301
|
Carr AR, Patel YH, Neff CR, Charkhabi S, Kallmyer NE, Angus HF, Reuel NF. Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. NPJ Digit Med 2020; 3:62. [PMID: 32377573 PMCID: PMC7193562 DOI: 10.1038/s41746-020-0270-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Sweat loss can help determine hydration status of individuals working in harsh conditions, which is especially relevant to those who wear thick personal protective equipment (PPE) such as firefighters. A wireless, passive, conformable sweat sensor sticker is described here that can be worn under and interrogated through thick clothing to simultaneously measure sweat loss volume and conductivity. The sticker consists of a laser-ablated, microfluidic channel and a resonant sensor transducer. The resonant sensor is wirelessly read with a handheld vector network analyzer coupled to two, co-planar, interrogation antennas that measure the transmission loss. A sweat proxy is used to fill the channels and it is determined that the sensor can orthogonally determine the sweat conductivity and volume filled in the channel via peak transmission loss magnitude and frequency respectively. A four-person study is then used to determine level of sensor variance caused by local tissue dielectric heterogeneity and sensor-reader orientation.
Collapse
Affiliation(s)
- Adam R. Carr
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Yash H. Patel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Charles R. Neff
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Sadaf Charkhabi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Nathaniel E. Kallmyer
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Hector F. Angus
- Department of Kinesiology, Iowa State University, Ames, IA USA
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| |
Collapse
|
302
|
Wang Y, Zhao Q, Du X. Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. J Mater Chem B 2020; 8:3519-3526. [PMID: 31989133 DOI: 10.1039/c9tb02389e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Point-of-care (POC) diagnosis is of great significance in offering precise and personalized treatment for patients with eye diseases. Contact lenses, as a kind of popular wearable device on the eye, provide a suitable platform for the integration of biosensors for the POC diagnosis of eye diseases. However, existing contact lens sensors usually involve complex electronics and circuits, the manufacturing of which is complicated and signal readout requires additional instruments. To realize the instrument-free detection of pathologically relevant signals of eye diseases, we successfully established a structurally coloured contact lens sensor with a tunable colour in this investigation, which can directly report changes in moisture and pressure that are critical signs for xerophthalmia and glaucoma diagnosis, respectively, by altering colours. Importantly, this structurally coloured contact lens sensor is made solely from a biocompatible hydrogel, without the addition of any chemical pigments, therefore exhibiting superior biosafety and wearing comfort for wearable applications. With both excellent biocompatibility and sensing capabilities, this structurally coloured contact lens sensors thus holds great promise for instrument-free ophthalmic health monitoring, which will benefit a large proportion of the population that have a high risk of eye disease.
Collapse
Affiliation(s)
- Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China.
| | | | | |
Collapse
|
303
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
304
|
Murru F, Romero FJ, Sánchez-Mudarra R, García Ruiz FJ, Morales DP, Capitán-Vallvey LF, Salinas-Castillo A. Portable Instrument for Hemoglobin Determination Using Room-Temperature Phosphorescent Carbon Dots. NANOMATERIALS 2020; 10:nano10050825. [PMID: 32357422 PMCID: PMC7711904 DOI: 10.3390/nano10050825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
A portable reconfigurable platform for hemoglobin determination based on inner filter quenching of room-temperature phosphorescent carbon dots (CDs) in the presence of H2O2 is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. The reconfigurable feature provides adaptability to use the platform as an analytical probe for CDs coming from different batches with some variations in luminescence characteristics. The variables of the reaction were optimized, such as pH, concentration of reagents, and response time; as well as the variables of the portable device, such as LED voltage, photodiode sensitivity, and adjustment of the measuring range by a reconfigurable electronic system. The portable device allowed the determination of hemoglobin with good sensitivity, with a detection limit of 6.2 nM and range up to 125 nM.
Collapse
Affiliation(s)
- Fabio Murru
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco J. Romero
- Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Roberto Sánchez-Mudarra
- Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco J. García Ruiz
- Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Diego P. Morales
- Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- ECsens Group, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Luis Fermín Capitán-Vallvey
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- ECsens Group, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Alfonso Salinas-Castillo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- ECsens Group, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-248-436
| |
Collapse
|
305
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
306
|
Riedel M, Ruff A, Schuhmann W, Lisdat F, Conzuelo F. Light-controlled imaging of biocatalytic reactions via scanning photoelectrochemical microscopy for multiplexed sensing. Chem Commun (Camb) 2020; 56:5147-5150. [PMID: 32255137 DOI: 10.1039/d0cc00777c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A light-controlled multiplexing platform has been developed on the basis of a quantum dot-sensitized inverse opal TiO2 electrode with integrated biocatalytic reactions. Spatially resolved illumination enables multiplexed sensing and imaging of enzymatic oxidation reactions at relatively negative applied potentials.
