301
|
Bhowmick IP, Kumar N, Sharma S, Coppens I, Jarori GK. Plasmodium falciparum enolase: stage-specific expression and sub-cellular localization. Malar J 2009; 8:179. [PMID: 19642995 PMCID: PMC2794028 DOI: 10.1186/1475-2875-8-179] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 11/13/2022] Open
Abstract
Background In an earlier study, it was observed that the vaccination with Plasmodium falciparum enolase can confer partial protection against malaria in mice. Evidence has also build up to indicate that enolases may perform several non-glycolytic functions in pathogens. Investigating the stage-specific expression and sub-cellular localization of a protein may provide insights into its moonlighting functions. Methods Sub-cellular localization of P. falciparum enolase was examined using immunofluorescence assay, immuno-gold electron microscopy and western blotting. Results Enolase protein was detected at every stage in parasite life cycle examined. In asexual stages, enolase was predominantly (≥85–90%) present in soluble fraction, while in sexual stages it was mostly associated with particulate fraction. Apart from cytosol, enolase was found to be associated with nucleus, food vacuole, cytoskeleton and plasma membrane. Conclusion Diverse localization of enolase suggests that apart from catalyzing the conversion of 2-phosphoglycericacid into phosphoenolpyruvate in glycolysis, enolase may be involved in a host of other biological functions. For instance, enolase localized on the merozoite surface may be involved in red blood cell invasion; vacuolar enolase may be involved in food vacuole formation and/or development; nuclear enolase may play a role in transcription.
Collapse
Affiliation(s)
- Ipsita Pal Bhowmick
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | | | | | | | | |
Collapse
|
302
|
Sheng WY, Wang TCV. Proteomic analysis of the differential protein expression reveals nuclear GAPDH in activated T lymphocytes. PLoS One 2009; 4:e6322. [PMID: 19621076 PMCID: PMC2708351 DOI: 10.1371/journal.pone.0006322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022] Open
Abstract
Despite the important role of T cell activation in the adaptive immunity, very little is known about the functions of proteins that are differentially expressed in the activated T cells. In this study, we have employed proteomic approach to study the differentially expressed proteins in activated T cells. A total of 25 proteins was characterized that displayed a decreased expression, while a total of 20 proteins was characterized that displayed an increased expression in the activated T cells. Among them, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified unexpectedly as one of the up-regulated proteins. Western blot analysis of proteins separated by 2-dimensional gel electrophoresis had identified several modified GAPDHs which were detectable only in the activated T cells, but not in resting T cells. These modified GAPDHs had higher molecular mass and more basic PI, and were present in the nucleus of activated T cells. Promoter occupancy studies by chromatin immunoprecipitation assay revealed that nuclear GAPDH could be detected in the promoter of genes that were up-regulated during T cell activation, but not in the promoter of genes that were not unaffected or down-regulated. Our results suggest that nuclear GAPDH may function as transcriptional regulator in activated T cells.
Collapse
Affiliation(s)
- Wei-Yun Sheng
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
| | - Tzu-Chien V. Wang
- Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Taiwan
- * E-mail:
| |
Collapse
|
303
|
Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Agrawal N, Aggrawal N, Hester L, Doré S, Snyder SH, Sawa A. GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 2009; 63:81-91. [PMID: 19607794 PMCID: PMC2758064 DOI: 10.1016/j.neuron.2009.05.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 04/08/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
We recently reported a cell death cascade whereby cellular stressors activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The nuclear GAPDH/Siah complex augments p300/CBP-associated acetylation of nuclear proteins, including p53, which mediate cell death. We report a 52 kDa cytosolic protein, GOSPEL, which physiologically binds GAPDH, in competition with Siah, retaining GAPDH in the cytosol and preventing its nuclear translocation. GOSPEL is neuroprotective, as its overexpression prevents NMDA-glutamate excitotoxicity while its depletion enhances death in primary neuron cultures. S-nitrosylation of GOSPEL at cysteine 47 enhances GAPDH-GOSPEL binding and the neuroprotective actions of GOSPEL. In intact mice, virally delivered GOSPEL selectively diminishes NMDA neurotoxicity. Thus, GOSPEL may physiologically regulate the viability of neurons and other cells.
Collapse
Affiliation(s)
- Nilkantha Sen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Mookherjee N, Lippert DND, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, Pistolic J, Gardy J, Miri P, Naseer M, Foster LJ, Hancock REW. Intracellular receptor for human host defense peptide LL-37 in monocytes. THE JOURNAL OF IMMUNOLOGY 2009; 183:2688-96. [PMID: 19605696 DOI: 10.4049/jimmunol.0802586] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human cationic host defense peptide LL-37 has a broad range of immunomodulatory, anti-infective functions. A synthetic innate defense regulator peptide, innate defense regulator 1 (IDR-1), based conceptually on LL-37, was recently shown to selectively modulate innate immunity to protect against a wide range of bacterial infections. Using advanced proteomic techniques, ELISA, and Western blotting procedures, GAPDH was identified as a direct binding partner for LL-37 in monocytes. Enzyme kinetics and mobility shift studies also indicated LL-37 and IDR-1 binding to GAPDH. The functional relevance of GAPDH in peptide-induced responses was demonstrated by using gene silencing of GAPDH with small interfering RNA (siRNA). Previous studies have established that the induction of chemokines and the anti-inflammatory cytokine IL-10 are critical immunomodulatory functions in the anti-infective properties of LL-37 and IDR-1, and these functions are modulated by the MAPK p38 pathway. Consistent with that, this study demonstrated the importance of the GAPDH interactions with these peptides since gene silencing of GAPDH resulted in impaired p38 MAPK signaling, downstream chemokine and cytokine transcriptional responses induced by LL-37 and IDR-1, and LL-37-induced cytokine production. Bioinformatic analysis, using InnateDB, of the major interacting partners of GAPDH indicated the likelihood that this protein can impact on innate immune pathways including p38 MAPK. Thus, this study has demonstrated a novel function for GAPDH as a mononuclear cell receptor for human cathelicidin LL-37 and immunomodulatory IDR-1 and conclusively demonstrated its relevance in the functioning of cationic host defense peptides.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Groeneveld GJ, van Muiswinkel FL, de Leeuw van Weenen J, Blauw H, Veldink JH, Wokke JHJ, van den Berg LH, Bär PR. CGP 3466B has no effect on disease course of (G93A) mSOD1 transgenic mice. ACTA ACUST UNITED AC 2009; 5:220-5. [PMID: 15799550 DOI: 10.1080/14660820410019530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND There is an accumulating body of evidence that apoptosis is involved in the motor neuron death that occurs in ALS, and in the (G93A) mSOD1 transgenic mouse model (mSOD1 mice). CGP 3466B, a tricyclic propargylamine structurally related to (-)-deprenyl, was found to inhibit apoptosis in a wide variety of in vitro and in vivo models. We therefore studied the effect of CGP 3466B in mSOD1 mice. METHODS As the effect of CGP 3466B was previously reported to have a bell-shaped curve, we performed a dose-ranging study. High-copy G93A mSOD1 mice were treated subcutaneously from the age of 50 days until death with four concentrations of CGP 3466B (0.39 microg kg(-1), 3.9 microg kg(-1), 39 microg kg(-1), and 390 microg kg(-1)). Behavioural tests were performed daily to determine disease onset, disease progression and survival. At the age of 110 days, two mice per group were sacrificed for histopathological analysis of the lumbar ventral horn and for semiquantitative analysis of motor neuron number. RESULTS We observed no effect on disease onset, disease progression, or survival of the mice. We also did not observe a significant effect on the number of motor neurons due to CGP 3466B. CONCLUSIONS We conclude that in high-copy G93A mSOD1 mice, chronic subcutaneous treatment with CGP 3466B offers no clinical benefit.
