301
|
Corticotropin-Releasing Factor Family: A Stress Hormone-Receptor System's Emerging Role in Mediating Sex-Specific Signaling. Cells 2020; 9:cells9040839. [PMID: 32244319 PMCID: PMC7226788 DOI: 10.3390/cells9040839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
No organ in the body is impervious to the effects of stress, and a coordinated response from all organs is essential to deal with stressors. A dysregulated stress response that fails to bring systems back to homeostasis leads to compromised function and ultimately a diseased state. The components of the corticotropin-releasing factor (CRF) family, an ancient and evolutionarily conserved stress hormone-receptor system, helps both initiate stress responses and bring systems back to homeostasis once the stressors are removed. The mammalian CRF family comprises of four known agonists, CRF and urocortins (UCN1–3), and two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Evolutionarily, precursors of CRF- and urocortin-like peptides and their receptors were involved in osmoregulation/diuretic functions, in addition to nutrient sensing. Both CRF and UCN1 peptide hormones as well as their receptors appeared after a duplication event nearly 400 million years ago. All four agonists and both CRF receptors show sex-specific changes in expression and/or function, and single nucleotide polymorphisms are associated with a plethora of human diseases. CRF receptors harbor N-terminal cleavable peptide sequences, conferring biased ligand properties. CRF receptors have the ability to heteromerize with each other as well as with other GPCRs. Taken together, CRF receptors and their agonists due to their versatile functional adaptability mediate nuanced responses and are uniquely positioned to orchestrate sex-specific signaling and function in several tissues.
Collapse
|
302
|
Hyperarousal Scale: Italian Cultural Validation, Age and Gender Differences in a Nonclinical Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041176. [PMID: 32059606 PMCID: PMC7068573 DOI: 10.3390/ijerph17041176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/01/2022]
Abstract
Objectives. Studies on hyperarousal have increasingly developed in the last decade. Nevertheless, there are still very few valid measures of hyperarousal. The aim of the study is to verify the psychometric properties of the Italian version of the Hyperarousal Scale (H-Scale), in order to provide researchers with a valid measure for the target population. Method. The questionnaire was translated, back-translated, pre-tested, and cross-culturally adapted. Subsequently, the Italian version of the H-Scale, the Anxiety Sensitivity Index (ASI-3) and the Health Survey Questionnaire (SF-36) were administered to 982 adults, 456 males and 526 females, aged from 18 to 80 years (M = 35.61 ± 12.47). Results. Cronbach’s alpha of the translated H-Scale was 0.81. Furthermore, positive correlations with the ASI-3 and negative correlations with the SF-36 emerged. The H-Scale is also sensitive to catch age and gender differences. Conclusions. The Italian version of the H-Scale demonstrated good reliability and validity. Its sufficient discriminative and evaluative psychometric properties provide the theoretical evidence for further application in evidence-based research studies.
Collapse
|
303
|
Brivio E, Lopez JP, Chen A. Sex differences: Transcriptional signatures of stress exposure in male and female brains. GENES BRAIN AND BEHAVIOR 2020; 19:e12643. [PMID: 31989757 DOI: 10.1111/gbb.12643] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
More than two-thirds of patients suffering from stress-related disorders are women but over two-thirds of suicide completers are men. These are just some examples of the many sex differences in the prevalence and manifestations of stress-related disorders, such as major depressive disorder, post-traumatic stress disorder, and anxiety disorders, which have been extensively documented in clinical research. Nonetheless, the molecular origins of this sex dimorphism are still quite obscure. In response to this lack of knowledge, the NIH recently advocated implementing sex as biological variable in the design of preclinical studies across disciplines. As a result, a newly emerging field within psychiatry is trying to elucidate the molecular causes underlying the clinically described sex dimorphism. Several studies in rodents and humans have already identified many stress-related genes that are regulated by acute and chronic stress in a sex-specific fashion. Furthermore, current transcriptomic studies have shown that pathways and networks in male and female individuals are not equally affected by stress exposure. In this review, we give an overview of transcriptional studies designed to understand how sex influences stress-specific transcriptomic changes in rodent models, as well as human psychiatric patients, highlighting the use of different methodological techniques. Understanding which mechanisms are more affected in males, and which in females, may lead to the identification of sex-specific mechanisms, their selective contribution to stress susceptibility, and their role in the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
304
|
Borçoi AR, Mendes SO, Gasparini Dos Santos J, Mota de Oliveira M, Moreno IAA, Freitas FV, Pinheiro JA, Arpini JK, Cunha ER, Archanjo AB, Evangelista Monteiro de Assis AL, Sorroche BP, Rebolho Batista Arantes LM, Borloti E, Álvares-da-Silva AM. Risk factors for depression in adults: NR3C1 DNA methylation and lifestyle association. J Psychiatr Res 2020; 121:24-30. [PMID: 31731185 DOI: 10.1016/j.jpsychires.2019.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to verify determinant factors for depression and analyze the relationship between possible changes in HPA axis and depression, in this case NR3C1 DNA methylation and serum cortisol levels. METHODS 349 adult volunteers were recruited to evaluate depression, socio-demographic, economic and lifestyle factors, serum cortisol levels and NR3C1 DNA methylation by pyrosequencing. Depression determinant factors were investigated using a Poisson regression model with robust variance (p < 0.05). RESULTS Poisson regression with robust variance adjusted by gender, tobacco use, self-perceived stress, leisure activity, suicidal ideation, low cortisol levels and NR3C1 DNA methylation was performed and predicted risk factors for depression. Furthermore, depressive volunteers showed a significant increase in NR3C1 DNA methylation when compared to healthy volunteers. CONCLUSIONS This findings provide a basis for understanding the role of HPA axis in depression, especially its regulation by NR3C1 DNA methylation. Furthermore, it emphasizes the stressful lifestyle risk factors (female, tobacco uso, self perceived stress, leisure activities absence and suicidal ideation) that can contribute to future research and the search for public health policies to improve quality of live, mental and general health.
Collapse
Affiliation(s)
- Aline Ribeiro Borçoi
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - Suzanny Oliveira Mendes
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Joaquim Gasparini Dos Santos
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Mayara Mota de Oliveira
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ivana Alece Arantes Moreno
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Flávia Vitorino Freitas
- Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Júlia Assis Pinheiro
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Juliana Krüger Arpini
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ester Ribeiro Cunha
- Departmento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Anderson Barros Archanjo
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Centro de Pesquisas em Oncologia Molecular, Hospital do Cancer de Barretos, Barretos, São Paulo, SP, Brazil
| | | | - Elizeu Borloti
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Adriana Madeira Álvares-da-Silva
- Programa de Pós Graduação em Biotecnologia /Renorbio, Universidade Federal do Espírito Santo, Vitória, ES, Brazil; Departmento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| |
Collapse
|
305
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
306
|
Shields GS. Stress and cognition: A user's guide to designing and interpreting studies. Psychoneuroendocrinology 2020; 112:104475. [PMID: 31810538 DOI: 10.1016/j.psyneuen.2019.104475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
Fueling the rapid growth in our understanding of how stress influences cognition, the number of studies examining the effects of stress on various cognitive processes has grown substantially over the last two decades. Despite this growth, few published guidelines exist for designing these studies, and divergent paradigm designs can diminish typical effects of stress or even reverse them. The goal of this review, therefore, is to survey necessary considerations (e.g., validating a stress induction), important considerations (e.g., specifying the timing of the stressor and cognitive task), and best practices (e.g., using Bayesian analyses) when designing a study that aims at least in part to examine the effects of acute stress on some cognitive process or function. These guidelines will also serve to help readers of these studies interpret what may otherwise be very confusing, anomalous results. Designing and interpreting studies with these considerations and practices in mind will help to move the field of stress and cognition forward by clarifying how, exactly, stress influences performance on a given cognitive task in a population of interest.
