301
|
Chowdhury D, Choi YE, Brault ME. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 2013; 14:181-9. [PMID: 23385724 DOI: 10.1038/nrm3523] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past decade, evolutionarily conserved microRNAs (miRNAs) have been characterized as regulators of almost every cellular process and signalling pathway. There is now emerging evidence that this new class of regulators also impinges on the DNA damage response (DDR). Both miRNAs and other small non-coding RNAs (ncRNAs) are induced at DNA breaks and mediate the repair process. These intriguing observations raise the possibility that crosstalk between ncRNAs and the DDR might provide a means of efficient and accurate DNA repair and facilitate the maintenance of genomic stability.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
302
|
Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA (NEW YORK, N.Y.) 2013; 19:230-242. [PMID: 23249749 PMCID: PMC3543090 DOI: 10.1261/rna.034926.112] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p. We identified more than 1000 genes as potential targets of miR-182-5p, most of which have a known function in pathways underlying tumor biology. Specifically, functional enrichment analysis identified components of both the DNA damage response pathway and cell cycle to be highly represented in this target cohort. Experimental validation confirmed that miR-182-5p-mediated disruption of the homologous recombination (HR) pathway is a consequence of its ability to target multiple components in that pathway. Although there is a strong enrichment for the cell cycle ontology, we do not see primary proliferative defects as a consequence of miR-182-5p overexpression. We highlight targets that could be responsible for miR-182-5p-mediated disruption of other biological processes attributed in the literature so far. Finally, we show that miR-182-5p is highly expressed in a panel of human breast cancer samples, highlighting its role as a potential oncomir in breast cancer.
Collapse
Affiliation(s)
- Keerthana Krishnan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Anita L. Steptoe
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Hilary C. Martin
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Shivangi Wani
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Nic Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Mythily Mariasegaram
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Peter T. Simpson
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Sunil R. Lakhani
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Brian Gabrielli
- Diamantina Institute, Princess Alexandra Hospital, The University of Queensland, Woolloongabba, QLD, Australia 4102
| | | | - Nicole Cloonan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia 4072
| |
Collapse
|
303
|
Ng HK, Ku CS, Cooper DN, Soong R. Clinical relevance of miRNAs in cancer. NEXT-GENERATION SEQUENCING & MOLECULAR DIAGNOSTICS 2013:42-62. [DOI: 10.2217/ebo.12.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Hong Kiat Ng
- Hong Kiat Ng is currently a PhD candidate studying at the Cancer Science Institute of Singapore, National University of Singapore. His research interests focus on applying high-throughput technologies to study epigenetic markers for identification of cancer biomarkers, as well as their role in tumorgenesis
| | - Chee-Seng Ku
- Ku Chee-Seng completed his PhD at the National University of Singapore in 2011/2012. He then worked as a Research Associate at the Cancer Science Institute of Singapore. His research interests focus on applying high-throughput microarray and sequencing technologies for studies on human genetic variation, disease genetics (Mendelian and complex diseases) and for diagnostics application. Currently, he is a Foreign Adjunct Faculty at the Department of Medical Epidemiology and Biostatistics, Karolinska
| | - David N Cooper
- David N Cooper is Professor of Human Molecular Genetics at Cardiff University, UK. His research interests are largely focused upon elucidating the mechanisms of mutagenesis underlying human genetic disease. He has published over 350 papers in the field of human molecular genetics and has coauthored/coedited a number of books on mutation in the context of inherited disease or molecular evolution. He curates the Human Gene Mutation Database and is European Editor of Human Genetics
| | | |
Collapse
|
304
|
Genomic and Epigenomic Cross-talks in the Regulatory Landscape of miRNAs in Breast Cancer. Mol Cancer Res 2013; 11:315-28. [DOI: 10.1158/1541-7786.mcr-12-0649] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
305
|
Chiang CH, Hou MF, Hung WC. Up-regulation of miR-182 by β-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta Gen Subj 2013; 1830:3067-76. [PMID: 23333633 DOI: 10.1016/j.bbagen.2013.01.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND MiR-182 is a member of the miR-183 cluster located at human chromosome 7q32 region and is up-regulated in human cancers. We study the regulation of miR-182 expression and its oncogenic role. METHODS MiR-182 level was investigated by real-time reverse transcription-PCR. Chromatin immunoprecipitation assay was used to confirm promoter binding of transcription factors. The correlation between miR-182 and RECK was analyzed by Western blotting, real-time RT-PCR and 3(')-untranslated region reporter assay. Zymography, matrix metalloproteinase activity, invasion and colony formation were used to study the tumorigenic activity. RESULTS MiR-182 is over-expressed in human breast tumor tissues and cell lines. Inhibition or knockdown of β-catenin reduced miR-182 level in MDA-MB-231 cells. ChIP assay confirmed the binding of β-catenin on miR-182 promoter. Anti-miR-182 increased the MMP inhibitor RECK protein in MDA-MB-231 cells while pre-miR-182 reduced RECK protein but not mRNA in normal mammary epithelial H184B5F5/M10 cells. Restoration of RECK protein by anti-miR-182 attenuated MMP-9 activity, cell invasion and colony formation. Ectopic expression of miR-182 inhibited restoration of RECK protein by β-catenin inhibitor indicating miR-182 is important for β-catenin-induced down-regulation of RECK. An inverse association between miR-182 and RECK was demonstrated in breast tumor tissues. CONCLUSIONS We provide evidence that miR-182 is up-regulated by β-catenin signaling pathway in breast cancer and its up-regulation increases tumorigenicity and invasiveness by repressing RECK. GENERAL SIGNIFICANCE Our data demonstrate for the first time that miR-182 expression is controlled by β-catenin. In addition, we identify a new miR-182 target RECK which is important for miR-182-induced tumorigenesis.
Collapse
Affiliation(s)
- Chi-Hsiang Chiang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
306
|
Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle 2012; 12:32-42. [PMID: 23255103 DOI: 10.4161/cc.23051] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response (DDR) pathways play critical roles in protecting the genome from DNA damage. Abrogation of DDR often results in elevated genomic instability and cellular sensitivity to DNA damaging agents. Many proteins involved in DDR are subjected to precise regulation at multiple levels, such as transcriptional control and posttranslational modifications, in response to DNA damage. MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. The expression levels of some miRNAs change in response to DNA damage. Some miRNAs, such as miR-24, 138, 96 and 182, have been implicated in DDR and/or DNA repair and affect cellular sensitivity to DNA damaging agents. In this review, we summarize recent findings related to the emerging roles of miRNAs in regulating DDR and DNA repair and discuss their potential in cancer therapy.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
307
|
Hegre SA, Sætrom P, Aas PA, Pettersen HS, Otterlei M, Krokan HE. Multiple microRNAs may regulate the DNA repair enzyme uracil-DNA glycosylase. DNA Repair (Amst) 2012; 12:80-6. [PMID: 23228472 DOI: 10.1016/j.dnarep.2012.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
Human nuclear uracil-DNA glycosylase UNG2 is essential for post-replicative repair of uracil in DNA, and UNG2 protein and mRNA levels rapidly decline in G2/M phase. Previous work has demonstrated regulation of UNG2 at the transcriptional level, as well as by protein phosphorylation and ubiquitylation. UNG2 mRNA, encoded by the UNG gene, contains a long 3'untranslated region (3'UTR) of previously unknown function. Here, we demonstrate that several conserved regions in the 3'UTR are potential seed sites for microRNAs (miRNAs), such as miR-16, miR-34c, and miR-199a. Our results show that these miRNAs down-regulate UNG activity, UNG mRNA, and UNG protein levels. Down-regulation was dependent on the 3'UTR, indicating that the miRNAs directly target the conserved seed sites in the 3'UTR. These results add miRNAs as a new modality to UNG's increasing list of complex regulatory mechanisms.
