301
|
Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron 2015; 65:31-8. [DOI: 10.1016/j.bios.2014.09.099] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023]
|
302
|
Guidarelli A, Fiorani M, Azzolini C, Cerioni L, Scotti M, Cantoni O. U937 cell apoptosis induced by arsenite is prevented by low concentrations of mitochondrial ascorbic acid with hardly any effect mediated by the cytosolic fraction of the vitamin. Biofactors 2015; 41:101-10. [PMID: 25809564 DOI: 10.1002/biof.1204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 02/03/2023]
Abstract
Arsenite directly triggers cytochrome c and Smac/DIABLO release in mitochondria isolated from U937 cells. These effects were not observed in mitochondria pre-exposed for 15 min to 10 µM L-ascorbic acid (AA). In other experiments, intact cells treated for 24-72 h with arsenite were found to die by apoptosis through a mechanism involving mitochondrial permeability transition. Pre-exposure (15 min) to low micromolar concentrations of AA and dehydroascorbic acid (DHA), resulting in identical cytosolic levels of the vitamin, had a diverse impact on cell survival, as cytoprotection was only observed after treatment with AA. Also the mitochondrial accumulation of the vitamin was restricted to AA exposure. An additional indication linking cytoprotection to the mitochondrial fraction of the vitamin was obtained in experiments measuring susceptibility to arsenite in parallel with loss of mitochondrial and cytosolic AA at different times after vitamin exposure. Finally, we took advantage of our recent findings that DHA potently inhibits AA transport to demonstrate that DHA abolishes all the protective effects of AA, under the same conditions in which the mitochondrial accumulation of the vitamin is prevented without affecting the overall cellular accumulation of the vitamin.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | |
Collapse
|
303
|
Weber B, Barros LF. The Astrocyte: Powerhouse and Recycling Center. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020396. [PMID: 25680832 DOI: 10.1101/cshperspect.a020396] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain metabolism is characterized by fuel monodependence, high-energy expenditure, autonomy from the rest of body, local recycling, and marked division of labor between cell types. Although neurons spend most of the brain's energy on signaling, astrocytes bear the brunt of the metabolic load, controlling the composition of the interstitial fluid, supplying neurons with energy substrates and precursors for biosynthesis, and recycling neurotransmitters, oxidized scavengers, and other waste products. Outstanding questions in this field are the role of oligodendrocytes, the metabolic behavior of the different subtypes of astrocytes during development and disease, and the emerging notion that metabolism may participate directly in information processing.
Collapse
Affiliation(s)
- Bruno Weber
- University of Zürich, Institute of Pharmacology and Toxicology, 8057 Zürich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos, Casilla 1469, Valdivia, Chile
| |
Collapse
|
304
|
Olaifa F, Ayo JO, Ambali SF, Rekwot PI. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season. J Vet Med Sci 2015; 77:133-8. [PMID: 23154452 PMCID: PMC4363013 DOI: 10.1292/jvms.12-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (P<0.05) at the end of packing. In the experimental donkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (P<0.05) post packing, but in the experimental donkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (P<0.05) in experimental and control donkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season.
Collapse
Affiliation(s)
- Folashade Olaifa
- Department of Veterinary Physiology and Pharmacology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
305
|
Lee SL, Thomas P, Fenech M. Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 2015; 776:54-83. [PMID: 26364206 DOI: 10.1016/j.mrfmmm.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Successful maintenance of metabolic systems relating to accurate DNA replication and repair is critical for optimal lifelong human health. Should this homeostatic balance become impaired, genomic instability events can arise, compromising the integrity of the genome, which may result in gene expression and human disease. Both genome instability and micronutrient imbalance have been identified and implicated in diseases associated with accelerated ageing which potentially leads to an increased risk for the future development of clinically defined neurodegenerative disorders. Cognitive decline leading to the clinical diagnosis of mild cognitive impairment (MCI) has been shown to predict an increased risk in later life of developing Alzheimer's disease (AD). Knowledge on the impact of dietary factors in relation to MCI and AD risk is improving but incomplete; in particular the role of nutrient combinations (i.e. nutriomes) has not been thoroughly investigated. Currently, there is a need for preventative strategies as well as the identification of robust and reproducible diagnostic biomarkers that will allow identification of those individuals with increased risk for neurodegenerative diseases. Growing evidence suggests cells originating from different somatic tissues derived from individuals that have been clinically diagnosed with neurodegenerative disorders exhibit elevated frequencies of DNA damage compared to tissues of cognitively normal individuals which could be due to malnutrition. The objective of this review is to discuss current evidence and identify knowledge gaps relating to genome instability biomarkers and blood micronutrient profiles from human studies of MCI and AD that may be specific to and contribute to the increased risk of these diseases. This is a vital step in order to create research strategies for the future development of diagnostics that are indicative of dementia risk and to inform preventative therapies.
Collapse
Affiliation(s)
- Sau Lai Lee
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia; Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Thomas
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| |
Collapse
|
306
|
The role of adolescent nutrition and physical activity in the prediction of verbal intelligence during early adulthood: a genetically informed analysis of twin pairs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:385-401. [PMID: 25568969 PMCID: PMC4306868 DOI: 10.3390/ijerph120100385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 01/09/2023]
Abstract
A large body of research has revealed that nutrition and physical activity influence brain functioning at various stages of the life course. Nevertheless, very few studies have explored whether diet and exercise influence verbal intelligence as youth transition from adolescence into young adulthood. Even fewer studies have explored the link between these health behaviors and verbal intelligence while accounting for genetic and environmental factors that are shared between siblings. Employing data from the National Longitudinal Study of Adolescent Health, the current study uses a sample of same-sex twin pairs to test whether youth who engage in poorer fitness and nutritional practices are significantly more likely to exhibit reduced verbal intelligence during young adulthood. The results suggests that, independent of the effects of genetic and shared environmental factors, a number of nutritional and exercise factors during adolescence influence verbal intelligence during adulthood. Limitations are noted and suggestions for future research are outlined.
Collapse
|
307
|
Grasso C, Fabre MS, Collis SV, Castro ML, Field CS, Schleich N, McConnell MJ, Herst PM. Pharmacological doses of daily ascorbate protect tumors from radiation damage after a single dose of radiation in an intracranial mouse glioma model. Front Oncol 2014; 4:356. [PMID: 25566497 PMCID: PMC4266032 DOI: 10.3389/fonc.2014.00356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.