Collapse
Affiliation(s)
- Grant S Shields
- Center for Mind and Brain, University of California, Davis, United States.
| |
Collapse
|
307
|
Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, Cunningham MG, Ferris CF, Brenhouse HC. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife 2020; 9:52651. [PMID: 31958061 PMCID: PMC7010412 DOI: 10.7554/elife.52651] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to early-life adversity (ELA) increases the risk for psychopathologies associated with amygdala-prefrontal cortex (PFC) circuits. While sex differences in vulnerability have been identified with a clear need for individualized intervention strategies, the neurobiological substrates of ELA-attributable differences remain unknown due to a paucity of translational investigations taking both development and sex into account. Male and female rats exposed to maternal separation ELA were analyzed with anterograde tracing from basolateral amygdala (BLA) to PFC to identify sex-specific innervation trajectories through juvenility (PD28) and adolescence (PD38;PD48). Resting-state functional connectivity (rsFC) was assessed longitudinally (PD28;PD48) in a separate cohort. All measures were related to anxiety-like behavior. ELA-exposed rats showed precocial maturation of BLA-PFC innervation, with females affected earlier than males. ELA also disrupted maturation of female rsFC, with enduring relationships between rsFC and anxiety-like behavior. This study is the first providing both anatomical and functional evidence for sex- and experience-dependent corticolimbic development. Having a traumatic childhood increases the risk a person will develop anxiety disorders later in life. Early life adversity affects men and women differently, but scientists do not yet know why. Learning more could help scientists develop better ways to prevent or treat anxiety disorders in men and women who experienced childhood trauma. Anxiety occurs when threat-detecting brain circuits turn on. These circuits begin working in infancy, and during childhood and adolescence, experiences shape the brain to hone the body’s responses to perceived threats. Two areas of the brain that are important hubs for anxiety-related brain circuits include the basolateral amygdala (BLA) and the prefrontal cortex (PFC). Now, Honeycutt et al. show that rats that experience early life adversity develop stronger connections between the BLA and PFC, and these changes occur earlier in female rats. In the experiments, one group of rats was repeatedly separated from their mothers and littermates (an early life trauma), while a second group was not. Honeycutt et al. examined the connections between the BLA and PFC in the two groups at three different time periods during their development: the juvenile stage, early adolescence, and late adolescence. The experiments showed stronger connections between the BLA and PFC begin to appear earlier in juvenile traumatized female rats. But these changes did not appear in their male counterparts until adolescence. Lastly, the rats that developed these strengthened BLA-PFC connections also behaved more anxiously later in life. This may mean that the ideal timing for interventions may be different for males and females. More work is needed to see if these results translate to humans and then to find the best times and methods to help people who experienced childhood trauma.
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Miles G Cunningham
- Laboratory for Neural Reconstruction, Department of Psychiatry, McLean Hospital, Belmont, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| |
Collapse
|
308
|
Hippocampal Neurogenesis Is Enhanced in Adult Tau Deficient Mice. Cells 2020; 9:cells9010210. [PMID: 31947657 PMCID: PMC7016791 DOI: 10.3390/cells9010210] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Tau dysfunction is common in several neurodegenerative diseases including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). Affective symptoms have often been associated with aberrant tau pathology and are commonly comorbid in patients with tauopathies, indicating a connection between tau functioning and mechanisms of depression. The current study investigated depression-like behavior in Mapt−/− mice, which contain a targeted deletion of the gene coding for tau. We show that 6-month Mapt−/− mice are resistant to depressive behaviors, as evidenced by decreased immobility time in the forced swim and tail suspension tests, as well as increased escape behavior in a learned helplessness task. Since depression has also been linked to deficient adult neurogenesis, we measured neurogenesis in the hippocampal dentate gyrus and subventricular zone using 5-bromo-2-deoxyuridine (BrdU) labeling. We found that neurogenesis is increased in the dentate gyrus of 14-month-old Mapt−/− brains compared to wild type, providing a potential mechanism for their behavioral phenotypes. In addition to the hippocampus, an upregulation of proteins involved in neurogenesis was observed in the frontal cortex and amygdala of the Mapt−/− mice using proteomic mass spectrometry. All together, these findings suggest that tau may have a role in the depressive symptoms observed in many neurodegenerative diseases and identify tau as a potential molecular target for treating depression.
Collapse
|
309
|
Yun B, Yoo JY, Park MR, Ryu S, Lee WJ, Choi HJ, Kang MK, Kim Y, Oh S. Ingestion of Gouda Cheese Ameliorates the Chronic Unpredictable Mild Stress in Mice. Food Sci Anim Resour 2020; 40:145-153. [PMID: 31970338 PMCID: PMC6957452 DOI: 10.5851/kosfa.2019.e81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
Depression is a kind of mood disorder characterized by decline in motivation,
interest, attention, mental activity, and appetite. Although depression is
caused by a variety of causes, including genetic, endocrine and environmental
stress, mild depression has been reported to improve with diet. Therefore,
various type of food sources including functional and nutritional supplement are
required to treat the depressive patients. Cheese contains bioactive peptides
that have beneficial effects on host health. In particular, Jersey milk has been
reported to contain higher solids than does Holstein milk. This study
investigated the effects of Gouda cheese from Jersey and Holstein milk on
chronic, unpredictable, mildly stressed (CUMS) mice. Here, spontaneous
alterations in cheese-fed stressed mice were noted to be effectively recovered
with statistical significance regardless cow species. Interestingly, for the
analysis of fecal microbiota, Bacteroidetes were noted to
increase with a reduction in Firmicutes at the phylum level
with Jersey cheese. Taken together, we suggest that cheese intake provided a
beneficial effect on stressed mice in recovering recognition ability. In
particular, changes in internal microbiota were observed, suggesting that the
bioactive ingredients in cheese act as improvement agents with respect to mood
and brain function.
Collapse
Affiliation(s)
- Bohyun Yun
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Ja Yeon Yoo
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Mi Ri Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Sangdon Ryu
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Woong Ji Lee
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Hye Jin Choi
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Min Kyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| |
Collapse
|
310
|
Heck AL, Thompson MK, Uht RM, Handa RJ. Sex-Dependent Mechanisms of Glucocorticoid Regulation of the Mouse Hypothalamic Corticotropin-Releasing Hormone Gene. Endocrinology 2020; 161:bqz012. [PMID: 31754709 PMCID: PMC7188085 DOI: 10.1210/endocr/bqz012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
To limit excessive glucocorticoid secretion following hypothalamic-pituitary-adrenal (HPA) axis stimulation, circulating glucocorticoids inhibit corticotropin-releasing hormone (CRH) expression in paraventricular nucleus (PVN) neurons. As HPA function differs between sexes and depends on circulating estradiol (E2) levels in females, we investigated sex/estrous stage-dependent glucocorticoid regulation of PVN Crh. Using NanoString nCounter technology, we first demonstrated that adrenalectomized (ADX'd) diestrous female (low E2), but not male or proestrous female (high E2), mice exhibited a robust decrease in PVN CRH mRNA following 2-day treatment with the glucocorticoid receptor (GR) agonist RU28362. Immunohistochemical analysis of PVN CRH neurons in Crh-IRES-Cre;Ai14 mice, where TdTomato fluorescence permanently tags CRH-expressing neurons, showed similarly abundant co-expression of GR-immunoreactivity in males, diestrous females, and proestrous females. However, we identified sex/estrous stage-related glucocorticoid regulation or expression of GR transcriptional coregulators. Out of 17 coregulator genes examined using nCounter multiplex analysis, mRNAs that were decreased by RU28362 in ADX'd mice in a sex/estrous stage-dependent fashion included: GR (males = diestrous females > proestrous females), signal transducer and activator of transcription 3 (STAT3) (males < diestrous = proestrous), and HDAC1 (males < diestrous > proestrous). Steroid receptor coactivator 3 (SRC-3), nuclear corepressor 1 (NCoR1), heterogeneous nuclear ribonucleoprotein U (hnrnpu), CREB binding protein (CBP) and CREB-regulated transcription coactivator 2 (CRTC2) mRNAs were lower in ADX'd diestrous and proestrous females versus males. Additionally, most PVN CRH neurons co-expressed methylated CpG binding protein 2 (MeCP2)-immunoreactivity in diestrous female and male Crh-IRES-Cre;Ai14 mice. Our findings collectively suggest that GR's sex-dependent regulation of PVN Crh may depend upon differences in the GR transcriptional machinery and an underlying influence of E2 levels in females.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, University of Arizona, Phoenix, Arizona
| | - Rosalie M Uht
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
311
|
Abstract
Stress is associated with the onset of several stress-related mental disorders that occur more frequently in women than in men, such as major depression or posttraumatic stress disorder (PTSD). The hypothalamic-pituitary-adrenal (HPA) axis is the major component of the neuroendocrine network responding to internal and external challenges. The proper functioning of the HPA axis is critical for the maintenance of mental and physical health, as dysregulations of the HPA axis have been linked to several mental and physical disorders. Numerous studies have observed distinct sex differences in the regulation of the HPA axis in response to stress, and it is supposed that these differences may partially explain the female predominance in stress-related mental disorders. Preclinical models have clearly shown that the HPA axis in females is activated more rapidly and produces a larger output of stress hormones than in males. However, studies with humans often produced inconsistent findings, which might be traced back to the variation of investigated stressors, the use of contraceptives in some of the studies, and different menstrual cycle stages of the female subjects. This article discusses rodent and human literature of sex differences in the function of the HPA axis.