Collapse
Affiliation(s)
- Geert J Groeneveld
- Department of Neurology, Laboratory for Experimental Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Liu H, Xu L, Zhao M, Liu W, Zhang C, Zhou S. Enantiomer-specific, bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 Cells. Toxicology 2009; 261:119-25. [DOI: 10.1016/j.tox.2009.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 02/02/2023]
|
307
|
Vidal MC, Williams G, Hoole D. Characterisation of a carp cell line for analysis of apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:801-805. [PMID: 19428480 DOI: 10.1016/j.dci.2009.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/14/2009] [Indexed: 05/27/2023]
Abstract
Teleost fish in general, and common carp in particular, are excellent genetic models for bridging the gap in knowledge between invertebrate models such as C. elegans and D. melanogaster, on one hand, and higher vertebrates on the other hand, although, until now, there have been few well characterised fish cell lines shown to be suitable for studies on apoptosis. The present study describes the suitability of a permanent, nonleukemic, nonvirally infected carp cell line for apoptotic studies. A traditional approach using known apoptotic inducers such as UV-light combined with RNA interference, the latest ready-to-use technology widely used in higher vertebrates, was tested in the carp leucocyte cell line (CLC). This study was designed as a first step towards a better knowledge of fish macrophages and their fate after different types of apoptotic insults.
Collapse
|
308
|
Salas-Leiton E, Cánovas-Conesa B, Zerolo R, López-Barea J, Cañavate JP, Alhama J. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:473-487. [PMID: 19101763 DOI: 10.1007/s10126-008-9168-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Solea senegalensis is a commercial flat fish traditionally farmed in earth ponds in coastal wetlands that might also become important to more intensive aquaculture. Gas bubble disease (GBD) is a potential risk for outdoor fish farming, particularly in certain periods of the year, related to improper management leading to macroalgae blooms. Physical-chemical conditions inducing hyperoxia, including radiation, temperature, and high levels of dissolved oxygen, have been monitored in fish affected by GBD together with observed symptoms. Exophthalmia, subcutaneous emphysemas, obstruction of gill lamellae, hemorrhages, and anomalous swimming were the main effects of oxygen supersaturation. A proteomic study was carried out for the first time under aquaculture conditions and protein expression changes are described for fish that were subject to hyperoxic conditions. Proteins identified in gill of GBD-affected fish are related to oxidative alteration of cytoskeleton structure/function (beta-tubulin, beta-actin), motility (light myosin chain, alpha-tropomyosin), or regulatory pathways (calmodulin, Raf kinase inhibitor protein), reflecting the central role of gill in oxygen exchange. Hepatic proteins identified are related to protein oxidative damages (beta-globin, FABPs), protection from oxidative stress (DCXR, GNMT), and inflammatory response (C3), in agreement with the predominant metabolic role of liver. Comparison of protein expression patterns and protein identification are suggested as potentially specific hyperoxia biomarkers that would facilitate prevention of GBD outbreaks.
Collapse
Affiliation(s)
- E Salas-Leiton
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
309
|
Fugier E, Salcedo SP, de Chastellier C, Pophillat M, Muller A, Arce-Gorvel V, Fourquet P, Gorvel JP. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 2009; 5:e1000487. [PMID: 19557163 PMCID: PMC2695806 DOI: 10.1371/journal.ppat.1000487] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/27/2009] [Indexed: 12/21/2022] Open
Abstract
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells. A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe replication niche. Brucella bacteria reach the endoplasmic reticulum (ER) to create their replicating niche called the Brucella-containing vacuole (BCV). The ER is a suitable strategic place for pathogenic Brucella. Bacteria can be hidden from host cell defences to persist within the host, and can take advantage of the membrane reservoir delivered by the ER to replicate. Interactions between BCV and the ER lead to the presence of ER proteins on the BCV membrane. Currently, no other proteins (eukaryotic or prokaryotic) have yet been associated with the BCV membrane. Here we show that non-ER related proteins are also present on the BCV membrane, in particular, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab 2 are involved in Brucella replication at late post-infection. Similarly, integrity of secretory vesicle trafficking is also necessary for Brucella replication. Here, we show that recruitment of the two eukaryotic proteins GAPDH and Rab 2 on BCV membranes is necessary for the establishment of the replicative niche by sustaining interactions between the ER and secretory membrane vesicles.
Collapse
Affiliation(s)
- Emilie Fugier
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Suzana P. Salcedo
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Chantal de Chastellier
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Matthieu Pophillat
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Alexandre Muller
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Patrick Fourquet
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
310
|
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29:3991-4001. [PMID: 19451232 DOI: 10.1128/mcb.00165-09] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) interacts with raptor to form the protein complex mTORC1 (mTOR complex 1), which plays a central role in the regulation of cell growth in response to environmental cues. Given that glucose is a primary fuel source and a biosynthetic precursor, how mTORC1 signaling is coordinated with glucose metabolism has been an important question. Here, we found that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds Rheb and inhibits mTORC1 signaling. Under low-glucose conditions, GAPDH prevents Rheb from binding to mTOR and thereby inhibits mTORC1 signaling. High glycolytic flux suppresses the interaction between GAPDH and Rheb and thus allows Rheb to activate mTORC1. Silencing of GAPDH or blocking of the Rheb-GAPDH interaction desensitizes mTORC1 signaling to changes in the level of glucose. The GAPDH-dependent regulation of mTORC1 in response to glucose availability occurred even in TSC1-deficient cells and AMPK-silenced cells, supporting the idea that the GAPDH-Rheb pathway functions independently of the AMPK axis. Furthermore, we show that glyceraldehyde-3-phosphate, a glycolytic intermediate that binds GAPDH, destabilizes the Rheb-GAPDH interaction even under low-glucose conditions, explaining how high-glucose flux suppresses the interaction and activates mTORC1 signaling. Taken together, our results suggest that the glycolytic flux regulates mTOR's access to Rheb by regulating the Rheb-GAPDH interaction, thereby allowing mTORC1 to coordinate cell growth with glucose availability.
Collapse
|
311
|
Altraja S, Jaama J, Valk E, Altraja A. Changes in the proteome of human bronchial epithelial cells following stimulation with leucotriene E4 and transforming growth factor-beta1. Respirology 2009; 14:39-45. [PMID: 19144047 DOI: 10.1111/j.1440-1843.2008.01414.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Activated bronchial epithelial cells exert considerable potential to maintain a microenvironment in the airway wall that promotes airway inflammation and remodelling. Cysteinyl leucotrienes (CysLT) and transforming growth factor-beta(1) (TGF-beta(1)) are both increased in asthmatic airways and may influence the pathophysiology of disease. However, the consequences of activation of bronchial epithelial cells by these mediators are not fully understood. A proteomic-based approach was used to characterize the inflammatory pathways in bronchial epithelial cells after stimulation with CysLT and TGF-beta(1). METHODS Human bronchial epithelial cells (BEAS-2B) were stimulated with 1 ng/mL TGF-beta(1) and 50 nmol/L leucotriene E(4) (LTE(4)) for 48 h and whole-cell lysates were subjected to two-dimensional gel electrophoresis. Proteins showing statistically significant differential expression were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searching. RESULTS Stimulation with LTE(4) increased the expression of three proteins and five proteins showed decreased expression. Of the latter group, two were definitively identified as heat shock protein (Hsp90 alpha) and stress-70 protein. Hsp90 alpha forms a heterocomplex with the glucocorticoid receptor (GR) and a significant decrease in GR following LTE(4) stimulation was confirmed. TGF-beta(1) downregulated 18 intracellular proteins, including lamin A/C, glyceraldehyde-3-phosphate dehydrogenase, protein DJ-1, voltage-dependent calcium channel gamma-7 subunit, heterogeneous nuclear ribonucleoprotein A2/B1 and stress-70 protein. CONCLUSIONS The current findings suggest that by downregulating GR and Hsp90 alpha, CysLT may interfere with the action of glucocorticoids. Overall, the results confirm the complex role of bronchial epithelium in aspects of airway inflammation and remodelling.