Collapse
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Marie-Sophie Fabre
- School of Biological Sciences, Victoria University , Wellington , New Zealand
| | - Sarah V Collis
- School of Biological Sciences, Victoria University , Wellington , New Zealand
| | - M Leticia Castro
- School of Biological Sciences, Victoria University , Wellington , New Zealand
| | - Cameron S Field
- Malaghan Institute of Medical Research , Wellington , New Zealand ; School of Biological Sciences, Victoria University , Wellington , New Zealand
| | - Nanette Schleich
- Department of Radiation Therapy, University of Otago , Wellington , New Zealand
| | - Melanie J McConnell
- Malaghan Institute of Medical Research , Wellington , New Zealand ; School of Biological Sciences, Victoria University , Wellington , New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research , Wellington , New Zealand ; Department of Radiation Therapy, University of Otago , Wellington , New Zealand
| |
Collapse
|
308
|
Alagl AS, Bhat SG. Ascorbic acid: new role of an age-old micronutrient in the management of periodontal disease in older adults. Geriatr Gerontol Int 2014; 15:241-54. [PMID: 25407241 DOI: 10.1111/ggi.12408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 12/28/2022]
Abstract
To review the new role of an age-old micronutrient - ascorbic acid - in the management of periodontal disease. Articles pertaining to the topic were searched in PubMed and other search engines from year 1974 to April 2014 with the following key words: "ascorbic acid," "ascorbate," "vitamin C," "periodontal disease," "gingivitis," "periodontitis," "anti-oxidants" and "elderly." Balanced nutrition is an essential factor in the elderly. Modification of nutritional requirement is important to overcome the effect of an unbalanced diet in older individuals as a result of several external and internal host-associated factors. Micronutrient requirements as aging advances could change, and require due attention. Ascorbic acid and its relationship with periodontal disease are very well known. However, recent changes in the concept of understanding the pathogenicity has led to a new path of therapeutic intervention with ascorbic acid in many chronic diseases. Oxidative stress with its associated burden might alter the disease process. In the era of "periodontal medicine," the impact of remote tissue changes on systemic disease has to be taken into serious consideration. Deficiency of nutritional impact on the host, with micronutrient vitamin C detailed in this review with sources, absorption, interaction and its relationship with systemic disease, and thereby the impact on periodontal disease. Ascorbic acid plays an important role in the aging process, and in the maintenance of periodontal health in the elderly.
Collapse
Affiliation(s)
- Adel S Alagl
- College of Dentistry, University of Dammam, Dammam, Saudi Arabia
| | | |
Collapse
|
309
|
Lamport DJ, Saunders C, Butler LT, Spencer JPE. Fruits, vegetables, 100% juices, and cognitive function. Nutr Rev 2014; 72:774-89. [DOI: 10.1111/nure.12149] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Daniel J Lamport
- School of Psychology and Clinical Language Sciences; University of Reading; Reading UK
| | | | - Laurie T Butler
- School of Psychology and Clinical Language Sciences; University of Reading; Reading UK
| | - Jeremy PE Spencer
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
| |
Collapse
|
310
|
Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: A cortical spreading depression and malondialdehyde analysis. Neuropharmacology 2014; 86:155-60. [DOI: 10.1016/j.neuropharm.2014.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 11/21/2022]
|
311
|
Carr AC, Vissers MCM, Cook JS. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front Oncol 2014; 4:283. [PMID: 25360419 PMCID: PMC4199254 DOI: 10.3389/fonc.2014.00283] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
Cancer patients commonly experience a number of symptoms of disease progression and the side-effects of radiation therapy and adjuvant chemotherapy, which adversely impact on their quality of life (QOL). Fatigue is one of the most common and debilitating symptom reported by cancer patients and can affect QOL more than pain. Several recent studies have indicated that intravenous (IV) vitamin C alleviates a number of cancer- and chemotherapy-related symptoms, such as fatigue, insomnia, loss of appetite, nausea, and pain. Improvements in physical, role, cognitive, emotional, and social functioning, as well as an improvement in overall health, were also observed. In this mini review, we briefly cover the methods commonly used to assess health-related QOL in cancer patients, and describe the few recent studies examining the effects of IV vitamin C on cancer- and chemotherapy-related QOL. We discuss potential mechanisms that might explain an improvement in QOL and also considerations for future studies.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch , New Zealand
| | - Margreet C M Vissers
- Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch , New Zealand
| | - John S Cook
- New Brighton Health Care , Christchurch , New Zealand
| |
Collapse
|
312
|
Brand H, Pillalamarri V, Collins RL, Eggert S, O’Dushlaine C, Braaten E, Stone MR, Chambert K, Doty N, Hanscom C, Rosenfeld J, Ditmars H, Blais J, Mills R, Lee C, Gusella J, McCarroll S, Smoller J, Talkowski M, Doyle A. Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am J Hum Genet 2014; 95:454-61. [PMID: 25279985 DOI: 10.1016/j.ajhg.2014.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.
Collapse
|
313
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
314
|
Sárközi K, Papp A, Horváth E, Máté Z, Ferencz Á, Hermesz E, Krisch J, Paulik E, Szabó A. Green tea and vitamin C ameliorate some neuro-functional and biochemical signs of arsenic toxicity in rats. Nutr Neurosci 2014; 19:102-9. [PMID: 25211010 DOI: 10.1179/1476830514y.0000000151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Nervous system damage is one of the consequences of oral exposure to waterborne inorganic arsenic. In this work, the role of oxidative status in the neurotoxicity of arsenic and the possible role of two foodborne antioxidants in ameliorating arsenic-related oxidative stress were investigated. METHODS Male Wistar rats were given 10 mg/kg b.w. of trivalent inorganic arsenic (in the form of NaAsO2), 5 day/week for 6 weeks by gavage, combined with vitamin C solution (1 g/l) or green tea infusion (2.5 g in 500 ml boiled water) as antioxidants given in the drinking fluid. RESULTS Body weight gain was reduced by arsenic from the second week and the antioxidants had no effect on that. Cortical evoked potentials had increased latency, tail nerve conduction velocity was reduced, and this latter effect was counteracted by the antioxidants. The effect of green tea was stronger than that of vitamin C, and green tea also diminished lipid peroxidation induced by As. There was fair correlation between brain As levels, electrophysiological changes, and lipid peroxidation, suggesting a causal relationship. DISCUSSION Natural antioxidants might be useful in the protection of the central nervous system against the toxicity of oral As.