Collapse
Affiliation(s)
- Carolin Leistner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Wuerzburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Bernau-Felden, Germany.
| |
Collapse
|
312
|
Hamidovic A, Karapetyan K, Serdarevic F, Choi SH, Eisenlohr-Moul T, Pinna G. Higher Circulating Cortisol in the Follicular vs. Luteal Phase of the Menstrual Cycle: A Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:311. [PMID: 32582024 PMCID: PMC7280552 DOI: 10.3389/fendo.2020.00311] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although results of animal research show that interactions between stress and sex hormones are implicated in the development of affective disorders in women, translation of these findings to patients has been scarce. As a basic step toward advancing this field of research, we analyzed findings of studies which reported circulating cortisol levels in healthy women in the follicular vs. luteal phase of the menstrual cycle. We deemed this analysis critical not only to advance our understanding of basic physiology, but also as an important contrast to the findings of future studies evaluating stress and sex hormones in women with affective disorders. We hypothesized that cortisol levels would be lower in the follicular phase based on the proposition that changes in levels of potent GABAergic neurosteroids, including allopregnanolone, during the menstrual cycle dynamically change in the opposite direction relative to cortisol levels. Implementing strict inclusion criteria, we compiled results of high-quality studies involving 778 study participants to derive a standardized mean difference between circulating cortisol levels in the follicular vs. luteal phase of the menstrual cycle. In line with our hypothesis, our meta-analysis found that women in the follicular phase had higher cortisol levels than women in the luteal phase, with an overall Hedges' g of 0.13 (p < 0.01) for the random effects model. No significant between-study difference was detected, with the level of heterogeneity in the small range. Furthermore, there was no evidence of publication bias. As cortisol regulation is a delicate process, we review some of the basic mechanisms by which progesterone, its potent metabolites, and estradiol regulate cortisol output and circulation to contribute to the net effect of higher cortisol in the follicular phase.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Ajna Hamidovic
| | - Kristina Karapetyan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Fadila Serdarevic
- Department of Epidemiology, Erasmus Medical Centre Rotterdam, Rotterdam, Netherlands
| | - So Hee Choi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
313
|
Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:237-257. [PMID: 32578150 DOI: 10.1007/978-3-030-45493-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders are among the most challenging human diseases to understand at a mechanistic level due to the heterogeneity of symptoms within established diagnostic categories, the general absence of focal pathology, and the genetic complexity inherent in these mostly polygenic disorders. Each of these features presents unique challenges to disease modeling for biological discovery, drug development, or improved diagnostics. In addition, live human neural tissue has been largely inaccessible to experimentation, leaving gaps in our knowledge derived from animal models that cannot fully recapitulate the features of the disease, indirect measures of brain function in human patients, and from analyses of postmortem tissue that can be confounded by comorbid conditions and medication history.
Collapse
|
314
|
|
315
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
316
|
Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific Effects of Maternal Separation on Perineuronal Net and Parvalbumin-expressing Interneuron Formation in Male and Female Rats. Neuroscience 2019; 428:23-37. [PMID: 31887358 DOI: 10.1016/j.neuroscience.2019.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022]
Abstract
Early life experiences play a vital role in contributing to healthy brain development. Adverse experiences have a lasting impact on the prefrontal cortex (PFC) and basolateral amygdala (BLA), brain regions associated with emotion regulation. Early life adversity via maternal separation (MS) has sex-specific effects on expression of parvalbumin (PV), which is expressed in fast-spiking GABAergic interneurons that are preferentially enwrapped by perineuronal nets (PNNs). Importantly, PNN formation coincides with the closure of developmental critical periods and regulates PV-expressing interneuron activity. Since aberrant PNN organization has been reported following adverse experiences in adolescent and adult rats, we investigated the impact of adversity early in life in the form of MS on the developing brain. Rat pups were separated from their dams for 4 h per day from postnatal day (P) 2-20. Tissue sections from juvenile (P20), adolescent (P40), and early adult (P70) animals containing the PFC and BLA were fluorescently stained to visualize Wisteria floribunda agglutinin+ PNNs and PV-expressing interneurons, and density and intensity was quantified. Our results confirm past reports that PFC PNNs form gradually throughout development; however, PNN density plateaus in adolescence, while intensity continues to increase into adulthood. Importantly, MS delays PNN formation in the prelimbic PFC and results in sex-specific aberrations in PNN structural integrity that do not appear until adulthood. The present findings reveal sex-, age-, and region-specific effects of early life adversity on PNN and PV maturation, implicating neuroplastic alterations following early life adversity that may be associated with sex differences in psychopathology and resilience.
Collapse
Affiliation(s)
- Kelsea R Gildawie
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Jennifer A Honeycutt
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Heather C Brenhouse
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
317
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
318
|
Low hair cortisol concentration predicts the development of attention deficit hyperactivity disorder. Psychoneuroendocrinology 2019; 110:104442. [PMID: 31585236 DOI: 10.1016/j.psyneuen.2019.104442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Low activity of the hypothalamic-pituitary-adrenal axis (HPAA) resulting from genetic and early environmental factors has been thought to indicate risk for the development of attention deficit hyperactivity disorder (ADHD) and externalizing disorders. However, longitudinal research on this issue is scarce. We analyzed whether hair cortisol concentration (HCC), i.e. accumulated long-term HPAA activity, predicts the development of ADHD between preschool and school age. METHODS A community-based sample of 126 children was assessed at the ages of 4, 5 and 8 years. ADHD and symptoms of oppositional defiant and conduct disorder (ODD/CD), callous unemotional (CU) traits, and internalizing symptoms were measured by clinical parent interviews and parent and teacher questionnaires. HCC was analyzed in the most proximal 3-cm scalp hair segment using luminescence immunoassay. RESULTS Low HCC at preschool age predicted an increase in ADHD symptoms between preschool and school age while adjusting for gender of child, maternal education level, and internalizing symptoms (F(1,119) = 6.5; p = .012). The prediction held after additionally adjusting for ODD/CD symptoms and CU traits (F(1,116) = 4.1; p = .045). The same was true for the prediction of the ADHD diagnosis at the age of 8 years (Chi2(1) = 7.3; p = .007). The prediction of ADHD was mainly based on the presentation of inattention symptoms (F(1,119) = 7.4, p = .008). CONCLUSION Low HCC in preschool children indicates an increased risk of developing ADHD at school age. In future research, it would be of theoretical and clinical importance to further circumscribe this HCC-related developmental pathway and track its further course of development.
Collapse
|
319
|
Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2019; 379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Depression, the most prevalent psychiatric disorder, is characterized by increased negative affect (i.e. depressed mood) and reduced positive affect (i.e. anhedonia). Stress is a risk factor for depression in humans, and animal models of chronic stress are typically used to study neurobehavioral alterations relevant to depression. Common behavioral outcomes in rodent models of chronic stress include anhedonia, social dysfunction and behavioral despair. For example, chronically stressed rodents exhibit reduced reward preference, as measured by a loss of preference for sucrose solutions and time spent interacting with a novel conspecific, while also exhibiting less time struggling against inescapable stressors (e.g. forced swim, tail suspension). In both humans and rodents, anhedonia is associated with dysfunction of the dopamine (DA) system. Unlike traditional antidepressants, which are limited by inadequate efficacy and delayed therapeutic response, acute ketamine administration rapidly alleviates depressive symptoms in humans and reverses stress-induced changes in animal models. These effects are partially mediated via actions on the DA system. This review summarizes the clinical effects of ketamine, the neurobiological underpinnings of depression with a focus on DA dysfunction, as well as antidepressant effects of ketamine on depression-related endophenotypes (i.e. anhedonia, despair) and ventral tegmental area (VTA) activity in rodent models of repeated stress. Moreover, we discuss evidence regarding sex differences in ketamine's antidepressant effects, wherein females appear to be more sensitive to lower dose ketamine, as well as novel findings suggesting that ketamine has prophylactic effects with regard to protection against the neurobehavioral impact of future stressors.