Collapse
Affiliation(s)
- Siv A Hegre
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
308
|
McMillen BD, Aponte MM, Liu Z, Helenowski IB, Scholtens DM, Buttin BM, Wei JJ. Expression analysis of MIR182 and its associated target genes in advanced ovarian carcinoma. Mod Pathol 2012; 25:1644-53. [PMID: 22790015 DOI: 10.1038/modpathol.2012.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BRCA1/BRCA2 mutations are common and the hallmarks of high-grade serous ovarian carcinoma. We found that MIR182, a negative BRCA1 regulator, is significantly overexpressed in high-grade serous ovarian carcinoma. To examine whether overexpression of MIR182 and its target genes, including BRCA1, HMGA2 (high-mobility group A2), FOXO3 and MTSS1, are associated with high-grade serous ovarian carcinoma tumor types and clinical outcome, we studied MIR182 by in situ hybridization and its target gene expression by immunohistochemistry in 117 cases of advanced ovarian cancer. We found that high-grade serous ovarian carcinoma had significantly higher MIR182 (P=0.0003) and HMGA2 (P=0.04) expression, and significantly lower BRCA1 (P<0.0001) and FOXO3 (P<0.001) expression than normal controls. MIR182 is significantly correlated with MTSS1 expression (r=0.31; P<0.001), whereas other target genes did not show a significant correlation with MIR182, indicating a complicated regulatory mechanisms of these genes in high-grade serous ovarian carcinoma. Among the examined MIR182 target genes, only HMGA2 was significantly associated with serous type carcinomas (P<0.01), ascites (P<0.01) and high death rate (P=0.02). FOXO3 expression was associated with lower-stage disease (P=0.04) and solid growth pattern (P=0.03). MIR182 expression is significantly higher in high-grade serous ovarian carcinoma than in fallopian tubes.
Collapse
Affiliation(s)
- Brian D McMillen
- Department of Pathology, Northwestern University, Feinberg Medical School, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
310
|
Chang S, Sharan SK. BRCA1 and microRNAs: emerging networks and potential therapeutic targets. Mol Cells 2012; 34:425-32. [PMID: 22936386 PMCID: PMC3887789 DOI: 10.1007/s10059-012-0118-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 01/28/2023] Open
Abstract
BRCA1 is a well-known tumor suppressor implicated in familial breast and ovarian cancer. Since its cloning in 1994, numerous studies have established BRCA1's role in diverse cellular and biochemical processes, such as DNA damage repair, cell cycle control, and transcriptional regulation as well as ubiquitination. In addition, a number of recent studies have functionally linked this tumor suppressor to another important cellular regulator, microRNAs, which are short (19-22 nt) RNAs that were discovered in the nematode in 1993. Soon their presence and function were validated in mammals, and since then, the role of microRNAs has been actively investigated in almost all biological processes, including cancer. In this review, we will describe recent progress in the understanding of the BRCA1 function through microRNAs and the role of microRNAs in regulating BRCA1, with emphasis on the implication of these processes on the development and progression of cancer. We will also discuss the therapeutic potential of microRNA mimics or inhibitors of microRNAs to affect BRCA1 function.
Collapse
Affiliation(s)
- Suhwan Chang
- Mouse Cancer Genetics Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702,
USA
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702,
USA
| |
Collapse
|
311
|
Lee YJ, Johnson KR, Hallenbeck JM. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS One 2012; 7:e47787. [PMID: 23094087 PMCID: PMC3475703 DOI: 10.1371/journal.pone.0047787] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/17/2012] [Indexed: 01/03/2023] Open
Abstract
Hibernation torpor provides an excellent model of natural tolerance to ischemia. We have previously shown that massive global SUMOylation occurs during hibernation torpor in ground squirrels. We have also shown that overexpression of Ubc9, SUMO-1, or SUMO-2/3 provides protection against ischemic damage in cell lines and cortical neurons exposed to oxygen/glucose deprivation, and in mice exposed to middle cerebral artery occlusion. We have now extended our study to other Ubiquitin-Like- Modifiers (ULMs), which have multiple cellular functions during stress, in order to assess the possibility that they also have roles in tolerance to ischemia. We found that not only SUMO conjugation, but also global protein conjugation by other ULMs including NEDD8, ISG15, UFM1 and FUB1 were significantly increased in the brains of hibernating ground squirrels during torpor. By means of miRNA microarrays of ground squirrel brain samples (from active and torpor phase) we found that the miR-200 family (miR-200a,b,c/miR-141/miR-429) and the miR-182 family (miR-182/miR-183/miR-96) were among the most consistently depressed miRNAs in the brain during the torpor phase as compared to active animals. In addition, we showed that these miRNAs are involved in the expression of various ULM proteins and their global conjugation to proteins. We observed that inhibition of the miR-200 family and/or miR-182 family miRNA activities in SHSY5Y cells increases global protein conjugation by the above ULMs and makes these cells more tolerant to OGD-induced cell death. This is the first report to describe that the natural tolerance to brain ischemia in hibernators is linked to regulation by microRNAs of a broad range of ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kory R. Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John M. Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
312
|
Muñoz MC, Laulier C, Gunn A, Cheng A, Robbiani DF, Nussenzweig A, Stark JM. RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1. J Biol Chem 2012; 287:40618-28. [PMID: 23055523 DOI: 10.1074/jbc.m112.410951] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND RNF168 promotes chromosomal break localization of 53BP1 and BRCA1; 53BP1 loss rescues homologous recombination (HR) in BRCA1-deficient cells. RESULTS RNF168 depletion suppresses HR defects caused by BRCA1 silencing; RNF168 influences HR similarly to 53BP1. CONCLUSION RNF168 is important for HR defects caused by BRCA1 loss. SIGNIFICANCE Although RNF168 promotes BRCA1 and 53BP1 localization to chromosomal breaks, RNF168 affects HR similarly to 53BP1. The RING finger nuclear factor RNF168 is required for recruitment of several DNA damage response factors to double strand breaks (DSBs), including 53BP1 and BRCA1. Because 53BP1 and BRCA1 function antagonistically during the DSB repair pathway homologous recombination (HR), the influence of RNF168 on HR has been unclear. We report that RNF168 depletion causes an elevated frequency of two distinct HR pathways (homology-directed repair and single strand annealing), suppresses defects in HR caused by BRCA1 silencing, but does not suppress HR defects caused by disruption of CtIP, RAD50, BRCA2, or RAD51. Furthermore, RNF168-depleted cells can form ionizing radiation-induced foci of the recombinase RAD51 without forming BRCA1 ionizing radiation-induced foci, indicating that this loss of BRCA1 recruitment to DSBs does not reflect a loss of function during HR. Additionally, we find that RNF168 and 53BP1 have a similar influence on HR. We suggest that RNF168 is important for HR defects caused by BRCA1 loss.
