301
|
Cadmium-mediated rescue from ER-associated degradation induces expression of its exporter. Proc Natl Acad Sci U S A 2009; 106:10189-94. [PMID: 19515821 DOI: 10.1073/pnas.0812114106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadmium is a highly toxic environmental contaminant that has been implicated in various disorders. A major mechanism for cadmium detoxification in the yeast Saccharomyces cerevisiae relies on extrusion via Pca1, a P-type ATPase. While an N-terminal degron targets Pca1 for degradation before its secretion to the plasma membrane, cadmium in the growth media rapidly up-regulates Pca1 by preventing its turnover. Here we show that the endoplasmic reticulum-associated degradation (ERAD) system, known for its role in quality control of secretory proteins, is unexpectedly responsible for the regulation of Pca1 expression by cadmium. Direct cadmium sensing at the ER by a degron in Pca1 leads to an escape of Pca1 from ERAD. This regulated conversion of an ERAD substrate to a secretory competent state in response to a cellular need illustrates a mechanism for expressional control of a plasma membrane protein. Yeast has likely evolved this mode of regulation for a rapid response against cadmium toxicity at the expense of constant synthesis and degradation of Pca1. ERAD of a portion of secretory proteins might occur via signal-dependent regulatory mechanisms as demonstrated for Pca1.
Collapse
|
302
|
Ohyashiki JH, Kobayashi C, Hamamura R, Okabe S, Tauchi T, Ohyashiki K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci 2009; 100:970-7. [PMID: 19298223 PMCID: PMC11158870 DOI: 10.1111/j.1349-7006.2009.01131.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To evaluate the effect of deferasirox in human myeloid leukemia cells, and to identify the molecular pathways responsible for antiproliferative effects on leukemia cells during chelation therapy, we performed gene expression profiling to focus on the pathway involved in the anticancer effect of deferasirox. The inhibitory concentration (IC50) of deferasirox was 17-50 microM in three human myeloid cell lines (K562, U937, and HL60), while those in fresh leukemia cells obtained from four patients it varied from 88 to 172 microM. Gene expression profiling using Affymerix GeneChips (U133 Plus 2.0) revealed up-regulation of cyclin-dependent kinase inhibitor 1A (CDKN1A) encoding p21CIP, genes regulating interferon (i.e. IFIT1). Pathways related to iron metabolism and hypoxia such as growth differentiation factor 15 (GDF-15) and Regulated in development and DNA damage response (REDD1) were also prominent. Based on the results obtained from gene expression profiling, we particularly focused on the REDD1/mTOR (mammalian target of rapamycin) pathway in deferasirox-treated K562 cells, and found an enhanced expression of REDD1 and its down-stream protein, tuberin (TSC2). Notably, S6 ribosomal protein as well as phosphorylated S6, which is known to be a target of mTOR, was significantly repressed in deferasirox-treated K562 cells, and REDD1 small interfering RNA restored phosphorylation of S6. Although iron chelation may affect multiple signaling pathways related to cell survival, our data support the conclusion that REDD1 functions up-stream of tuberin to down-regulate the mTOR pathway in response to deferasirox. Deferasirox might not only have benefit for iron chelation but also may be an antiproliferative agent in some myeloid leukemias, especially patients who need both iron chelation and reduction of leukemia cells.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Intractable Diseases Therapeutic Research Center, Tokyo Medical University, Tokyo 160-0023, Japan.
| | | | | | | | | | | |
Collapse
|
303
|
Ramsay AJ, Hooper JD, Folgueras AR, Velasco G, López-Otín C. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica 2009; 94:840-9. [PMID: 19377077 DOI: 10.3324/haematol.2008.001867] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Maintaining the body's levels of iron within precise boundaries is essential for normal physiological function. Alterations of these levels below or above the healthy limit lead to a systemic deficiency or overload in iron. The type-two transmembrane serine protease (TTSP), matriptase-2 (also known as TMPRSS6), is attracting significant amounts of interest due to its recently described role in iron homeostasis. The finding of this regulatory role for matriptase-2 was originally derived from the observation that mice deficient in this protease present with anemia due to elevated levels of hepcidin and impaired intestinal iron absorption. Further in vitro analysis has demonstrated that matriptase-2 functions to suppress bone morphogenetic protein stimulation of hepcidin transcription through cell surface proteolytic processing of the bone morphogenetic protein co-receptor hemojuvelin. Consistently, the anemic phenotype of matriptase-2 knockout mice is mirrored in humans with matripase-2 mutations. Currently, 14 patients with iron-refractory iron deficiency anemia (IRIDA) have been reported to harbor various genetic mutations that abrogate matriptase-2 proteolytic activity. In this review, after overviewing the membrane anchored serine proteases, in particular the TTSP family, we summarize the identification and characterization of matriptase-2 and describe its functional relevance in iron metabolism.