Collapse
|
320
|
Kokras N, Hodes GE, Bangasser DA, Dalla C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br J Pharmacol 2019; 176:4090-4106. [PMID: 31093959 PMCID: PMC6877794 DOI: 10.1111/bph.14710] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been implicated in the pathophysiology of depression, and HPA axis-based compounds have served as potential new therapeutic targets, but with no success. This review details sex differences from animal and human studies in the function of HPA axis elements (glucocorticoids, corticotropin releasing factor, and vasopressin) and related compounds tested as candidate antidepressants. We propose that sex differences contribute to the failure of novel HPA axis-based drugs in clinical trials. Compounds studied preclinically in males were tested in clinical trials that recruited more, if not exclusively, women, and did not control, but rather adjusted, for potential sex differences. Indeed, clinical trials of antidepressants are usually not stratified by sex or other important factors, although preclinical and epidemiological data support such stratification. In conclusion, we suggest that clinical testing of HPA axis-related compounds creates an opportunity for targeted, personalized antidepressant treatments based on sex. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
- First Department of Psychiatry, Eginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia E. Hodes
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| | | | - Christina Dalla
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
321
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
322
|
Robinson SA, Hill-Smith TE, Lucki I. Buprenorphine prevents stress-induced blunting of nucleus accumbens dopamine response and approach behavior to food reward in mice. Neurobiol Stress 2019; 11:100182. [PMID: 31304200 PMCID: PMC6599912 DOI: 10.1016/j.ynstr.2019.100182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Alterations to the mesolimbic dopamine (DA) system are thought to underlie dysfunctional reward processing in stress-related psychiatric disorders. Using in vivio microdialysis in awake freely moving mice, we assessed the effects of stress on the motivational and neurochemical correlates underlying conditioned approach behavior for palatable food in the non-deprived mouse. Mice trained to approach and consume food in a familiar environment exhibited a 30% increase in nucleus accumbens shell (AcbSh) extracellular dopamine levels coincident with approach towards and consumption of the food reward. This effect was not observed in mice that were presented with the food in an unfamiliar environment or were exposed for the first time and were region specific. The addition of an acute environmental stressor (bright light and novel scent) during food exposure decreased DA release and delayed approach to the food. The disruptive impact of acute novelty stress on DA levels and approach behavior was reversed in animals pretreated with buprenorphine, an opioid drug with antidepressant-like and anxiolytic effects. Together, these data indicate that exposure to mild stress reduces incentive drive to approach palatable food via alterations in AcbSh dopamine responsiveness to food reward. Moreover, they implicate the brain opioid system as a potential pharmacological target for counteracting behavioral and neurochemical elements associated with stress.
Collapse
Affiliation(s)
- Shivon A. Robinson
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
323
|
Sex-specific roles of cellular inflammation and cardiometabolism in obesity-associated depressive symptomatology. Int J Obes (Lond) 2019; 43:2045-2056. [PMID: 31089263 PMCID: PMC6774832 DOI: 10.1038/s41366-019-0375-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Obesity and depression are complex conditions with stronger comorbid relationships among women than men. Inflammation and cardiometabolic dysfunction are likely mechanistic candidates for increased depression risk, and their prevalence differs by sex. Whether these relationships extend to depressive symptoms is poorly understood. Therefore, we analyzed sex in associations between inflammation and metabolic syndrome (MetS) criteria on depressive symptomatology. Specifically, we examined whether sex positively moderates the relationship between depressive symptoms and inflammation among women, and whether MetS has parallel effects among men. METHODS Depressive symptoms, MetS, and inflammation were assessed in 129 otherwise healthy adults. Depressive symptoms were assessed using Beck Depression Inventory (BDI-Ia). Monocyte inflammation regulation (BARIC) was quantified using flow cytometry measurement of TNF-α suppression by β-agonist. Moderation effects of sex on associations between BARIC, MetS criteria, and BDI were estimated using two-way ANOVA and linear regression, adjusting for BMI, and by sex subgroup analyses. RESULTS Obese individuals reported more depressive symptoms. Sex did not formally moderate this relationship, though BDI scores tended to differ by BMI among women, but not men, in subgroup analysis. Poorer inflammation control and higher MetS criteria were correlated with somatic depressive symptoms. Sex moderated associations between MetS criteria and somatic symptoms; among men, MetS criteria predicted somatic symptoms, not among women. Subgroup analysis further indicated that poorer inflammation control tended to be associated with higher somatic symptoms in women. CONCLUSIONS These results indicate that obesity-related inflammation and MetS factors have sex-specific effects on depressive symptoms in a non-clinical population. Although pathophysiological mechanisms underlying sex differences remain to be elucidated, our findings suggest that distinct vulnerabilities to depressive symptoms exist between women and men, and highlight the need to consider sex as a key biological variable in obesity-depression relationships. Future clinical studies on comorbid obesity and depression should account for sex, which may optimize therapeutic strategies.
Collapse
|
324
|
Klinger K, Gomes FV, Rincón-Cortés M, Grace AA. Female rats are resistant to the long-lasting neurobehavioral changes induced by adolescent stress exposure. Eur Neuropsychopharmacol 2019; 29:1127-1137. [PMID: 31371105 PMCID: PMC6773464 DOI: 10.1016/j.euroneuro.2019.07.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
Stress during adolescence is a risk factor for neuropsychiatric diseases, including schizophrenia. We recently observed that peripubertal male rats exposed to a combination of daily footshock plus restraint stress exhibited schizophrenia-like changes. However, numerous studies have shown sex differences in neuropsychiatric diseases as well as on the impact of coping with stress. Thus, we decided to evaluate, in adolescent female rats, the impact of different stressors (restraint stress [RS], footshock [FS], or the combination of FS and RS [FS+RS]) on social interaction (3-chamber social approach test/SAT), anxiety responses (elevated plus-maze/EPM), cognitive function (novel object recognition test/NOR), and dopamine (DA) system responsivity by evaluating locomotor response to amphetamine and in vivo extracellular single unit recordings of DA neurons in the ventral tegmental area (VTA) in adulthood. The impact of FS+RS during early adulthood was also investigated. Adolescent stress had no impact on social behavior, anxiety, cognition and locomotor response to amphetamine. In addition, adolescent stress did not induce long-lasting changes in VTA DA system activity. However, a decrease in the firing rate of VTA DA neurons was found 1-2 weeks post-adolescent stress. Similar to adolescent stress, adult stress did not induce long-lasting behavioral deficits and changes in VTA DA system activity, but FS+RS decreased VTA DA neuron population activity 1-2 weeks post-adult stress. Our results are consistent with previous studies showing that female rodents appear to be more resilient to developmental stress-induced persistent changes than males and may contribute to the delayed onset and lesser severity of schizophrenia in females.
Collapse
Affiliation(s)
- Katharina Klinger
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Institute of Genetic and Molecular Neurobiology, Otto-von-Guericke University, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Bandeirantes Ave, Ribeirao Preto, SP, 14049-900, Brazil
| | - Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
325
|
Ip KI, Liu Y, Moser J, Mannella K, Hruschak J, Bilek E, Muzik M, Rosenblum K, Fitzgerald K. Moderation of the relationship between the error-related negativity and anxiety by age and gender in young children: A preliminary investigation. Dev Cogn Neurosci 2019; 39:100702. [PMID: 31494429 PMCID: PMC6969360 DOI: 10.1016/j.dcn.2019.100702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
The error-related negativity (ERN) is a neurophysiologic response to errors that associates with anxiety. Despite the potential relevance of the ERN for understanding mechanisms of early anxiety problems in the developing brain, the relation between ERN and anxious symptoms in young children remains poorly understood. Emerging evidence suggests that ERN-anxiety associations could vary by developmental stage, but this work requires replication and consideration of gender effects, given earlier maturation of the ERN and higher rates of anxiety problems in girls relative to boys. To address this gap, the ERN was collected in 49 preschool- to school-aged children (ages 4-9; 26 girls) sampled across a wide range of anxiety severity. Regression analyses revealed that ERN - anxiety associations depended on age and gender. Specifically, larger (more negative) ERN associated with more anxiety in older girls, whereas smaller ERN associated with more anxiety symptoms in younger girls. No ERN-anxiety association was found in boys. These findings suggest that age and gender moderate the direction of the relation between ERN and anxiety in early childhood and could have important implications for the development of ERN-based risk identification and targeted treatment strategies tailored to individual children.
Collapse
Affiliation(s)
- Ka I Ip
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, USA.
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jason Moser
- Department of Psychology, Michigan State University, East Lasing, MI, USA
| | - Kristin Mannella
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Hruschak
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily Bilek
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Maria Muzik
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Kate Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
326
|
Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MS, Roslan NS, Ahmad A, Mohammad JA, Abdullah MFI, Zakaria N, Wahid N, Sun Z, Kwok LY, Zhang H, Liong MT. Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clin Nutr 2019; 38:2053-2064. [DOI: 10.1016/j.clnu.2018.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
|
327
|
Guevara JE, Gilbert S, Murdock KW, Stowe RP, Fagundes CP. Sex differences in executive functioning and latent herpesvirus reactivation among bereaved and non-bereaved individuals. Stress Health 2019; 35:396-406. [PMID: 30977590 PMCID: PMC6790147 DOI: 10.1002/smi.2867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/24/2023]
Abstract
The death of a spouse is a highly stressful event. Better executive functioning has been shown to benefit men to a greater degree than women during stress. We evaluated potential sex differences in stress and immune dysregulation among control and bereaved participants who completed a self-report measure of perceived stress, neuropsychological measures of inhibition and updating/monitoring of information in working memory, and a blood draw to measure Epstein-Barr virus (EBV) antibody titres. Moderation analyses were conducted to test the hypothesis that better inhibition would be associated with less stress and immune dysregulation among male bereaved participants compared with female bereaved participants. Bereaved females demonstrated greater EBV antibody titres than bereaved males. Male bereaved participants benefited from better inhibition, as evidenced by fewer EBV antibody titres, whereas bereaved female participants did not. In the control group, males with high inhibition reported lower stress than males with low inhibition. Present study results are an important step towards identifying those at greatest risk of stress and poor health.