Collapse
Affiliation(s)
- Kitti Sárközi
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| | - András Papp
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| | - Edina Horváth
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| | - Zsuzsanna Máté
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| | - Ágnes Ferencz
- b Department of Biochemistry and Molecular Biology , University of Szeged Faculty of Science and Informatics , Szeged , Hungary
| | - Edit Hermesz
- b Department of Biochemistry and Molecular Biology , University of Szeged Faculty of Science and Informatics , Szeged , Hungary
| | - Judit Krisch
- c Institute of Food Engineering, University of Szeged Faculty of Engineering , Szeged , Hungary
| | - Edit Paulik
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| | - Andrea Szabó
- a Department of Public Health , University of Szeged Faculty of Medicine , Szeged , Hungary
| |
Collapse
|
315
|
Ide K, Yamada H, Umegaki K, Mizuno K, Kawakami N, Hagiwara Y, Matsumoto M, Yoshida H, Kim K, Shiosaki E, Yokochi T, Harada K. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson's disease. Nutrition 2014; 31:406-8. [PMID: 25592020 DOI: 10.1016/j.nut.2014.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Vitamin C is a major antioxidant and also is known as a neuromodulator in dopaminergic neurons. The aim of this study was to investigate the association between lymphocyte and plasma vitamin C levels in various stages of Parkinson's disease (PD). METHODS Sixty-two individuals with PD (age 71 ± 8.8 y [mean ± SD]) being treated at Shizuoka General Hospital from December 2007 to August 2013 were consecutively recruited. PD severity was classified using the Hoehn-Yahr scale for staging PD. Fasting blood samples were collected, and plasma and lymphocyte vitamin C levels were measured. The association between PD severity and vitamin C levels was estimated by ordinal logistic regression with confounding variables. RESULTS The distribution of Hoehn-Yahr stages in patients was as follows: stage I, 7; II, 28; III, 16; and IV, 11. Lymphocyte vitamin C levels in patients with severe PD were significantly lower (odds ratio [OR], 0.87; 95% confidence interval [CI], 0.80-0.97; P < 0.01) compared with those at less severe stages. Plasma vitamin C levels also tended to be lower in patients with severe PD; however, this was not significant (OR, 0.98; 95% CI, 0.96-1.00; P = 0.09). CONCLUSIONS Our findings suggest that lymphocyte vitamin C levels in the peripheral blood may be a potentially useful biomarker for the progression of PD.
Collapse
Affiliation(s)
- Kazuki Ide
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan.
| | - Keizo Umegaki
- National Institute of Health and Nutrition, Tokyo, Japan
| | - Katsuki Mizuno
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nobuko Kawakami
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuka Hagiwara
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| | - Mizuki Matsumoto
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hidefumi Yoshida
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| | - Kang Kim
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| | - Emi Shiosaki
- Department of Clinical Laboratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Tsunehiro Yokochi
- Department of Clinical Laboratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Kiyoshi Harada
- Department of Neurology, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
316
|
Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:460. [PMID: 25185110 PMCID: PMC4423646 DOI: 10.1186/s13054-014-0460-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This narrative review summarizes the role of vitamin C in mitigating oxidative injury-induced microcirculatory impairment and associated organ failure in ischemia/reperfusion or sepsis. Preclinical studies show that high-dose vitamin C can prevent or restore microcirculatory flow impairment by inhibiting activation of nicotinamide adenine dinucleotide phosphate-oxidase and inducible nitric oxide synthase, augmenting tetrahydrobiopterin, preventing uncoupling of oxidative phosphorylation, and decreasing the formation of superoxide and peroxynitrite, and by directly scavenging superoxide. Vitamin C can additionally restore vascular responsiveness to vasoconstrictors, preserve endothelial barrier by maintaining cyclic guanylate phosphatase and occludin phosphorylation and preventing apoptosis. Finally, high-dose vitamin C can augment antibacterial defense. These protective effects against overwhelming oxidative stress due to ischemia/reperfusion, sepsis or burn seems to mitigate organ injury and dysfunction, and promote recovery after cardiac revascularization and in critically ill patients, in the latter partially in combination with other antioxidants. Of note, several questions remain to be solved, including optimal dose, timing and combination of vitamin C with other antioxidants. The combination obviously offers a synergistic effect and seems reasonable during sustained critical illness. High-dose vitamin C, however, provides a cheap, strong and multifaceted antioxidant, especially robust for resuscitation of the circulation. Vitamin C given as early as possible after the injurious event, or before if feasible, seems most effective. The latter could be considered at the start of cardiac surgery, organ transplant or major gastrointestinal surgery. Preoperative supplementation should consider the inhibiting effect of vitamin C on ischemic preconditioning. In critically ill patients, future research should focus on the use of short-term high-dose intravenous vitamin C as a resuscitation drug, to intervene as early as possible in the oxidant cascade in order to optimize macrocirculation and microcirculation and limit cellular injury.
Collapse
|
317
|
Samhan-Arias AK, Gutierrez-Merino C. Purified NADH-cytochrome b5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite. Brain Struct Funct 2014; 73:174-189. [PMID: 24816293 DOI: 10.1007/s00429-015-1036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 10/23/2022]
Abstract
Cytochrome b5 reductase (Cb5R) is a pleiotropic flavoprotein that catalyzes multiple one-electron reduction reactions with various redox partners in cells. In earlier work from our laboratory, we have shown its implication in the generation of reactive oxygen species (ROS), primarily a superoxide anion overshoot peak, which plays a major role as a triggering event for the acceleration of apoptosis in cerebellar granule neurons in culture. However, the results obtained in that work did not allow us to exclude the possibility that this superoxide anion production could be derived from Cb5R acting in concert with other cellular components. In this work, we have purified Cb5R from pig liver and we have experimentally shown that this enzyme catalyzed NADH-dependent production of superoxide anion, assayed with cytochrome c and nitroblue tetrazolium as detection reagents for this particular ROS. The basic kinetic parameters for this novel NADH-dependent activity of Cb5R at 37°C are Vmax = 3.0 ± 0.5 μmol/min/mg of purified Cb5R and KM(NADH) = 2.8 ± 0.3 μM NADH. In addition, we report that apocynin, a widely used inhibitor of nonmitochondrial ROS production in mammalian cell cultures and tissues, is a potent inhibitor of purified Cb5R activity at the concentrations used in the experiments done with cell cultures. In the presence of apocynin the KM(NADH) value of Cb5R increases, and docking simulations indicate that apocynin can bind to a site near to or partially overlapping the NADH binding site of Cb5R. Other ROS, such as nitric oxide and peroxynitrite, have inhibitory effects on purified Cb5R, providing the basis for a feedback cellular protection mechanism through modulation of excessive extramitochondrial superoxide anion production by Cb5R. Both kinetic assays and docking simulations suggest that nitric oxide-induced nitrosylation (including covalent adduction of nitroso functional groups) of Cb5R cysteines and peroxynitrite-induced tyrosine nitration and cysteine oxidation modified the conformation of the NADH binding domain leading to a decreased affinity of Cb5R for NADH.