Collapse
Affiliation(s)
- Meilen C Muñoz
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
313
|
Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, Wu J, Hu B, Cheng SY, Li M, Li J. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 2012; 122:3563-78. [PMID: 23006329 DOI: 10.1172/jci62339] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
The strength and duration of NF-κB signaling are tightly controlled by multiple negative feedback mechanisms. However, in cancer cells, these feedback loops are overridden through unclear mechanisms to sustain oncogenic activation of NF-κB signaling. Previously, we demonstrated that overexpression of miR-30e* directly represses IκBα expression and leads to hyperactivation of NF-κB. Here, we report that miR-182 was overexpressed in a different set of gliomas with relatively lower miR-30e* expression and that miR-182 directly suppressed cylindromatosis (CYLD), an NF-κB negative regulator. This suppression of CYLD promoted ubiquitin conjugation of NF-κB signaling pathway components and induction of an aggressive phenotype of glioma cells both in vitro and in vivo. Furthermore, we found that TGF-β induced miR-182 expression, leading to prolonged NF-κB activation. Importantly, the results of these experiments were consistent with an identified significant correlation between miR-182 levels with TGF-β hyperactivation and activated NF-κB in a cohort of human glioma specimens. These findings uncover a plausible mechanism for sustained NF-κB activation in malignant gliomas and may suggest a new target for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Eyler CE, Rich JN. Looking in the miR-ror: TGF-β-mediated activation of NF-κB in glioma. J Clin Invest 2012; 122:3473-5. [PMID: 23006324 DOI: 10.1172/jci66058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The explosive growth in our understanding of the molecular underpinnings of glioblastomas has served as an instructive paradigm for other cancers. However, the exact nature by which many of the pathogenic drivers connect is less well known, and elucidation of relationships between critical genetic and signaling alterations may inform the development of therapeutic approaches to the disease. In this issue, Song et al. identify miR-182 induction as a mechanism by which TGF-β stimulation aberrantly activates NF-κB signaling in glioblastoma cells, clarifying a critical point of cross-talk between molecular signaling pathways. Their findings provide a greater understanding of the complex interplay between signaling pathways in cancer that may ultimately prove useful in the development of synergistic targeting approaches.
Collapse
Affiliation(s)
- Christine E Eyler
- Department of Internal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
315
|
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma. PLoS One 2012; 7:e44997. [PMID: 23028731 PMCID: PMC3441634 DOI: 10.1371/journal.pone.0044997] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/14/2012] [Indexed: 12/21/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8 Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrated transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P<0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL. These observations provide valuable guidance for further characterisation of 7q deletion.
Collapse
|
316
|
Han C, Wan G, Langley RR, Zhang X, Lu X. Crosstalk between the DNA damage response pathway and microRNAs. Cell Mol Life Sci 2012; 69:2895-906. [PMID: 22430204 PMCID: PMC11115143 DOI: 10.1007/s00018-012-0959-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a family of small, non-coding RNAs that control gene expression at the post-transcriptional level by destabilizing and inhibiting translation of their target messenger RNAs. MiRNAs are involved in the regulation of a number of fundamental biological processes, and their dysregulation is thought to contribute to several disease processes. Emerging evidence suggests that miRNAs also play a critical role in protecting the heritable genome by contributing to the regulation of the DNA damage response. Consequently, much recent investigative effort has been directed towards an improved understanding of how miRNAs are regulated in response to DNA damage. In this review, we discuss the most recent findings regarding the regulation of miRNA expression and the functional roles of miRNAs in the DNA damage response.
Collapse
Affiliation(s)
- Cecil Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Guohui Wan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xinna Zhang
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
317
|
Stecklein SR, Jensen RA. Identifying and exploiting defects in the Fanconi anemia/BRCA pathway in oncology. Transl Res 2012; 160:178-97. [PMID: 22683426 DOI: 10.1016/j.trsl.2012.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
Defects in components of DNA repair pathways are responsible for numerous hereditary cancer syndromes and are also common in many sporadic malignancies. Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 or components of the Fanconi anemia (FA) complex incite genomic instability and predispose to malignancy. The products of the BRCA and FA genes participate in a conserved DNA damage repair pathway that is responsible for repairing interstrand crosslinks and double-strand DNA breaks by homologous recombination. While the genetic instability resulting from FA/BRCA dysfunction contributes to cancer pathogenesis, deficiency of these genes also lends to therapeutic exploitation. Crosslinking agents and ionizing radiation induce damage in cancer cells that requires the FA/BRCA pathway to be resolved; thus cancers that are deficient in BRCA1, BRCA2, or any other component of the FA/BRCA pathway are hypersensitive to these agents. Moreover, emerging synthetic lethal strategies offer opportunities to selectively target cancer cells with defects in homologous recombination. Conversely, enhanced activity of the FA/BRCA pathway is responsible for acquired resistance to specific therapeutic agents, suggesting that both dysfunction and hyperfunction of the FA/BRCA repair machinery are rational targets for cancer therapy. Selection of specific cytotoxic agents based on repair capacity may improve responses and enable personalized cytotoxic chemotherapy. This article reviews the FA/BRCA pathway and current approaches to identify deficiencies within it, discusses synthetic lethality and enhanced repair capacity as causes of therapeutic hypersensitivity and resistance, respectively, and highlights recent studies that have linked FA/BRCA pathway function with therapeutic efficacy.