Collapse
Affiliation(s)
- Jasmin E. Guevara
- Department of Biobehavioral Health, The Pennsylvania State University
| | - Sarah Gilbert
- Department of Biobehavioral Health, The Pennsylvania State University
| | - Kyle W. Murdock
- Department of Biobehavioral Health, The Pennsylvania State University
| | | | - Christopher P. Fagundes
- Department of Psychology, Rice University,Department of Behavioral Science, The University of Texas MD Anderson Cancer Center,Department of Psychiatry, Baylor College of Medicine
| |
Collapse
|
328
|
Cowden Hindash AH, Lujan C, Howard M, O'Donovan A, Richards A, Neylan TC, Inslicht SS. Gender Differences in Threat Biases: Trauma Type Matters in Posttraumatic Stress Disorder. J Trauma Stress 2019; 32:701-711. [PMID: 31590206 DOI: 10.1002/jts.22439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Women are diagnosed with posttraumatic stress disorder (PTSD) at twice the rate of men. This gender difference may be related to differences in PTSD experiences (e.g., more hypervigilance in women) or types of trauma experienced (e.g., interpersonal trauma). We examined whether attentional threat biases were associated with gender, PTSD diagnosis, and/or trauma type. Participants were 70 civilians and veterans (38 women, 32 men; 41 with PTSD, 29 without PTSD) assessed with the Clinician Administered PTSD Scale for DSM-IV who completed a facial dot-probe attention bias task and self-report measures of psychiatric symptoms and trauma history. Factorial ANOVA and regression models examined associations between gender, PTSD diagnosis, index trauma type, lifetime traumatic experiences, and attentional threat biases. Results revealed that compared to women without PTSD and men both with and without PTSD, women with PTSD demonstrated attentional biases toward threatening facial expressions, d = 1.19, particularly fearful expressions, d = 0.74. Psychiatric symptoms or early/lifetime trauma did not account for these attentional biases. Biases were related to interpersonal assault index traumas, ηp 2 = .13, especially sexual assault, d = 1.19. Trauma type may be an important factor in the development of attentional threat biases, which theoretically interfere with trauma recovery. Women may be more likely to demonstrate attentional threat biases due to higher likelihood of interpersonal trauma victimization rather than due to gender-specific psychobiological pathways. Future research is necessary to clarify if sexual assault alone or in combination with gender puts individuals at higher risk of developing PTSD.
Collapse
Affiliation(s)
- Alexandra H Cowden Hindash
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA.,Veterans Health Administration Advanced Fellowship in Women's Health, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA
| | - Callan Lujan
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA
| | - Meghan Howard
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA
| | - Aoife O'Donovan
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | - Anne Richards
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | - Thomas C Neylan
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | - Sabra S Inslicht
- Stress and Health Research Program, San Francisco Veteran Affairs Medical Center, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
329
|
Osadchiy V, Mayer EA, Bhatt R, Labus JS, Gao L, Kilpatrick LA, Liu C, Tillisch K, Naliboff B, Chang L, Gupta A. History of early life adversity is associated with increased food addiction and sex-specific alterations in reward network connectivity in obesity. Obes Sci Pract 2019; 5:416-436. [PMID: 31687167 PMCID: PMC6819979 DOI: 10.1002/osp4.362] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroimaging studies have identified obesity-related differences in the brain's resting state activity. An imbalance between homeostatic and reward aspects of ingestive behaviour may contribute to obesity and food addiction. The interactions between early life adversity (ELA), the reward network and food addiction were investigated to identify obesity and sex-related differences, which may drive obesity and food addiction. METHODS Functional resting state magnetic resonance imaging was acquired in 186 participants (high body mass index [BMI]: ≥25: 53 women and 54 men; normal BMI: 18.50-24.99: 49 women and 30 men). Participants completed questionnaires to assess ELA (Early Traumatic Inventory) and food addiction (Yale Food Addiction Scale). A tripartite network analysis based on graph theory was used to investigate the interaction between ELA, brain connectivity and food addiction. Interactions were determined by computing Spearman rank correlations, thresholded at q < 0.05 corrected for multiple comparisons. RESULTS Participants with high BMI demonstrate an association between ELA and food addiction, with reward regions playing a role in this interaction. Among women with high BMI, increased ELA was associated with increased centrality of reward and emotion regulation regions. Men with high BMI showed associations between ELA and food addiction with somatosensory regions playing a role in this interaction. CONCLUSIONS The findings suggest that ELA may alter brain networks, leading to increased vulnerability for food addiction and obesity later in life. These alterations are sex specific and involve brain regions influenced by dopaminergic or serotonergic signalling.
Collapse
Affiliation(s)
- V. Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - E. A. Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Ahmanson‐Lovelace Brain Mapping CenterUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - R. Bhatt
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Pediatric Pain and Palliative Care ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - J. S. Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. Gao
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. A. Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - C. Liu
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - K. Tillisch
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Pediatric Pain and Palliative Care ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - B. Naliboff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. Chang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - A. Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
330
|
Kim GS, Smith AK, Xue F, Michopoulos V, Lori A, Armstrong DL, Aiello AE, Koenen KC, Galea S, Wildman DE, Uddin M. Methylomic profiles reveal sex-specific differences in leukocyte composition associated with post-traumatic stress disorder. Brain Behav Immun 2019; 81:280-291. [PMID: 31228611 PMCID: PMC6754791 DOI: 10.1016/j.bbi.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder precipitated by trauma exposure. However, only some persons exposed to trauma develop PTSD. There are sex differences in risk; twice as many women as men develop a lifetime diagnosis of PTSD. Methylomic profiles derived from peripheral blood are well-suited for investigating PTSD because DNA methylation (DNAm) encodes individual response to trauma and may play a key role in the immune dysregulation characteristic of PTSD pathophysiology. In the current study, we leveraged recent methodological advances to investigate sex-specific differences in DNAm-based leukocyte composition that are associated with lifetime PTSD. We estimated leukocyte composition on a combined methylation array dataset (483 participants, ∼450 k CpG sites) consisting of two civilian cohorts, the Detroit Neighborhood Health Study and Grady Trauma Project. Sex-stratified Mann-Whitney U test and two-way ANCOVA revealed that lifetime PTSD was associated with significantly higher monocyte proportions in males, but not in females (Holm-adjusted p-val < 0.05). No difference in monocyte proportions was observed between current and remitted PTSD cases in males, suggesting that this sex-specific difference may reflect a long-standing trait of lifetime history of PTSD, rather than current state of PTSD. Associations with lifetime PTSD or PTSD status were not observed in any other leukocyte subtype and our finding in monocytes was confirmed using cell estimates based on a different deconvolution algorithm, suggesting that our sex-specific findings are robust across cell estimation approaches. Overall, our main finding of elevated monocyte proportions in males, but not in females with lifetime history of PTSD provides evidence for a sex-specific difference in peripheral blood leukocyte composition that is detectable in methylomic profiles and that may reflect long-standing changes associated with PTSD diagnosis.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, USA
| | - Alicia K Smith
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Fei Xue
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Allison E Aiello
- Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sandro Galea
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
331
|
Dreno B, Bagatin E, Blume-Peytavi U, Rocha M, Gollnick H. Akne bei erwachsenen Frauen: Physiologische und psychologische Erwägungen und Management. J Dtsch Dermatol Ges 2019; 16:1185-1196. [PMID: 30300500 DOI: 10.1111/ddg.13664_g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Brigitte Dreno
- Department of Dermatology, University of Nantes, Frankreich
| | - Edileia Bagatin
- Department of Dermatology, Federal University of São Paulo - UNIFESP, São Paulo, Brasilien
| | - Ulrike Blume-Peytavi
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin
| | - Marco Rocha
- Department of Dermatology, Federal University of São Paulo - UNIFESP, São Paulo, Brasilien
| | - Harald Gollnick
- Klinik für Dermatologie und Venerologie, Otto-von-Guericke-Universität, Magdeburg
| |
Collapse
|
332
|
Relationship between Sleep Bruxism, Perceived Stress, and Coping Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173193. [PMID: 31480550 PMCID: PMC6747300 DOI: 10.3390/ijerph16173193] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
Abstract
Sleep bruxism (SB) is a common phenomenon defined as a masticatory muscle activity during sleep. Untreated severe SB can have significant dental and orofacial consequences. SB has often been linked with stress and maladaptive coping strategies. Therefore, in this study, a potential correlation between SB, perceived stress and coping strategies was evaluated. A total of 60 adults were enrolled into this study. Participants underwent a detailed intra- and extraoral exam focused on detecting bruxism symptoms. Additionally, the overnight Bruxism Index was recorded using the Bruxoff device. A total of 35 participants with symptoms of bruxism were assigned to the study group, whereas 25 asymptomatic participants were assigned to the control group. The Perceived Stress Scale (PSS-10) was used for stress assessment and Brief-COPE for coping strategies. Results showed that the higher the PSS-10 score, the higher the Bruxism Index was in the study group. Positive coping strategies were chosen most frequently in the control group, while maladaptive ones were chosen in the study group. It can be concluded that there is a relationship between perceived stress and sleep bruxism. Moreover, the type of coping strategies used by participants may have an impact on sleep bruxism, but the relationship should be further investigated.