Collapse
Affiliation(s)
- Siiri Altraja
- Department of Pulmonary Medicine, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
312
|
Kurakin A. Scale-free flow of life: on the biology, economics, and physics of the cell. Theor Biol Med Model 2009; 6:6. [PMID: 19416527 PMCID: PMC2683819 DOI: 10.1186/1742-4682-6-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/05/2009] [Indexed: 02/01/2023] Open
Abstract
The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
313
|
Brandes N, Schmitt S, Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 2009; 11:997-1014. [PMID: 18999917 PMCID: PMC2787739 DOI: 10.1089/ars.2008.2285] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/11/2008] [Accepted: 11/09/2008] [Indexed: 12/17/2022]
Abstract
For many years, oxidative thiol modifications in cytosolic proteins were largely disregarded as in vitro artifacts, and considered unlikely to play significant roles within the reducing environment of the cell. Recent developments in in vivo thiol trapping technology combined with mass spectrometric analysis have now provided convincing evidence that thiol-based redox switches are used as molecular tools in many proteins to regulate their activity in response to reactive oxygen and nitrogen species. Reversible oxidative thiol modifications have been found to modulate the function of proteins involved in many different pathways, starting from gene transcription, translation and protein folding, to metabolism, signal transduction, and ultimately apoptosis. This review will focus on three well-characterized eukaryotic proteins that use thiol-based redox switches to influence gene transcription, metabolism, and signal transduction. The transcription factor Yap1p is a good illustration of how oxidative modifications affect the function of a protein without changing its activity. We use glyeraldehyde-3-phosphate dehydrogenase to demonstrate how thiol modification of an active site cysteine re-routes metabolic pathways and converts a metabolic enzyme into a pro-apoptotic factor. Finally, we introduce the redox-sensitive protein tyrosine phosphatase PTP1B to illustrate that reversibility is one of the fundamental aspects of redox-regulation.
Collapse
Affiliation(s)
- Nicolas Brandes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
314
|
Yang SH, Liu ML, Tien CF, Chou SJ, Chang RY. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 2009; 16:40. [PMID: 19368702 PMCID: PMC2673215 DOI: 10.1186/1423-0127-16-40] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023] Open
Abstract
Replication of the Japanese encephalitis virus (JEV) genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5) in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi) and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.
Collapse
Affiliation(s)
- Shang-Hua Yang
- Institute of Biotechnology and Department of Life Science, National Dong Hwa University, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
315
|
Lima JO, Pereira JF, Rincones J, Barau JG, Araújo EF, Pereira GAG, Queiroz MV. The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao. Genet Mol Biol 2009; 32:362-6. [PMID: 21637692 PMCID: PMC3036943 DOI: 10.1590/s1415-47572009000200024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022] Open
Abstract
This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.
Collapse
Affiliation(s)
- Juliana O Lima
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | | | | | | | | | | |
Collapse
|
316
|
Liu F, Cui SJ, Hu W, Feng Z, Wang ZQ, Han ZG. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 2009; 8:1236-51. [PMID: 19299421 DOI: 10.1074/mcp.m800538-mcp200] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Schistosomes are the causative agents of schistosomiasis, one of the most prevalent and serious of the parasitic diseases that currently infects approximately 200 million people worldwide. Schistosome excretory/secretory (ES) proteins have been shown to play important roles in modulating mammalian host immune systems. In our current study, we performed a global proteomics identification of the ES proteins from adult worms of Schistosoma japonicum, one of the three major schistosome species. Our results unambiguously identified 101 proteins, including 53 putatively secreted proteins. By quantitative analysis, we revealed fatty acid-binding protein as a major constituent of the in vitro ES proteome. Strikingly the heat shock proteins HSP70s, HSP90, and HSP97 constituted the largest protein family in the ES proteome, implying a central role for these proteins in immunomodulation in the host-parasite relationship. Other important S. japonicum ES proteins included actins, 14-3-3, aminopeptidase, enolase, and glyceraldehyde-3-phosphate dehydrogenase, some of which have been considered as viable vaccine candidates and therapeutic targets. A comparison with previous studies suggests that 48.5% of S. japonicum ES proteins are common to other parasite ES products, indicating that the molecular mechanisms involved in evading the host immune response may be conserved across different parasites. Interestingly seven host proteins, including antimicrobial protein CAP18, immunoglobulins, and a complement component, were identified among in vitro S. japonicum ES products likely originating from the schistosome tegument or gut, indicating that host innate and acquired immune systems could defend against schistosome invasion. Our present study represents the first attempt at profiling S. japonicum ES proteins, provides an insight into host-parasite interactions, and establishes a resource for the development of diagnostic agents and vaccines for the control of schistosomiasis.
Collapse
Affiliation(s)
- Feng Liu
- double daggerShanghai-Ministry of Science and Technology Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, 351 Guo Shou-Jing Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
317
|
Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009; 41:206-18. [PMID: 19285135 DOI: 10.1016/j.mcn.2009.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
We have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry. Addition of GAPDH antibodies to cultured cerebellar neurons inhibited L1-dependent neurite outgrowth in the presence of ATP, while the application of exogenous GAPDH promoted L1-dependent neurite outgrowth. Pre-treatment of substrate-coated L1-Fc with ATP and GAPDH, which phosphorylates L1, subsequently led to an enhanced neurite outgrowth. Furthermore, aggregation of L1-Fc carrying beads was enhanced in the presence of both GAPDH and ATP. L1-dependent neurite outgrowth and aggregation of L1 were diminished in the presence of alkaline phosphatase or a protein kinase inhibitor. Our results show that GAPDH-dependent phosphorylation of L1 is a novel mechanism in regulating L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
318
|
Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S, Kalkkinen N, Ehsan A, Kontula KK, Lehtonen JYA. Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucleic Acids Res 2009; 37:2346-58. [PMID: 19246543 PMCID: PMC2673440 DOI: 10.1093/nar/gkp098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Regulation of angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. We started from an observation that the 3′-untranslated region (3′-UTR) of AT1R mRNA suppressed AT1R translation. Using affinity purification for the separation of 3′-UTR-binding proteins and mass spectrometry for their identification, we describe glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an AT1R 3′-UTR-binding protein. RNA electrophoretic mobility shift analysis with purified GAPDH further demonstrated a direct interaction with the 3′-UTR while GAPDH immunoprecipitation confirmed this interaction with endogenous AT1R mRNA. GAPDH-binding site was mapped to 1–100 of 3′-UTR. GAPDH-bound target mRNAs were identified by expression array hybridization. Analysis of secondary structures shared among GAPDH targets led to the identification of a RNA motif rich in adenines and uracils. Silencing of GAPDH increased the expression of both endogenous and transfected AT1R. Similarly, a decrease in GAPDH expression by H2O2 led to an increased level of AT1R expression. Consistent with GAPDH having a central role in H2O2-mediated AT1R regulation, both the deletion of GAPDH-binding site and GAPDH overexpression attenuated the effect of H2O2 on AT1R mRNA. Taken together, GAPDH is a translational suppressor of AT1R and mediates the effect of H2O2 on AT1R mRNA.