Collapse
Affiliation(s)
- Shane R Stecklein
- Department of Pathology and Laboratory Medicine and The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
318
|
Brewster BL, Rossiello F, French JD, Edwards SL, Wong M, Wronski A, Whiley P, Waddell N, Chen X, Bove B, Hopper JL, John EM, Andrulis I, Daly M, Volorio S, Bernard L, Peissel B, Manoukian S, Barile M, Pizzamiglio S, Verderio P, Spurdle AB, Radice P, Godwin AK, Southey MC, Brown MA, Peterlongo P. Identification of fifteen novel germline variants in the BRCA1 3'UTR reveals a variant in a breast cancer case that introduces a functional miR-103 target site. Hum Mutat 2012; 33:1665-75. [PMID: 22753153 DOI: 10.1002/humu.22159] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023]
Abstract
Mutations in the BRCA1 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron-exon boundaries, precluding the identification of mutations in noncoding and untranslated regions (UTR). As 3'UTR mutations can influence cancer susceptibility by altering protein and microRNA (miRNA) binding regions, we screened the BRCA1 3'UTR for mutations in a large series of BRCA-mutation negative, population and clinic-based breast cancer cases, and controls. Fifteen novel BRCA1 3'UTR variants were identified, the majority of which were unique to either cases or controls. Using luciferase reporter assays, three variants found in cases, c.* 528G>C, c.* 718A>G, and c.* 1271T>C and four found in controls, c.* 309T>C, c.* 379G>A, c.* 823C>T, and c.* 264C>T, reduced 3'UTR activity (P < 0.02), whereas two variants found in cases, c.* 291C>T and c.* 1139G>T, increased 3'UTR activity (P < 0.01). Three case variants, c.* 718A>G, c.* 800T>C, and c.* 1340_1342delTGT, were predicted to create new miRNA binding sites and c.* 1340_1342delTGT caused a reduction (25%, P = 0.0007) in 3'UTR reporter activity when coexpressed with the predicted targeting miRNA, miR-103. This is the most comprehensive identification and analysis of BRCA1 3'UTR variants published to date.
Collapse
Affiliation(s)
- Brooke L Brewster
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Farooqi AA, Naqi A, Qureshi MZ, Rana A, Khan A, Riaz AM, Afzal SMF, Rasheed N, Bhatti S. Prostate cancer is known by the companionship with ATM and miRNA it keeps: craftsmen of translation have dual behaviour with tailors of life thread. Cell Biochem Funct 2012; 30:611-7. [DOI: 10.1002/cbf.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 05/01/2012] [Accepted: 05/10/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Ammad Ahmad Farooqi
- Lab for Translational Oncology and Personalized Medicine; Rashid Latif Medical College; Lahore; Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology; The University of Lahore; Lahore; Pakistan
| | | | - Aamir Rana
- NUST Centre of Virology and Immunology; National University of Science and Technology; Islamabad; Pakistan
| | - Ammara Khan
- NUST Centre of Virology and Immunology; National University of Science and Technology; Islamabad; Pakistan
| | - Asma M. Riaz
- Institute of Molecular Biology and Biotechnology; The University of Lahore; Lahore; Pakistan
| | | | - Nabeelah Rasheed
- Institute of Molecular Biology and Biotechnology; The University of Lahore; Lahore; Pakistan
| | - Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology; The University of Lahore; Lahore; Pakistan
| |
Collapse
|
320
|
Casanova-Salas I, Rubio-Briones J, Fernández-Serra A, López-Guerrero JA. miRNAs as biomarkers in prostate cancer. Clin Transl Oncol 2012; 14:803-11. [PMID: 22855165 DOI: 10.1007/s12094-012-0877-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/07/2012] [Indexed: 12/21/2022]
Abstract
Current prostate cancer (PCa) diagnosis is based in the serum prostate-specific antigen biomarker and digital rectal examination. However, these methods are limited by a low predictive value (24-37 %) and a high risk of mistaken results. During last years, new promising biomarkers such as Prostate Cancer Antigen 3 (PCA-3) and TMPRSS2-ETS fusion genes have been evaluated for their clinical use. However, the search of new biomarkers that could be used for PCa diagnosis and prognosis is still needed. Recent studies have demonstrated that the aberrant expression of microRNAs (miRNAs), small non-coding RNAs that negatively regulate gene expression, is related with the development of several cancers, including PCa. Since miRNAs serve as phenotypic signatures of different cancers, they appear as potential diagnostic, prognostic and therapeutic tools. Here, we review the current knowledge of miRNA expression patterns in PCa and their role in PCa prognosis and therapeutics.
Collapse
Affiliation(s)
- Irene Casanova-Salas
- Laboratory of Molecular Biology, Fundacion Instituto Valenciano de Oncologia, Profesor Beltran Baguena 8, 46009, Valencia, Spain
| | | | | | | |
Collapse
|
321
|
Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat 2012; 135:403-13. [PMID: 22821364 DOI: 10.1007/s10549-012-2169-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022]
Abstract
Dicer is a protein that plays a pivotal role in the final steps of the microRNA (miRNA) processing pathway, to produce mature miRNAs from their precursor molecules. The purpose of the current study was to assess the biological and prognostic value of Dicer protein expression in breast cancer (BC). Dicer protein expression was assessed immunohistochemically in two sets of BC: (1) full-face sections of selected BC series with distinct stages of tumour progression (normal, in situ (DCIS), primary invasive BC and nodal metastases) to evaluate its differential expression. (2) Tissue microarray comprising a large and well-characterised series of unselected clinically annotated invasive BC (n = 1,174) to investigate its correlation with clinicopathological features and patient outcome. A gradual loss of Dicer protein expression was observed in malignant compared to normal breast tissues, with the loss being the least in DCIS and most prominent in metastatic malignant cells. In invasive BC, loss of Dicer expression was associated with features of aggressive behaviour including higher histological grade, loss of hormone receptor and BRCA1 protein expression and with shorter disease-free survival (DFS). Dicer expression was an independent predictor of recurrence in the aggressive HER2-positive subgroup. Moreover, loss of Dicer was predictive of better response to chemotherapy and to endocrine therapy. This study provides evidence that Dicer protein plays a role in human BC progression and behaviour, and assessment of its expression could provide prognostic information in BC including the HER2-positive class.
Collapse
|
322
|
Wang Y, Huang JW, Calses P, Kemp CJ, Taniguchi T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res 2012; 72:4037-46. [PMID: 22761336 DOI: 10.1158/0008-5472.can-12-0103] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell survival after DNA damage relies on DNA repair, the abrogation of which causes genomic instability. The DNA repair protein RAD51 and the trans-lesion synthesis DNA polymerase REV1 are required for resistance to DNA interstrand cross-linking agents such as cisplatin. In this study, we show that overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. MiR-96 directly targeted the coding region of RAD51 and the 3'-untranslated region of REV1. Overexpression of miR-96 decreased the efficiency of homologous recombination and enhanced sensitivity to the PARP inhibitor AZD2281 in vitro and to cisplatin both in vitro and in vivo. Taken together, our findings indicate that miR-96 regulates DNA repair and chemosensitivity by repressing RAD51 and REV1. As a therapeutic candidate, miR-96 may improve chemotherapeutic efficacy by increasing the sensitivity of cancer cells to DNA damage.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | |
Collapse
|
323
|
Liu S, Howell PM, Riker AI. Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Ann Surg Oncol 2012; 20:1745-52. [PMID: 22752337 DOI: 10.1245/s10434-012-2467-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 11/18/2022]
Abstract
PURPOSE We sought to investigate the epigenetic regulation of microRNAs (miRNAs) in melanoma. METHODS We treated two highly metastatic human melanoma cell lines, C8161.9 and WM266-4, with the demethylating agents DAC (5-aza-2'-deoxycytidine) and trichostatin A. Locked nucleic acid-based miRNA expression profiling was utilized to examine the differential expression of miRNAs before and after treatment. RESULTS We found that miR-182, a miRNA with oncogenic properties, was significantly up-regulated in human melanoma cells after epigenetic modulation. Genome sequence analysis revealed the presence of a prominent CpG island 8-10 kb upstream of mature miR-182. Methylation analysis showed that this genomic region was exclusively methylated in melanoma cells but not in human melanocytes, skin, or peripheral blood mononuclear cells. DISCUSSION These results indicate that an epigenetic mechanism is likely involved in modulating the expression level of miR-182 in melanoma, and increased expression of oncogenic-like miR-182 could be a concern for melanoma patients after epigenetic therapy.
