301
|
Abstract
Macrophages exert multiple important roles in iron metabolism. As scavengers, splenic and hepatic macrophages phagocytize and degrade senescent and damaged erythrocytes to recycle iron, predominantly for the production of hemoglobin in new erythrocytes. Splenic red pulp macrophages are specialized for iron recycling, with increased expression of proteins for the uptake of hemoglobin, breakdown of heme, and export of iron. Iron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin. As regulators and effectors of antimicrobial host defense, macrophages employ multiple mechanisms to contain microbial infections by depriving microbes of iron. Macrophages also have an important trophic role in the bone marrow, supporting efficient erythropoiesis.
Collapse
|
302
|
Meuric V, Lainé F, Boyer E, Le Gall-David S, Oger E, Bourgeois D, Bouchard P, Bardou-Jacquet E, Turmel V, Bonnaure-Mallet M, Deugnier Y. Periodontal status and serum biomarker levels in HFE haemochromatosis patients. A case-series study. J Clin Periodontol 2017; 44:892-897. [PMID: 28586532 DOI: 10.1111/jcpe.12760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
AIM To investigate the association between periodontal status and serum biomarkers in patients with HFE haemochromatosis. MATERIAL AND METHODS This clinical case series included 84 HFE-C282Y homozygous patients. Periodontal evaluation was performed using clinical attachment level, probing depth, gingival bleeding index, visible plaque index and gingival index. Serum markers of iron metabolism were collected from medical records. The relationship between serum biomarkers of iron burden and the severity of periodontitis was investigated. RESULTS The study population consisted of 47 men and 37 women, routinely treated in the Unit of Hepatology, University Hospital, Rennes. All patients presented with periodontitis (mild: n = 1, moderate: n = 37 and severe: n = 46). There was a positive association between transferrin saturation >45% and the severity of periodontitis (adjusted odds ratio = 5.49, p = .002). CONCLUSION Severe periodontitis is associated with the severity of iron burden in patients with HFE-related hereditary haemochromatosis. Dental examination should be included in the initial assessment of all these patients.
Collapse
Affiliation(s)
- Vincent Meuric
- CHU Rennes, Service d'Odontologie et de Chirurgie Buccale, Rennes, France.,EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France
| | - Fabrice Lainé
- EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France.,INSERM, CIC 1414, Rennes, France
| | - Emile Boyer
- CHU Rennes, Service d'Odontologie et de Chirurgie Buccale, Rennes, France.,EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France
| | - Sandrine Le Gall-David
- EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France
| | | | | | - Philippe Bouchard
- Department of Periodontology, Service of Odontology, Denis Diderot University, Rothschild Hospital, U.F.R. of Odontology, Paris, France.,EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Edouard Bardou-Jacquet
- EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France.,CHU Rennes, Service des maladies du Foie, Rennes, France
| | | | - Martine Bonnaure-Mallet
- CHU Rennes, Service d'Odontologie et de Chirurgie Buccale, Rennes, France.,EA 1254/CIMIAD (Control of Iron Metabolism and Iron-Associated Diseases), Université Rennes 1, UMR 1241, Rennes, France
| | - Yves Deugnier
- INSERM, CIC 1414, Rennes, France.,CHU Rennes, Service des maladies du Foie, Rennes, France
| |
Collapse
|
303
|
The Impact of Iron Overload in Acute Leukemia: Chronic Inflammation, But Not the Presence of Nontransferrin Bound Iron is a Determinant of Oxidative Stress. J Pediatr Hematol Oncol 2017; 39:425-439. [PMID: 28731917 DOI: 10.1097/mph.0000000000000867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the literature, studies on the oxidant effects of nontransferrin bound iron [NTBI (eLPI assay)] during chemotherapy of acute lymphoblastic leukemia and acute myeloblastic leukemia are lacking. We established NTBI and oxidative stress determinants (OSD), iron parameters, high-sensitive C-reactive protein (hs-CRP) levels, liver tests, cumulative chemotherapeutic doses, and transfused blood in 36 children with acute leukemia throughout chemotherapy. These parameters were determined at the beginning and end of chemotherapy blocks (11 time points) and in 20 healthy children using enzyme-linked immunosorbent assay, and colorimetric and fluorometric enzymatic methods. In acute lymphoblastic leukemia, NTBI, OSD, and hs-CRP were higher than controls at 4/11, 7/11, and 9/11 time points (P<0.05). At 3 time points, NTBI and OSD concurrently increased. Ferritin, soluble transferrin receptor, serum iron, and transferrin saturation were higher than in controls at 5 to 11/11 time points (P<0.05). Those with NTBI had higher iron parameters than those without NTBI (P<0.05), but showed similar OSD, hs-CRP, liver enzymes, cumulative chemotherapeutics, and transfused blood (P>0.05). OSD did not correlate with NTBI, but correlated with hs-CRP. In conclusion, NTBI is a poor predictor of OSD in acute leukemia possibly because of the heterogeneity of NTBI and chronic inflammation. Further studies are needed to delineate the pathophysiology of these diseases.
Collapse
|
304
|
Le Rouzic MA, Fouquet C, Leblanc T, Touati M, Fouyssac F, Vermylen C, Jäkel N, Guichard JF, Maloum K, Toutain F, Lutz P, Perel Y, Manceau H, Kannengiesser C, Vannier JP. Non syndromic childhood onset congenital sideroblastic anemia: A report of 13 patients identified with an ALAS2 or SLC25A38 mutation. Blood Cells Mol Dis 2017; 66:11-18. [PMID: 28772256 DOI: 10.1016/j.bcmd.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023]
Abstract
The most frequent germline mutations responsible for non syndromic congenital sideroblastic anemia are identified in ALAS2 and SLC25A38 genes. Iron overload is a key issue and optimal chelation therapy should be used to limit its adverse effects on the development of children. Our multicentre retrospective descriptive study compared the strategies for diagnosis and management of congenital sideroblastic anemia during the follow-up of six patients with an ALAS2 mutation and seven patients with an SLC25A38 mutation. We described in depth the clinical, biological and radiological phenotype of these patients at diagnosis and during follow-up and highlighted our results with a review of available evidence and data on the management strategies for congenital sideroblastic anemia. This report confirms the considerable variability in manifestations among patients with ALAS2 or SLC25A38 mutations and draws attention to differences in the assessment and the monitoring of iron overload and its complications. The use of an international registry would certainly help defining recommendations for the management of these rare disorders to improve patient outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Christiane Vermylen
- Université Catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| | - Nadja Jäkel
- Department für Hämatologie, Onkologie und Hämostaseologie, Leipzig, Germany.
| | | | - Karim Maloum
- Assistance Publique des Hôpitaux de Paris/Hôpital de la Pitié-Salpêtrière, Paris, France.
| | | | - Patrick Lutz
- CHU de Strasbourg/Hôpital de Hautepierre, Strasbourg, France.
| | - Yves Perel
- CHU de Bordeaux/Hôpital Pellegrin, Bordeaux, France.
| | - Hana Manceau
- INSERM U1149, Centre de Recherche sur l'inflammation CRI, Paris, France.
| | - Caroline Kannengiesser
- INSERM U1149, Centre de Recherche sur l'inflammation CRI, Paris, France; Université Paris Diderot, Site Bichat, Sorbonne Paris Cité, DHU UNITY, Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; Assistance Publique des Hôpitaux de Paris, Département de Génétique, Hôpital Bichat, Paris, France.