Collapse
Affiliation(s)
- Alejandro K Samhan-Arias
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain.
| | - Carlos Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
318
|
Søgaard D, Lindblad MM, Paidi MD, Hasselholt S, Lykkesfeldt J, Tveden-Nyborg P. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain. Nutr Res 2014; 34:639-45. [DOI: 10.1016/j.nutres.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/18/2014] [Accepted: 07/02/2014] [Indexed: 12/17/2022]
|
319
|
Huang YN, Lai CC, Chiu CT, Lin JJ, Wang JY. L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures. PLoS One 2014; 9:e97276. [PMID: 24983461 PMCID: PMC4077707 DOI: 10.1371/journal.pone.0097276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/17/2014] [Indexed: 01/25/2023] Open
Abstract
In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS) to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C) affected neuroinflammation. LPS (100 ng/ml) induced the expression of inducible NO synthase (iNOS) and the production of NO, interleukin (IL)-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2) in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM) attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation) of mitogen-activated protein kinases (MAPKs), such as p38 at 30 min and extracellular signal-regulated kinases (ERKs) at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK) as these inhibitors. Vit. C also reduced LPS-induced IκB-α degradation and NF-κB translocation. Thus, Vit. C suppressed the LPS-stimulated production of inflammatory mediators in neuron/glia cocultures by inhibiting the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Chien-Cheng Lai
- Division of Orthopedics, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Tsai Chiu
- Department of Neurosurgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Jhen-Jhe Lin
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
320
|
Brown TM. Neuropsychiatric scurvy. PSYCHOSOMATICS 2014; 56:12-20. [PMID: 25619670 DOI: 10.1016/j.psym.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Scurvy is a disease with well-known peripheral symptoms, such as bleeding and pain. METHODS The clinical and historical evidence for a distinct form of scurvy affecting the central nervous system, called neuropsychiatric scurvy, is reviewed. Pathophysiologic factors are described, as well as its diagnosis and management.
Collapse
Affiliation(s)
- Thomas M Brown
- Audie L. Murphy Memorial Veterans Administration Center, San Antonio, TX.
| |
Collapse
|
321
|
Yılmaz T, Gedikli Ö, Yildirim M. Evaluation of spatial memory and locomotor activity during hypercortisolism induced by the administration of dexamethasone in adult male rats. Brain Res 2014; 1595:43-50. [PMID: 24796878 DOI: 10.1016/j.brainres.2014.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/29/2023]
Abstract
In neurosurgery practice glucocorticoids are commonly used. Steroids may have central nervous system side effects affecting whole body, including steroid-induced mental agitation and psychosis. In experimental and clinical studies conducted by using dexamethasone (DEX), it has been reported that DEX adversely affects learning and memory skills. Unfortunately, there are yet no clinically accepted clinical approaches to prevent DEX-induced cognitive dysfunction. In this experimental study it was aimed to investigate the effect of chronic DEX administration on learning-memory and locomotor behaviors in adult male Sprague Dawley rats. In addition, it was also aimed to explore the potential favorable contribution of melatonin (MEL) and vitamin C (Vit C) having antioxidant and neuroprotective properties to the effects of DEX on learning-memory and locomotor behaviors. For this purpose, rats were injected 10mg/kg DEX intraperitoneally, both alone and in combination with MEL (40 mg/kg) and Vit C (100mg/kg), for 9 days, and the animals were tested using the radial arm maze and open field apparatus. The test results revealed that DEX caused a significant decrease in spatial memory and locomotor activities and MEL and Vit C failed to reverse losses in these activities. Furthermore, DEX led to a gradual weight loss that reached 30% of the initial weight at 9th day of the injection. DEX administration causes a generalized loss of behavioral activity of rats. Experimental studies devised to investigate effects of DEX should take into account this DEX-induced generalized behavioral loss when assessing the effects of DEX on learning and memory skills. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Tevfik Yılmaz
- Department of Neurosurgery, Faculty of Medicine, Dicle University, Yenişehir 21280, Diyarbakir, Turkey.
| | - Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
322
|
Paidi MD, Schjoldager JG, Lykkesfeldt J, Tveden-Nyborg P. Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression. Nutrients 2014; 6:1809-22. [PMID: 24787032 PMCID: PMC4042571 DOI: 10.3390/nu6051809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022] Open
Abstract
Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency.
Collapse
Affiliation(s)
- Maya D Paidi
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.
| | - Janne G Schjoldager
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.
| | - Pernille Tveden-Nyborg
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.
| |
Collapse
|
323
|
Ching B, Ong JLY, Chng YR, Chen XL, Wong WP, Chew SF, Ip YK. L‐gulono‐7‐lactone oxidase expression and vitamin C synthesis in the brain and kidney of the African lungfish,
Protopterus annectens. FASEB J 2014; 28:3506-17. [DOI: 10.1096/fj.14-249508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biyun Ching
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Jasmine L. Y. Ong
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - You Rong Chng
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Xiu Ling Chen
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Wai P. Wong
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science EducationNational Institute of Education, Nanyang Technological UniversitySingaporeRepublic of Singapore
| | - Yuen K. Ip
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| |
Collapse
|
324
|
Fiorani M, Azzolini C, Guidarelli A, Cerioni L, Cantoni O. A novel biological role of dehydroascorbic acid: Inhibition of Na(+)-dependent transport of ascorbic acid. Pharmacol Res 2014; 84:12-7. [PMID: 24769194 DOI: 10.1016/j.phrs.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/01/2022]
Abstract
A U937 cell clone, in which low micromolar concentrations of ascorbic acid (AA) and dehydroascorbic acid (DHA) are taken up at identical rates, was used to investigate possible interactions between transport systems mediating cellular uptake of the two forms of the vitamin. Results obtained with different experimental approaches showed that DHA potently and reversibly inhibits AA uptake through Na(+)-AA cotransporters. Hence, a progressive increase in extracellular DHA concentrations in the presence of a fixed amount of AA caused an initial decrease in the net amount of vitamin C accumulated, and eventually, at higher levels, it caused an accumulation of the vitamin solely based on DHA uptake through hexose transporters. DHA-dependent inhibition of AA uptake was also detected in various other cell types. Taken together, our results provide evidence of a novel biological effect mediated by concentrations of DHA compatible with those produced at inflammatory sites.
Collapse
Affiliation(s)
- Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Catia Azzolini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Liana Cerioni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy.
| |
Collapse
|
325
|
Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients 2014; 6:1752-81. [PMID: 24763117 PMCID: PMC4011065 DOI: 10.3390/nu6041752] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer’s disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration.