Collapse
Affiliation(s)
- Michael Backlund
- Biomedicum Helsinki, Department of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Said HM, Polat B, Hagemann C, Anacker J, Flentje M, Vordermark D. Absence of GAPDH regulation in tumor-cells of different origin under hypoxic conditions in - vitro. BMC Res Notes 2009; 2:8. [PMID: 19144146 PMCID: PMC2646737 DOI: 10.1186/1756-0500-2-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/13/2009] [Indexed: 12/21/2022] Open
Abstract
Background Gene expression studies related to cancer diagnosis and treatment are important. In order to conduct such experiment accurately, absolutely reliable housekeeping genes are essential to normalize cancer related gene expression. The most important characteristics of such genes are their presence in all cells and their expression levels remain relatively constant under different experimental conditions. However, no single gene of this group of genes manifests always stable expression levels under all experimental conditions. Incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of GAPDH expression regulation in Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines as well as in human lung adenocarcinoma epithelial cell line (A-549) in addition to both HT-29, and HCT-116 colon cancer cell lines, under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches was comparatively examined in vitro on both protein and mRNA level, by western blot and semi quantitative RT-PCR, respectively. Findings No hypoxia-induced regulatory effect on GAPDH expression was observed in the cell lines studied in vitro that were; Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines, Human lung adenocarcinoma epithelial cell line (A-549), both colon cancer cell lines HT-29, and HCT-116. Conclusion As it is the case for human hepatocellular carcinoma, mouse hepatoma, human colon cancer, and human lung adenocarcinoma, GAPDH represents an optimal choice of a housekeeping gene and/(or) loading control to determine the expression of hypoxia induced genes in tumors of different origin. The results confirm our previous findings in human glioblastoma that this gene is not an attractive target for tumor therapeutic approaches because of the lack of GAPDH regulation under hypoxia.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
320
|
Lau JM, Robinson DL. Effectiveness of a cloning and sequencing exercise on student learning with subsequent publication in the National Center for Biotechnology Information GenBank. CBE LIFE SCIENCES EDUCATION 2009; 8:326-37. [PMID: 19952101 PMCID: PMC2786283 DOI: 10.1187/cbe.09-05-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/19/2009] [Indexed: 05/25/2023]
Abstract
With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the "real-world" scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the "Cloning and Sequencing Explorer Series," which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.
Collapse
Affiliation(s)
- Joann M. Lau
- Department of Biology, Bellarmine University, Louisville, KY 40205
| | | |
Collapse
|
321
|
Nagy PD, Pogany J. Host Factors Promoting Viral RNA Replication. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7120932 DOI: 10.1007/b135974_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plus-stranded RNA viruses, the largest group among eukaryotic viruses, are capable of reprogramming host cells by subverting host proteins and membranes, by co-opting and modulating protein and ribonucleoprotein complexes, and by altering cellular pathways during infection. To achieve robust replication, plus-stranded RNA viruses interact with numerous cellular molecules via protein–protein, RNA–protein, and protein–lipid interactions using molecular mimicry and other means. These interactions lead to the transformation of the host cells into viral “factories" that can produce 10,000–1,000,000 progeny RNAs per infected cell. This chapter presents the progress that was made largely in the last 15 years in understanding virus–host interactions during RNA virus replication. The most commonly employed approaches to identify host factors that affect plus-stranded RNA virus replication are described. In addition, we discuss many of the identified host factors and their proposed roles in RNA virus replication. Altogether, host factors are key determinants of the host range of a given virus and affect virus pathology, host–virus interactions, as well as virus evolution. Studies on host factors also contribute insights into their normal cellular functions, thus promoting understanding of the basic biology of the host cell. The knowledge obtained in this fast-progressing area will likely stimulate the development of new antiviral methods as well as novel strategies that could make plus-stranded RNA viruses useful in bio- and nanotechnology.
Collapse
|
322
|
Goto A, Wang YL, Kabuta T, Setsuie R, Osaka H, Sawa A, Ishiura S, Wada K. Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse. Neurochem Int 2008; 54:330-8. [PMID: 19154771 DOI: 10.1016/j.neuint.2008.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
Abstract
Local axonal degeneration is a common pathological feature of peripheral neuropathies and neurodegenerative disorders of the central nervous system, including Alzheimer's disease, Parkinson's disease, and stroke; however, the underlying molecular mechanism is not known. Here, we analyzed the gracile axonal dystrophy (gad) mouse, which displays the dying-back-type of axonal degeneration in sensory neurons, to find the molecules involved in the mechanism of axonal degeneration. The gad mouse is analogous to a null mutant of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). UCH-L1 is a deubiquitinating enzyme expressed at high levels in neurons, as well as testis and ovary. In addition, we recently discovered a new function of UCH-L1-namely to bind to and stabilize mono-ubiquitin in neurons, and found that the level of mono-ubiquitin was decreased in neurons, especially in axons of the sciatic nerve, in gad mice. The low level of ubiquitin suggests that the target proteins of the ubiquitin proteasome system are not sufficiently ubiquitinated and thus degraded in the gad mouse; therefore, these proteins may be the key molecules involved in axonal degeneration. To identify molecules involved in axonal degeneration in gad mice, we compared protein expression in sciatic nerves between gad and wild-type mice at 2 and 12 weeks old, using two-dimensional difference gel electrophoresis. As a result, we found age-dependent accumulation of several proteins, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 14-3-3, in gad mice compared with wild-type mice. Histochemical analyses demonstrated that GAPDH and 14-3-3 were localized throughout axons in both gad and wild-type mice, but GAPDH accumulated in the axons of gad mice. Recently, it has been suggested that a wide range of neurodegenerative diseases are characterized by the accumulation of intracellular and extracellular protein aggregates, and it has been reported that oxidative stress causes the aggregation of GAPDH. Furthermore, histochemical analysis demonstrated that sulfonated GAPDH, a sensor of oxidative stress that elicits cellular dysfunction, was expressed in the axons of gad mice, and 4-hydroxy-2-nonenal, a major marker of oxidative stress, was also only detected in gad mice. Our findings suggest that GAPDH may participate in a process of the dying-back-type of axonal degeneration in gad mice and may provide valuable insight into the mechanisms of axonal degeneration.