| | | |
Collapse
|
305
|
Ćurko-Cofek B, Grubić Kezele T, Barac-Latas V. Hepcidin and metallothioneins as molecular base for sex-dependent differences in clinical course of experimental autoimmune encephalomyelitis in chronic iron overload. Med Hypotheses 2017; 107:51-54. [PMID: 28915963 DOI: 10.1016/j.mehy.2017.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system characterised by inflammatory and degenerative changes. It is considered that disease arises from the influence of environmental factors on genetically susceptible individuals. Recent researches, using magnetic resonance imaging, connected iron deposits in different brain regions with demyelinating process in multiple sclerosis patients. Although iron is an essential trace element important for many biological functions it could be harmful because iron excess can induce the production of reactive oxygen species, development of oxidative stress and lipid peroxidation which leads to demyelination. In experimental autoimmune encephalomyelitis model, the most common experimental animal model for multiple sclerosis, we recently found that chronic iron overload influences the clinical course of disease in Dark Agouti rats. In female rats iron overload accelerated the onset of disease, while in male rats it accelerated the progression of disease and increased mortality rate. We hypothesize that those differences arise on molecular level in different expression of stress response proteins hepcidin and metallothioneins in male and female iron overloaded rats. They are both upregulated by metal ions in both sexes. Hepcidin is additionally upregulated by estrogen in female rats and therefore causes higher degradation of iron exporter ferroportin and sequestration of iron in the cells, lowering the possibility for the development of oxidative stress. Antioxidative effect of metallothioneins could be increased in female rats because of their ability to reversibly exchange metal ions with the estrogen receptor. In case of iron excess metallothioneins release zinc, which is normally bound to them. Zinc binds to estrogen receptor and leaves metallothioneins binding domains free for iron, causing at least provisional cytoprotective effect. To test this hypothesis, we propose to determine and compare serum levels of hepcidin and estrogen using ELISA essay as well as expression and distribution of acute stress response proteins hepcidin and metallothioneins, iron and estrogen receptor in the brain and spinal cord tissue using immunohistochemistry in control and chronic iron overloaded male and female rats in experimental autoimmune encephalomyelitis model. It would be also possible to perform the same immunohistochemistry in the brain tissue of multiple sclerosis patients post mortem. The results of experiments could contribute to better understanding of cytoprotective mechanisms in chronic iron overload that could have possible therapeutic applications in iron disturbances. In order to elucidate whether common measure of systemic iron status, like ferritin, haemoglobin concentration and transferrin saturation levels, may be used to distinguish physiologic from potentially harmful iron levels in local disease, for example multiple sclerosis and Still's disease, well-designed clinical trials would be of great interest.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia.
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Vesna Barac-Latas
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| |
Collapse
|
306
|
Stefanova D, Raychev A, Arezes J, Ruchala P, Gabayan V, Skurnik M, Dillon BJ, Horwitz MA, Ganz T, Bulut Y, Nemeth E. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood 2017; 130:245-257. [PMID: 28465342 PMCID: PMC5520472 DOI: 10.1182/blood-2017-03-772715] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/29/2017] [Indexed: 12/27/2022] Open
Abstract
The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.
Collapse
Affiliation(s)
- Deborah Stefanova
- Molecular, Cellular, and Integrative Physiology Graduate Program and
| | - Antoan Raychev
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | - Joao Arezes
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | - Victoria Gabayan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; and
| | - Barbara J Dillon
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | - Marcus A Horwitz
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
- Department of Pathology and
| | - Yonca Bulut
- Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| |
Collapse
|
307
|
Transferrin saturation concentrations associated with telomeric ageing: a population-based study. Br J Nutr 2017; 117:1693-1701. [PMID: 28720163 DOI: 10.1017/s0007114517001696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are limited data on the association between Fe overload and leucocyte telomere length (LTL), known as a useful biomarker of the replicative ageing of cells. The aim of the study was to evaluate associations between Fe-status biomarkers and LTL. A cross-sectional study included 1174 men and women aged 50-79 years who provided blood samples for assays of Fe-status biomarkers including ferritin, transferrin saturation (TSAT), total Fe-binding capacity (TIBC) and relative LTL. They were free of hepatitis, potential infection or Fe deficiency. In multiple linear regression analysis adjusted for potential confounding variables, log-transformed LTL was positively associated with TIBC (adjusted coefficient estimate for its highest quartile: 0·17 (se 0·03), P45 %) but also with high-normal concentrations (35-45 %) of TSAT had shorter LTL compared with those with low-normal concentrations (<30 %) (P<0·05). We also observed that less-active or obese persons with high TSAT concentrations had shorter LTL than others. Our findings that cellular ageing is influenced not only by Fe overload but also by high-normal concentrations of TSAT support the hypothesis regarding the detrimental effects of labile Fe, which has a potent pro-oxidant activity in the body.
Collapse
|
308
|
Charitou G, Petousis V, Tsertos C, Parpottas Y, Kleanthous M, Phylactides M, Christou S. First study on iron complexes in blood and organ samples from thalassaemic and normal laboratory mice using Mössbauer spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:131-138. [PMID: 28695249 DOI: 10.1007/s00249-017-1234-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/16/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
Abstract
Measurements of iron complexes and iron stores in the body are crucial for evaluation and management of chelation therapy targeted against iron accumulation or overload in blood and organs. In this work, blood and tissue samples from one normal and one thalassaemic laboratory mouse were studied using 57Fe Mössbauer spectroscopy at 78 K for the first time. In contrast to human patients, these laboratory mice did not receive any medical treatment, thus the iron components present in the samples are not altered from their natural state. The Mössbauer spectra of blood, liver and spleen samples of the thalassaemic mouse were found to differ in shape and iron content compared with corresponding spectra of the normal mouse. These results demonstrate a basis for further exploitation of the thalassaemic mouse model to study thalassaemia and its treatment in more detail using Mössbauer spectroscopy.
Collapse
Affiliation(s)
- George Charitou
- Department of Physics, University of Cyprus, 1678, Nicosia, Cyprus
| | - Vlassis Petousis
- Department of Physics, University of Cyprus, 1678, Nicosia, Cyprus.
| | | | | | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Soteroula Christou
- Thalassaemia Center, Archbishop Makarios III Hospital, 1474, Nicosia, Cyprus
| |
Collapse
|
309
|
Abstract
Iron homeostasis relies on the amount of its absorption by the intestine and its release from storage sites, the macrophages. Iron homeostasis is also dependent on the amount of iron used for the erythropoiesis. Hepcidin, which is synthesized predominantly by the liver, is the main regulator of iron metabolism. Hepcidin reduces serum iron by inhibiting the iron exporter, ferroportin expressed both tissues, the intestine and the macrophages. In addition, in the enterocytes, hepcidin inhibits the iron influx by acting on the apical transporter, DMT1. A defect of hepcidin expression leading to the appearance of a parenchymal iron overload may be genetic or secondary to dyserythropoiesis. The exploration of genetic hemochromatosis has revealed the involvement of several genes, including the recently described BMP6. Non-transfusional secondary hemochromatosis is due to hepcidin repression by cytokines, in particular the erythroferone factor that is produced directly by the erythroid precursors. Iron overload is correlated with the appearance of a free form of iron called NTBI. The influx of NTBI seems to be mediated by ZIP14 transporter in the liver and by calcium channels in the cardiomyocytes. Beside the liver, hepcidin is expressed at lesser extent in several extrahepatic tissues where it plays its ancestral role of antimicrobial peptide. In the kidney, hepcidin modulates defense barriers against urinary tract infections. In the heart, hepcidin maintains tissue iron homeostasis by an autocrine regulation of ferroprotine expression on the surface of cardiomyocytes. In conclusion, hepcidin remains a promising therapeutic tool in various iron pathologies.