Collapse
|
326
|
Orally administrated ascorbic acid suppresses neuronal damage and modifies expression of SVCT2 and GLUT1 in the brain of diabetic rats with cerebral ischemia-reperfusion. Nutrients 2014; 6:1554-77. [PMID: 24739976 PMCID: PMC4011051 DOI: 10.3390/nu6041554] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is known to exacerbate cerebral ischemic injury. In the present study, we investigated antiapoptotic and anti-inflammatory effects of oral supplementation of ascorbic acid (AA) on cerebral injury caused by middle cerebral artery occlusion and reperfusion (MCAO/Re) in rats with streptozotocin-induced diabetes. We also evaluated the effects of AA on expression of sodium-dependent vitamin C transporter 2 (SVCT2) and glucose transporter 1 (GLUT1) after MCAO/Re in the brain. The diabetic state markedly aggravated MCAO/Re-induced cerebral damage, as assessed by infarct volume and edema. Pretreatment with AA (100 mg/kg, p.o.) for two weeks significantly suppressed the exacerbation of damage in the brain of diabetic rats. AA also suppressed the production of superoxide radical, activation of caspase-3, and expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in the ischemic penumbra. Immunohistochemical staining revealed that expression of SVCT2 was upregulated primarily in neurons and capillary endothelial cells after MCAO/Re in the nondiabetic cortex, accompanied by an increase in total AA (AA + dehydroascorbic acid) in the tissue, and that these responses were suppressed in the diabetic rats. AA supplementation to the diabetic rats restored these responses to the levels of the nondiabetic rats. Furthermore, AA markedly upregulated the basal expression of GLUT1 in endothelial cells of nondiabetic and diabetic cortex, which did not affect total AA levels in the cortex. These results suggest that daily intake of AA attenuates the exacerbation of cerebral ischemic injury in a diabetic state, which may be attributed to anti-apoptotic and anti-inflammatory effects via the improvement of augmented oxidative stress in the brain. AA supplementation may protect endothelial function against the exacerbated ischemic oxidative injury in the diabetic state and improve AA transport through SVCT2 in the cortex.
Collapse
|
327
|
Lane DJR, Lawen A. A rapid and specific microplate assay for the determination of intra- and extracellular ascorbate in cultured cells. J Vis Exp 2014. [PMID: 24747535 DOI: 10.3791/51322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes--a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology & Bosch Institute, University of Sydney;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University;
| |
Collapse
|
328
|
Ornelas-Paz JDJ, Yahia EM. Effect of the moisture content of forced hot air on the postharvest quality and bioactive compounds of mango fruit (Mangifera indica L. cv. Manila). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1078-1083. [PMID: 24022858 DOI: 10.1002/jsfa.6384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 07/22/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The effectiveness of hot air treatments in controlling decay and insects in mango fruit has been demonstrated and has usually been assessed as a function of the temperature of the heated air and the duration of the treatment. However, the contribution of the moisture content of the heated air has received little attention, especially with regard to fruit quality. In this study, mango fruits (cv. Manila) at mature-green stage were treated with moist (95% relative humidity (RH)) or dry (50% RH) hot forced air (43 °C, at 2.5 m s(-1) for 220 min) and then held at 20 °C for 9 days and evaluated periodically. RESULTS The heating rate was higher with moist air. Treatments with moist and dry air did not cause injury to the fruit. Treatment with moist air temporarily slowed down color development, softening, weight loss and β-carotene biosynthesis. This slowing down was clearly observed during the first 4-5 days at 20 °C. However, non-heated fruit and fruit heated with dry air showed similar quality at the end of storage. CONCLUSION The moisture content of the heating air differentially modulated the postharvest ripening of 'Manila' mangoes. Moist air temporarily slowed down the ripening process of this mango cultivar.
Collapse
Affiliation(s)
- José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo, AC-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, 31570, Cuauhtémoc, Chihuahua, Mexico
| | | |
Collapse
|
329
|
Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L, Mao L. Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Anal Chem 2014; 86:3909-14. [DOI: 10.1021/ac404232h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Xiang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lin Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Liming Dai
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
330
|
Farina D, Alvau MD, Puggioni G, Calia G, Bazzu G, Migheli R, Sechi O, Rocchitta G, Desole MS, Serra PA. Implantable (Bio)sensors as new tools for wireless monitoring of brain neurochemistry in real time. World J Pharmacol 2014; 3:1-17. [DOI: 10.5497/wjp.v3.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Implantable electrochemical microsensors are characterized by high sensitivity, while amperometric biosensors are very selective in virtue of the biological detecting element. Each sensor, specific for every neurochemical species, is a miniaturized high-technology device resulting from the combination of several factors: electrode material, shielding polymers, applied electrochemical technique, and in the case of biosensors, biological sensing material, stabilizers, and entrapping chemical nets. In this paper, we summarize the available technology for the in vivo electrochemical monitoring of neurotransmitters (dopamine, norepinephrine, serotonin, acetylcholine, and glutamate), bioenergetic substrates (glucose, lactate, and oxygen), neuromodulators (ascorbic acid and nitric oxide), and exogenous molecules such as ethanol. We also describe the most represented biotelemetric technologies in order to wirelessly transmit the signals of the above-listed neurochemicals. Implantable (Bio)sensors, integrated into miniaturized telemetry systems, represent a new generation of analytical tools that could be used for studying the brain’s physiology and pathophysiology and the effects of different drugs (or toxic chemicals such as ethanol) on neurochemical systems.
Collapse
|
331
|
Sage JM, Carruthers A. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex. Am J Physiol Cell Physiol 2014; 306:C910-7. [PMID: 24598365 DOI: 10.1152/ajpcell.00044.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GLUT1, the primary glucose transport protein in human erythrocytes [red blood cells (RBCs)], also transports oxidized vitamin C [dehydroascorbic acid (DHA)]. A recent study suggests that RBC GLUT1 transports DHA as its primary substrate and that only a subpopulation of GLUT1 transports sugars. This conclusion is based on measurements of cellular glucose and DHA equilibrium spaces, rather than steady-state transport rates. We have characterized RBC transport of DHA and 3-O-methylglucose (3-OMG), a transported, nonmetabolizable sugar. Steady-state 3-OMG and DHA uptake in the absence of intracellular substrate are characterized by similar Vmax (0.16 ± 0.01 and 0.13 ± 0.02 mmol·l(-1)·min(-1), respectively) and apparent Km (1.4 ± 0.2 and 1.6 ± 0.7 mM, respectively). 3-OMG and DHA compete for uptake, with Ki(app) of 0.7 ± 0.4 and 1.1 ± 0.1 mM, respectively. Uptake measurements using RBC inside-out-membrane vesicles demonstrate that 3-OMG and DHA compete at the cytoplasmic surface of the membrane, with Ki(app) of 0.7 ± 0.1 and 0.6 ± 0.1 mM, respectively. Intracellular 3-OMG stimulates unidirectional uptake of 3-OMG and DHA. These findings indicate that DHA and 3-OMG bind at mutually exclusive sites at exo- and endofacial surfaces of GLUT1 and are transported via the same GLUT1 complex.
Collapse
Affiliation(s)
- Jay M Sage
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony Carruthers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
332
|
The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 2014; 9:e90693. [PMID: 24587409 PMCID: PMC3938812 DOI: 10.1371/journal.pone.0090693] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia. METHODS Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant non-enzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed. RESULTS After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased non-enzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels. CONCLUSION The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity.