Collapse
Affiliation(s)
- Marc Riedel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University Wildau, Hochschulring 1, D-15745 Wildau, Germany.
| | | | | | | | | |
Collapse
|
307
|
Kim K, Kim B, Lee CH. Printing Flexible and Hybrid Electronics for Human Skin and Eye-Interfaced Health Monitoring Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902051. [PMID: 31298450 DOI: 10.1002/adma.201902051] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Advances in printing materials and techniques for flexible and hybrid electronics in the domain of connected healthcare have enabled rapid development of innovative body-interfaced health monitoring systems at a tremendous pace. Thin, flexible, and stretchable biosensors that are printed on a biocompatible soft substrate provide the ability to noninvasively and unobtrusively integrate with the human body for continuous monitoring and early detection of diseases and other conditions affecting health and well being. Hybrid integration of such biosensors with extremely well-established silicon-based microcircuit chips offers a viable route for in-sensor data processing and wireless transmission in many medical and clinical settings. Here, a set of advanced and hybrid printing techniques is summarized, covering diverse aspects ranging from active electronic materials to process capability, for their use in human skin and eye-interfaced health monitoring systems with different levels of complexity. Essential components of the devices, including constituent biomaterials, structural layouts, assembly methods, and power and data processing configurations, are outlined and discussed in a categorized manner tailored to specific clinical needs. Perspectives on the benefits and challenges of these systems in basic and applied biomedical research are presented and discussed.
Collapse
Affiliation(s)
- Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, School of Mechanical Engineering, Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
308
|
Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O'Connor BT, Zhu Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902343. [PMID: 31464046 DOI: 10.1002/adma.201902343] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Indexed: 05/02/2023]
Abstract
Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ping Ren
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Runqiao Song
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qijin Huang
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Jingyan Dong
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
309
|
|
310
|
Klimuntowski M, Alam MM, Singh G, Howlader MMR. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sens 2020; 5:620-636. [PMID: 32102542 DOI: 10.1021/acssensors.9b02390] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid sensing in biofluids provides great insight into the effects of medicinal cannabis on the body. The prevalence of cannabis for pain management and illicit drug use necessitates knowledge translation in cannabinoids. In this Review, we provide an overview of the current detection methods of cannabinoids in bodily fluids emphasizing electrochemical sensing. First, we introduce cannabinoids and discuss the structure and metabolism of Δ9-THC and its metabolites in relation to blood, urine, saliva, sweat, and breath. Next, we briefly discuss lab based techniques for cannabinoids in biofluids. While these techniques are highly sensitive and specific, roadside safety requires a quick, portable, and cost-effective sensing method. These needs motivated a comprehensive review of advantages, disadvantages, and future directions for electrochemical sensing of cannabinoids. The literature shows the lowest limit of detection to be 3.3 pg of Δ9-THC/mL using electrochemical immunosensors, while electrodes fabricated with low cost methods such as screen-printing and carbon paste can detect as little as 25 and 1.26 ng of Δ9-THC/mL, respectively. Future research will include nanomaterial modified working electrodes, for simultaneous sensing of multiple cannabinoids. Additionally, there should be an emphasis on selectivity for cannabinoids in the presence of interfering compounds. Sensors should be fully integrated on biocompatible substrates with control electronics and intelligent components for wearable diagnostics. We hope this Review will prove to be the seminal work in the electrochemical sensing of cannabinoids.
Collapse
Affiliation(s)
- Martin Klimuntowski
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Maksud M. Alam
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
311
|
Vivaldi F, Bonini A, Melai B, Poma N, Kirchhain A, Santalucia D, Salvo P, Francesco FD. A graphene-based pH sensor on paper for human plasma and seawater. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1563-1566. [PMID: 31946193 DOI: 10.1109/embc.2019.8856991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The relevance of pH assessment in clinical analysis, environmental and industrial control, has raised the demand for the development of portable, low cost and easy-to-use monitoring systems. This paper proposes a pH sensor printed on a paper support passivated with a solid-ink coating. The sensor exploits the pH sensitivity of a reduced graphene oxide functionalized with 3-(4-aminophenil)propionic acid. The sensor responded in the pH range [4], [10] and had a sensitivity of 46 mV/pH. Tests on human plasma and seawater proved this pH sensor to have similar performances than those of a commercial pH-meter with an uncertainty of 0.1 and 0.2 pH unit in plasma and seawater, respectively.
Collapse
|
312
|
Grazon C, Baer RC, Kuzmanović U, Nguyen T, Chen M, Zamani M, Chern M, Aquino P, Zhang X, Lecommandoux S, Fan A, Cabodi M, Klapperich C, Grinstaff MW, Dennis AM, Galagan JE. A progesterone biosensor derived from microbial screening. Nat Commun 2020; 11:1276. [PMID: 32152281 PMCID: PMC7062782 DOI: 10.1038/s41467-020-14942-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements. We use this approach to identify a progesterone-sensing bacterial aTF and to develop this TF into an optical sensor for progesterone. The sensor detects progesterone in artificial urine with sufficient sensitivity and specificity for clinical use, while being compatible with an inexpensive and portable electronic reader for point-of-care applications. Our results provide proof-of-concept for a paradigm of microbially-derived biosensors adaptable to inexpensive, real-time sensor devices.
Collapse
Affiliation(s)
- Chloé Grazon
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - R C Baer
- Department of Microbiology, Boston University, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Uroš Kuzmanović
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Thuy Nguyen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mingfu Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Marjon Zamani
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaoman Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | | | - Andy Fan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Catherine Klapperich
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, MA, 02118, USA.