Collapse
|
333
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
334
|
Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019; 103:702-718.e5. [DOI: 10.1016/j.neuron.2019.05.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
|
335
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
336
|
Huang S, Dong W, Jiao Z, Liu J, Li K, Wang H, Xu D. Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring. Toxicol Sci 2019; 171:369-384. [PMID: 31518422 DOI: 10.1093/toxsci/kfz163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological investigations have suggested that periodic use of dexamethasone during pregnancy is a risk factor for abnormal behavior in offspring, but the potential mechanism remains unclear. In this study, we investigated the changes in the glutamatergic system and neurobehavior in female offspring with prenatal dexamethasone exposure (PDE) to explore intrauterine programing mechanisms. Compared with the control group, rat offspring with PDE exhibited spatial memory deficits and anxiety-like behavior. The expression of hippocampal glucocorticoid receptors (GR) and histone deacetylase 2 (HDAC2) increased, whereas histone H3 lysine 14 acetylation (H3K14ac) of brain-derived neurotrophic factor (BDNF) exon IV (BDNF IV) and expression of BDNF decreased. The glutamatergic system also changed. We further observed that changes in the fetal hippocampus were consistent with those in adult offspring. In vitro, the administration of 0.5 μM dexamethasone to the H19-7 fetal hippocampal neuron cells directly led to a cascade of changes in the GR/HDAC2/BDNF pathway, whereas the GR antagonist RU486 and the HDAC2 inhibitor romidepsin (Rom) reversed changes caused by dexamethasone to the H3K14ac level of BDNF IV and to the expression of BDNF. The increase in HDAC2 can be reversed by RU486, and the changes in the glutamatergic system can be partially reversed after supplementation with BDNF. It is suggested that PDE increases the expression of HDAC2 by activating GR, reducing the H3K14ac level of BDNF IV, inducing alterations in neurobehavior and hippocampal glutamatergic system balance. The findings suggest that BDNF supplementation and glutamatergic system improvement are potential therapeutic targets for the fetal origins of abnormal neurobehavior.
Collapse
Affiliation(s)
- Songqiang Huang
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Wanting Dong
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Zhexiao Jiao
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Jie Liu
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Ke Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, China
| | - Hui Wang
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| | - Dan Xu
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| |
Collapse
|
337
|
Sex differences in the effects of acute stress on cerebral glucose metabolism: A microPET study. Brain Res 2019; 1722:146355. [PMID: 31356782 DOI: 10.1016/j.brainres.2019.146355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Stress has been considered as a risk factor for the development and aggravation of several diseases. The hypothalamic-pituitary-adrenal axis (HPA) is one of the main actors for the stress response and homeostasis maintenance. Positron emission tomography (PET) has been used to evaluate neuronal activity and to study brain regions that may be related to the HPA axis response. Since neuroimaging is an important tool in detecting neuroendocrine-related changes, we used fluorodeoxyglucose-18 (18F-FDG) and positron emission microtomography (microPET) to evaluate sexual differences in the glucose brain metabolism after 10, 30 and 40 min of acute stress in Balb/c mice. We also investigated the effects of restraint stress in blood, liver and adrenal gland 18F-FDG biodistribution using a gamma counter. A decreased glucose uptake in the whole brain in both females and males was found. Additionally, there were time and sex-dependent alterations in the 18F-FDG uptake after restraint stress in specific brain regions, indicating that males could be more vulnerable to the short-term effects of acute stress. According to the gamma counter biodistribution, only females showed a significant decreased glucose uptake in the blood, liver and right adrenal after restraint stress. In addition, in comparisons between the sexes, males showed a decreased glucose uptake in the whole brain and in several brain regions compared to females. In conclusion, exposure to acute restraint stress resulted in significant decreased glucose metabolism in the brain, with particular effects in different regions and organs in a sex-specific manner.
Collapse
|
338
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
339
|
Becker S, Bräscher AK, Bannister S, Bensafi M, Calma-Birling D, Chan RCK, Eerola T, Ellingsen DM, Ferdenzi C, Hanson JL, Joffily M, Lidhar NK, Lowe LJ, Martin LJ, Musser ED, Noll-Hussong M, Olino TM, Pintos Lobo R, Wang Y. The role of hedonics in the Human Affectome. Neurosci Biobehav Rev 2019; 102:221-241. [PMID: 31071361 PMCID: PMC6931259 DOI: 10.1016/j.neubiorev.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
Experiencing pleasure and displeasure is a fundamental part of life. Hedonics guide behavior, affect decision-making, induce learning, and much more. As the positive and negative valence of feelings, hedonics are core processes that accompany emotion, motivation, and bodily states. Here, the affective neuroscience of pleasure and displeasure that has largely focused on the investigation of reward and pain processing, is reviewed. We describe the neurobiological systems of hedonics and factors that modulate hedonic experiences (e.g., cognition, learning, sensory input). Further, we review maladaptive and adaptive pleasure and displeasure functions in mental disorders and well-being, as well as the experience of aesthetics. As a centerpiece of the Human Affectome Project, language used to express pleasure and displeasure was also analyzed, and showed that most of these analyzed words overlap with expressions of emotions, actions, and bodily states. Our review shows that hedonics are typically investigated as processes that accompany other functions, but the mechanisms of hedonics (as core processes) have not been fully elucidated.
Collapse
Affiliation(s)
- Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany.
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France.
| | - Destany Calma-Birling
- Department of Psychology, University of Wisconsin-Oshkosh, 800 Algoma, Blvd., Clow F011, Oshkosh, WI 54901, USA.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3, Durham, UK.
| | - Dan-Mikael Ellingsen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY149-2301, 13th St, Charlestown, MA 02129, USA.
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France.
| | - Jamie L Hanson
- University of Pittsburgh, Department of Psychology, 3939 O'Hara Street, Rm. 715, Pittsburgh, PA 15206, USA.
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130, Écully, France.
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Leroy J Lowe
- Neuroqualia (NGO), 36 Arthur Street, Truro, NS, B2N 1X5, Canada.
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Erica D Musser
- Department of Psychology, Center for Childen and Families, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Michael Noll-Hussong
- Clinic for Psychiatry and Psychotherapy, Division of Psychosomatic Medicine and Psychotherapy, Saarland University Medical Centre, Kirrberger Strasse 100, D-66421 Homburg, Germany.
| | - Thomas M Olino
- Temple University, Department of Psychology, 1701N. 13th St, Philadelphia, PA 19010, USA.
| | - Rosario Pintos Lobo
- Department of Psychology, Center for Childen and Families, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
340
|
Finnell JE, Moffitt CM, Hesser LA, Harrington E, Melson MN, Wood CS, Wood SK. The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain Behav Immun 2019; 79:102-113. [PMID: 30707932 PMCID: PMC6591045 DOI: 10.1016/j.bbi.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Exposure to psychosocial stress is known to precipitate the emergence of stress related psychiatric disorders such as depression and anxiety. While mechanisms by which this occurs remain largely unclear, recent evidence points towards a causative role for inflammation. Neurotransmitters, such as norepinephrine (NE), are capable of regulating expression of proinflammatory cytokines and thus may contribute to the emergence of stress-related disorders. The locus coeruleus (LC) is the major source of norepinephrine (NE) to the brain and therefore the current study utilized N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), an LC selective noradrenergic neurotoxin, to determine the discrete involvement of the LC-NE system in social defeat-induced inflammation in LC projection regions including the central amygdala (CeA), dorsal raphe (DR) and plasma. In the current study, rats were exposed to brief social defeat or control manipulations on 5 consecutive days. To determine whether a history of social defeat enhanced or "primed" the inflammatory response to a subsequent defeat exposure, all rats regardless of stress history were exposed to an acute social defeat challenge immediately preceeding tissue collection. As anticipated, prior history of social defeat primed inflammatory responses in the plasma and CeA while neuroinflammation in the DR was markedly reduced. Notably, DSP-4 treatment suppressed stress-induced circulating inflammatory cytokines independent of prior stress history. In contrast, neuroinflammation in the CeA and DR were greatly augmented selectively in DSP-4 treated rats with a history of social defeat. Together these data highlight the dichotomous nature of NE in stress-induced inflammatory priming in the periphery and the brain and directly implicate the LC-NE system in these processes.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Casey M Moffitt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - L Ande Hesser
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Evelynn Harrington
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Michael N Melson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Christopher S Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.