Collapse
Affiliation(s)
- Andrew J Ramsay
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
304
|
Wang L, Cherayil BJ. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 2009; 1:455-64. [PMID: 20375603 DOI: 10.1159/000210016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/16/2009] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
305
|
Harrison-Findik DD. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease? World J Gastroenterol 2009; 15:1186-93. [PMID: 19291818 PMCID: PMC2658862 DOI: 10.3748/wjg.15.1186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite heavy consumption over a long period of time, only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors, besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver, which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes. It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease.
Collapse
|
306
|
Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin. Blood 2009; 113:6707-15. [PMID: 19264680 DOI: 10.1182/blood-2008-09-178095] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The high iron demand associated with enhanced erythropoiesis during high-altitude hypoxia leads to skeletal muscle iron mobilization and decrease in myoglobin protein levels. To investigate the effect of enhanced erythropoiesis on systemic and muscle iron metabolism under nonhypoxic conditions, 8 healthy volunteers were treated with recombinant erythropoietin (rhEpo) for 1 month. As expected, the treatment efficiently increased erythropoiesis and stimulated bone marrow iron use. It was also associated with a prompt and considerable decrease in urinary hepcidin and a slight transient increase in GDF-15. The increased iron use and reduced hepcidin levels suggested increased iron mobilization, but the treatment was associated with increased muscle iron and L ferritin levels. The muscle expression of transferrin receptor and ferroportin was up-regulated by rhEpo administration, whereas no appreciable change in myoglobin levels was observed, which suggests unaltered muscle oxygen homeostasis. In conclusion, under rhEpo stimulation, the changes in the expression of muscle iron proteins indicate the occurrence of skeletal muscle iron accumulation despite the remarkable hepcidin suppression that may be mediated by several factors, such as rhEpo or decreased transferrin saturation or both.
Collapse
|
307
|
Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab 2009; 9:217-27. [PMID: 19254567 PMCID: PMC2673483 DOI: 10.1016/j.cmet.2009.01.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/29/2008] [Accepted: 01/30/2009] [Indexed: 11/20/2022]
Abstract
The mechanisms that allow the body to sense iron levels in order to maintain iron homeostasis are unknown. Patients with the most common form of hereditary iron overload have mutations in the hereditary hemochromatosis protein HFE. They have lower levels of hepcidin than unaffected individuals. Hepcidin, a hepatic peptide hormone, negatively regulates iron efflux from the intestines into the blood. We report two hepatic cell lines, WIF-B cells and HepG2 cells transfected with HFE, where hepcidin expression responded to iron-loaded transferrin. The response was abolished when endogenous transferrin receptor 2 (TfR2) was suppressed or in primary hepatocytes lacking either functional TfR2 or HFE. Furthermore, transferrin-treated HepG2 cells transfected with HFE chimeras containing only the alpha3 and cytoplasmic domains could upregulate hepcidin expression. Since the HFE alpha3 domain interacts with TfR2, these results supported our finding that TfR2/HFE complex is required for transcriptional regulation of hepcidin by holo-Tf.
Collapse
|
308
|
Polati R, Castagna A, Bossi A, Campostrini N, Zaninotto F, Timperio AM, Zolla L, Olivieri O, Corrocher R, Girelli D. High resolution preparation of monocyte-derived macrophages (MDM) protein fractions for clinical proteomics. Proteome Sci 2009; 7:4. [PMID: 19228399 PMCID: PMC2649903 DOI: 10.1186/1477-5956-7-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/19/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels. RESULTS Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis) indicated no fraction cross contamination. On 2D-PAGE mini gels (7 x 8 cm) we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). CONCLUSION This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.
Collapse
Affiliation(s)
- Rita Polati
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Annalisa Castagna
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Alessandra Bossi
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
| | - Natascia Campostrini
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Federica Zaninotto
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Anna Maria Timperio
- University of Tuscia, Department of Environmental Sciences, 01100 Viterbo, Italy
| | - Lello Zolla
- University of Tuscia, Department of Environmental Sciences, 01100 Viterbo, Italy
| | - Oliviero Olivieri
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Roberto Corrocher
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| | - Domenico Girelli
- University of Verona, Department of Clinical and Experimental Medicine, Unit of Internal Medicine B, 37134 Verona, Italy
| |
Collapse
|
309
|
Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: From research to clinic. World J Gastroenterol 2009; 15:538-51. [PMID: 19195055 PMCID: PMC2653344 DOI: 10.3748/wjg.15.538] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By modulating hepcidin production, an organism controls intestinal iron absorption, iron uptake and mobilization from stores to meet body iron need. In recent years there has been important advancement in our knowledge of hepcidin regulation that also has implications for understanding the physiopathology of some human disorders. Since the discovery of hepcidin and the demonstration of its pivotal role in iron homeostasis, there has been a substantial interest in developing a reliable assay of the hormone in biological fluids. Measurement of hepcidin in biological fluids can improve our understanding of iron diseases and be a useful tool for diagnosis and clinical management of these disorders. We reviewed the literature and our own research on hepcidin to give an updated status of the situation in this rapidly evolving field.