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
313
|
Lee HB, Meeseepong M, Trung TQ, Kim BY, Lee NE. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens Bioelectron 2020; 156:112133. [PMID: 32174559 DOI: 10.1016/j.bios.2020.112133] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Conformable, wearable biosensor-integrated systems are a promising approach to non-invasive and quantitative on-body detection of biomarkers in body fluids. However, realizing such a system has been slowed by the difficulty of fabricating a soft affinity-based biosensor patch capable of precise on-body fluid handling with minimal wearer intervention and a simple measurement protocol. Herein, we demonstrate a conformable, wearable lab-on-a-patch (LOP) platform composed of a stretchable, label-free, impedimetric biosensor and a stretchable microfluidic device for on-body detection of the hormone biomarker, cortisol. The all-in-one, stretchable microfluidic device can precisely collect and deliver sweat for cortisol quantitation and offers one-touch operation of reagent delivery for simultaneous electrochemical signal generation and washing. Three-dimensional nanostructuring of the Au working electrode enables the high sensitivity required to detect the pM-levels of cortisol in sweat. Our integrated LOP detected sweat cortisol quantitatively and accurately during exercise. This LOP will open a new horizon for non-invasive, highly sensitive, and quantitative on-body immunodetection for wearable personal diagnostics.
Collapse
Affiliation(s)
- Han-Byeol Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Bo-Yeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea.
| |
Collapse
|
314
|
de Zambotti M, Cellini N, Menghini L, Sarlo M, Baker FC. Sensors Capabilities, Performance, and Use of Consumer Sleep Technology. Sleep Med Clin 2020; 15:1-30. [PMID: 32005346 PMCID: PMC7482551 DOI: 10.1016/j.jsmc.2019.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sleep is crucial for the proper functioning of bodily systems and for cognitive and emotional processing. Evidence indicates that sleep is vital for health, well-being, mood, and performance. Consumer sleep technologies (CSTs), such as multisensory wearable devices, have brought attention to sleep and there is growing interest in using CSTs in research and clinical applications. This article reviews how CSTs can process information about sleep, physiology, and environment. The growing number of sensors in wearable devices and the meaning of the data collected are reviewed. CSTs have the potential to provide opportunities to measure sleep and sleep-related physiology on a large scale.
Collapse
Affiliation(s)
- Massimiliano de Zambotti
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | - Nicola Cellini
- Department of General Psychology, University of Padua, Via Venezia, 8 - 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B - 35121 Padua, Italy; Padova Neuroscience Center, University of Padua, Via Giuseppe Orus, 2, 35131 Padua, Italy; Human Inspired Technology Center, University of Padua, Via Luzzatti, 4 - 35121 Padua, Italy
| | - Luca Menghini
- Department of General Psychology, University of Padua, Via Venezia, 8 - 35131 Padua, Italy
| | - Michela Sarlo
- Department of General Psychology, University of Padua, Via Venezia, 8 - 35131 Padua, Italy; Padova Neuroscience Center, University of Padua, Via Giuseppe Orus, 2, 35131 Padua, Italy
| | - Fiona C Baker
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| |
Collapse
|
315
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
316
|
MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl Biochem Biotechnol 2020; 191:1384-1394. [DOI: 10.1007/s12010-020-03285-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
|
317
|
Jeong IC, Bychkov D, Searson PC. Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Trans Biomed Eng 2020; 66:1242-1258. [PMID: 31021744 DOI: 10.1109/tbme.2018.2871638] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wearable technologies will play an important role in advancing precision medicine by enabling measurement of clinically-relevant parameters describing an individual's health state. The lifestyle and fitness markets have provided the driving force for the development of a broad range of wearable technologies that can be adapted for use in healthcare. Here we review existing technologies currently used for measurement of the four primary vital signs: temperature, heart rate, respiration rate, and blood pressure, along with physical activity, sweat, and emotion. We review the relevant physiology that defines the measurement needs and evaluate the different methods of signal transduction and measurement modalities for the use of wearables in healthcare.
Collapse
|
318
|
Zhai Q, Yap LW, Wang R, Gong S, Guo Z, Liu Y, Lyu Q, Wang J, Simon GP, Cheng W. Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Anal Chem 2020; 92:4647-4655. [DOI: 10.1021/acs.analchem.0c00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qingfeng Zhai
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Lim Wei Yap
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Ren Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Zhirui Guo
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Yiyi Liu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Quanxia Lyu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - George. P. Simon
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- The Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| |
Collapse
|
319
|
Lin KC, Muthukumar S, Prasad S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat. Talanta 2020; 214:120810. [PMID: 32278429 DOI: 10.1016/j.talanta.2020.120810] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
In this work, a low volume, sweat lactate sensor functioning on passively expressed eccrine sweat was designed, fabricated and tested in human sweat and its performance was benchmarked against a standard reference; Lactate Plus meter. This novel sensor comprises of graphene oxide (GO) nanosheets integrated into a nanoporous flexible electrode system for low-volume (1-5 μL) ultrasensitive impedance based detection of lactate using non-faradaic electron-ionic charge transfer. Lactate oxidase (LOD) enzyme was immobilized on the surface of GO nanosheets towards developing an affinity biosensor specific to the physiological relevant range (4-80 mM) of lactate in perspired human sweat. Sensing was achieved by measuring impedance changes specific to lactate binding along the GO nanosheet interface using electrochemical impedance spectroscopy. The sensor demonstrated a dynamic range from 1 to 100 mM spiked in synthetic and human sweat with a limit of detection of 1 mM. A specificity study conducted using cortisol expressed in sweat revealed a negative response to the lactate oxidase. Continuous lactate sensing studies were performed during which the sensor was responsive to concentrations of lactate up to 138.6 mM. Correlation of the sensor response with actual lactate concentration (1.3-113.4 mM) was found to be 0.955.