| |
Collapse
|
341
|
Heck AL, Handa RJ. Androgens Drive Sex Biases in Hypothalamic Corticotropin-Releasing Hormone Gene Expression After Adrenalectomy of Mice. Endocrinology 2019; 160:1757-1770. [PMID: 31074799 PMCID: PMC6594463 DOI: 10.1210/en.2019-00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
Although prominent sex differences exist in the hypothalamic-pituitary-adrenal axis's response to stressors, few studies of its regulation in the hypothalamic paraventricular nucleus (PVN) have compared both male and female subjects. In this study, we sought to explore sex differences in the acute regulation of PVN neuropeptide expression following glucocorticoid (GC) removal and the underlying role of gonadal hormones. We first examined the effects of short-term adrenalectomy (ADX) on PVN Crh and arginine vasopressin (Avp) expression in mice using in situ hybridization. ADX increased PVN AVP mRNA levels in both sexes. In contrast, PVN CRH mRNA was increased by 2 days after ADX in males only. Both sexes showed increases in CRH mRNA after 4 days. To determine if gonadal hormones contributed to this sex bias, we examined adrenalectomized (ADX'd) and gonadectomized (GDX'd) mice with or without gonadal hormone replacement. Unlike the pattern in intact animals, 2 days following ADX/gonadectomy, CRH mRNA levels did not increase in either sex. When males were given DHT propionate, CRH mRNA levels increased in ADX'd/GDX'd males similar to those observed following ADX alone. To determine a potential mechanism, we examined the coexpression of androgen receptor (AR) immunoreactivity and CRH neurons. Abundant colocalization was found in the anteroventral bed nucleus of the stria terminalis but not the PVN. Thus, our findings reveal a sex difference in PVN Crh expression following the removal of GC-negative feedback that may depend on indirect AR actions in males.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
342
|
Genario R, de Abreu MS, Giacomini ACVV, Demin KA, Kalueff AV. Sex differences in behavior and neuropharmacology of zebrafish. Eur J Neurosci 2019; 52:2586-2603. [PMID: 31090957 DOI: 10.1111/ejn.14438] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Sex is an important variable in biomedical research. The zebrafish (Danio rerio) is increasingly utilized as a powerful new model organism in translational neuroscience and pharmacology. Mounting evidence indicates important sex differences in zebrafish behavioral and neuropharmacological responses. Here, we discuss the role of sex in zebrafish central nervous system (CNS) models, their molecular mechanisms, recent findings and the existing challenges in this field. We also emphasize the growing utility of zebrafish models in translational neuropharmacological research of sex differences, fostering future CNS drug discovery and the search for novel sex-specific therapies. Finally, we highlight the interplay between sex and environment in zebrafish models of sex-environment correlations as an important strategy of CNS disease modeling using this aquatic organism.
Collapse
Affiliation(s)
- Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
343
|
Ajduk J, Košec A, Kelava I, Ries M, Gregurić T, Kalogjera L. Recovery From Sudden Sensorineural Hearing Loss May Be Linked to Chronic Stress Levels and Steroid Treatment Resistance. Am J Audiol 2019; 28:315-321. [PMID: 31084569 DOI: 10.1044/2019_aja-18-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose This article investigates the possible connections between the level of chronic stress and success of steroid therapy in patients with sudden sensorineural hearing loss (SSNHL). Method A single-center, retrospective, longitudinal cohort study on 55 patients in a tertiary referral otology center was examined. Patients diagnosed with SSNHL between 2014 and 2017 were asked to complete a Measure of Perceived Stress (Brajac, Tkalcic, Dragojević, & Gruber, 2003 ) questionnaire. Inclusion criteria were patients > 18 years of age, SSNHL diagnosed within 4 previous weeks, completed steroid treatment, and complete documentation. Results There were 30 patients (55%) that showed significant improvement in their pure-tone audiogram (PTA) hearing threshold average (≥ 15 dB) after steroid treatment. Two-step cluster analysis identified 3 clusters based on average PTA hearing threshold recovery and average Measure of Perceived Stress scores. The difference between pretreatment and posttreatment hearing levels was significantly higher in the cluster with moderate stress compared to clusters with mild and high stress levels (Kruskal-Wallis test, Friedman test, p < .001). There were no significant differences in average PTA hearing threshold recovery after steroid therapy between groups of patients with mild and severe stress. Conclusion Patients with moderate stress levels show significantly better results after steroid treatment for SSNHL than patients with low or high stress levels.
Collapse
Affiliation(s)
- Jakov Ajduk
- School of Medicine, University of Zagreb, Croatia
| | - Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Iva Kelava
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Mihael Ries
- School of Medicine, University of Zagreb, Croatia
| | - Tomislav Gregurić
- Department of Radiology, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | | |
Collapse
|
344
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
345
|
Moradi-Kor N, Ghanbari A, Rashidipour H, Yousefi B, Bandegi AR, Rashidy-Pour A. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats. Horm Behav 2019; 112:20-31. [PMID: 30917909 DOI: 10.1016/j.yhbeh.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022]
Abstract
Chronic exposure to stress during adolescent period has been demonstrated to impair cognitive functions and the dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. The present study investigated the combined protective effects of Spirulina platensis (SP), a supplement made from blue-green algae with neuroprotective properties, voluntary exercise (EX) and environmental enrichment (EE) against cognitive deficits, alternations in hippocampal BDNF levels, and abnormal neuronal remodeling in adult female rats (PND 60) induced by exposure to chronic restraint stress during adolescent period (PND 30-40). Rats were exposed to restraint stress (2 h/day for 10 days, PND 30-40). Then, the animals were subjected to treatment with SP (200 mg/kg/day), EX, EE and the combined treatments (SP + EX, and SP + EE) between PND 41 and 55 of age. Following the interventions, spatial learning and memory, passive avoidance performance, hippocampal dendritic morphology and BDNF levels were assessed. Results showed that plasma corticosterone levels increased at PND 40 and remained elevated at PND 55 and 70 in the stressed rats. Stressed rats showed deficits in spatial learning and memory and passive avoidance performance, decreased BDNF levels in the hippocampus, and reduced apical dendritic length and branch points of the CA3 pyramidal neurons. These deficits were alleviated by the SP, EX and EE, and the combined treatments, which accompanied with a decline in serum corticosterone in stressed animals. Some treatments even enhanced cognitive functions, and BDNF levels and neuroanatomical remodeling in the hippocampus of non-stressed animals. Our findings provide important evidences that physical activity, exposure to EE, and the SP treatment during adolescent period can protect against adolescent stress induced behavioral, biochemical and neuroanatomical impairments in adulthood.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Extracts/pharmacology
- Cognition/drug effects
- Cognition/physiology
- Cognition Disorders/etiology
- Cognition Disorders/pathology
- Cognition Disorders/physiopathology
- Cognition Disorders/prevention & control
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Female
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Memory/drug effects
- Memory/physiology
- Neuronal Plasticity/drug effects
- Physical Conditioning, Animal/physiology
- Rats
- Rats, Wistar
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Sexual Maturation/drug effects
- Sexual Maturation/physiology
- Social Environment
- Spatial Learning/drug effects
- Spirulina/chemistry
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Nasroallah Moradi-Kor
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rashidipour
- School of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Behpour Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Laboratory of Endocrine Research, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
346
|
Goldfarb EV, Seo D, Sinha R. Sex differences in neural stress responses and correlation with subjective stress and stress regulation. Neurobiol Stress 2019; 11:100177. [PMID: 31304198 PMCID: PMC6603439 DOI: 10.1016/j.ynstr.2019.100177] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
Emotional stress responses, encompassing both stress reactivity and regulation, have been shown to differ between men and women, but the neural networks supporting these processes remain unclear. The current study used functional neuroimaging (fMRI) to investigate sex differences in neural responses during stress and the sex-specific relationships between these responses and emotional stress responses for men and women. A significant sex by condition interaction revealed that men showed greater stress responses in prefrontal cortex (PFC) regions, whereas women had stronger responses in limbic/striatal regions. Although men and women did not significantly differ in emotional stress reactivity or subjective reports of stress regulation, these responses were associated with distinct neural networks. Higher dorsomedial PFC responses were associated with lower stress reactivity in men, but higher stress reactivity in women. In contrast, while higher ventromedial PFC stress responses were associated with worse stress regulation in men (but better regulation in women), dynamic increases in vmPFC responses during stress were associated with lower stress reactivity in men. Finally, stress-induced hippocampal responses were more adaptive for women: for men, high and dynamically increasing responses in left hippocampus were associated with high stress reactivity, and dynamic increases in the left (but not right) hippocampus were associated with worse stress regulation. Together, these results reveal that men and women engage distinct neural networks during stress, and sex-specific neural stress responses facilitate optimal emotional stress responses.