Collapse
|
310
|
Shah NR. Advances in iron chelation therapy: transitioning to a new oral formulation. Drugs Context 2017; 6:212502. [PMID: 28706555 PMCID: PMC5499896 DOI: 10.7573/dic.212502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/02/2017] [Indexed: 01/19/2023] Open
Abstract
Iron overload is a concern for patients who require repeated red-blood-cell transfusions due to conditions such as sickle cell disease, thalassemia, or myelodysplastic syndromes. The recommended treatment for removing excess iron in these patients is iron chelation therapy. Currently available iron chelators include deferoxamine, which is administered by injection, and deferasirox and deferiprone, both of which are administered orally. Adherence to iron chelator therapy is an important consideration and may be affected by side effects. A new formulation of deferasirox, a film-coated tablet (FCT), has the potential to improve adherence by offering greater flexibility in administration compared with the original formulation of deferasirox, a dispersible tablet (DT) for oral suspension. This review provides an overview of the currently available iron chelator formulations, with a focus on a comparison between deferasirox DT for oral suspension and deferasirox FCT. The new formulation may be associated with fewer side effects and has increased bioavailability. In addition, alternative strategies for iron chelation, such as combining two different iron chelators, will be discussed.
Collapse
|
311
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
312
|
Hilken A, Langebrake C, Wolschke C, Kersten JF, Rohde H, Nielsen P, Kröger N. Impact of non-transferrin-bound iron (NTBI) in comparison to serum ferritin on outcome after allogeneic stem cell transplantation (ASCT). Ann Hematol 2017; 96:1379-1388. [DOI: 10.1007/s00277-017-3034-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/25/2017] [Indexed: 01/19/2023]
|
313
|
Abstract
OBJECTIVE Because iron is both an essential and toxic micronutrient influencing the development of microbial infections, we evaluated the usefulness of iron parameters as outcome predictors in ICU patients. DESIGN Prospective clinical single-center non-interventional study. SETTING General internal medicine ICU; German University hospital. PATIENTS One hundred and twelve septic and 43 nonseptic ICU patients, 156 healthy blood donors. MEASUREMENTS AND MAIN RESULTS Serum iron parameters at admission were correlated with short and long term mortality in ICU subjects. Both hepcidin and ferritin concentrations were significantly elevated in ICU patients compared with blood donors and were the highest in septic patients. On the contrary, serum iron and transferrin levels were decreased in ICU subjects with lowest values among septic patients. Hepcidin values correlated with ferritin levels, and serum iron correlated strongly with transferrin saturation. A moderate correlation of hepcidin, ferritin, and transferrin with inflammatory parameters was noted. Both short- and long-term survivors displayed higher ferritin/transferrin levels and lower transferrin saturation. In Kaplan-Meier analyses, low iron levels (cutoff 10.5 μmol/mL), low transferrin saturation (cutoff 55%), and high serum transferrin concentrations (cutoff 1.6 g/L) were associated with short- and long-term survival. In the subgroup of septic ICU subjects, low iron levels and transferrin saturation went along with a nonlethal outcome. CONCLUSIONS Our findings demonstrate that parameters of iron metabolism, particularly transferrin saturation, that reflect serum iron availability, are strong outcome predictors in ICU patients. These data suggest that a failure of iron homeostasis with increased iron availability in serum occurs in lethally ill ICU patients and should trigger prospective clinical trials evaluating the usefulness of iron-chelating therapy in critical illness and sepsis.
Collapse
|
314
|
Washing in hypotonic saline reduces the fraction of irreversibly-damaged cells in stored blood: a proof-of-concept study. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:463-471. [PMID: 28686152 DOI: 10.2450/2017.0013-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND During hypothermic storage, a substantial fraction of red blood cells (RBCs) transforms from flexible discocytes to rigid sphero-echinocytes and spherocytes. Infusion of these irreversibly-damaged cells into the recipient during transfusion serves no therapeutic purpose and may contribute to adverse outcomes in some patients. In this proof-of-concept study we describe the use of hypotonic washing for selective removal of the irreversibly-damaged cells from stored blood. MATERIALS AND METHODS Stored RBCs were mixed with saline of various concentrations to identify optimal concentration for inducing osmotic swelling and selective bursting of spherical cells (sphero-echinocytes, spherocytes), while minimising indiscriminate lysis of other RBCs. Effectiveness of optimal treatment was assessed by measuring morphology, rheological properties, and surface phosphatidylserine (PS) exposure for cells from several RBCs units (n=5, CPD>AS-1, leucoreduced, 6 weeks storage duration) washed in hypotonic vs isotonic saline. RESULTS Washing in mildly hypotonic saline (0.585 g/dL, osmolality: 221.7±2.3 mmol/kg) reduced the fraction of spherical cells 3-fold from 9.5±3.4% to 3.2±2.8%, while cutting PS exposure in half from 1.48±0.86% to 0.59±0.29%. Isotonic washing had no effect on PS exposure or the fraction of spherical cells. Both isotonic and hypotonic washing increased the fraction of well-preserved cells (discocytes, echinocytes 1) substantially, and improved the ability of stored RBCs to perfuse an artificial microvascular network by approximately 25%, as compared with the initial sample. DISCUSSION This study demonstrated that washing in hypotonic saline could selectively remove a significant fraction of the spherical and PS-exposing cells from stored blood, while significantly improving the rheological properties of remaining well-preserved RBCs. Further studies are needed to access the potential effect from hypotonic washing on transfusion outcomes.
Collapse
|
315
|
Martins AC, Almeida JI, Lima IS, Kapitão AS, Gozzelino R. Iron Metabolism and the Inflammatory Response. IUBMB Life 2017; 69:442-450. [PMID: 28474474 DOI: 10.1002/iub.1635] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Iron (Fe) is essential to almost all organisms, as required by cells to satisfy metabolic needs and accomplish specialized functions. Its ability to exchange electrons between different substrates, however, renders it potentially toxic. Fine tune-mechanisms are necessary to maintain Fe homeostasis and, as such, to prevent its participation into the Fenton reaction and generation of oxidative stress. These are particularly important in the context of inflammation/infection, where restricting Fe availability to invading pathogens is one, if not, the main host defense strategy against microbial growth. The ability of Fe to modulate several aspects of the immune response is associated with a number of "costs" and "benefits", some of which have been described in this review. © 2017 IUBMB Life, 69(6):442-450, 2017.
Collapse
Affiliation(s)
- Ana C Martins
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Joana I Almeida
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Illyane S Lima
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Antonino S Kapitão
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Raffaella Gozzelino
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| |
Collapse
|
316
|
Hollerer I, Bachmann A, Muckenthaler MU. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 2017; 102:809-817. [PMID: 28280078 PMCID: PMC5477599 DOI: 10.3324/haematol.2016.160432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers.