Collapse
Affiliation(s)
- Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
320
|
Al Machot F, R. Elkobaisi M, Kyamakya K. Zero-Shot Human Activity Recognition Using Non-Visual Sensors. SENSORS 2020; 20:s20030825. [PMID: 32033072 PMCID: PMC7038698 DOI: 10.3390/s20030825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022]
Abstract
Due to significant advances in sensor technology, studies towards activity recognition have gained interest and maturity in the last few years. Existing machine learning algorithms have demonstrated promising results by classifying activities whose instances have been already seen during training. Activity recognition methods based on real-life settings should cover a growing number of activities in various domains, whereby a significant part of instances will not be present in the training data set. However, to cover all possible activities in advance is a complex and expensive task. Concretely, we need a method that can extend the learning model to detect unseen activities without prior knowledge regarding sensor readings about those previously unseen activities. In this paper, we introduce an approach to leverage sensor data in discovering new unseen activities which were not present in the training set. We show that sensor readings can lead to promising results for zero-shot learning, whereby the necessary knowledge can be transferred from seen to unseen activities by using semantic similarity. The evaluation conducted on two data sets extracted from the well-known CASAS datasets show that the proposed zero-shot learning approach achieves a high performance in recognizing unseen (i.e., not present in the training dataset) new activities.
Collapse
Affiliation(s)
- Fadi Al Machot
- Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany
- Correspondence:
| | - Mohammed R. Elkobaisi
- Institute for Applied Informatics, Application Engineering, Alpen-Adria University, 9020 Klagenfurt, Austria;
| | - Kyandoghere Kyamakya
- Institute for Smart Systems Technologies, Alpen-Adria University, 9020 Klagenfurt, Austria;
| |
Collapse
|
321
|
Gao W, Zdrachek E, Xie X, Bakker E. A Solid‐State Reference Electrode Based on a Self‐Referencing Pulstrode. Angew Chem Int Ed Engl 2020; 59:2294-2298. [DOI: 10.1002/anie.201912651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Elena Zdrachek
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Xiaojiang Xie
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Eric Bakker
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
322
|
A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal Chim Acta 2020; 1096:34-43. [DOI: 10.1016/j.aca.2019.10.049] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022]
|
323
|
Camargo JR, Andreotti IA, Kalinke C, Henrique JM, Bonacin JA, Janegitz BC. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta 2020; 208:120458. [DOI: 10.1016/j.talanta.2019.120458] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022]
|
324
|
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application Challenges in Fiber and Textile Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901971. [PMID: 31273843 DOI: 10.1002/adma.201901971] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Indexed: 05/24/2023]
Abstract
Modern electronic devices are moving toward miniaturization and integration with an emerging focus on wearable electronics. Due to their close contact with the human body, wearable electronics have new requirements including low weight, small size, and flexibility. Conventional 3D and 2D electronic devices fail to efficiently meet these requirements due to their rigidity and bulkiness. Hence, a new family of 1D fiber-shaped electronic devices including energy-harvesting devices, energy-storage devices, light-emitting devices, and sensing devices has risen to the challenge due to their small diameter, lightweight, flexibility, and weavability into soft textile electronics. The application challenges faced by fiber and textile electronics from single fiber-shaped devices to continuously scalable fabrication, to encapsulation and testing, and to application mode exploration, are discussed. The evolutionary trends of fiber and textile electronics are then summarized. Finally, future directions required to boost their commercialization are highlighted.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xuemei Fu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jiqing He
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xiang Shi
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Taiqiang Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Peining Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Bingjie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Huisheng Peng
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
325
|
Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020; 412:1825-1833. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Jonathan Alberkant
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
326
|
Beardslee LA, Carron C, Demirci KS, Lehman J, Schwartz S, Dufour I, Heinrich SM, Josse F, Brand O. In-Plane Vibration of Hammerhead Resonators for Chemical Sensing Applications. ACS Sens 2020; 5:73-82. [PMID: 31840501 DOI: 10.1021/acssensors.9b01651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermally excited and piezoresistively detected in-plane cantilever resonators have been previously demonstrated for gas- and liquid-phase chemical and biosensing applications. In this work, the hammerhead resonator geometry, consisting of a cantilever beam supporting a wider semicircular "head", vibrating in an in-plane vibration mode, is shown to be particularly effective for gas-phase sensing with estimated limits of detection in the sub-ppm range for volatile organic compounds. This paper discusses the hammerhead resonator design and the particular advantages of the hammerhead geometry, while also presenting mechanical characterization, optical characterization, and chemical sensing results. These data highlight the distinct advantages of the hammerhead geometry over other cantilever designs.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Naval Submarine Medical Research Laboratory, Groton, Connecticut 06349-5900, United States
| | - Christopher Carron
- Space and Intelligence Systems, Harris Corporation, Melbourne, Florida 32904, United States
| | | | | | | | - Isabelle Dufour
- IMS Laboratory, University of Bordeaux, Talence 33400, France
| | | | | | | |
Collapse
|
327
|
Kim I, Jin H, Jiang Y, Qin Y. The Optimization of Analog Front-End for Fully Integrated Wearable Sweat Sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1123-1126. [PMID: 31946091 DOI: 10.1109/embc.2019.8857939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The research area of the wearable electrochemical sensors is increasingly growing which are valuable for healthcare and fitness applications owing to their simplicity of operation, low-cost, and compact size. In this work, optimizing of programmable analog front-end for fully integrated wearable sweat sensor is proposed. The proposed system can detect glucose, lactate, sodium, potassium at the same time with low-power consumption which is suitable for continuous real-time sweat sensing system. The average power consumption of analog front-end in the proposed system is less than 2 mW at 3.3 V supply voltage.