Collapse
Affiliation(s)
- Akiko Goto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Orosz F, Lehotzky A, Oláh J, Ovádi J. TPPP/p25: A New Unstructured Protein Hallmarking Synucleinopathies. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
324
|
Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 2008; 9:315-27. [PMID: 18654858 DOI: 10.1007/s11154-008-9090-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinopathy is one of the most severe ocular complications of diabetes and is a leading cause of acquired blindness in young adults. The cellular components of the retina are highly coordinated but very susceptible to the hyperglycemic environment. The microvasculature of the retina responds to hyperglycemic milieu through a number of biochemical changes, including increased oxidative stress and polyol pathway, PKC activation and advanced glycation end product formation. Oxidative stress is considered as one of the crucial contributors in the pathogenesis of diabetic retinopathy, but oxidative stress appears to be highly interrelated with other biochemical imbalances that lead to structural and functional changes and accelerated loss of capillary cells in the retinal microvasculature and, ultimately, pathological evidence of the disease. One such potential connection that links oxidative stress to metabolic alterations is gyceraldehyde-3-phosphate dehydrogenase whose activity is impaired in diabetes, and that results in activation of other major pathways implicated in the pathogenesis of diabetic retinopathy. Alterations associated with oxidative stress offer many potential therapeutic targets making this an area of great interest to the development of safe and effective treatments for diabetic retinopathy. Animal models of diabetic retinopathy have shown beneficial effects of antioxidants on the development of retinopathy, but clinical trials (though very limited in numbers) have provided somewhat ambiguous results. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- K-404, Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA
| | | |
Collapse
|
325
|
Thirach S, Cooper CR, Vanittanakom N. Molecular analysis of the Penicillium marneffei glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitrate lyase-encoding gene (acuD) upon internalization by murine macrophages. J Med Microbiol 2008; 57:1322-1328. [PMID: 18927407 DOI: 10.1099/jmm.0.2008/002832-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Penicillium marneffei is an intracellular dimorphic fungus that can cause a fatal disseminated disease in human immunodeficiency virus-infected patients. The factors that affect the pathogenicity of this fungus remain unclear. Here, we report the isolation and characterization of the gpdA cDNA and genomic clones encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in P. marneffei. Phylogenetic analysis of GAPDH amino acid sequences demonstrated the evolutionary relationship of P. marneffei to other fungi, including the intracellular pathogen Ajellomyces capsulatus. To assess the central importance of phagocytic cells in defence against P. marneffei infection, we used Northern blotting to investigate the response of the isocitrate lyase-encoding gene (acuD) and gpdA to nutrient deprivation inside macrophages. The results revealed that after macrophage internalization, the gene involved in the glyoxylate cycle, acuD, showed higher expression levels as early as 2 h from the start of co-incubation, and the differential expression could be observed again at 8 h after infection. In contrast, the expression of gpdA was downregulated in the yeast phase, as well as during macrophage infection after 2, 4 and 8 h of infection. The induction of P. marneffei acuD was shown to be coordinated with the downregulation of the glycolytic gpdA gene, implying that the cytoplasmic environment of macrophages is deficient in glucose and the glyoxylate pathway could be used by this pathogen to allow subsistence on two-carbon compounds within the host cell following its intracellular persistence.
Collapse
Affiliation(s)
- Sophit Thirach
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chester R Cooper
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, USA
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
326
|
Nguewa PA, Agorreta J, Blanco D, Lozano MD, Gomez-Roman J, Sanchez BA, Valles I, Pajares MJ, Pio R, Rodriguez MJ, Montuenga LM, Calvo A. Identification of importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens. BMC Mol Biol 2008; 9:103. [PMID: 19014639 PMCID: PMC2612021 DOI: 10.1186/1471-2199-9-103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background The accurate normalization of differentially expressed genes in lung cancer is essential for the identification of novel therapeutic targets and biomarkers by real time RT-PCR and microarrays. Although classical "housekeeping" genes, such as GAPDH, HPRT1, and beta-actin have been widely used in the past, their accuracy as reference genes for lung tissues has not been proven. Results We have conducted a thorough analysis of a panel of 16 candidate reference genes for lung specimens and lung cell lines. Gene expression was measured by quantitative real time RT-PCR and expression stability was analyzed with the softwares GeNorm and NormFinder, mean of |ΔCt| (= |Ct Normal-Ct tumor|) ± SEM, and correlation coefficients among genes. Systematic comparison between candidates led us to the identification of a subset of suitable reference genes for clinical samples: IPO8, ACTB, POLR2A, 18S, and PPIA. Further analysis showed that IPO8 had a very low mean of |ΔCt| (0.70 ± 0.09), with no statistically significant differences between normal and malignant samples and with excellent expression stability. Conclusion Our data show that IPO8 is the most accurate reference gene for clinical lung specimens. In addition, we demonstrate that the commonly used genes GAPDH and HPRT1 are inappropriate to normalize data derived from lung biopsies, although they are suitable as reference genes for lung cell lines. We thus propose IPO8 as a novel reference gene for lung cancer samples.
Collapse
Affiliation(s)
- Paul A Nguewa
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Avda, Pio XII, 55, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
De Iuliis A, Arrigoni G, Andersson L, Zambenedetti P, Burlina A, James P, Arslan P, Vianello F. Oxidative metabolism of dopamine: A colour reaction from human midbrain analysed by mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1687-93. [DOI: 10.1016/j.bbapap.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
328
|
Van Meter KE, Stuart MK. A monoclonal antibody that inhibits translation in Sf21 cell lysates is specific for glyceraldehyde-3-phosphate dehydrogenase. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:107-117. [PMID: 18850593 DOI: 10.1002/arch.20271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Monoclonal antibody (Mab) 8B7 was shown in a previous study to inhibit protein translation in lysates of Sf21 cells. The antibody was thought to be specific for a 60-kDa form of elongation factor-1 alpha (EF-1alpha), primarily because the antigen immunoprecipitated by Mab 8B7 cross-reacted with Mab CBP-KK1, an antibody generated to EF-1alpha from Trypanosoma brucei. The purpose of the current study was to investigate further the antigenic specificity of Mab 8B7. The concentration of the 60-kDa antigen relative to total cellular protein proved insufficient for its definitive identification. However, subcellular fractionation of Sf21 cells yielded an additional protein of 37 kDa in the cytosolic and microsomal fractions that was reactive with Mab 8B7. The 37-kDa protein could be easily visualized by colloidal Coomassie Blue G-250 staining as a series of pI 6.9-8.4 spots on two-dimensional gels. Excision of an abundant immunoreactive spot enabled identification of the protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and protein database searching. Subsequent immunoblotting of purified rabbit skeletal muscle GAPDH with Mab 8B7 confirmed the antibody's specificity for GAPDH. Besides the pivotal role GAPDH plays in glycolysis, the enzyme has a number of noncanonical functions, including binding to mRNA and tRNA. The ability of Mab 8B7 to disrupt these lesser-known functions of GAPDH may account for the antibody's inhibitory effect on in vitro translation.
Collapse
Affiliation(s)
- Kipp E Van Meter
- Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
| | | |
Collapse
|
329
|
Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:254-62. [PMID: 19022411 DOI: 10.1016/j.bbapap.2008.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/25/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a typical glycolytic enzyme comprised of four identical 37 kDa subunits. In addition to its glycolytic function, GAPDH has a number of biological functions which are related to its subcellular localization. Generally, protein O-linked N-acetylglucosamine modification (O-GlcNAcylation) is considered, among other effects, to mediate the nuclear transportation of cytosolic proteins. To elucidate the effect of O-GlcNAcylation on GAPDH, we determined the location of the O-GlcNAcylation site by tandem mass spectrometry, and subsequently examined the biological significance of this derivatization. The site involved was identified to be Thr227 by beta-elimination and Michael addition. Transient transfection assays demonstrated that the T227A mutation induced the cytoplasmic accumulation of GAPDH, whereas the wild type was present in the cytoplasm and nuclei. Structural modeling, mutagenesis of Thr227 to Lys and Arg, and gel filtration chromatography of mutated and wild type GAPDH, together suggested that O-GlcNAcylation at Thr227 interrupts the hydrophobic interfaces formed between GAPDH monomers in its tetrameric state. The present study identified Thr227 as the major GAPDH O-GlcNAcylation site, which suggests that this modification mediates the nuclear translocation of GAPDH, presumably by disrupting the conformation of tetrameric GAPDH.