Collapse
Affiliation(s)
- Ina Hollerer
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| |
Collapse
|
317
|
Molazem Z, Noormohammadi R, Dokouhaki R, Zakerinia M, Bagheri Z. The Effects of Nutrition, Exercise, and a Praying Program on Reducing Iron Overload in Patients With Beta-Thalassemia Major: A Randomized Clinical Trial. IRANIAN JOURNAL OF PEDIATRICS 2017; 26:e3869. [PMID: 28203323 PMCID: PMC5297260 DOI: 10.5812/ijp.3869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/20/2016] [Accepted: 05/08/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excessive iron accumulation in the visceral organs creates problems for patients with beta-thalassemia major. Despite chelation therapy, mortality rate from the complications of this disease is still quite high. OBJECTIVES This study aimed to investigate the effectiveness of nutrition, exercise, and a praying program at reducing iron overload in patients with beta-thalassemia major. PATIENTS AND METHODS This randomized clinical trial assessed the effect of the designed care program on iron overload. The study was conducted in 38 patients with beta-thalassemia major who ranged in age from 15 - 35 years and had been referred to the largest center for thalassemic patients in Shiraz. The patients were randomly assigned to an intervention (n = 18) and a control (n = 20) group. Blood samples were collected from the participants before and two months after the intervention. Then, the data were statistically analyzed using chi-square, Fisher's exact test, Mann-Whitney U-test, Wilcoxon, independent samples t-test, and paired samples t-test. RESULTS The results showed that the mean level of serum ferritin significantly decreased in the intervention group two months after beginning the intervention. Also, the mean level of serum iron decreased in the intervention group, but the difference was not statistically significant. CONCLUSIONS The planned educational program could be used to reduce iron overload and ultimately improve the patients' health status.
Collapse
Affiliation(s)
- Zahra Molazem
- Community Based Nursing and Midwifery Research Center, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Zahra Molazem, Community Based Nursing and Midwifery Research Center, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-9177154036, Fax: +98-7116474252, E-mail:
| | | | - Roya Dokouhaki
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Maryam Zakerinia
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Zahra Bagheri
- Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
318
|
Bruns T, Nuraldeen R, Mai M, Stengel S, Zimmermann HW, Yagmur E, Trautwein C, Stallmach A, Strnad P. Low serum transferrin correlates with acute-on-chronic organ failure and indicates short-term mortality in decompensated cirrhosis. Liver Int 2017; 37:232-241. [PMID: 27473364 DOI: 10.1111/liv.13211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Iron represents an essential, but potentially harmful micronutrient, whose regulation has been associated with poor outcome in liver disease. Its homeostasis is tightly linked to oxidative stress, bacterial infections and systemic inflammation. To study the prognostic short-term significance of iron parameters in a cohort study of patients with decompensation of cirrhosis at risk of acute-on-chronic liver failure (ACLF). METHODS Ferritin, transferrin, iron, transferrin saturation (TSAT) and hepcidin were determined in sera from 292 German patients hospitalized for decompensation of cirrhosis with ascites, of which 78 (27%) had ACLF. Short-term mortality was prospectively assessed 30 and 90 days after inclusion. RESULTS Transferrin concentrations were significantly lower, whereas ferritin and TSAT were higher in patients with ACLF compared to patients without ACLF (P≤.006). Transferrin, TSAT and ferritin differentially correlated with the severity of organ failure, active alcoholism and surrogates of systemic inflammation and macrophage activation. As compared with survivors, 30-day non-survivors displayed lower serum transferrin (P=.0003) and higher TSAT (P=.003), whereas 90-day non-survivors presented with higher ferritin (P=.03) and lower transferrin (P=.02). Lower transferrin (continuous or dichotomized at 87 mg/dL) and consecutively higher TSAT (continuous or dichotomized >41%) indicated increased mortality within 30 days and remained significant after adjustment for organ failure and inflammation in multivariate regression models and across subgroups of patients. CONCLUSION Among the investigated indicators of iron metabolism, serum transferrin concentration was the best indicator of organ failure and an independent predictor of short-term mortality at 30 days.
Collapse
Affiliation(s)
- Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany.,The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Renwar Nuraldeen
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Martina Mai
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany.,The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Henning W Zimmermann
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Eray Yagmur
- Laboratory Diagnostics Center, University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany.,The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University Hospital Aachen, Aachen, Germany
| |
Collapse
|
319
|
Messner DJ, Robinson T, Kowdley KV. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro. Nutr Cancer 2017; 69:481-489. [PMID: 28129008 DOI: 10.1080/01635581.2017.1274407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC50 values near 10 μM, P < 0.05). Inhibition of iron-induced tumor promotion (seen upon treatment with 200 μM ferric ammonium citrate ± curcumin/turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P < 0.05), a concentration predicted to only partially chelate the added iron. Surprisingly, lower curcumin concentrations (10 μM) increased tumor promotion (P < 0.01). Curcuminoids delivered as a standardized turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.
Collapse
Affiliation(s)
- Donald J Messner
- a Department of Basic Sciences , Bastyr University , Kenmore , Washington , USA
| | - Todd Robinson
- a Department of Basic Sciences , Bastyr University , Kenmore , Washington , USA
| | - Kris V Kowdley
- b Organ Care Research and Liver Care Network , Swedish Medical Center , Seattle , Washington , USA
| |
Collapse
|
320
|
Enculescu M, Metzendorf C, Sparla R, Hahnel M, Bode J, Muckenthaler MU, Legewie S. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms. PLoS Comput Biol 2017; 13:e1005322. [PMID: 28068331 PMCID: PMC5261815 DOI: 10.1371/journal.pcbi.1005322] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2017] [Accepted: 12/19/2016] [Indexed: 01/01/2023] Open
Abstract
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms. The importance of iron in many physiological processes relies on its ability to participate in reduction-oxidation reactions. This property also leads to potential toxicity if concentrations of free iron are not properly managed by cells and tissues. Multicellular organisms therefore evolved intricate regulatory mechanisms to control systemic iron levels. A central regulatory mechanism is the binding of the hormone hepcidin to the iron exporter ferroportin, which controls the major fluxes of iron into blood plasma. Here, we present a mathematical model that is fitted and validated against experimental data to simulate the iron content in different organs following dietary changes and/or inflammatory states, or genetic perturbation of the hepcidin/ferroportin regulatory system. We find that hepcidin mediated ferroportin control is essential, but not sufficient to quantitatively explain several of our experimental findings. Thus, further regulatory mechanisms had to be included in the model to reproduce reduced serum iron levels in response to inflammation, the preferential accumulation of iron in the liver in the case of iron overload, or the maintenance of physiological serum iron concentrations if dietary iron levels are very high. We conclude that hepcidin-independent mechanisms play an important role in maintaining systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Christoph Metzendorf
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Maximilian Hahnel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
321
|
Imran F, Phatak P. Decision points in the treatment of transfusional iron overload in patients with myelodysplastic syndromes: why, when, and how to chelate. Expert Rev Hematol 2016; 10:53-64. [DOI: 10.1080/17474086.2017.1268910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Farhan Imran
- Lipson Cancer and Blood Center, Rochester Regional Health System, Rochester, NY, USA
| | - Pradyumna Phatak
- Lipson Cancer and Blood Center, Rochester Regional Health System, Rochester, NY, USA
| |
Collapse
|
322
|
Hierso R, Lemonne N, Villaescusa R, Lalanne-Mistrih ML, Charlot K, Etienne-Julan M, Tressières B, Lamarre Y, Tarer V, Garnier Y, Hernandez AA, Ferracci S, Connes P, Romana M, Hardy-Dessources MD. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Br J Haematol 2016; 176:805-813. [DOI: 10.1111/bjh.14476] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Régine Hierso
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| | - Nathalie Lemonne
- CHU de Pointe-à-Pitre; Unité Transversale de la Drépanocytose; Pointe-à-Pitre Guadeloupe
| | | | - Marie-Laure Lalanne-Mistrih
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
- Centre d'Investigation Clinique Antilles Guyane; Inserm/DGOS CIC 1424; Pointe-à-Pitre Guadeloupe
| | - Keyne Charlot
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| | - Maryse Etienne-Julan
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
- CHU de Pointe-à-Pitre; Unité Transversale de la Drépanocytose; Pointe-à-Pitre Guadeloupe
| | - Benoit Tressières
- Centre d'Investigation Clinique Antilles Guyane; Inserm/DGOS CIC 1424; Pointe-à-Pitre Guadeloupe
| | - Yann Lamarre
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| | - Vanessa Tarer
- CHU de Pointe-à-Pitre; Unité Transversale de la Drépanocytose; Pointe-à-Pitre Guadeloupe
| | - Yohann Garnier
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| | | | - Serge Ferracci
- CHU de Pointe-à-Pitre; Service d'accueil des Urgences; Pointe-à-Pitre Guadeloupe
| | - Philippe Connes
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
- Institut Universitaire de France; Paris France
| | - Marc Romana
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| | - Marie-Dominique Hardy-Dessources
- Unité Biologie Intégrée du Globule Rouge, laboratoire d'Excellence GR-Ex; Université des Antilles; Inserm; U 1134 Pointe-à-Pitre Guadeloupe
| |
Collapse
|
323
|
Abstract
A number of human disorders are related to chronic iron overload, either of genetic or acquired origin. The multi-organ damage produced by iron excess leads, in adults and in children, to severe clinical consequences, affecting both quality of life and life expectancy. The diagnosis is increasingly based on a non-invasive strategy, resorting to clinical, biological and imaging data. The treatment rests on either venesection or chelation therapy, depending on the etiology. Major advances in the fields of molecular biology, pharmacology, and biotechnology pave the road for key improvements in the diagnostic and therapeutic management of the patients.