Collapse
Affiliation(s)
- Suhu Liu
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | | | | |
Collapse
|
324
|
Nishikawa S, Dewi DL, Ishii H, Konno M, Haraguchi N, Kano Y, Fukusumi T, Ohta K, Noguchi Y, Ozaki M, Sakai D, Satoh T, Doki Y, Mori M. Transcriptomic study of dormant gastrointestinal cancer stem cells. Int J Oncol 2012; 41:979-84. [PMID: 22735680 DOI: 10.3892/ijo.2012.1531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/16/2012] [Indexed: 11/06/2022] Open
Abstract
We previously discovered the coexistence of dormant and proliferating cancer stem cells (CSCs) in gastrointestinal cancer, which leads to chemoradiation resistance. CD13-/CD90+ proliferating liver CSCs are sensitive to chemotherapy, and CD13+/CD90- dormant CSCs have a limited proliferation ability, survive in hypoxic areas with reduced oxidative stress, and relapse and metastasize to other organs. In such CD13+ dormant cells, non-homologous end-joining, an error-prone repair mechanism, is dominant after DNA damage, whereas high-fidelity homologous recombination is apparent in CD13- proliferating cells, suggesting the significance of dormancy as an essential protective mechanism of therapy resistance. However, this mechanism may also play a role in the generation and accumulation of heterogeneity during cancer progression, although the exact mechanism remains to be understood. Through transcriptomic study, we elucidated the underlying epigenetic mechanism for malignant behavior of dormant CSCs, i.e., simultaneous activation of several pathways including EZH2- and TP53-related proteins in response to microRNA101, suggesting that a pharmacogenomic approach would open an era to novel molecular targeting cancer therapy.
Collapse
Affiliation(s)
- Shimpei Nishikawa
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Yang A, Ma J, Wu M, Qin W, Zhao B, Shi Y, Jin Y, Xie Y. Aberrant microRNA-182 expression is associated with glucocorticoid resistance in lymphoblastic malignancies. Leuk Lymphoma 2012; 53:2465-73. [DOI: 10.3109/10428194.2012.693178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
326
|
Duffy MJ, McGowan PM, Crown J. Targeted therapy for triple-negative breast cancer: where are we? Int J Cancer 2012; 131:2471-7. [PMID: 22581656 DOI: 10.1002/ijc.27632] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/05/2012] [Indexed: 12/29/2022]
Abstract
Breast cancers that are negative for estrogen receptor (ER), progesterone receptors (PR) and HER2, using standard clinical assays, have been dubbed triple-negative (TN). Unlike other molecular subtypes of invasive breast cancer, validated targeted therapies are currently unavailable for patients with TN breast cancer. Preclinical studies however, have identified several potential targets such as epidermal growth factor receptor (EGFR), SRC, MET and poly ADP ribose polymerase 1/2 (PARP1/2). Because of tumor heterogeneity, it is unlikely that any single targeted therapy will be efficacious in all patients with TN breast cancer. The rational way forward for treating these patients is likely to be biomarker-driven, combination targeted therapies or combination of targeted therapy with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
327
|
Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol 2012; 14:712-9. [PMID: 22570426 DOI: 10.1093/neuonc/nos089] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide microRNA (miRNA) profiling of 82 glioblastomas demonstrated that miR-181d was inversely associated with patient overall survival after correcting for age, Karnofsky performance status, extent of resection, and temozolomide (TMZ) treatment. This association was validated using the Cancer Genome Atlas (TCGA) dataset (n= 424) and an independent cohort (n= 35). In these independent cohorts, an association of miR-181d with survival was evident in patients who underwent TMZ treatment but was not observed in patients without TMZ therapy. Bioinformatic analysis of potential genes regulated by miR-181d revealed methyl-guanine-methyl-transferase (MGMT) as a downstream target. Indeed, transfection of miR-181d downregulated MGMT mRNA and protein expression. Furthermore, luciferase reporter assays and coprecipitation studies showed a direct interaction between miR-181d and MGMT 3'UTR. The suppressive effect of miR-181d on MGMT expression was rescued by the introduction of an MGMT cDNA. Finally, MGMT expression inversely correlated with miR-181d expression in independent glioblastoma cohorts. Together, these results suggest that miR-181d is a predictive biomarker for TMZ response and that its role is mediated, in part, by posttranscriptional regulation of MGMT.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
329
|
Qi J, Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med 2012; 6:134-55. [PMID: 22528868 DOI: 10.1007/s11684-012-0188-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the US and worldwide. Better understanding of the disease is warranted for improvement in clinical management. Here we summarize the functions of small-RNA-based, posttranscriptional gene regulators, i.e. microRNAs, in the pathogenesis of lung cancers. We discuss the microRNAs that play oncogenic as well as tumor suppressive roles. We also touch on the value of microRNAs as markers for diagnosis, prognosis and the promising field of microRNA-based novel therapies for lung cancers.