Collapse
Affiliation(s)
- Jungeun Park
- Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul 110-799 Republic of Korea
| | | | | | | | | |
Collapse
|
330
|
Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics 2008; 8:481-94. [PMID: 18953020 DOI: 10.1074/mcp.m800123-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preliminary findings indicate that PprI is a regulatory protein that stimulates transcription and translation of recA and other DNA repair genes in response to DNA damage in the extremely radioresistant bacterium Deinococcus radiodurans. To define the repertoire of proteins regulated by PprI and investigate the in vivo regulatory mechanism of PprI in response to gamma radiation, we performed comparative proteomics analyses on wild type (R1) and a pprI knock-out strain (YR1) under conditions of ionizing irradiation. Results of two-dimensional electrophoresis and MALDI-TOF MS or MALDI-TOF/TOF MS indicated that in response to low dose gamma ray exposure 31 proteins were significantly up-regulated in the presence of PprI. Among them, RecA and PprA are well known for their roles in DNA replication and repair. Others are involved in six different pathways, including stress response, energy metabolism, transcriptional regulation, signal transduction, protein turnover, and chaperoning. The last group consists of many proteins with uncharacterized functions. Expression of an additional four proteins, most of which act in metabolic pathways, was down-regulated in irradiated R1. Additionally phosphorylation of two proteins was under the control of PprI in response to irradiation. The different functional roles of representative PprI-regulated genes in extreme radioresistance were validated by gene knock-out analysis. These results suggest a role, either directly or indirectly, for PprI as a general switch to efficiently enhance the DNA repair capability and extreme radioresistance of D. radiodurans via regulation of a series of pathways.
Collapse
Affiliation(s)
- Huiming Lu
- Institute of Nuclear-Agricultural Sciences, Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
331
|
Mukherjee S, Dutta D, Saha B, Das AK. Expression, purification, crystallization and preliminary X-ray diffraction studies of glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus (MRSA252). Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:929-32. [PMID: 18931438 PMCID: PMC2564893 DOI: 10.1107/s1744309108027504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/27/2008] [Indexed: 11/10/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus (MRSA252) was cloned in pQE30 vector, overexpressed in Escherichia coli M15(pREP4) cells and purified to homogeneity. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2(1), with unit-cell parameters a = 65.23, b = 95.58, c = 87.91 A, beta = 106.5 degrees . X-ray diffraction data were collected and processed to a maximum resolution of 2.0 A. The presence of one tetramer in the asymmetric unit gave a Matthews coefficient (V(M)) of 1.78 A(3) Da(-1) and a solvent content of 31%. The structure was solved by molecular replacement and structure refinement is now in progress.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Baisakhee Saha
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|
332
|
Dai RP, Yu FX, Goh SR, Chng HW, Tan YL, Fu JL, Zheng L, Luo Y. Histone 2B (H2B) Expression Is Confined to a Proper NAD+/NADH Redox Status. J Biol Chem 2008; 283:26894-901. [DOI: 10.1074/jbc.m804307200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
333
|
Role of electrostatics on membrane binding, aggregation and destabilization induced by NAD(P)H dehydrogenases. Implication in membrane fusion. Biophys Chem 2008; 137:126-32. [DOI: 10.1016/j.bpc.2008.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
|
334
|
Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum. BIOCHEMISTRY (MOSCOW) 2008; 73:619-25. [PMID: 18620527 DOI: 10.1134/s0006297908060011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.
Collapse
Affiliation(s)
- A V Bryksin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
335
|
Yoo WG, Kim TI, Li S, Kwon OS, Cho PY, Kim TS, Kim K, Hong SJ. Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 2008; 104:321-8. [PMID: 18815810 DOI: 10.1007/s00436-008-1195-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/09/2008] [Indexed: 02/06/2023]
Abstract
The accuracies of relative gene expressions as determined by quantitative real-time polymerase chain reaction are largely dependent on the variabilities of the reference genes used. Validation of the stabilities of reference genes under experimental conditions is an essential initial step for comparative studies on the expression levels of target genes in experimental groups. Using three total RNA samples extracted independently from Clonorchis sinensis metacercariae and adults, we determined the gene expression stabilities of eight reference gene candidates and the relative transcript levels of three target genes using the geNorm program. The reference genes found to be stably expressed in metacercariae and adults were phosphoglycerate kinase, beta-actin, and calcyphosine; reference genes found to be stably expressed under gamma-irradiated and non-irradiated conditions were succinate dehydrogenase, small nuclear ribonucleoprotein, and beta-actin; and those stably expressed regardless of bile treatment were small nuclear ribonucleoprotein, phosphoglycerate kinase, and succinate dehydrogenase. According to our data, the expression levels of target genes are dependent on normalization factors, such as the C (T) values of single reference genes and the geometric mean of the C (T) values of three reference genes. When comparing C. sinensis gene expressions, we propose to employ the geometric mean of the C (T) values of more than three reference genes validated in the same experimental setting.
Collapse
Affiliation(s)
- Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
336
|
Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008; 28:7139-55. [PMID: 18809573 DOI: 10.1128/mcb.01145-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of the synthesis of the endothelial-derived vasoconstrictor endothelin-1 (ET-1) is a complex process encompassing transcriptional as well as mRNA stability mechanisms. We have described recently the existence of a mechanism for the control of ET-1 expression based on the mRNA-destabilizing capacity of specific cytosolic proteins through interaction with AU-rich elements (AREs) present in the 3' untranslated region of the gene. We now identify glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) as a protein which binds to the AREs and is responsible for the destabilization of the mRNA. Oxidant stress alters the binding of GAPDH to the mRNA and its capacity to modulate ET-1 expression, a phenomenon occurring through specific S glutathionylation of the catalytically active residue Cys 152. Finally, we provide data consistent with a role for GAPDH in mRNA unwinding, yielding this molecule more prone to degradation. In contrast, S-thiolated GAPDH appears unable to modify mRNA unwinding, thus facilitating enhanced stability. Taken together, these results describe a novel, redox-based mechanism regulating mRNA stability and add a new facet to the panoply of GAPDH cellular homeostatic actions.
Collapse
|
337
|
Azam S, Jouvet N, Jilani A, Vongsamphanh R, Yang X, Yang S, Ramotar D. Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 2008; 283:30632-41. [PMID: 18776186 DOI: 10.1074/jbc.m801401200] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has diverse biological functions including its nuclear translocation in response to oxidative stress. We show that GAPDH physically associates with APE1, an essential enzyme involved in the repair of abasic sites in damaged DNA, as well as in the redox regulation of several transcription factors. This interaction allows GAPDH to convert the oxidized species of APE1 to the reduced form, thereby reactivating its endonuclease activity to cleave abasic sites. The GAPDH variants C152G and C156G retain the ability to interact with but are unable to reactivate APE1, implicating these cysteines in catalyzing the reduction of APE1. Interestingly, GAPDH-small interfering RNA knockdown sensitized the cells to methyl methane sulfonate and bleomycin, which generate lesions that are repaired by APE1, but showed normal sensitivity to 254-nm UV. Moreover, the GAPDH knockdown cells exhibited an increased level of spontaneous abasic sites in the genomic DNA as a result of diminished APE1 endonuclease activity. Thus, the nuclear translocation of GAPDH during oxidative stress constitutes a protective mechanism to safeguard the genome by preventing structural inactivation of APE1.