Collapse
|
328
|
Kim SB, Koo J, Yoon J, Hourlier-Fargette A, Lee B, Chen S, Jo S, Choi J, Oh YS, Lee G, Won SM, Aranyosi AJ, Lee SP, Model JB, Braun PV, Ghaffari R, Park C, Rogers JA. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. LAB ON A CHIP 2020; 20:84-92. [PMID: 31776526 DOI: 10.1039/c9lc01045a] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.
Collapse
Affiliation(s)
- Sung Bong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jahyun Koo
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Jangryeol Yoon
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Advanced Research Team, R&D Center, Samsung Display, Yongin-si, Gyeonggi-do 17113, South Korea
| | - Aurélie Hourlier-Fargette
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Institut Charles Sadron, CNRS, Université de Strasbourg, UPR22, 23 rue du Loess, 67034 Strasbourg cedex 2, France
| | - Boram Lee
- Department of Medicine, Konkuk University, Seoul 05029, South Korea
| | - Shulin Chen
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Seongbin Jo
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, Seoul 02707, South Korea
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Geumbee Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Sang Min Won
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Alexander J Aranyosi
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen P Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jeffrey B Model
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Paul V Braun
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chulwhan Park
- Dept. of Chem. Eng., Kwangwoon University, Seoul 01897, South Korea
| | - John A Rogers
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA and Department of Chemistry, Department of Electrical Engineering and Computer Science, Department of Neurological Surgery, Simpson Querrey Institute for Nano/Biotechnology, McCormick School of Engineering and Feinberg, School of Medicine, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
329
|
|
330
|
Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P. Organic field-effect transistor-based flexible sensors. Chem Soc Rev 2020; 49:3423-3460. [DOI: 10.1039/c9cs00811j] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flexible transistors are the next generation sensing technology, due to multiparametric analysis, reduced complexity, biocompatibility, lightweight with tunable optoelectronic properties. We summarize multitude of applications realized with OFETs.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Ali Nawaz
- Departamento de Física
- Universidade Federal do Paraná
- Caixa Postal 19044
- Curitiba
- Brazil
| | - Qian Liu
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Sandeep G. Surya
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Khaled N. Salama
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
331
|
Søpstad S, Johannessen EA, Imenes K. Analytical errors in biosensors employing combined counter/pseudo-reference electrodes. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
332
|
Cuartero M, Colozza N, Fernández-Pérez BM, Crespo GA. Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors – an overview of the progress in the last 20 years. Analyst 2020; 145:3188-3210. [DOI: 10.1039/d0an00327a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An overview of ionophore-based electrodes for ammonium sensing critically analyzing contributions in the last 20 years and with focus in analytical applications.
Collapse
Affiliation(s)
- María Cuartero
- Department of Chemistry
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- 10044 Stockholm
| | - Noemi Colozza
- Department of Chemistry
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- 10044 Stockholm
| | - Bibiana M. Fernández-Pérez
- Department of Chemistry
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- 10044 Stockholm
| | - Gastón A. Crespo
- Department of Chemistry
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- 10044 Stockholm
| |
Collapse
|
333
|
Gao W, Zdrachek E, Xie X, Bakker E. A Solid‐State Reference Electrode Based on a Self‐Referencing Pulstrode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Elena Zdrachek
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Xiaojiang Xie
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Eric Bakker
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
334
|
Jeon Y, Choi HR, Kwon JH, Choi S, Nam KM, Park KC, Choi KC. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. LIGHT, SCIENCE & APPLICATIONS 2019; 8:114. [PMID: 31839934 PMCID: PMC6900403 DOI: 10.1038/s41377-019-0221-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 05/31/2023]
Abstract
Free-form optoelectronic devices can provide hyper-connectivity over space and time. However, most conformable optoelectronic devices can only be fabricated on flat polymeric materials using low-temperature processes, limiting their application and forms. This paper presents free-form optoelectronic devices that are not dependent on the shape or material. For medical applications, the transferable OLED (10 μm) is formed in a sandwich structure with an ultra-thin transferable barrier (4.8 μm). The results showed that the fabricated sandwich-structure transferable OLED (STOLED) exhibit the same high-efficiency performance on cylindrical-shaped materials and on materials such as textile and paper. Because the neutral axis is freely adjustable using the sandwich structure, the textile-based OLED achieved both folding reliability and washing reliability, as well as a long operating life (>150 h). When keratinocytes were irradiated with red STOLED light, cell proliferation and cell migration increased by 26 and 32%, respectively. In the skin equivalent model, the epidermis thickness was increased by 39%; additionally, in organ culture, not only was the skin area increased by 14%, but also, re-epithelialization was highly induced. Based on the results, the STOLED is expected to be applicable in various wearable and disposable photomedical devices.