Collapse
Affiliation(s)
- Ji Qi
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
330
|
Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, Hernando E, Wei JJ. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 2012; 228:204-15. [PMID: 22322863 DOI: 10.1002/path.4000] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 12/12/2022]
Abstract
Molecular pathogenesis of high-grade serous ovarian carcinoma (HG-SOC) is poorly understood. Recent recognition of HG-SOC precursor lesions, defined as serous tubal intraepithelial carcinoma (STIC) in fimbria, provides a new venue for the study of early genetic changes in HG-SOC. Using microRNA profiling analysis, we found that miR-182 expression was significantly higher in STIC than in matched normal Fallopian tube. Further study revealed that miR-182 was significantly overexpressed in most HG-SOC cases. To test whether miR-182 plays a major role in early tumourigenesis of HG-SOC, we overexpressed miR-182 in immortalized ovarian surface, Fallopian tube secretory cells and malignant ovarian cell lines, and found that miR-182 overexpression resulted in increased tumour transformation in vitro, and enhanced tumour invasiveness in vitro and metastasis in vivo. Mechanistically, we demonstrated that the oncogenic properties of miR-182 in ovarian cancer were mediated in part by its impaired repair of DNA double-strand breaks and negative regulation of breast cancer 1 (BRCA1) and metastasis suppressor 1 (MTSS1) expression as well as its positive regulation of the oncogene high-mobility group AT-hook 2 (HMGA2). Our findings suggest that miR-182 dysregulation confers powerful oncogenic potential in the tumourigenesis of HG-SOC. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhaojian Liu
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J 2012; 31:2403-15. [PMID: 22491012 DOI: 10.1038/emboj.2012.86] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/15/2012] [Indexed: 02/08/2023] Open
Abstract
Protein phosphatase PP4C has been implicated in the DNA damage response (DDR), but its substrates in DDR remain largely unknown. We devised a novel proteomic strategy for systematic identification of proteins dephosphorylated by PP4C and identified KRAB-domain-associated protein 1 (KAP-1) as a substrate. Ionizing radiation leads to phosphorylation of KAP-1 at S824 (via ATM) and at S473 (via CHK2). A PP4C/R3β complex interacts with KAP-1 and silencing this complex leads to persistence of phospho-S824 and phospho-S473. We identify a new role for KAP-1 in DDR by showing that phosphorylation of S473 impacts the G2/M checkpoint. Depletion of PP4R3β or expression of the phosphomimetic KAP-1 S473 mutant (S473D) leads to a prolonged G2/M checkpoint. Phosphorylation of S824 is necessary for repair of heterochromatic DNA lesions and similar to cells expressing phosphomimetic KAP-1 S824 mutant (S824D), or PP4R3β-silenced cells, display prolonged relaxation of chromatin with release of chromatin remodelling protein CHD3. Our results define a new role for PP4-mediated dephosphorylation in the DDR, including the regulation of a previously undescribed function of KAP-1 in checkpoint response.
Collapse
|
332
|
MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathol 2012; 123:529-38. [PMID: 22134538 DOI: 10.1007/s00401-011-0924-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 01/07/2023]
Abstract
The contribution of microRNAs to the initiation, progression, and metastasis of medulloblastoma (MB) remains poorly understood. Metastatic dissemination at diagnosis is present in about 30% of MB patients, and is associated with a dismal prognosis. Using microRNA expression profiling, we demonstrate that the retinal miR-183-96-182 cluster on chromosome 7q32 is highly overexpressed in non-sonic hedgehog MBs (non-SHH-MBs). Expression of miR-182 and miR-183 is associated with cerebellar midline localization, and miR-182 is significantly overexpressed in metastatic MB as compared to non-metastatic tumors. Overexpression of miR-182 in non-SHH-MB increases and knockdown of miR-182 decreases cell migration in vitro. Xenografts overexpressing miR-182 invaded adjacent normal tissue and spread to the leptomeninges, phenotypically reminiscent of clinically highly aggressive large cell anaplastic MB. Hence, our study provides strong in vitro and in vivo evidence that miR-182 contributes to leptomeningeal metastatic dissemination in non-SHH-MB. We therefore reason that targeted inhibition of miR-182 may prevent leptomeningeal spread in patients with non-SHH-MB.
Collapse
|
333
|
Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, Sengupta S, Archer T, Remke M, Bai AHC, Warren P, Pfister SM, Steen JAJ, Pomeroy SL, Cho YJ. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012; 123:539-52. [PMID: 22402744 DOI: 10.1007/s00401-012-0969-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/22/2012] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
Abstract
Medulloblastomas are the most common malignant brain tumors in children. Several large-scale genomic studies have detailed their heterogeneity, defining multiple subtypes with unique molecular profiles and clinical behavior. Increased expression of the miR-183~96~182 cluster of microRNAs has been noted in several subgroups, including the most clinically aggressive subgroup associated with genetic amplification of MYC. To understand the contribution of miR-183~96~182 to the pathogenesis of this aggressive subtype of medulloblastoma, we analyzed global gene expression and proteomic changes that occur upon modulation of miRNAs in this cluster individually and as a group in MYC-amplified medulloblastoma cells. Knockdown of the full miR-183~96~182 cluster results in enrichment of genes associated with apoptosis and dysregulation of the PI3K/AKT/mTOR signaling axis. Conversely, there is a relative enrichment of pathways associated with migration, metastasis and epithelial to mesenchymal transition, as well as pathways associated with dysfunction of DNA repair in cells with preserved miR-183 cluster expression. Immunocytochemistry and FACS analysis confirm induction of apoptosis upon knockdown of the miR-183 cluster. Importantly, cell-based migration and invasion assays verify the positive regulation of cell motility/migration by the miR-183 cluster, which is largely mediated by miR-182. We show that the effects on cell migration induced by the miR-183 cluster are coupled to the PI3K/AKT/mTOR pathway through differential regulation of AKT1 and AKT2 isoforms. Furthermore, we show that rapamycin inhibits cell motility/migration in medulloblastoma cells and phenocopies miR-183 cluster knockdown. Thus, the miR-183 cluster regulates multiple biological programs that converge to support the maintenance and metastatic potential of medulloblastoma.
Collapse
Affiliation(s)
- Shyamal Dilhan Weeraratne
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Abstract
Genomic instability is one of the most pervasive characteristics of tumour cells and is probably the combined effect of DNA damage, tumour-specific DNA repair defects, and a failure to stop or stall the cell cycle before the damaged DNA is passed on to daughter cells. Although these processes drive genomic instability and ultimately the disease process, they also provide therapeutic opportunities. A better understanding of the cellular response to DNA damage will not only inform our knowledge of cancer development but also help to refine the classification as well as the treatment of the disease.
Collapse
Affiliation(s)
- Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
335
|
Abstract
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.
Collapse
Affiliation(s)
- Dragony Fu
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer A. Calvo
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leona D Samson
- Departments of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
336
|
Mihelich BL, Khramtsova EA, Arva N, Vaishnav A, Johnson DN, Giangreco AA, Martens-Uzunova E, Bagasra O, Kajdacsy-Balla A, Nonn L. miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J Biol Chem 2011; 286:44503-11. [PMID: 22045813 PMCID: PMC3247959 DOI: 10.1074/jbc.m111.262915] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/28/2011] [Indexed: 12/21/2022] Open
Abstract
Decreased zinc levels are a hallmark of prostate cancer tumors as zinc uniquely concentrates in healthy prostate tissue. Increased dietary zinc correlates with decreased risk of advanced prostate cancer and decreased mortality from prostate cancer. The mechanisms of prostatic zinc homeostasis are not known. Lower zinc levels in the tumor are correlated directly with decreased expression of the zinc transporter hZIP1. We report identification of a microRNA cluster that regulates multiple zinc transporters, including hZIP1. Screening in laser capture microdissected prostate cancer tumors identified miR-182 as a potential regulator of hZIP1. Regulation of hZIP1 by miR-182 via two binding sites was confirmed in primary prostate cell cultures. miR-96 and miR-183 are expressed as a cluster with miR-182 and share similar sequences. Array profiling of tissue showed that miR-183, -96, and -182 are higher in prostate cancer tissue compared with normal prostate. Overexpression of the entire miR-183-96-182 cluster suppressed five additional zinc transporters. Overexpression of miR-183, -96, and -182 individually or as a cluster diminished labile zinc pools and reduced zinc uptake, demonstrating this miR cluster as a regulator of zinc homeostasis. We observed regulation of zinc homeostasis by this cluster in prostate cells and HEK-293 cells, suggesting a universal mechanism that is not prostate-specific. To our knowledge, this is the first report of a miR cluster targeting a family of metal transport proteins. Individually or as a cluster, miR-183, -96, and -182 are overexpressed in other cancers too, implicating this miR cluster in carcinogenesis.