Collapse
Affiliation(s)
- Sonish Azam
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada
| | | | | | | | | | | | | |
Collapse
|
338
|
Calábria LK, Garcia Hernandez L, Teixeira RR, Valle de Sousa M, Espindola FS. Identification of calmodulin-binding proteins in brain of worker honeybees. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:41-5. [DOI: 10.1016/j.cbpb.2008.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/08/2008] [Accepted: 05/15/2008] [Indexed: 11/28/2022]
|
339
|
Pierce A, Mirzaei H, Muller F, De Waal E, Taylor AB, Leonard S, Van Remmen H, Regnier F, Richardson A, Chaudhuri A. GAPDH is conformationally and functionally altered in association with oxidative stress in mouse models of amyotrophic lateral sclerosis. J Mol Biol 2008; 382:1195-210. [PMID: 18706911 DOI: 10.1016/j.jmb.2008.07.088] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/15/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
Abstract
It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS.
Collapse
Affiliation(s)
- Anson Pierce
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK. The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 2008; 6:1375-84. [PMID: 18708368 PMCID: PMC2587019 DOI: 10.1158/1541-7786.mcr-07-2170] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although glyceraldehyde-3-phosphate dehydrogenase's (GAPDH) predilection for AU-rich elements has long been known, the expected connection between GAPDH and control of mRNA stability has never been made. Recently, we described GAPDH binding the AU-rich terminal 144 nt of the colony-stimulating factor-1 (CSF-1) 3' untranslated region (UTR), which we showed to be an mRNA decay element in ovarian cancer cells. CSF-1 is strongly correlated with the poor prognosis of patients with ovarian cancer. We investigated the functional significance of GAPDH's association with CSF-1 mRNA and found that GAPDH small interfering RNA reduces both CSF-1 mRNA and protein levels by destabilizing CSF-1 mRNA. CSF-1 mRNA half-lives were decreased by 50% in the presence of GAPDH small interfering RNA. RNA footprinting analysis of the 144 nt CSF-1 sequence revealed that GAPDH associates with a large AU-rich-containing region. The effects of binding of GAPDH protein or ovarian extracts to mutations of the AU-rich regions within the footprint were consistent with this finding. In a tissue array containing 256 ovarian and fallopian tube cancer specimens, we found that GAPDH was regulated in these cancers, with almost 50% of specimens having no GAPDH staining. Furthermore, we found that low GAPDH staining was associated with a low CSF-1 score (P = 0.008). In summary, GAPDH, a multifunctional protein, now adds regulation of mRNA stability to its repertoire. We are the first to evaluate the clinical role of GAPDH protein in cancer. In ovarian cancers, we show that GAPDH expression is regulated, and we now recognize that one of the many functions of GAPDH is to promote mRNA stability of CSF-1, an important cytokine in tumor progression.
Collapse
Affiliation(s)
- Yi Zhou
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024
| | - Xiaofang Yi
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024
| | | | | | | | - Jessica McAlpine
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V5Z-1M9
| | | |
Collapse
|
341
|
Lamarque M, Tastet C, Poncet J, Demettre E, Jouin P, Vial H, Dubremetz JF. Food vacuole proteome of the malarial parasite Plasmodium falciparum. Proteomics Clin Appl 2008; 2:1361-74. [PMID: 21136929 DOI: 10.1002/prca.200700112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Indexed: 11/08/2022]
Abstract
The Plasmodium falciparum food vacuole (FV) is a lysosome-like organelle where erythrocyte hemoglobin digestion occurs. It is a favorite target in the development of antimalarials. We have used a tandem mass spectrometry approach to investigate the proteome of an FV-enriched fraction and identified 116 proteins. The electron microscopy analysis and the Western blot data showed that the major component of the fraction was the FV and, as expected, the majority of previously known FV markers were recovered. Of particular interest, several proteins involved in vesicle-mediated trafficking were identified, which are likely to play a key role in FV biogenesis and/or FV protein trafficking. Recovery of parasite surface proteins lends support to the cytostomal pathway of hemoglobin ingestion as a FV trafficking route. We have identified 32 proteins described as hypothetical in the databases. This insight into FV protein content provides new clues towards understanding the biological function of this organelle in P. falciparum.
Collapse
Affiliation(s)
- Mauld Lamarque
- Dynamique Moléculaire des Interactions Membranaires CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
342
|
Hooven LA, Baird WM. Proteomic analysis of MCF-7 cells treated with benzo[a]pyrene, dibenzo[a,l]pyrene, coal tar extract, and diesel exhaust extract. Toxicology 2008; 249:1-10. [DOI: 10.1016/j.tox.2008.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/14/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
|
343
|
Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 2008; 10:866-73. [PMID: 18552833 PMCID: PMC2689382 DOI: 10.1038/ncb1747] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/12/2008] [Indexed: 12/12/2022]
Abstract
Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH-Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH-Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.
Collapse
Affiliation(s)
- Nilkantha Sen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Makoto R. Hara
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael D. Kornberg
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Matthew B. Cascio
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Byoung-Il Bae
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neelam Shahani
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bobby Thomas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akira Sawa
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
344
|
Kowalczyk A, Serafin E, Puchała M. Inactivation of chosen dehydrogenases by the products of water radiolysis and secondary albumin and haemoglobin radicals. Int J Radiat Biol 2008; 84:15-22. [PMID: 17852555 DOI: 10.1080/09553000701616056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) by products of water radiolysis and by secondary radicals localized on haemoglobin (Hb) and human albumin (HSA) was studied. MATERIALS AND METHODS Aqueous solutions of ADH, GAPDH and LDH were irradiated under air and under nitrous oxide (N2O) in the absence and in the presence of Hb or HSA. In order to determine the effectiveness of inactivation of the enzymes by radicals localized on Hb and HSA, the inactivation efficiency determined experimentally was compared with that calculated under assumption that only hydroxyl radicals are responsible for the enzyme inactivation. RESULTS In the absence of other proteins, under air, GAPDH showed the highest radiation sensitivity, followed by ADH and LDH. The sequence was reverse under anaerobic atmosphere. Oxygen increased considerably the inactivation of GAPDH and ADH. Secondary albumin and haemoglobin radicals brought about considerable inactivation of GAPGH and ADH. Albumin radicals (HSA) generated under N2O inactivated GAPDH and ADH more effectively than haemoglobin radicals (Hb). Under air, however, inactivation of GAPDH and ADH by haemoglobin peroxyl radicals was higher than by albumin peroxyl radicals. LDH was resistant to inactivation by haemoglobin and albumin radicals, and peroxides of these proteins. CONCLUSIONS In the light of these results and literature data, the observed differences in the effectiveness of inactivation of the dehydrogenases studied by secondary protein radicals depend on the amino acid residues present at the active site and in its close neighborhood and on the number of amino acid residues available on the protein surface.