Collapse
Affiliation(s)
- Pierre Brissot
- a Hepatology-Faculty of Medicine, Inserm-UMR 991, National Center of Reference for Rare Iron Overload Diseases , University Hospital Pontchaillou , Rennes , France
| |
Collapse
|
324
|
Rapido F, Brittenham GM, Bandyopadhyay S, La Carpia F, L'Acqua C, McMahon DJ, Rebbaa A, Wojczyk BS, Netterwald J, Wang H, Schwartz J, Eisenberger A, Soffing M, Yeh R, Divgi C, Ginzburg YZ, Shaz BH, Sheth S, Francis RO, Spitalnik SL, Hod EA. Prolonged red cell storage before transfusion increases extravascular hemolysis. J Clin Invest 2016; 127:375-382. [PMID: 27941245 DOI: 10.1172/jci90837] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes. METHODS Sixty healthy adult volunteers were randomized to a single standard, autologous, leukoreduced, packed red cell transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage (n = 10 per group). 51-Chromium posttransfusion red cell recovery studies were performed and laboratory parameters measured before and at defined times after transfusion. RESULTS Extravascular hemolysis after transfusion progressively increased with increasing storage time (P < 0.001 for linear trend in the AUC of serum indirect bilirubin and iron levels). Longer storage duration was associated with decreasing posttransfusion red cell recovery (P = 0.002), decreasing elevations in hematocrit (P = 0.02), and increasing serum ferritin (P < 0.0001). After 6 weeks of refrigerated storage, transfusion was followed by increases in AUC for serum iron (P < 0.01), transferrin saturation (P < 0.001), and nontransferrin-bound iron (P < 0.001) as compared with transfusion after 1 to 5 weeks of storage. CONCLUSIONS After 6 weeks of refrigerated storage, transfusion of autologous red cells to healthy human volunteers increased extravascular hemolysis, saturated serum transferrin, and produced circulating nontransferrin-bound iron. These outcomes, associated with increased risks of harm, provide evidence that the maximal allowable red cell storage duration should be reduced to the minimum sustainable by the blood supply, with 35 days as an attainable goal.REGISTRATION. ClinicalTrials.gov NCT02087514. FUNDING NIH grant HL115557 and UL1 TR000040.
Collapse
|
325
|
Matias C, Belnap DW, Smith MT, Stewart MG, Torres IF, Gross AJ, Watt RK. Citrate and albumin facilitate transferrin iron loading in the presence of phosphate. J Inorg Biochem 2016; 168:107-113. [PMID: 28110161 DOI: 10.1016/j.jinorgbio.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Labile plasma iron (LPI) is redox active, exchangeable iron that catalyzes the formation of reactive oxygen species. Serum transferrin binds iron in a non-exchangeable form and delivers iron to cells. In several inflammatory diseases serum LPI increases but the reason LPI forms is unknown. This work evaluates possible pathways leading to LPI and examines potential mediators of apo transferrin iron loading to prevent LPI. Previously phosphate was shown to inhibit iron loading into apo transferrin by competitively binding free Fe3+. The reaction of Fe3+ with phosphate produced a soluble ferric phosphate complex. In this study we evaluate iron loading into transferrin under physiologically relevant phosphate conditions to evaluate the roles of citrate and albumin in mediating iron delivery into apo transferrin. We report that preformed Fe3+-citrate was loaded into apo transferrin and was not inhibited by phosphate. A competition study evaluated reactions when Fe3+ was added to a solution with citrate, phosphate and apo transferrin. The results showed citrate marginally improved the delivery of Fe3+ to apo transferrin. Studies adding Fe3+ to a solution with phosphate, albumin and apo transferrin showed that albumin improved Fe3+ loading into apo transferrin. The most efficient Fe3+ loading into apo transferrin in a phosphate solution occurred when both citrate and albumin were present at physiological concentrations. Citrate and albumin overcame phosphate inhibition and loaded apo transferrin equal to the control of Fe3+ added to apo transferrin. Our results suggest a physiologically important role for albumin and citrate for apo transferrin iron loading.
Collapse
Affiliation(s)
- Catalina Matias
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Devin W Belnap
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Michael T Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Michael G Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Isaac F Torres
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States
| | - Andrew J Gross
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States.
| | - Richard K Watt
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States; College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, United States.