Collapse
Affiliation(s)
- Brittany L. Mihelich
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | | | - Nicole Arva
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | - Avani Vaishnav
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | - Daniel N. Johnson
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | | | - Elena Martens-Uzunova
- the Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3015 GE Rotterdam, The Netherlands, and
| | - Omar Bagasra
- the Department of Biology, Claflin University, Orangeburg, South Carolina 29115
| | - André Kajdacsy-Balla
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | - Larisa Nonn
- From the Department of Pathology, University of Illinois, Chicago, Illinois 60612
| |
Collapse
|
337
|
MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 2011; 19:1038-48. [PMID: 22193543 DOI: 10.1038/cdd.2011.190] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
p53 mutations have profound effects on non-small-cell lung cancer (NSCLC) resistance to chemotherapeutic treatments. Mutant p53 proteins are usually expressed at high levels in tumors, where they exert oncogenic functions. Here we show that p53R175H, a hotspot p53 mutant, induces microRNA (miRNA)-128-2 expression. Mutant p53 binds to the putative promoter of miR128-2 host gene, ARPP21, determining a concomitant induction of ARPP21 mRNA and miR-128-2. miR-128-2 expression in lung cancer cells inhibits apoptosis and confers increased resistance to cisplatin, doxorubicin and 5-fluorouracyl treatments. At the molecular level, miR-128-2 post-transcriptionally targets E2F5 and leads to the abrogation of its repressive activity on p21(waf1) transcription. p21(waf1) protein localizes to the cytoplasmic compartment, where it exerts an anti-apoptotic effect by preventing pro-caspase-3 cleavage. This study emphasizes miRNA-128-2 role as a master regulator in NSCLC chemoresistance.
Collapse
|
338
|
Song L, Dai T, Xie Y, Wang C, Lin C, Wu Z, Ying Z, Wu J, Li M, Li J. Up-regulation of miR-1245 by c-myc targets BRCA2 and impairs DNA repair. J Mol Cell Biol 2011; 4:108-17. [PMID: 22158906 DOI: 10.1093/jmcb/mjr046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BRCA2, a clinical prognostic factor, is significantly up-regulated in mRNA level, while its protein expression is often decreased in sporadic breast cancer. However, how BRCA2 protein expressions are suppressed in these tumors remains unknown. In this study, we demonstrated that miR-1245 directly suppressed BRCA2 3'-UTR and translation, impaired homologous recombination (HR)-mediated repair, reduced DNA damage-induced Rad51 nuclear foci, and rendered cells hypersensitive to γ-irradiation (IR), ultimately inducing high chromosomal abnormalities in normal breast cells and breast cancer cells. Conversely, inhibiting miR-1245 in breast cancer cells enhanced BRCA2 levels and induced resistance to IR. Furthermore, we demonstrated that c-myc up-regulated miR-1245 expression via direct binding to the miR-1245 promoter, which led to down-regulation of BRCA2 and reduction in HR efficiency. Significantly, miR-1245 levels in primary breast tumors correlated with c-myc overexpression and BRCA2 suppression. These findings uncover a BRCA2 regulatory and signaling pathway in sporadic breast cancer and support a functionally and clinically relevant epigenetic mechanism in cancer pathogenesis.
Collapse
Affiliation(s)
- Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Wang D, Huang J, Hu Z. RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics 2011; 11:M111.011932. [PMID: 22086602 DOI: 10.1074/mcp.m111.011932] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional coregulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was up-regulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by up-regulation of tumor suppressor PDCD4 (a known miR-21 target); as well as up-regulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 down-regulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.
Collapse
Affiliation(s)
- Daojing Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
340
|
Chiarugi A. A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol Sci 2011; 33:42-8. [PMID: 22055391 DOI: 10.1016/j.tips.2011.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022]
Abstract
The exploitation of synthetic lethality in BRCA-deficient tumor carriers using potent inhibitors of the enzyme poly(ADP-ribose) polymerase (PARP)-1 has led to an enthusiastic response among basic scientists, oncologists and pharmaceutical companies. However, accumulating evidence demonstrates that resistance to these drugs develops in tumors in both preclinical and clinical settings. Here, I focus on literature dealing with resistance to these drugs and discuss the molecular mechanisms involved, such as restoration of BRCA function, upregulation of nonhomologous end-joining-dependent DNA repair, induction of P-glycoprotein expression and epigenetic deregulation. Clinical implications of resistance to PARP1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
341
|
Abstract
DNA damage response is an elaborate process in which cells react to external or internal DNA damaging stress. An extensive network of signaling molecules, complexes, and pathways has been identified in the DNA damage response. Emerging evidence indicates that microRNAs (miRNAs) play essential roles in the DNA damage and repair pathways. While much effort has been to predict in silico and verify miRNA target genes, little is known about how miRNAs themselves respond to DNA damage. Here we discuss recent studies showing whether and how miRNAs are regulated in the DNA damage response. MiRNA expression involves transcription of miRNA genes and maturation of the primary transcripts. Therefore, miRNA levels might be regulated in both transcription dependent and independent manners. While the DNA damage response is known to protect against tumorigenesis in vivo, a deficient response could contribute to tumorigenesis through miRNAs.