Collapse
Affiliation(s)
- Yongmin Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Jeong Hyun Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seungyeop Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Kyung Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), Seongnam, 13620 Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
335
|
Dziergowska K, Łabowska MB, Gąsior-Głogowska M, Kmiecik B, Detyna J. Modern noninvasive methods for monitoring glucose levels in patients: a review. BIO-ALGORITHMS AND MED-SYSTEMS 2019. [DOI: 10.1515/bams-2019-0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThis paper presents the current state of the art of noninvasive glucose monitoring. In recent years, we can observe constant increase in the incidence of diabetes. About 40% of all performed blood tests apply to the glucose tests. Formerly, this lifestyle disease occurred mainly in rich countries, but now it is becoming more common in poorer countries. It is related to the increase in life expectancy, unhealthy diet, lack of exercise, and other factors. Untreated diabetes may cause many complications or even death. For this reason, daily control of glucose levels in people with this disorder is very important. Measurements with a traditional glucometer are connected with performing finger punctures several times a day, which is painful and uncomfortable for patients. Therefore, researches on other methods are ongoing. A method that would be fast, noninvasive and cheap could also enable testing the state of the entire population, which is necessary because of the number of people currently living with undiagnosed type 2 diabetes. Although the first glucometer was made in 1966, the first studies on glucose level measurement in tear film were documented as early as 1937. This shows how much a noninvasive method of diabetes control is needed. Since then, there have been more and more studies on alternative methods of glucose measurement, not only from tear fluid, but also from saliva, sweat, or transdermally.
Collapse
Affiliation(s)
- Katarzyna Dziergowska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wrocław, Poland
| | - Magdalena Beata Łabowska
- Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław University of Science and Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland
| | - Barbara Kmiecik
- Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25Wrocław, Poland
| | - Jerzy Detyna
- Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25Wrocław, Poland
| |
Collapse
|
336
|
Gannavarapu KP, Ganesh V, Dandamudi RB. Zirconia nanocomposites with carbon and iron(iii) oxide for voltammetric detection of sub-nanomolar levels of methyl parathion. NANOSCALE ADVANCES 2019; 1:4947-4954. [PMID: 36133142 PMCID: PMC9419288 DOI: 10.1039/c9na00589g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 06/16/2023]
Abstract
This study reports the synthesis of zirconia nanoparticles loaded on various carbon substrates, namely, reduced graphene oxide (Zr-r-GO), carbon nanotubes (Zr-CNT), and activated carbon (Zr-AC). In addition, a composite of zirconia-iron mixed oxide loaded on activated carbon (FeZr-AC) was also synthesized. The materials were characterized using SEM-EDX, HRTEM, FTIR, Raman spectroscopy, TGA and XRD. The FeZr-AC sample was found to have a nanorod like morphology. The samples were evaluated for their sensing potential towards methyl parathion (MP) using differential pulse voltammetry in a range of 0.0 V to -0.9 V (vs. Ag/AgCl) by drop casting on a glassy carbon electrode (GCE). All the modified GCEs best operated at a working potential of 0.4-0.9 V vs. Ag/AgCl/Cl-. FeZr-AC was found have the best limit of detection followed by Zr-AC, Zr-CNT and Zr-r-GO with their detection limits being 1.7 × 10-9 M, 17.2 ×10-9 M, 243.3 × 10-9 M and 534.0 × 10-9 M respectively. These materials were then used to detect MP in spiked sewage samples and showed good recoveries.
Collapse
Affiliation(s)
- Krishna Prasad Gannavarapu
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning Prasanthinilayam Campus, Puttaparthi Anantapur Dist. Andhra Pradesh 515134 India +08555286919 +919441587413
| | - V Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi Tamil Nadu 630001 India
| | - Rajesh Babu Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning Prasanthinilayam Campus, Puttaparthi Anantapur Dist. Andhra Pradesh 515134 India +08555286919 +919441587413
| |
Collapse
|
337
|
Kumar S, Pandey CM, Hatamie A, Simchi A, Willander M, Malhotra BD. Nanomaterial-Modified Conducting Paper: Fabrication, Properties, and Emerging Biomedical Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900041. [PMID: 31832235 PMCID: PMC6888762 DOI: 10.1002/gch2.201900041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/09/2019] [Indexed: 05/02/2023]
Abstract
The emerging demand for wearable, lightweight portable devices has led to the development of new materials for flexible electronics using non-rigid substrates. In this context, nanomaterial-modified conducting paper (CP) represents a new concept that utilizes paper as a functional part in various devices. Paper has drawn significant interest among the research community because it is ubiquitous, cheap, and environmentally friendly. This review provides information on the basic characteristics of paper and its functionalization with nanomaterials, methodology for device fabrication, and their various applications. It also highlights some of the exciting applications of CP in point-of-care diagnostics for biomedical applications. Furthermore, recent challenges and opportunities in paper-based devices are summarized.