| |
Collapse
|
326
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
327
|
Sangartit W, Pakdeechote P, Kukongviriyapan V, Donpunha W, Shibahara S, Kukongviriyapan U. Tetrahydrocurcumin in combination with deferiprone attenuates hypertension, vascular dysfunction, baroreflex dysfunction, and oxidative stress in iron-overloaded mice. Vascul Pharmacol 2016; 87:199-208. [PMID: 27713040 DOI: 10.1016/j.vph.2016.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022]
Abstract
Excessive iron can generate reactive oxygen species (ROS), leading to oxidative stress that is closely associated with cardiovascular dysfunction. Iron overload was induced in male ICR mice by injection of iron sucrose (10mg/kg/day) for eight weeks. Iron overload was evidenced by increased serum iron indices. The mice developed increased blood pressure, impaired vascular function and blunted response of the autonomic nervous system. These effects were accompanied by increased malondialdehyde levels in various tissues, increased nitric oxide metabolites in plasma and urine, and decreased blood glutathione. Tetrahydrocurcumin (THU, 50mg/kg/day), deferiprone (or L1, 50mg/kg/day) or both was orally administered throughout the period of iron sucrose injection. The treatments significantly alleviated the deleterious cardiovascular effects of iron overload, and were associated with modulation of nitric oxide levels. An imbalance between endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) expression in response to iron overload was normalized by THU, L1 or the combination treatment. Moreover, the treatment decreased the upregulated expression levels of gp91phox, p47phox and HO-1. The combination of THU and L1 exerted a greater effect than THU or L1 monotherapy. These results suggest beneficial effects of THU and L1 on iron-induced oxidative stress, hypertension, and vascular dysfunction.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
328
|
Coffey R, Knutson MD. The plasma membrane metal-ion transporter ZIP14 contributes to nontransferrin-bound iron uptake by human β-cells. Am J Physiol Cell Physiol 2016; 312:C169-C175. [PMID: 27903581 DOI: 10.1152/ajpcell.00116.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023]
Abstract
The relationship between iron and β-cell dysfunction has long been recognized as individuals with iron overload display an increased incidence of diabetes. This link is usually attributed to the accumulation of excess iron in β-cells leading to cellular damage and impaired function. Yet, the molecular mechanism(s) by which human β-cells take up iron has not been determined. In the present study, we assessed the contribution of the metal-ion transporters ZRT/IRT-like protein 14 and 8 (ZIP14 and ZIP8) and divalent metal-ion transporter-1 (DMT1) to iron uptake by human β-cells. Iron was provided to the cells as nontransferrin-bound iron (NTBI), which appears in the plasma during iron overload and is a major contributor to tissue iron loading. We found that overexpression of ZIP14 and ZIP8, but not DMT1, resulted in increased NTBI uptake by βlox5 cells, a human β-cell line. Conversely, siRNA-mediated knockdown of ZIP14, but not ZIP8, resulted in 50% lower NTBI uptake in βlox5 cells. In primary human islets, knockdown of ZIP14 also reduced NTBI uptake by 50%. Immunofluorescence analysis of islets from human pancreatic sections localized ZIP14 and DMT1 nearly exclusively to β-cells. Studies in primary human islets suggest that ZIP14 protein levels do not vary with iron status or treatment with IL-1β. Collectively, these observations identify ZIP14 as a major contributor to NTBI uptake by β-cells and suggest differential regulation of ZIP14 in primary human islets compared with other cell types such as hepatocytes.
Collapse
Affiliation(s)
- Richard Coffey
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
329
|
Tian Q, Wu S, Dai Z, Yang J, Zheng J, Zheng Q, Liu Y. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway. PeerJ 2016; 4:e2611. [PMID: 27843711 PMCID: PMC5103817 DOI: 10.7717/peerj.2611] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/26/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. PURPOSE In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. METHODS The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. RESULTS Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and blocked the apoptotic events through inhibit the generation of ROS. In addition, iron could significantly promote apoptosis and suppress osteogenic differentiation and mineralization in bone marrow-derived MSCs. CONCLUSIONS These findings firstly demonstrate that the mitochondrial apoptotic pathway involved in iron-induced osteoblast apoptosis. NAC could relieved the oxidative stress and shielded osteoblasts from apoptosis casused by iron-overload. We also reveal that iron overload in bone marrow-derived MSCs results in increased apoptosis and the impairment of osteogenesis and mineralization.
Collapse
Affiliation(s)
- Qing Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingjing Yang
- Department of Child Health, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jin Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qixin Zheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
330
|
Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin 2016; 37:1391-1400. [PMID: 27498774 PMCID: PMC5099413 DOI: 10.1038/aps.2016.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AIM Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. METHODS Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. RESULTS HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. CONCLUSION We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.
Collapse
Affiliation(s)
- Ling-xue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-tian Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-ting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-can Tang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
331
|
Banerjee S, Paul S, Nguyen LT, Chu BCH, Vogel HJ. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics 2016; 8:125-33. [PMID: 26600288 DOI: 10.1039/c5mt00218d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Subrata Paul
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Byron C H Chu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
332
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
333
|
Liu Z, Lin TM, Purro M, Xiong MP. Enzymatically Biodegradable Polyrotaxane-Deferoxamine Conjugates for Iron Chelation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25788-25797. [PMID: 27623539 PMCID: PMC5560162 DOI: 10.1021/acsami.6b09077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chelation therapy is frequently used to help reduce excess iron in the body, but current chelators such as deferoxamine (DFO) are plagued by short blood circulation times, which necessitates infusions and can cause undesirable toxic side effects in patients. To address these issues, polyrotaxanes (PR) were synthesized by threading α-cyclodextrin (α-CD) onto poly(ethylene glycol) bis(amine) (PEG-BA, MW 3400 g/mol) capped with enzymatically cleavable bulky Z-L phenylalanine (Z-L Phe) moieties. The resulting PR was conjugated to DFO and hydroxypropylated to generate the final polyrotaxane-DFO (hPR-DFO). The iron chelating capability of hPR-DFO was verified by UV-vis absorption spectroscopy and the ability of materials to degrade into smaller CD-conjugated DFO fragments (hCD-DFO) in the presence of the protease was confirmed via gel permeation chromatography. In vitro studies in iron-overloaded macrophages reveal that hPR-DFO can significantly reduce the cytotoxicity of the drug while maintaining its chelation efficacy, and that it is more rapidly endocytosed and trafficked to lysosomes of iron-overloaded cells in comparison to non-iron-overloaded macrophages. In vivo studies indicate that iron-overloaded mice treated with hPR-DFO displayed lower serum ferritin levels (a measure of iron burden in the body) and could eliminate excess iron by both the renal and fecal routes. Moreover, there was no gross evidence of acute toxicological damage to the liver or spleen.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Tien-min Lin
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705-2222, USA
| | - Max Purro
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705-2222, USA
| | - May P. Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
- Correspondence and requests for materials should be addressed to May P. Xiong.
| |
Collapse
|
334
|
Pratt RD, Swinkels DW, Ikizler TA, Gupta A. Pharmacokinetics of Ferric Pyrophosphate Citrate, a Novel Iron Salt, Administered Intravenously to Healthy Volunteers. J Clin Pharmacol 2016; 57:312-320. [PMID: 27557937 PMCID: PMC5324677 DOI: 10.1002/jcph.819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Abstract
Ferric pyrophosphate citrate (Triferic) is a water-soluble iron salt that is administered via dialysate to maintain iron balance and hemoglobin in hemodialysis patients. This double-blind, randomized, placebo-controlled, single-, ascending-dose study was conducted to evaluate the pharmacokinetics and safety of intravenous ferric pyrophosphate citrate in 48 healthy iron-replete subjects (drug, n = 36; placebo, n = 12). Single doses of 2.5, 5.0, 7.5, or 10 mg of ferric pyrophosphate citrate or placebo were administered over 4 hours, and single doses of 15 or 20 mg of ferric pyrophosphate citrate or placebo were administered over 12 hours via intravenous infusion. Serum total iron (sFetot ), transferrin-bound iron (TBI), hepcidin-25, and biomarkers of oxidative stress and inflammation were determined using validated assays. Marked diurnal variation in sFetot was observed in placebo-treated subjects. Concentrations of sFetot and TBI increased rapidly after drug administration, with maximum serum concentrations (Cmax ) reached at the end of infusion. Increases in baseline-corrected Cmax and area under the concentration-time curve from 0 to the time of the last quantifiable concentration (AUC0-t ) were dose proportional up to 100% transferrin saturation. Iron was rapidly cleared (apparent terminal phase half-life 1.2-2 hours). No significant changes from baseline in serum hepcidin-25 concentration were observed at end of infusion for any dose. Biomarkers of oxidative stress and inflammation were unaffected. Intravenous doses of ferric pyrophosphate citrate were well tolerated. These results demonstrate that intravenous ferric pyrophosphate citrate is rapidly bound to transferrin and cleared from the circulation without increasing serum hepcidin levels or biomarkers of oxidative stress or inflammation.