Collapse
Affiliation(s)
- Xinna Zhang
- Department of Gynecological Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | | |
Collapse
|
342
|
Poly(ADP-ribose) polymerase inhibitors in breast cancer and other tumors: advances and challenges. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.11.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
343
|
Jalvy-Delvaille S, Maurel M, Majo V, Pierre N, Chabas S, Combe C, Rosenbaum J, Sagliocco F, Grosset CF. Molecular basis of differential target regulation by miR-96 and miR-182: the Glypican-3 as a model. Nucleic Acids Res 2011; 40:1356-65. [PMID: 22009679 PMCID: PMC3273822 DOI: 10.1093/nar/gkr843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides the fact that miR-96 and miR-182 belong to the miR-182/183 cluster, their seed region (UUGGCA, nucleotides 2–7) is identical suggesting potential common properties in mRNA target recognition and cellular functions. Here, we used the mRNA encoding Glypican-3, a heparan-sulfate proteoglycan, as a model target as its short 3′ untranslated region is predicted to contain one miR-96/182 site, and assessed whether it is post-transcriptionally regulated by these two microRNAs. We found that miR-96 downregulated GPC3 expression by targeting its mRNA 3′-untranslated region and interacting with the predicted site. This downregulatory effect was due to an increased mRNA degradation and depended on Argonaute-2. Despite its seed similarity with miR-96, miR-182 was unable to regulate GPC3. This differential regulation was confirmed on two other targets, FOXO1 and FN1. By site-directed mutagenesis, we demonstrated that the miRNA nucleotide 8, immediately downstream the UUGGCA seed, plays a critical role in target recognition by miR-96 and miR-182. Our data suggest that because of a base difference at miRNA position 8, these two microRNAs control a completely different set of genes and therefore are functionally independent.
Collapse
Affiliation(s)
- Sandra Jalvy-Delvaille
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Marion Maurel
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Vanessa Majo
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Nathalie Pierre
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Sandrine Chabas
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Chantal Combe
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Jean Rosenbaum
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Francis Sagliocco
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Christophe F. Grosset
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
- *To whom correspondence should be addressed. Tel: +33 557 57 46 30; Fax: +33 556 51 40 77;
| |
Collapse
|
344
|
Hernández Bort JA, Hackl M, Höflmayer H, Jadhav V, Harreither E, Kumar N, Ernst W, Grillari J, Borth N. Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures. Biotechnol J 2011; 7:500-15. [PMID: 21751394 DOI: 10.1002/biot.201100143] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/10/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
In spite of the importance of Chinese hamster ovary (CHO) cells for recombinant protein production, very little is known about the molecular and gene regulatory mechanisms that control cellular phenotypes such as enhanced growth under serum-free conditions or high productivity. Most microarray analyses to this purpose are performed with samples taken during the exponential growth phase. However, the cellular transcriptome is dynamic, changing in response to external and internal stimuli and thus reflecting the current functional capacity of cells as well as their ability to adapt to a changing environment. Therefore, during batch or fed-batch cultivations it can be expected that the transcription pattern of genes will change and that such changes may give indications on the cellular state in terms of viability, growth, and productivity. In the current study we monitored the change in expression patterns of mRNAs and microRNAs (miRNA) during lag, exponential, and stationary phases in CHO-K1 suspension cell cultures. In total, over 1400 mRNAs and more than 100 miRNAs were differentially regulated (p<0.05) relative to the batch culture at the starting point. Functional clustering revealed groups of genes with similar expression patterns, which were subjected to functional pathway analysis. In addition, as miRNAs generally act as negative post-transcriptional regulators of mRNAs, we looked for changes in their expression that were inverse to those of their predicted target mRNAs.
Collapse
Affiliation(s)
- Juan A Hernández Bort
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 2011; 5:387-93. [PMID: 21821475 DOI: 10.1016/j.molonc.2011.07.001] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors effectively kill tumours defective in the BRCA1 or BRCA2 genes through the concept of synthetic lethality. It is suggested that PARP inhibitors cause an increase in DNA single-strand breaks (SSBs), which are converted during replication to irreparable toxic DNA double-strand breaks (DSBs) in BRCA1/2 defective cells. There are a number of recent reports challenging this model. Here, alternative models that are not mutually exclusive are presented to explain the synthetic lethality between BRCA1/2 and PARP inhibitors. One such model proposes that PARP inhibition causes PARP-1 to be trapped onto DNA repair intermediates, especially during base excision repair. This may in turn cause obstruction to replication forks, which require BRCA-dependent homologous recombination to be resolved. In another model, PARP is directly involved in catalysing replication repair in a distinct pathway from homologous recombination. Experimental evidence supporting these novel models to explain the PARP-BRCA synthetic lethality are discussed.
Collapse
Affiliation(s)
- Thomas Helleday
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
346
|
miRNA response to DNA damage. Trends Biochem Sci 2011; 36:478-84. [PMID: 21741842 DOI: 10.1016/j.tibs.2011.06.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.
Collapse
|
347
|
Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 2011; 10:1192-9. [PMID: 21487248 DOI: 10.4161/cc.10.8.15273] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Utilizing the concept of synthetic lethality has provided new opportunities for the development of targeted therapies, by allowing the targeting of loss of function genetic aberrations. In cancer cells with BRCA1 or BRCA2 loss of function, which harbor deficiency of DNA repair by homologous recombination, inhibition of PARP1 enzymatic activity leads to an accumulation of single strand breaks that are converted to double strand breaks but cannot be repaired by homologous recombination. Inhibition of PARP has therefore been advanced as a novel targeted therapy for cancers harboring BRCA1/2 mutations. Preclinical and preliminary clinical evidence, however, suggests a potentially broader scope for PARP inhibitors. Loss of function of various proteins involved in double strand break repair other than BRCA1/2 has been suggested to be synthetically lethal with PARP inhibition. Inactivation of these genes has been reported in a subset of human cancers and might therefore constitute predictive biomarkers for PARP inhibition. Here we discuss the evidence that the clinical use of PARP inhibition may be broader than targeting of cancers in BRCA1/2 germ-line mutation carriers.
Collapse
Affiliation(s)
- Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | |
Collapse
|
348
|
MicroRNAs, the DNA damage response and cancer. Mutat Res 2011; 717:54-66. [PMID: 21477600 DOI: 10.1016/j.mrfmmm.2011.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/13/2022]
Abstract
Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.
Collapse
|
349
|
Vargas AC, Reis-Filho JS, Lakhani SR. Phenotype-genotype correlation in familial breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:27-40. [PMID: 21400086 DOI: 10.1007/s10911-011-9204-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/25/2022] Open
Abstract
Familial breast cancer accounts for a small but significant proportion of breast cancer cases worldwide. Identification of the candidate genes is always challenging specifically in patients with little or no family history. Therefore, a multidisciplinary team is required for the proper detection and further management of these patients. Pathologists have played a pivotal role in the cataloguing of genotypic-phenotypic correlations in families with hereditary cancer syndromes. These efforts have led to the identification of histological and phenotypic characteristics that can help predict the presence or absence of germline mutations of specific cancer predisposition genes. However, the panoply of cancer phenotypes associated with mutations of genes other than in BRCA1 is yet to be fully characterised; in fact, many cancer syndromes, germline mutations and gene sequence variants are under investigation for their possible morphological associations. Here we review the current understanding of phenotype-genotype correlation in familial breast cancer.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
350
|
Asaithamby A, Hu B, Delgado O, Ding LH, Story MD, Minna JD, Shay JW, Chen DJ. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 2011; 39:5474-88. [PMID: 21421565 PMCID: PMC3141259 DOI: 10.1093/nar/gkr149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas, Southwestern Medical Centre, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|