Collapse
|
333
|
High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis 2014; 5:e1083. [PMID: 24577081 PMCID: PMC3944243 DOI: 10.1038/cddis.2014.26] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/22/2013] [Accepted: 01/07/2014] [Indexed: 11/20/2022]
Abstract
Blood–brain barrier (BBB) breakdown and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disease characterized by cognitive deficits and neuronal loss. Besides vitamin C being as one of the important antioxidants, recently, it has also been reported as a modulator of BBB integrity and mitochondria morphology. Plasma levels of vitamin C are decreased in AD patients, which can affect disease progression. However, investigation using animal models on the role of vitamin C in the AD pathogenesis has been hampered because rodents produce with no dependence on external supply. Therefore, to identify the pathogenic importance of vitamin C in an AD mouse model, we cross-bred 5 familial Alzheimer's disease mutation (5XFAD) mice (AD mouse model) with ι-gulono-γ-lactone oxidase (Gulo) knockout (KO) mice, which are unable to synthesize their own vitamin C, and produced Gulo KO mice with 5XFAD mice background (KO-Tg). These mice were maintained on either low (0.66 g/l) or high (3.3 g/l) supplementation of vitamin C. We found that the higher supplementation of vitamin C had reduced amyloid plaque burden in the cortex and hippocampus in KO-Tg mice, resulting in amelioration of BBB disruption and mitochondrial alteration. These results suggest that intake of a larger amount of vitamin C could be protective against AD-like pathologies.
Collapse
|
334
|
Spector R, Johanson CE. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 2014; 7:3. [PMID: 24410751 PMCID: PMC3896782 DOI: 10.1186/1756-6606-7-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023] Open
Abstract
The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function.
Collapse
Affiliation(s)
- Reynold Spector
- Robert Wood Johnson Medical School, 105 Stone Hill Road, Colts Neck NJ 07722, USA.
| | | |
Collapse
|
335
|
Pandey KB, Rizvi SI. Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans. Rejuvenation Res 2014; 16:232-40. [PMID: 23537202 DOI: 10.1089/rej.2013.1419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative damage followed by disturbed cellular homeostasis is involved in aging and related consequences. Lipid peroxidation, post-translational modifications of proteins, and an impaired defense system due to increased oxidative stress jeopardize cell fate and functions, resulting in cell senescence. Resveratrol, a natural stilbene, has extensively been reported to elicit a plethora of health-promoting effects. The present study carried out on 97 healthy human subjects (62 males and 35 females) of both sexes provides experimental evidence that resveratrol confers ability to up-regulate the plasma membrane redox system (PMRS) along with ascorbate free radical reductase, a compensatory system operating in the cell to maintain cellular redox state. Furthermore, resveratrol provided significant protection against lipid peroxidation and protein carbonylation and restored the cellular redox homeostasis measured in terms of glutathione (GSH) and sulfhydryl (-SH) group levels during oxidation injury in erythrocytes of different age groups in humans. Findings suggest a possible role of resveratrol in retardation of age-dependent oxidative stress.
Collapse
|
336
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
337
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
338
|
Takaoka Y, Kawakami N. Fruit and vegetable consumption in adolescence and health in early adulthood: a longitudinal analysis of the statistics Canada's National Population Health Survey. BMC Public Health 2013; 13:1206. [PMID: 24359230 PMCID: PMC3878169 DOI: 10.1186/1471-2458-13-1206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to explore a longitudinal relationship between fruit and vegetable consumption in adolescence and two health-related outcomes (i.e., self-rated health and mental health) in early adulthood in the community. METHODS Data from a longitudinal cohort of the Canadian National Population Health Survey (NPHS) were used. Participants of the 2002/03 survey aged 15-17 years old were followed and surveyed in 2008/09. The number of the sample used in the statistical analyses was 250 (n=250). Multiple logistic regression analyses were used to assess the associations of fruit and vegetable consumption in the adolescence (classified into tertiles) with non-excellent (or poor) self-rated health and poor mental health (defined as having a K6 score of 5+) at follow-up. RESULTS After adjusting for sex, age, the highest level of education in household, and the other covariates, participants who consumed fruits and vegetables most frequently at baseline had a significantly smaller odds ratio for being non-excellent self-rated health (OR 0.30, 95% CI 0.11, 0.83). No significant associations were found between fruit and vegetable consumption at baseline and poor mental health at follow-up in any model (p>0.05). CONCLUSIONS The results of this longitudinal study suggest that high fruit and vegetable consumption in adolescence has a beneficial influence on self-rated health in the early adulthood.
Collapse
Affiliation(s)
- Yuriko Takaoka
- School of Integrated Health Sciences, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
339
|
Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:152798. [PMID: 24386001 PMCID: PMC3872412 DOI: 10.1155/2013/152798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/19/2013] [Indexed: 01/23/2023]
Abstract
Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolism (American ginseng), plays a lot of beneficial effects on disorders of central nervous system. In this paper, the neuroprotective effect of PF11 on Parkinson's disease (PD) and the possible mechanism were investigated in a rat PD model. PF11 was orally administered at 3, 6, and 12 mg/kg once daily for a period of 2 weeks before and 1 week after the unilateral lesion of left medial forebrain bundle (MFB) induced by 6-hydroxydopamine (6-OHDA). The results showed that PF11 markedly improved the locomotor, motor balance, coordination, and apomorphine-induced rotations in 6-OHDA-lesioned rats. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and the content of extracellular dopamine (DA) in striatum were also significantly increased after PF11 treatment. Moreover, significant reduction in the levels of striatal extracellular hydroxyl radical (∙OH), detected as 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), and increase in the level of striatal extracellular ascorbic acid (AA) were observed in the PF11-treated groups compared with 6-OHDA-lesioned rats. Taken together, we propose that PF11 has potent anti-Parkinson property possibly through inhibiting free radical formation and stimulating endogenous antioxidant release.
Collapse
|
340
|
Rebec GV. Dysregulation of corticostriatal ascorbate release and glutamate uptake in transgenic models of Huntington's disease. Antioxid Redox Signal 2013; 19:2115-28. [PMID: 23642110 PMCID: PMC3869431 DOI: 10.1089/ars.2013.5387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/05/2013] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Dysregulation of cortical and striatal neuronal processing plays a critical role in Huntington's disease (HD), a dominantly inherited condition that includes a progressive deterioration of cognitive and motor control. Growing evidence indicates that ascorbate (AA), an antioxidant vitamin, is released into striatal extracellular fluid when glutamate is cleared after its release from cortical afferents. Both AA release and glutamate uptake are impaired in the striatum of transgenic mouse models of HD owing to a downregulation of glutamate transporter 1 (GLT1), the protein primarily found on astrocytes and responsible for removing most extracellular glutamate. Improved understanding of an AA-glutamate interaction could lead to new therapeutic strategies for HD. RECENT ADVANCES Increased expression of GLT1 following treatment with ceftriaxone, a beta-lactam antibiotic, increases striatal glutamate uptake and AA release and also improves the HD behavioral phenotype. In fact, treatment with AA alone restores striatal extracellular AA to wild-type levels in HD mice and not only improves behavior but also improves the firing pattern of neurons in HD striatum. CRITICAL ISSUES Although evidence is growing for an AA-glutamate interaction, several key issues require clarification: the site of action of AA on striatal neurons; the precise role of GLT1 in striatal AA release; and the mechanism by which HD interferes with this role. FUTURE DIRECTIONS Further assessment of how the HD mutation alters corticostriatal signaling is an important next step. A critical focus is the role of astrocytes, which express GLT1 and may be the primary source of extracellular AA.