Collapse
Affiliation(s)
| | - Dorine W Swinkels
- Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ajay Gupta
- Rockwell Medical, Inc, Wixom, MI, USA.,Division of Nephrology, University of California Irvine, Orange, CA, USA
| |
Collapse
|
335
|
Paciello A, Amalfitano G, Garziano A, Urciuolo F, Netti PA. Hemoglobin-Conjugated Gelatin Microsphere as a Smart Oxygen Releasing Biomaterial. Adv Healthc Mater 2016; 5:2655-2666. [PMID: 27594116 DOI: 10.1002/adhm.201600559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Indexed: 12/12/2022]
Abstract
In this study, a novel micrometric biomaterial acting as a cyclic oxygen releasing system is designed. Human hemoglobin (Hb) is conjugated to the surface of gelatin microspheres (GM) to produce gelatin hemoglobin oxygen depot (G-HbOD). G-HbOD is obtained by means of two different conjugation strategies. The degree of conjugation of GM surfaces in terms of free amino groups by using HPLC is first evaluated. By following the strategy A (G-HbOD_A), Hb is conjugated to GM by means of the formation of a polyurethane linker. In the strategy B (G-HbOD_B) the conjugation occurs via amide bound formation. Physical and morphological differences between G-HbOD_A and G-HbOD_B are investigated by means of Fourier Transform Infrared Spectroscopy (FTIR), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Differences in oxygen uptake/release kinetics are found depending on the conjugation strategy and it is proved that G-HbOD works under repeated cycles in microfluidic chip. Moreover, G-HbOD is also able to work as oxygen depot in the early stages of 3D cell cultures.
Collapse
Affiliation(s)
- Antonio Paciello
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Giuseppe Amalfitano
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Alessandro Garziano
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 80125 Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB); University of Naples Federico II; P.le Tecchio 80 80125 Napoli Italy
- Department of Chemical; Materials and Industrial Production Engineering (DICMAPI); University of Napoli Federico II; P.le Tecchio 80 80125 Napoli Italy
| |
Collapse
|
336
|
Sikorska K, Bernat A, Wroblewska A. Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis. Hepatobiliary Pancreat Dis Int 2016; 15:461-479. [PMID: 27733315 DOI: 10.1016/s1499-3872(16)60135-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The liver, as the main iron storage compartment and the place of hepcidin synthesis, is the central organ involved in maintaining iron homeostasis in the body. Excessive accumulation of iron is an important risk factor in liver disease progression to cirrhosis and hepatocellular carcinoma. Here, we review the literature on the molecular pathogenesis of iron overload and its clinical consequences in chronic liver diseases. DATA SOURCES PubMed was searched for English-language articles on molecular genesis of primary and secondary iron overload, as well as on their association with liver disease progression. We have also included literature on adjuvant therapeutic interventions aiming to alleviate detrimental effects of excessive body iron load in liver cirrhosis. RESULTS Excess of free, unbound iron induces oxidative stress, increases cell sensitivity to other detrimental factors, and can directly affect cellular signaling pathways, resulting in accelerated liver disease progression. Diagnosis of liver cirrhosis is, in turn, often associated with the identification of a pathological accumulation of iron, even in the absence of genetic background of hereditary hemochromatosis. Iron depletion and adjuvant therapy with antioxidants are shown to cause significant improvement of liver functions in patients with iron overload. Phlebotomy can have beneficial effects on liver histology in patients with excessive iron accumulation combined with compensated liver cirrhosis of different etiology. CONCLUSION Excessive accumulation of body iron in liver cirrhosis is an important predictor of liver failure and available data suggest that it can be considered as target for adjuvant therapy in this condition.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | | | | |
Collapse
|
337
|
Hamdi A, Roshan TM, Kahawita TM, Mason AB, Sheftel AD, Ponka P. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2859-2867. [PMID: 27627839 DOI: 10.1016/j.bbamcr.2016.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
Abstract
In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59Fe by reticulocytes and diminishes 59Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles.
Collapse
Affiliation(s)
- Amel Hamdi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tariq M Roshan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tanya M Kahawita
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anne B Mason
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Alex D Sheftel
- Spartan Bioscience Inc., Ottawa, Ontario, Canada; High Impact Editing, Ottawa, Ontario, Canada
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
338
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
339
|
Kaplia AA. The influence of heavy metal ions, spermine and sodium nitroprusside on ATP-hydrolases of cell membranes of rat colon smooth muscle. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:20-8. [DOI: 10.15407/ubj88.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
340
|
Leaf DE, Swinkels DW. Catalytic iron and acute kidney injury. Am J Physiol Renal Physiol 2016; 311:F871-F876. [PMID: 27534995 DOI: 10.1152/ajprenal.00388.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and often devastating condition among hospitalized patients and is associated with markedly increased hospital length of stay, mortality, and cost. The pathogenesis of AKI is complex, but animal models support an important role for catalytic iron in causing AKI. Catalytic iron, also known as labile iron, is a transitional pool of non-transferrin-bound iron that is readily available to participate in redox cycling. Initial findings related to catalytic iron and animal models of kidney injury have only recently been extended to human AKI. In this review, we discuss the role of catalytic iron in human AKI, focusing on recent translational studies in humans, assay considerations, and potential therapeutic targets for future interventional studies.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
341
|
Thiele NA, Abboud KA, Sloan KB. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation. Eur J Med Chem 2016; 118:193-207. [PMID: 27128183 DOI: 10.1016/j.ejmech.2016.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 11/26/2022]
Abstract
The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death.
Collapse
Affiliation(s)
- Nikki A Thiele
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Kenneth B Sloan
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
342
|
Bruch HR, Dencausse Y, Heßling J, Michl G, Schlag R, Skorupa A, Schneider-Schranz C, Wolf S, Schulte C, Tesch H. CONIFER - Non-Interventional Study to Evaluate Therapy Monitoring During Deferasirox Treatment of Iron Toxicity in Myelodysplastic Syndrome Patients with Transfusional Iron Overload. Oncol Res Treat 2016; 39:424-31. [PMID: 27486873 DOI: 10.1159/000447035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The non-interventional study CONIFER was designed to assess the safety and clinical practicability of deferasirox for the treatment of transfusional iron overload in myelodysplastic syndrome (MDS) patients. METHODS Patients included in the study were diagnosed with MDS and received at least 1 treatment with deferasirox. The observation period covered the time from the initial visit until the last follow-up. RESULTS The data of 99 patients with MDS scored mainly as International Prognostic Scoring System (IPSS) low and intermediate 1 were evaluated. The mean age of the participants was 75 years and 58% of the patients were male. Iron overload was assessed by serum ferritin level (mean baseline serum ferritin 2,080 ± 1,244 µg/l). Patients were treated for a mean duration of 16 months (mean daily dose at baseline 11.8 ± 7.0 mg/kg). Stratification of serum ferritin levels by deferasirox dose showed a reduction at the higher but no reduction at the lower dose (< 15 mg/kg vs. ≥ 15 mg/kg and < 20 mg/kg vs. ≥ 20 mg/kg). The majority of patients (81%) were affected by at least 1 adverse event, with decreased renal creatinine clearance being the most frequent. CONCLUSION Higher doses (≥ 15 mg/kg) of deferasirox effectively and safely reduced serum ferritin levels in MDS patients with transfusional iron overload.
Collapse
|
343
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|
344
|
Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, Kapovic M, Ristic S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med Sci Monit 2016; 22:2144-2151. [PMID: 27332079 PMCID: PMC4922827 DOI: 10.12659/msm.896494] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models.
