms19040956. [PMID: 29570615 PMCID: PMC5979395 DOI: 10.3390/ijms19040956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Progressive neurodegenerative pathologies in aged populations are an issue of major concern worldwide. The microtubule-associated protein tau is able to self-aggregate to form abnormal supramolecular structures that include small oligomers up to complex polymers. Tauopathies correspond to a group of diseases that share tau pathology as a common etiological agent. Since microglial cells play a preponderant role in innate immunity and are the main source of proinflammatory factors in the central nervous system (CNS), the alterations in the cross-talks between microglia and neuronal cells are the main focus of studies concerning the origins of tauopathies. According to evidence from a series of studies, these changes generate a feedback mechanism reactivating microglia and provoking constant cellular damage. Thus, the previously summarized mechanisms could explain the onset and progression of different tauopathies and their functional/behavioral effects, opening the window towards an understanding of the molecular basis of anomalous tau interactions. Despite clinical and pathological differences, increasing experimental evidence indicates an overlap between tauopathies and synucleinopathies, considering that neuroinflammatory events are involved and the existence of protein misfolding. Neurofibrillary tangles of pathological tau (NFT) and Lewy bodies appear to coexist in certain brain areas. Thus, the co-occurrence of synucleinopathies with tauopathies is evidenced by several investigations, in which NFT were found in the substantia nigra of patients with Parkinson’s disease, suggesting that the pathologies share some common features at the level of neuroinflammatory events.
Collapse
|
344
|
Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies? Biomed J 2018; 41:21-33. [PMID: 29673549 PMCID: PMC6138617 DOI: 10.1016/j.bj.2018.01.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder and the most common type of dementia (60–80% of cases). In 2016, nearly 44 million people were affected by AD or related dementia. AD is characterized by progressive neuronal damages leading to subtle and latter obvious decline in cognitive functions including symptoms such as memory loss or confusion, which ultimately require full-time medical care. Its neuropathology is defined by the extracellular accumulation of amyloid-β (Aβ) peptide into amyloid plaques, and intraneuronal neurofibrillary tangles (NFT) consisting of aggregated hyper- and abnormal phosphorylation of tau protein. The latter, identified also as Tau pathology, is observed in a broad spectrum of neurological diseases commonly referred to as “Tauopathies”. Besides these lesions, sustained neuroinflammatory processes occur, involving notably micro- and astro-glial activation, which contribute to disease progression. Recent findings from genome wide association studies further support an instrumental role of neuroinflammation. While the interconnections existing between this innate immune response and the amyloid pathogenesis are widely characterized and described as complex, elaborated and evolving, only few studies focused on Tau pathology. An adaptive immune response takes place conjointly during the disease course, as indicated by the presence of vascular and parenchymal T-cell in AD patients' brain. The underlying mechanisms of this infiltration and its consequences with regards to Tau pathology remain understudied so far. In the present review, we highlight the interplays existing between Tau pathology and the innate/adaptive immune responses.
Collapse
|
345
|
Sadhukhan P, Saha S, Dutta S, Mahalanobish S, Sil PC. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer's disease. Pharmacol Res 2018; 129:100-114. [PMID: 29183770 DOI: 10.1016/j.phrs.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is regarded as a progressive and devastating neurodegenerative disorder. In aged individuals, it is the most prevalent cause of dementia and is characterized by gradual loss of cognitive functions. In the last decade, numerous research works were undertaken to investigate the pathogenesis of AD. Although the etiology of AD is still not clear, several histopathological studies confirm prominent changes in the AD affected brains. The major changes include the formation of senile plaques and neurofibrillary tangles primarily owing to the deposition of amyloid β plaques (Aβ) and hyper-phosphorylation of tau protein. Disruption of the redox homeostasis in the brain is a major triggering factor for the development of such pathophysiological conditions. Chemical formulations usually act by inhibiting activities of the enzymes responsible for the development of AD. But with time, these pharmacotherapies develop many side effects including toxicity in different organs. Recent researches are henceforth focused on the identification of novel therapeutic molecules from the nature's basket. This review aims to emphasize the therapeutic effects and regulation of molecular targets of different natural products such as curcumin, resveratrol, genistein and others. These prophylactic multipotent natural compounds have the potency to interfere with the formation as well as deposition of the Aβ peptides. These natural compounds have also been found in modulating different intracellular signalling molecules and enzymes including β-secretase and γ-secretase. This review article is expected to be helpful in understanding the recent progress in natural product research as a therapeutic approach in amelioration and/or delaying the detrimental effects of AD.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
346
|
Pinto-Almazán R, Segura-Uribe JJ, Soriano-Ursúa MA, Farfán-García ED, Gallardo JM, Guerra-Araiza C. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone. Neural Regen Res 2018; 13:440-448. [PMID: 29623928 PMCID: PMC5900506 DOI: 10.4103/1673-5374.228726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O3 exposure in rats.
Collapse
Affiliation(s)
- Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia J. Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Marvin A. Soriano-Ursúa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Eunice D. Farfán-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Juan M. Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| |
Collapse
|
347
|
Lewczuk P, Lelental N, Lachmann I, Holzer M, Flach K, Brandner S, Engelborghs S, Teunissen CE, Zetterberg H, Molinuevo JL, Mroczko B, Blennow K, Popp J, Parnetti L, Chiasserini D, Perret-Liaudet A, Spitzer P, Maler JM, Kornhuber J. Non-Phosphorylated Tau as a Potential Biomarker of Alzheimer's Disease: Analytical and Diagnostic Characterization. J Alzheimers Dis 2018; 55:159-170. [PMID: 27662295 DOI: 10.3233/jad-160448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Virtually nothing is known about a potential diagnostic role of non-phospho-epitopes of Tau (Non-P-Tau) in cerebrospinal fluid (CSF). OBJECTIVE To establish and analytically and clinically characterize the first assay capable to measure concentrations of Non-P-Tau in human CSF. METHODS An antibody (1G2) was developed that selectively binds to the Tau molecule non-phosphorylated at the positions T175 and T181, and was used in establishing a sandwich ELISA capable to measure Non-P-Tau in human CSF, following analytical and clinical validation of the method. RESULTS The 1G2 antibody shows decreasing reactivity to tau peptides containing phosphorylation mainly at positions T175 and T181. Detection limit of the assay is 25 pg/ml; the coefficients of variation (CVs) of the optical densities of the repeated standard curves were between 3.6-15.9%. Median intra-assay imprecision of double measurements was 4.8%; inter-assay imprecision was in the range of 11.2% - 15.3%. Non-P-Tau concentrations are stable in the CSF samples sent to distinct laboratories under ambient temperature; inter-laboratory variation was approximately 30%. The Non-P-Tau CSF concentrations were highly significantly increased in patients with Alzheimer's disease in stage of mild cognitive impairment or dementia (AD/MCI, n = 58, 109.2±32.0 pg/mL) compared to the non-demented Controls (n = 42, 62.1±9.3 pg/mL, p < 0.001). At the cut-off of 78.3 pg/mL, the sensitivity and the specificity were 94.8% and 97.6%, respectively. CONCLUSION For the first time, an assay is reported to reliably measure concentrations of non-phosphorylated Tau in human CSF.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Max Holzer
- Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, and Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Switzerland
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon, Groupement Hospitalier Est, Biochemistry Department, Neurochemistry unit; Lyon University, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, BioRaN Team, Bron Cedex, France
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
348
|
Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. Trends Biotechnol 2018; 36:562-575. [PMID: 29422412 DOI: 10.1016/j.tibtech.2018.01.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy.
Collapse
Affiliation(s)
- Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Zou
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
349
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
350
|
Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|