Collapse
Affiliation(s)
- Saurabh Kumar
- Centre for Nano Science and Engineering (CeNSE)Indian Institute of ScienceBengaluru560012India
- Department of BiotechnologyDelhi Technological UniversityMain Bawana RoadDelhi110042India
| | - Chandra Mouli Pandey
- Department of BiotechnologyDelhi Technological UniversityMain Bawana RoadDelhi110042India
- Department of Applied ChemistryDelhi Technological UniversityMain Bawana RoadDelhi110042India
| | - Amir Hatamie
- Department of Science & TechnologyCampus NorrkopingLinkoping UniversitySE 60174NorrkopingSweden
- Nanostructured & Advanced Materials LabDepartment of Materials Science and EngineeringSharif University of TechnologyTehran1458889694Iran
| | - Abdolreza Simchi
- Nanostructured & Advanced Materials LabDepartment of Materials Science and EngineeringSharif University of TechnologyTehran1458889694Iran
| | - Magnus Willander
- Department of Science & TechnologyCampus NorrkopingLinkoping UniversitySE 60174NorrkopingSweden
| | - Bansi D. Malhotra
- Department of BiotechnologyDelhi Technological UniversityMain Bawana RoadDelhi110042India
| |
Collapse
|
338
|
Dai Y, Furst A, Liu CC. Strand Displacement Strategies for Biosensor Applications. Trends Biotechnol 2019; 37:1367-1382. [DOI: 10.1016/j.tibtech.2019.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
|
339
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
340
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
341
|
He W, Wang C, Wang H, Jian M, Lu W, Liang X, Zhang X, Yang F, Zhang Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. SCIENCE ADVANCES 2019; 5:eaax0649. [PMID: 31723600 PMCID: PMC6839936 DOI: 10.1126/sciadv.aax0649] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/17/2019] [Indexed: 05/22/2023]
Abstract
Wearable sweat analysis devices for monitoring of multiple health-related biomarkers with high sensitivity are highly desired for noninvasive and real-time monitoring of human health. Here, we report a flexible sweat analysis patch based on a silk fabric-derived carbon textile for simultaneous detection of six health-related biomarkers. The intrinsically N-doped graphitic structure and the hierarchical woven, porous structure provided the carbon textile good electrical conductivity, rich active sites, and good water wettability for efficient electron transmission and abundant access to reactants, enabling it to serve as an excellent working electrode in electrochemical sensors. On the basis of the above, we fabricated a multiplex sweat analysis patch that is capable of simultaneous detection of glucose, lactate, ascorbic acid, uric acid, Na+, and K+. The integration of selective detectors with signal collection and transmission components in this device has enabled us to realize real-time analysis of sweat.
Collapse
Affiliation(s)
- Wenya He
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, 710127, China
| | - Chunya Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wangdong Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, 710127, China
| | - Fengchun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, 710127, China
- Corresponding author. (Y.Z.); (F.Y.)
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Corresponding author. (Y.Z.); (F.Y.)
| |
Collapse
|
342
|
Chang L, Wang YC, Ershad F, Yang R, Yu C, Fan Y. Wearable Devices for Single-Cell Sensing and Transfection. Trends Biotechnol 2019; 37:1175-1188. [DOI: 10.1016/j.tibtech.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
|
343
|
Chung M, Fortunato G, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface 2019; 16:20190217. [PMID: 31594525 PMCID: PMC6833321 DOI: 10.1098/rsif.2019.0217] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Abstract
The state-of-the-art in wearable flexible sensors (WFSs) for sweat analyte detection was investigated. Recent advances show the development of integrated, mechanically flexible and multiplexed sensor systems with on-site circuitry for signal processing and wireless data transmission. When compared with single-analyte sensors, such devices provide an opportunity to more accurately analyse analytes that are dependent on other parameters (such as sweat rate and pH) by improving calibration from in situ real-time analysis, while maintaining a lightweight and wearable design. Important health conditions can be monitored and on-demand regulating drugs can be delivered using integrated wearable systems but require correlation verification between sweat and blood measurements using in vivo validation tests before any clinical application can be considered. Improvements are necessary for device sensitivity, accuracy and repeatability to provide more reliable and personalized continuous measurements. With rapid recent development, it can be concluded that non-invasive WFSs for sweat analysis have only skimmed the surface of their health monitoring potential and further significant advancement is sure to be made in the medical field.
Collapse
Affiliation(s)
- Michael Chung
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Norbert Radacsi
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|
344
|
Farajikhah S, Innis PC, Paull B, Wallace GG, Harris AR. Facile Development of a Fiber-Based Electrode for Highly Selective and Sensitive Detection of Dopamine. ACS Sens 2019; 4:2599-2604. [PMID: 31564101 DOI: 10.1021/acssensors.9b01583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile one-step method was used to create a selective and sensitive electrode for dopamine (DA) detection based upon a stainless steel (SS) filament substrate and reduced graphene oxide (rGO). The electrode successfully and selectively detects DA in the presence of uric acid and ascorbic acid without the need for a Nafion coating. The proposed electrode is easy to fabricate, low-cost, flexible, and strong. The rGO-SS electrode could also be incorporated into a three-dimensional braided structure enabling DA detection in a two-electrode fiber system. The sensor is an excellent candidate for production of an affordable, robust, and flexible wearable and portable sensor and expands the application of textiles in point of care diagnostic devices.