Collapse
Affiliation(s)
- Elizabeth V. Goldfarb
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
- Yale Stress Center, Yale School of Medicine, New Haven, CT, USA
| | - Dongju Seo
- Yale Stress Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Yale Stress Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Corresponding author. 2 Church Street South, Suite 209, New Haven, CT 06519, USA.
| |
Collapse
|
347
|
Schmidt U, Vermetten E. Integrating NIMH Research Domain Criteria (RDoC) into PTSD Research. Curr Top Behav Neurosci 2019; 38:69-91. [PMID: 28341942 DOI: 10.1007/7854_2017_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three and a half decades of research on posttraumatic stress disorder (PTSD) has produced substantial knowledge on the pathobiology of this frequent and debilitating disease. However, despite all research efforts, so far no drug that has specifically targeted PTSD core symptoms progressed to clinical use. Instead, although not overly efficient, serotonin re-uptake inhibitors continue to be considered the gold standard of PTSD pharmacotherapy. The psychotherapeutic treatment and symptom-oriented drug therapy options available for PTSD treatment today show some efficacy, although not in all PTSD patients, in particular not in a substantial percent of those suffering from the detrimental sequelae of repeated childhood trauma or in veterans with combat related PTSD. PTSD has this in common with other psychiatric disorders - in particular effective treatment for incapacitating conditions such as resistant major depression, chronic schizophrenia, and frequently relapsing obsessive-compulsive disorder as well as dementia has not yet been developed through modern neuropsychiatric research.In response to this conundrum, the National Institute of Mental Health launched the Research Domain Criteria (RDoC) framework which aims to leave diagnosis-oriented psychiatric research behind and to move on to the use of research domains overarching the traditional diagnosis systems. To the best of our knowledge, the paper at hand is the first that has systematically assessed the utility of the RDoC system for PTSD research. Here, we review core findings in neurobiological PTSD research and match them to the RDoC research domains and units of analysis. Our synthesis reveals that several core findings in PTSD such as amygdala overactivity have been linked to all RDoC domains without further specification of their distinct role in the pathophysiological pathways associated with these domains. This circumstance indicates that the elucidation of the cellular and molecular processes ultimately decisive for regulation of psychic processes and for the expression of psychopathological symptoms is still grossly incomplete. All in all, we find the RDoC research domains to be useful but not sufficient for PTSD research. Hence, we suggest adding two novel domains, namely stress and emotional regulation and maintenance of consciousness. As both of these domains play a role in various if not in all psychiatric diseases, we judge them to be useful not only for PTSD research but also for psychiatric research in general.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Trauma Outpatient Unit and RG Molecular Psychotraumatology, Clinical Department, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, Munich, 80804, Germany
| | - Eric Vermetten
- Department Psychiatry, Leiden University Medical Center Utrecht, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
- Arq Psychotruama Research Group, Diemen, The Netherlands.
| |
Collapse
|
348
|
Ycaza Herrera A, Wang J, Mather M. The gist and details of sex differences in cognition and the brain: How parallels in sex differences across domains are shaped by the locus coeruleus and catecholamine systems. Prog Neurobiol 2019; 176:120-133. [PMID: 29772255 PMCID: PMC6485927 DOI: 10.1016/j.pneurobio.2018.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/04/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Across three different domains, there are similar sex differences in how men and women process information. There tends to be a male advantage in attending to and remembering the gist (essential central information of a scene or situation), but a female advantage in attending to and remembering the details (non-essential peripheral information of a scene or situation). This is seen in emotional memory, where emotion enhances gist memory more for males than for females, but enhances detail memory more for females than for males. It also occurs in spatial memory, where men tend to notice and remember the gist of where they or objects are in space, allowing them to more flexibly manipulate themselves or objects within that space, whereas women tend to recall the details of the space around them, allowing them to accurately remember the locations of objects. Finally, such sex differences have also been noted in perception of stimuli such that men attend to global aspects of stimuli (such as a large letter E) more than women, whereas women attend more to the local aspects (such as the many smaller letter Ts making up the E). We review the parallel sex differences seen across these domains in this paper and how they relate to the different brain systems involved in each of these task domains. In addition, we discuss how sex differences in evolutionary pressures and in the locus coeruleus and norepinephrine system may account for why parallel sex differences occur across these different task domains.
Collapse
Affiliation(s)
| | - Jiaxi Wang
- University of Southern California, Leonard Davis School of Gerontology, United States; East China Normal University, School of Psychology and Cognitive Science, Shanghai Key Laboratory of Brain Functional Genomics, China
| | - Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, United States; University of Southern California, Department of Psychology, United States; University of Southern California, Neuroscience Graduate Program, United States
| |
Collapse
|
349
|
Chen YW, Das M, Oyarzabal EA, Cheng Q, Plummer NW, Smith KG, Jones GK, Malawsky D, Yakel JL, Shih YYI, Jensen P. Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses. Mol Psychiatry 2019; 24:710-725. [PMID: 30214043 PMCID: PMC6416086 DOI: 10.1038/s41380-018-0245-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/09/2022]
Abstract
Noradrenergic signaling plays a well-established role in promoting the stress response. Here we identify a subpopulation of noradrenergic neurons, defined by developmental expression of Hoxb1, that has a unique role in modulating stress-related behavior. Using an intersectional chemogenetic strategy, in combination with behavioral and physiological analyses, we show that activation of Hoxb1-noradrenergic (Hoxb1-NE) neurons decreases anxiety-like behavior and promotes an active coping strategy in response to acute stressors. In addition, we use cerebral blood volume-weighted functional magnetic resonance imaging to show that chemoactivation of Hoxb1-NE neurons results in reduced activity in stress-related brain regions, including the bed nucleus of the stria terminalis, amygdala, and locus coeruleus. Thus, the actions of Hoxb1-NE neurons are distinct from the well-documented functions of the locus coeruleus in promoting the stress response, demonstrating that the noradrenergic system contains multiple functionally distinct subpopulations.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Manasmita Das
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Grace K Jones
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Daniel Malawsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
350
|
Strewe C, Moser D, Buchheim JI, Gunga HC, Stahn A, Crucian BE, Fiedel B, Bauer H, Gössmann-Lang P, Thieme D, Kohlberg E, Choukèr A, Feuerecker M. Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Differ 2019; 10:20. [PMID: 30992051 PMCID: PMC6469129 DOI: 10.1186/s13293-019-0231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Antarctica challenges human explorers by its extreme environment. The effects of these unique conditions on the human physiology need to be understood to best mitigate health problems in Antarctic expedition crews. Moreover, Antarctica is an adequate Earth-bound analogue for long-term space missions. To date, its effects on human physiology have been studied mainly in male cohorts though more female expeditioners and applicants in astronaut training programs are selected. Therefore, the identification of sex differences in stress and immune reactions are becoming an even more essential aim to provide a more individualized risk management. Methods Ten female and 16 male subjects participated in three 1-year expeditions to the German Antarctic Research Station Neumayer III. Blood, saliva, and urine samples were taken 1–2 months prior to departure, subsequently every month during their expedition, and 3–4 months after return from Antarctica. Analyses included cortisol, catecholamine and endocannabinoid measurements; psychological evaluation; differential blood count; and recall antigen- and mitogen-stimulated cytokine profiles. Results Cortisol showed significantly higher concentrations in females than males during winter whereas no enhanced psychological stress was detected in both sexes. Catecholamine excretion was higher in males than females but never showed significant increases compared to baseline. Endocannabinoids and N-acylethanolamides increased significantly in both sexes and stayed consistently elevated during the confinement. Cytokine profiles after in vitro stimulation revealed no sex differences but resulted in significant time-dependent changes. Hemoglobin and hematocrit were significantly higher in males than females, and hemoglobin increased significantly in both sexes compared to baseline. Platelet counts were significantly higher in females than males. Leukocytes and granulocyte concentrations increased during confinement with a dip for both sexes in winter whereas lymphocytes were significantly elevated in both sexes during the confinement. Conclusions The extreme environment of Antarctica seems to trigger some distinct stress and immune responses but—with the exception of cortisol and blood cell counts—without any major relevant sex-specific differences. Stated sex differences were shown to be independent of enhanced psychological stress and seem to be related to the environmental conditions. However, sources and consequences of these sex differences have to be further elucidated.
Collapse
Affiliation(s)
- C Strewe
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - D Moser
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - J-I Buchheim
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - H-C Gunga
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A Stahn
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B E Crucian
- NASA - Johnson Space Center, Houston, TX, USA
| | - B Fiedel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - H Bauer
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - P Gössmann-Lang
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - D Thieme
- Institute of Doping Analysis und Sports Biochemistry, Kreischa, Germany
| | - E Kohlberg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - A Choukèr
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany.
| | - M Feuerecker
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|