Collapse
Affiliation(s)
- Sandra Milic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia
| | - Lidija Orlic
- Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia
| | - Edita Devcic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | | | - Davor Stimac
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | - Miljenko Kapovic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| | - Smiljana Ristic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
345
|
Ito S, Ikuta K, Kato D, Lynda A, Shibusa K, Niizeki N, Toki Y, Hatayama M, Yamamoto M, Shindo M, Iizuka N, Kohgo Y, Fujiya M. In vivo behavior of NTBI revealed by automated quantification system. Int J Hematol 2016; 104:175-81. [DOI: 10.1007/s12185-016-2002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023]
|
346
|
Zhang Y, Zhao X, Chang Y, Zhang Y, Chu X, Zhang X, Liu Z, Guo H, Wang N, Gao Y, Zhang J, Chu L. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis. Toxicol Appl Pharmacol 2016; 301:50-60. [PMID: 27095094 DOI: 10.1016/j.taap.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Xi Chu
- Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, People's Republic of China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Zhenyi Liu
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Hui Guo
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yonggang Gao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China.
| | - Li Chu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, People's Republic of China.
| |
Collapse
|
347
|
Arezes J, Nemeth E. Hepcidin and iron disorders: new biology and clinical approaches. Int J Lab Hematol 2016; 37 Suppl 1:92-8. [PMID: 25976966 DOI: 10.1111/ijlh.12358] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022]
Abstract
Hepatic hormone hepcidin is a principal regulator of iron homeostasis and a pathogenic factor in common iron disorders. Hepcidin deficiency causes iron overload in hereditary hemochromatosis and iron-loading anemias, whereas hepcidin excess causes or contributes to the development of iron-restricted anemia in inflammatory diseases, infections, some cancers, and chronic kidney disease. Because of this, hepcidin may become a useful tool for diagnosis and management of iron disorders. Furthermore, a number of strategies that target hepcidin, its receptor, and its regulators are under development as novel therapeutic approaches for diseases associated with iron dysregulation.
Collapse
Affiliation(s)
- J Arezes
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - E Nemeth
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
348
|
Arber CE, Li A, Houlden H, Wray S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 2016; 42:220-41. [PMID: 25870938 PMCID: PMC4832581 DOI: 10.1111/nan.12242] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/18/2015] [Indexed: 12/14/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and ferritin light chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis, and speculate the potential overlap between NBIA subtypes.
Collapse
Affiliation(s)
- C E Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - A Li
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - H Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - S Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
349
|
Podmore C, Meidtner K, Schulze MB, Scott RA, Ramond A, Butterworth AS, Di Angelantonio E, Danesh J, Arriola L, Barricarte A, Boeing H, Clavel-Chapelon F, Cross AJ, Dahm CC, Fagherazzi G, Franks PW, Gavrila D, Grioni S, Gunter MJ, Gusto G, Jakszyn P, Katzke V, Key TJ, Kühn T, Mattiello A, Nilsson PM, Olsen A, Overvad K, Palli D, Quirós JR, Rolandsson O, Sacerdote C, Sánchez-Cantalejo E, Slimani N, Sluijs I, Spijkerman AMW, Tjonneland A, Tumino R, van der A DL, van der Schouw YT, Feskens EJM, Forouhi NG, Sharp SJ, Riboli E, Langenberg C, Wareham NJ. Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes: The EPIC-InterAct Study. Diabetes Care 2016; 39:572-81. [PMID: 26861925 PMCID: PMC5058436 DOI: 10.2337/dc15-0257] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Observational studies show an association between ferritin and type 2 diabetes (T2D), suggesting a role of high iron stores in T2D development. However, ferritin is influenced by factors other than iron stores, which is less the case for other biomarkers of iron metabolism. We investigated associations of ferritin, transferrin saturation (TSAT), serum iron, and transferrin with T2D incidence to clarify the role of iron in the pathogenesis of T2D. RESEARCH DESIGN AND METHODS The European Prospective Investigation into Cancer and Nutrition-InterAct study includes 12,403 incident T2D cases and a representative subcohort of 16,154 individuals from a European cohort with 3.99 million person-years of follow-up. We studied the prospective association of ferritin, TSAT, serum iron, and transferrin with incident T2D in 11,052 cases and a random subcohort of 15,182 individuals and assessed whether these associations differed by subgroups of the population. RESULTS Higher levels of ferritin and transferrin were associated with a higher risk of T2D (hazard ratio [HR] [95% CI] in men and women, respectively: 1.07 [1.01-1.12] and 1.12 [1.05-1.19] per 100 μg/L higher ferritin level; 1.11 [1.00-1.24] and 1.22 [1.12-1.33] per 0.5 g/L higher transferrin level) after adjustment for age, center, BMI, physical activity, smoking status, education, hs-CRP, alanine aminotransferase, and γ-glutamyl transferase. Elevated TSAT (≥45% vs. <45%) was associated with a lower risk of T2D in women (0.68 [0.54-0.86]) but was not statistically significantly associated in men (0.90 [0.75-1.08]). Serum iron was not associated with T2D. The association of ferritin with T2D was stronger among leaner individuals (Pinteraction < 0.01). CONCLUSIONS The pattern of association of TSAT and transferrin with T2D suggests that the underlying relationship between iron stores and T2D is more complex than the simple link suggested by the association of ferritin with T2D.
Collapse
Affiliation(s)
- Clara Podmore
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K.
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Anna Ramond
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Adam S Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | | | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Larraitz Arriola
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain Instituto BIO-Donostia, Basque Government, San Sebastian, Spain Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública), Madrid, Spain
| | - Aurelio Barricarte
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública), Madrid, Spain Navarre Public Health Institute, Pamplona, Navarra, Spain
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Françoise Clavel-Chapelon
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Villejuif, France University Paris-Sud, Villejuif, France
| | - Amanda J Cross
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, U.K
| | - Christina C Dahm
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Guy Fagherazzi
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Villejuif, France University Paris-Sud, Villejuif, France
| | - Paul W Franks
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Diana Gavrila
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública), Madrid, Spain Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Sara Grioni
- Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Milan, Italy
| | - Marc J Gunter
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, U.K
| | - Gaelle Gusto
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Villejuif, France University Paris-Sud, Villejuif, France
| | - Paula Jakszyn
- Nutrition, Environment and Cancer Unit, Department of Epidemiology, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Amalia Mattiello
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - J Ramón Quirós
- Consejería de Sanidad, Public Health Directorate, Oviedo-Asturias, Spain
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, AO Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Turin, Italy Human Genetics Foundation (HuGeF), Turin, Italy
| | - Emilio Sánchez-Cantalejo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública), Madrid, Spain Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Nadia Slimani
- International Agency for Research on Cancer, Dietary Exposure Assessment Group (DEX), Lyon, France
| | - Ivonne Sluijs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civile - M.P. Arezzo" Hospital, Ragusa, Italy Associazone Iblea per la Ricerca Epidemiologica - Onlus, Ragusa, Italy
| | - Daphne L van der A
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Section of Nutrition and Epidemiology, Wageningen University, Wageningen, the Netherlands
| | - Nita G Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Stephen J Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Elio Riboli
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, U.K
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| |
Collapse
|
350
|
Seravalle G, Piperno A, Mariani R, Pelloni I, Facchetti R, Dell'Oro R, Cuspidi C, Mancia G, Grassi G. Alterations in sympathetic nerve traffic in genetic haemochromatosis before and after iron depletion therapy: a microneurographic study. Eur Heart J 2016; 37:988-995. [DOI: 10.1093/eurheartj/ehv696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|