Collapse
Affiliation(s)
- Syamak Farajikhah
- Institute of Photonics and Optical Sciences (IPOS), School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | | | | |
Collapse
|
345
|
Barbone AS, Meftah M, Markiewicz K, Dellimore K. Beyond wearables and implantables: a scoping review of insertable medical devices. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4b32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
346
|
Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2019; 92:378-396. [DOI: 10.1021/acs.analchem.9b04668] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Itthipon Jeerapan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sadagopan Krishnan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
347
|
Ganguly A, Rice P, Lin KC, Muthukumar S, Prasad S. A Combinatorial Electrochemical Biosensor for Sweat Biomarker Benchmarking. SLAS Technol 2019; 25:25-32. [PMID: 31617455 DOI: 10.1177/2472630319882003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Misclassification of an acute disease condition as chronic and vice versa by electrochemical sweat biomarker sensors can cause significant psychological, emotional, and financial stress among patients. To achieve higher accuracy in distinguishing between a chronic condition and an acute condition, there is a need to establish a reference biomarker to index the actual chronic disease biomarker of interest by combinatorial sensing. This work provides the first technological proof of leveraging the chloride ion content in sweat for a combinatorial sweat biomarker benchmarking scheme. In this scheme, the sweat chloride ion has been demonstrated as the reference/indexing biomarker, while sweat cortisol has been studied as the disease biomarker of interest. Label-free affinity biosensing is achieved by using a two-electrode electrochemical system on a flexible substrate suitable for wearable applications. The electrochemical stability of the fabricated electrodes for biosensing applications was studied by open-circuit potential measurements. Attenuated total reflectance-Fourier transform infrared spectroscopy spectra validate the crosslinker-antibody binding chemistry. Concentration-dependent analyte-capture probe binding induces a modulation in the electrical properties (charge transfer resistance and double-layer capacitance) at the electrode-sweat buffer interface, which are transduced by nonfaradaic electrochemical impedance spectroscopy (EIS). Calibration dose responses for the sensor for cortisol (5-200 ng/mL) and chloride (10-100 mM) detection were evaluated in synthetic (pH 6) and pooled human sweat (R2 > 0.95). The variation in the cortisol sensor response due to fluctuations in sweat chloride levels and the significance of reporting normalized biomarker levels were demonstrated to further emphasize the need for biomarker benchmarking in electrochemical sensors.
Collapse
Affiliation(s)
- Antra Ganguly
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Paul Rice
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kai-Chun Lin
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | | | - Shalini Prasad
- Biomedical Microdevices and Nanotechnology Laboratory, Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
348
|
Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal Chem 2019; 91:14803-14807. [PMID: 31553565 DOI: 10.1021/acs.analchem.9b03110] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports a microfluidic chip-based wearable colorimetric sensor for detecting sweat glucose. The device consisted of five microfluidic channels branching out from the center and connected to the detection microchambers. The microchannels could route the sweat excreted from the epidermis to the microchambers, and each of them was integrated with a check valve to avoid the risk of the backflow of the chemical reagents from the microchamber. The microchambers contained the pre-embedded glucose oxidase (GOD)-peroxidase-o-dianisidine reagents for sensing the glucose in sweat. It was found that the color change caused by the enzymatic oxidation of o-dianisidine could show a more sensitive response to the glucose than that of the conventional GOD-peroxidase-KI system. This sensor could perform five parallel detections at one time. The obtained linear range for sweat glucose was 0.1-0.5 mM with a limit of detection of 0.03 mM. The sensor was also used to detect the glucose in sweat samples from a group of subjects engaged in both fasting and postprandial trials. The results showed that our wearable colorimetric sensor can reveal the subtle differences existing in the sweat glucose concentration after the fasting and the oral glucose uptake.
Collapse
Affiliation(s)
- Jingyu Xiao
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yang Liu
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Lei Su
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing 100048 , China
| | - Dan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing 100048 , China
| | - Liang Zhao
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Xueji Zhang
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
349
|
Ben Abdallah Z, Grauby-Heywang C, Beven L, Cassagnere S, Moroté F, Maillard E, Sghaier H, Cohen Bouhacina T. Development of an ultrasensitive label-free immunosensor for fungal aflatoxin B1 detection. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
350
|
Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 296:126422. [PMID: 32831479 PMCID: PMC7440680 DOI: 10.1016/j.snb.2019.04.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rapid, on-site detection of fentanyl is of critical importance, as it is an extremely potent synthetic opioid that is prone to abuse. Here we describe a wearable glove-based sensor that can detect fentanyl electrochemically on the fingertips towards decentralized testing for opioids. The glove-based sensor consists of flexible screen-printed carbon electrodes modified with a mixture of multiwalled carbon nanotubes and a room temperature ionic liquid, 4-(3-butyl-1-imidazolio)-1-butanesulfonate). The sensor shows direct oxidation of fentanyl in both liquid and powder forms with a detection limit of 10 μM using square-wave voltammetry. The "Lab-on-a-Glove" sensors, combined with a portable electrochemical analyzer, provide wireless transmission of the measured data to a smartphone or tablet for further analysis. The integrated sampling and sensing methodology on the thumb and index fingers, respectively, enables rapid screening of fentanyl in the presence of a mixture of cutting agents and offers considerable promise for timely point-of-need screening for first responders. Such a glove-based "swipe, scan, sense, and alert" strategy brings chemical analytics directly to the user's fingertips and opens new possibilities for detecting substances of abuse in emergency situations.
Collapse
Affiliation(s)
- Abbas Barfidokht
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Rupesh K. Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Rajesh Seenivasan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuyang Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lee J. Hubble
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- CSIRO Manufacturing, Lindfield, New South Wales 2070, Australia
| | - Joseph Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Drew A. Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|