Collapse
Affiliation(s)
- George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University , Bloomington, Indiana
| |
Collapse
|
341
|
Gess B, Röhr D, Young P. Ascorbic acid and sodium-dependent vitamin C transporters in the peripheral nervous system: from basic science to clinical trials. Antioxid Redox Signal 2013; 19:2105-14. [PMID: 23642070 DOI: 10.1089/ars.2013.5380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Ascorbic acid and sodium-dependent vitamin C transporters (SVCT) have been shown to have important functions in the peripheral nervous system (PNS). Ascorbic acid is known to promote myelination in vitro in Schwann cell/dorsal root ganglion co-cultures by the formation of a collagen- and laminin-containing extracellular matrix. RECENT ADVANCES Recently, the function of ascorbic acid and SVCT2 in the PNS has been shown in vivo as well. Several studies on ascorbic acid treatment of Charcot-Marie-Tooth neuropathy 1A (CMT1A) have been completed and showed no clinical benefit. CRITICAL ISSUES Possible reasons for the failure of ascorbic acid in CMT1A treatment are discussed in this review. More preclinical trials, ideally using different animal models, should be considered before the initiation of clinical trials in humans. More knowledge about ascorbic acid transport kinetics and inter-individual differences in humans is necessary for future studies. FUTURE DIRECTIONS Further research into ascorbic acid transport mechanisms in the PNS is warranted. Especially the effects of transgenic or pharmacologic SVCT2 up-regulation on PNS myelination and remyelination will be an interesting area of research in the future. Furthermore, the potential use of ascorbic acid for peripheral neuropathies other than CMT1A would be a possible future research direction.
Collapse
Affiliation(s)
- Burkhard Gess
- 1 Department of Neurology, Clinic for Sleep Medicine and Neuromuscular Disorders, University of Muenster , Muenster, Germany
| | | | | |
Collapse
|
342
|
Raghu J, Raghuveer VC, Rao MC, Somayaji NS, Babu PB. The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure. Interdiscip Toxicol 2013; 6:217-21. [PMID: 24678261 PMCID: PMC3945761 DOI: 10.2478/intox-2013-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 01/23/2023] Open
Abstract
Chronic exposure to fluoride causes dental and skeletal fluorosis. Fluoride exposure is also detrimental to soft tissues and organs. The present study aimed at evaluation of the effect of Ginkgo biloba and ascorbic acid on learning and memory deficits caused by fluoride exposure. Male Wistar rats were divided into five groups (n=6). Group 1 control. Groups 2 to 5 received 100 ppm of sodium fluoride over 30 days. Groups 3, 4 and 5 were further treated for 15 days receiving respectively 1% gum acacia solution, 100 mg/kg body weight ascorbic acid, and 100mg/kg body weight Ginkgo biloba extract. After 45 days, all animals were subjected to behavioural tests. The results showed that fluoride affected learning and memory. Fluoride causes oxidative stress and neurodegeneration, thereby affecting learning and memory. Ascorbic acid and Ginkgo biloba were found to augment the reversal of learning and memory deficits caused by fluoride ingestion.
Collapse
Affiliation(s)
- Jetti Raghu
- Department of Anatomy, Melaka Manipal Medical College, Manipal University, Manipal, Karnataka, India
| | - Vasudeva C. Raghuveer
- Department of Pathology, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Mallikarjuna C. Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Nagabhooshana S. Somayaji
- Department of Anatomy, Melaka Manipal Medical College, Manipal University, Manipal, Karnataka, India
| | - Prakash B. Babu
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
343
|
Wang D, Piknova B, Solomon SB, Cortes-Puch I, Kern SJ, Sun J, Kanias T, Gladwin MT, Helms C, Kim-Shapiro DB, Schechter AN, Natanson C. In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines. Transfusion 2013; 53:3149-63. [PMID: 23488474 PMCID: PMC3686899 DOI: 10.1111/trf.12162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell-free hemoglobin (Hb) in the vasculature leads to vasoconstriction and injury. Proposed mechanisms have been based on nitric oxide (NO) scavenging by oxyhemoglobin (oxyHb) or processes mediated by oxidative reactions of methemoglobin (metHb). To clarify this, we tested the vascular effect and fate of oxyHb or metHb infusions. STUDY DESIGN AND METHODS Twenty beagles were challenged with 1-hour similar infusions of (200 μmol/L) metHb (n = 5), oxyHb (n = 5), albumin (n = 5), or saline (n = 5). Measurements were taken over 3 hours. RESULTS Infusions of the two pure Hb species resulted in increases in mean arterial blood pressure (MAP), systemic vascular resistance index, and NO consumption capacity of plasma (all p < 0.05) with the effects of oxyHb being greater than that from metHb (MAP; increase 0 to 3 hr; 27 ± 6% vs. 7 ± 2%, respectively; all p < 0.05). The significant vasoconstrictive response of metHb (vs. albumin and saline controls) was related to in vivo autoreduction of metHb to oxyHb, and the vasoactive Hb species that significantly correlated with MAP was always oxyHb, either from direct infusion or after in vivo reduction from metHb. Clearance of total Hb from plasma was faster after metHb than oxyHb infusion (p < 0.0001). CONCLUSION These findings indicate that greater NO consumption capacity makes oxyHb more vasoactive than metHb. Additionally, metHb is reduced to oxyHb after infusion and cleared faster or is less stable than oxyHb. Although we found no direct evidence that metHb itself is involved in acute vascular effects, in aggregate, these studies suggest that metHb is not inert and its mechanism of vasoconstriction is due to its delayed conversion to oxyHb by plasma-reducing agents.