Collapse
|
345
|
Zhang Y, Wang YH, Zhang XH, Ge HY, Arendt-Nielsen L, Shao JM, Yue SW. Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res 2008; 189:199-209. [PMID: 18493752 DOI: 10.1007/s00221-008-1419-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/30/2008] [Indexed: 12/26/2022]
Abstract
The aim of the study was to identify the differential protein expressions related to neuropathic pain and neuroprotection in the dorsal root ganglion (DRG) following chronic compression of DRG (CCD) in rats. We conducted a proteomics study of L(4) and L(5) DRG after CCD for 28 days. A total of 98 protein spots were detected with significant changes in their expression levels after CCD and 15 protein spots were identified by the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Of these proteins, annexin A2, protein kinase C epsilon (PKCepsilon), glyceraldehyde-3-phosphate dehydrogenases (GAPDH), and heat shock protein 70 (HSP70) were up-regulated significantly compared with the normal control. These four proteins and p11, which was annexin A2 light chain, were further examined by Western blotting. The results of Western blotting and the proteomic analysis showed consistent data. Moreover, real-time quantitative RT-PCR experiments indicated that CCD-induced increase in protein levels was associated with an up-regulation of annexin A2 and PKCepsilon gene expression. In conclusion, this study highlights the molecular process in DRG underlying neuropathic pain. CCD is associated with the up-regulation of annexin A2 and PKCepsilon and their related genes. The up-regulation of GAPDH and HSP70 suggests that there exist concurrent processes of nervous injury and neuroprotection in the course of neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
346
|
Romero-Puertas MC, Campostrini N, Mattè A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 2008; 8:1459-69. [PMID: 18297659 DOI: 10.1002/pmic.200700536] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S-nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants.
Collapse
|
347
|
Ha HY, Kim JB, Cho IH, Joo HJ, Kim KS, Lee KW, Sunwoo H, Im JY, Lee JK, Hong JH, Han PL. Morphogenetic lung defects of JSAP1-deficient embryos proceeds via the disruptions of the normal expressions of cytoskeletal and chaperone proteins. Proteomics 2008; 8:1071-80. [PMID: 18324732 DOI: 10.1002/pmic.200700815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies have shown that JNK/stress-activated protein kinase-associated protein 1 (JSAP1)-deficient mice die from respiratory failure shortly after birth. To understand the underlying mechanism, we investigated the histological appearances and cell type changes in developing jsap1(-/-) lungs between E12.5 and E18.5. At the light microscopic level, no overt abnormality was detected in jsap1(-/-) until E16.5. However, alveoli and airway formations that normally occur after E16.5 were poorly advanced in jsap1(-/-). Despite these morphological defects, surfactant secreting cells labeled by anti-SP-B or anti-SP-C were present in normal ranges in jsap1(-/-) lungs. Smooth muscle alpha-actin expressing cells were also developed in jsap1(-/-) lungs, although actin expression was decreased. The expressions of transcriptional factors, such as, nuclear factor Ib (Nfib), N-myc, and octamer transcriptional factor 1 (Oct-1), which play a critical role in lung morphogenesis, were found to be down-regulated, whereas signal transducer and activator of transcription 3 (Stat3), sonic hedgehog (Shh), and smoothened (Smo) were up-regulated, in jsap1(-/-) lungs at E17.5-E18.5 compared with those in jsap1(+/+) lungs. Proteomics analysis of E17.5 lung identified 39 proteins with altered expressions, which included actin, tropomyosin, myosin light chain, vimentin, heat shock protein (Hsp27), and Hsp84. These results suggest that JSAP1 is required for the normal expressions of cytoskeletal and chaperone proteins in the developing lung, and that impaired expressions of these proteins might cause morphogenetic defects observed in jsap1(-/-) lungs.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Division of Nano Sciences and Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell 2008; 30:108-13. [PMID: 18406331 PMCID: PMC2374695 DOI: 10.1016/j.molcel.2008.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
Phosphorelay signaling of environmental stimuli by two-component systems is prevailing in bacteria and also utilized by fungi and plants. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted from the Mak2/3 sensor kinases to the Mpr1 histidine-containing phosphotransfer (HPt) protein and finally to the Mcs4 response regulator, which activates a MAP kinase cascade. Here we show that, unexpectedly, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physically associates with the Mcs4 response regulator and stress-responsive MAP kinase kinase kinases (MAPKKKs). In response to H2O2 stress, Cys-152 of the Tdh1 GAPDH is transiently oxidized, which enhances the association of Tdh1 with Mcs4. Furthermore, Tdh1 is essential for the interaction between the Mpr1 HPt protein and the Mcs4 response regulator and thus for phosphorelay signaling. These results demonstrate that the glycolytic enzyme GAPDH plays an essential role in the phosphorelay signaling, where its redox-sensitive cysteine residue may provide additional input signals.
Collapse
Affiliation(s)
- Susumu Morigasaki
- Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Koichi Shimada
- Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Aminah Ikner
- Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kazuhiro Shiozaki
- Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
349
|
Servettaz A, Guilpain P, Tamas N, Kaveri SV, Camoin L, Mouthon L. Natural anti-endothelial cell antibodies. Autoimmun Rev 2008; 7:426-30. [PMID: 18558356 DOI: 10.1016/j.autrev.2008.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/12/2008] [Indexed: 01/01/2023]
Abstract
Anti-endothelial cell antibodies (AECA) are detectable in a heterogenous group of autoimmune and inflammatory conditions. These antibodies have also been detected in healthy individuals. Nevertheless, most of the literature focuses on AECA in pathological conditions and their targets and functions in healthy individuals remain to be clarified. Recently, proteome-based technologies have been successfully used for the identification of antigens targeted by natural AECA. Thus, it has been shown that IgG AECA can be detected in sera from healthy individuals that recognize a restricted set of proteins among a whole protein extract of umbilical vein endothelial cells. These proteins correspond to ubiquitous proteins belonging to highly conserved protein families and exerting pivotal roles in cell physiology, including cytoskeletal proteins (beta actin, vimentin, alpha tubulin) and glycolytic enzymes (glyceraldehyde-3-phosphate-deshydrogenase and alpha-enolase). As reported for other types of natural autoantibodies, natural AECA could exert anti-inflammatory and anti-thrombotic functions. In addition, they could play a role in the control of EC activation.
Collapse
Affiliation(s)
- Amélie Servettaz
- Université Paris Descartes, Faculté de Médecine, UPRES-EA 4058, Paris, France
| | | | | | | | | | | |
Collapse
|
350
|
Zhang C, Yu L, Qian R. Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). J Appl Microbiol 2008; 103:1587-99. [PMID: 17953570 DOI: 10.1111/j.1365-2672.2007.03386.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the immunoprotection of three recombinant proteins derived from the Vibrio harveyi outer membrane proteins (OMPs) OmpK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and their fusion OmpK-GAPDH as vaccine candidates from vibriosis of large yellow croaker (Pseudosciaena crocea). METHODS The ompK gene, of which the leader sequence was omitted, was fused with the gapdh gene. Three recombinant proteins r-OmpK, r-GAPDH and r-OmpK-GAPDH were expressed and purified. Western blots were carried out to detect the specificity of the antibodies raised against the recombinant proteins; Fish were immunized with recombinant proteins and challenged by native V. harveyi. The immunoresponse to the recombinant proteins were determined by ELISA and phagocytic activity assay. CONCLUSIONS The fusion protein r-OmpK-GAPDH can afford greater protection against the wild V. harveyi than r-OmpK or r-GAPDH alone or their mixture in humoral and cellular immunity, indicating that OmpK and GAPDH could produce a synergistic immunoprotection against vibriosis of large yellow croaker (Pseudosciaena crocea) when fused into OmpK-GAPDH with a linker. SIGNIFICANCE AND IMPACT OF THE STUDY It has been realized that a multi-component OMP antigen can induce a higher frequency of immune effectors than a single OMP. The results presented here bring forth a good suggestion for the subunit vaccine design based on the OMPs of gram-negative pathogens.
Collapse
Affiliation(s)
- C Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|