Collapse
Affiliation(s)
- Dong Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Anesthesia and Critical Care Medicine Department, West China Hospital of Sichuan University, Cheng Du, China
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Irene Cortes-Puch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Critical Care Medicine Department, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Steven J. Kern
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tamir Kanias
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark T. Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine Helms
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Alan. N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
344
|
Guo X, Wang Y, Shen Y, Gao Y, Chang Y, Duan X. Gene expression profiles of sodium-dependent vitamin C transporters in mice after alcohol consumption. Acta Biochim Biophys Sin (Shanghai) 2013; 45:912-20. [PMID: 24080747 DOI: 10.1093/abbs/gmt099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a serious liver problem in western countries. Our previous study has demonstrated that vitamin C plays a protective role in ALD. The vitamin C homeostasis is tightly regulated by sodium-dependent vitamin C transporters (SVCTs) 1 and 2. But the role of two SVCTs in ALD is less understood. In this study, we examined the expression patterns of two SVCTs in mice after alcohol consumption. Our results suggested that alcohol consumption obviously increased the expression of two SVCTs in liver and SVCT1 in kidney and intestine, which is important for vitamin C absorption. Vitamin C supplement increased the sera vitamin C content and ameliorated the symptom of ALD. Intestinal absorption and renal re-absorption mediated by SVCT1 are key factors to increase the sera vitamin C content after alcohol consumption. We proposed that both reactive oxygen species and low vitamin C concentration regulate the expression of SVCTs, and the protective role of vitamin C is mediated by suppressing the stability of hypoxia-inducible factor-1α. Thus, our study is significant for the understanding of vitamin C homeostasis in ALD and for better use of other antioxidants in ALD therapy.
Collapse
Affiliation(s)
- Xiaoqiang Guo
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | |
Collapse
|
345
|
Use of vitamins for correction of the functional state of cytochrome P450 systems at experimental allergic encephalomyelitis. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.05.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
346
|
Liu K, Yu P, Lin Y, Wang Y, Ohsaka T, Mao L. Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Anal Chem 2013; 85:9947-54. [DOI: 10.1021/ac402620c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kun Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- Capital University of Physical Education and Sports, Beijing 100191, P. R. China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuqing Lin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuexiang Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takeo Ohsaka
- Department
of Electronic Chemistry, Interdisciplinary Graduate School of Science
and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
347
|
Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid. Brain Res 2013; 1539:7-14. [PMID: 24095796 DOI: 10.1016/j.brainres.2013.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/09/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022]
Abstract
SCOPE Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. METHODS AND RESULTS In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. CONCLUSION The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development.
Collapse
|
348
|
Spector R, Johanson CE. Sustained choroid plexus function in human elderly and Alzheimer's disease patients. Fluids Barriers CNS 2013; 10:28. [PMID: 24059870 PMCID: PMC3849253 DOI: 10.1186/2045-8118-10-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/18/2013] [Indexed: 11/24/2022] Open
Abstract
We and other investigators have postulated deterioration of essential choroid plexus (CP) functions in some elderly and especially Alzheimer’s disease patients based on apparent anatomical, histological and pathological changes in CP. We have termed this putative phenomenon CP failure. By focusing on four essential energy-requiring CP functions, specifically ascorbic acid (AA) and folate transport from blood into CSF, transthyretin synthesis and secretion into CSF, and electrolyte/acid–base balance in CSF, we were able to evaluate the hypothesis of CP failure by reviewing definitive human data. In both healthy elderly and Alzheimer’s disease patients, the CP functions normally to transport AA and folates actively from blood into CSF, synthesize and secrete transthyretin into CSF, and maintain CSF acid–base balance and ion concentrations. These human CSF compositional data provide no support for the notion of CP failure in elderly humans and Alzheimer’s disease patients.
Collapse
Affiliation(s)
- Reynold Spector
- Department of Neurosurgery, Alpert Medical School at Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| | | |
Collapse
|
349
|
Zamani M, Soleimani M, Golab F, Mohamadzadeh F, Mehdizadeh M, Katebi M. NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury. Metab Brain Dis 2013; 28:367-74. [PMID: 23640013 DOI: 10.1007/s11011-013-9408-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/10/2013] [Indexed: 12/20/2022]
Abstract
Ischemic brain injury is a leading cause of sever neurological and neurobehavioral deficits and death. The hippocampus plays vital roles in learning and memory processes and it is impaired by ischemic insults. Cerebral ischemia/reperfusion leads to Oxidative stress damage impairing the hippocampus. Here we tested whether ascorbic acid and adenosine receptor played a neuroprotective role in a mouse brain ischemia model induced by common carotid arteries occlusion. Adult male mice were randomly assigned into nine experimental groups. The animals were subjected to ischemia by the ligation of common carotid arteries for 15 min. Drugs were injected intrapritoneally once daily for 7 days. Behavioral tests performed at day 14 and then mice were killed at day 21 and their brains were fixed for microscopic studies and some samples were prepared for western blot analysis. Western blot analysis utilized to evaluate the expression of apoptosis-related proteinsin the hippocampus. Short-term memory was assessed by shuttle-box test. Our findings revealed that administration of vitamin C and N6-cyclopentyladenosine (CPA) significantly attenuated ischemia-induced brain injury. Vitamin C and CPA administration increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the ischemic mice. Ischemia caused short-term memory loss that was improved by vitamin c and CPA treatment. Our results demonstrate that treatment with vitamin C and adenosine receptor agonist attenuated cerebral ischemia/reperfusion-induced brain injury as a potential neuroprotective agent.
Collapse
Affiliation(s)
- M Zamani
- Cellular and Molecular Research Center and Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
350
|
Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 2013; 91:1609-17. [PMID: 23996657 DOI: 10.1002/jnr.23276] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/31/2023]
Abstract
Ascorbate (vitamin C) is a nonenzymatic antioxidant highly concentrated in the brain. In addition to mediating redox balance, ascorbate is linked to glutamate neurotransmission in the striatum, where it renders neuroprotection against excessive glutamate stimulation. Oxidative stress and glutamatergic overactivity are key biochemical features accompanying the loss of dopaminergic neurons in the substantia nigra that characterizes Parkinson's disease (PD). At present, it is not clear whether antiglutamate agents and ascorbate might be neuroprotective agents for PD. Thus, we tested whether ascorbate can prevent cell death from prolonged exposure to glutamate using dopaminergic neurons of human origin. To this purpose, dopamine-like neurons were obtained by differentiation of SH-SY5Y cells and then cultured for 4 days without antioxidant (antiaging) protection to evaluate glutamate toxicity and ascorbate protection as a model system of potential factors contributing to dopaminergic neuron death in PD. Glutamate dose dependently induced toxicity in dopaminergic cells largely by the stimulation of AMPA and metabotropic receptors and to a lesser extent by N-methyl-D-aspartate and kainate receptors. At relatively physiological levels of extracellular concentration, ascorbate protected cells against glutamate excitotoxicity. This neuroprotection apparently relies on the inhibition of oxidative stress, because ascorbate prevented the pro-oxidant action of the scavenging molecule quercetin, which occurred over the course of prolonged exposure, as is also seen with glutamate. Our findings show the relevance of ascorbate as a neuroprotective agent and emphasize an often underappreciated role of oxidative stress in glutamate excitotoxicity. Occurrence of a glutamate-ascorbate link in dopaminergic neurons may explain previous contradictions regarding their putative role in PD.
Collapse
Affiliation(s)
- Santiago Ballaz
- Laboratory of Movement Disorders, Department of Neuroscience, Centre for Applied Medicine Research (CIMA), University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | | | | | |
Collapse
|