Collapse
|
310
|
Abstract
Accurate assessment of maternal micronutrient status is critical to the prevention of suboptimal micronutrient status and anaemia during pregnancy. Measurement of Fe, folate and vitamin B12 status is complicated by adaptive changes to maternal and placental physiology that markedly affect concentrations of circulating micronutrients and their functional biomarkers. Validation of new assessment methods by comparison with gold standards is often prevented by ethical considerations. Antenatal screening in the UK is predominantly concerned with the detection of anaemia, although estimation of maternal Fe stores by serum ferritin at the start of antenatal care may be a more effective preventive strategy. Functional assessment of maternal anaemia is highly problematic, so instead reference data are used for its definition. The effect of mild-to-moderate anaemia on pregnancy outcome is unclear because of the crude nature of its assessment and the influence of confounding factors. Fe-deficient erythropoiesis may be detected by assessment of erythrocyte Zn protoporphyrin and reticulocyte Hb, although such measures may be unavailable in many clinical laboratories. Serum soluble transferrin receptor is highly responsive to tissue Fe deficiency and is less affected by inflammation than most other indicators. Direct inter-assay comparison of serum and erythrocyte folate values is inadvisable since recovery rates differ greatly between methods. Serum total homocysteine is a useful functional biomarker of both folate and vitamin B12 status but during pregnancy is influenced by other factors that reduce its sensitivity. Isotope-dilution liquid chromatography-tandem MS and serum holo-transcobalamin provide new opportunities to gain detailed data of folate species and vitamin B12 fractions in large samples.
Collapse
|
311
|
Pelucchi S, Mariani R, Trombini P, Coletti S, Pozzi M, Paolini V, Barisani D, Piperno A. Expression of hepcidin and other iron-related genes in type 3 hemochromatosis due to a novel mutation in transferrin receptor-2. Haematologica 2009; 94:276-279. [PMID: 19144662 PMCID: PMC2635389 DOI: 10.3324/haematol.13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 10/07/2008] [Indexed: 12/21/2022] Open
Abstract
Transferrin receptor-2 (TFR2) regulates hepatic hepcidin secretion and when mutated causes type-3 hemochromatosis. No functional study is available in humans. We studied a 47 year-old woman with hemochromatosis. TFR2 DNA and its hepatic transcript were directly sequenced. Hepatic expression of hepcidin and other iron-related genes were measured by qRT-PCR. Urinary hepcidin was measured at baseline and after an oral iron challenge (ferrous sulfate, 65 mg) by SELDI-TOF-MS. A novel homozygous TFR2 mutation was identified in the splicing donor site of intron 4 (c.614+4 A>G) causing exon 4 skipping. Hepcidin and hemojuvelin expression were markedly reduced. Urinary hepcidin was lower than normal and further decreased after iron challenge. This is the first description of iron-related gene expression profiles in a TFR2 mutated patient. The decreased hepatic and urinary expression of hepcidin and lack of acute response to iron challenge confirms the primary role of TFR2 in iron homeostasis.
Collapse
Affiliation(s)
- Sara Pelucchi
- Consortium for Human Molecular Genetics, Monza, Milan
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
| | - Raffaella Mariani
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| | - Paola Trombini
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| | - Sabina Coletti
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| | - Matteo Pozzi
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| | - Valentina Paolini
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| | - Donatella Barisani
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Milan, Italy
| | - Alberto Piperno
- Consortium for Human Molecular Genetics, Monza, Milan
- Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Milan
- Clinical Medicine, San Gerardo Hospital, Monza, Milan and
| |
Collapse
|
312
|
Iolascon A, De Falco L, Beaumont C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 2009; 94:395-408. [PMID: 19181781 DOI: 10.3324/haematol.13619] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Biochemistry and Medical Biotechnologies, University Federico II, Naples, Italy.
| | | | | |
Collapse
|
313
|
Rao VA, Klein SR, Agama KK, Toyoda E, Adachi N, Pommier Y, Shacter EB. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells. Cancer Res 2009; 69:948-57. [PMID: 19176392 DOI: 10.1158/0008-5472.can-08-1437] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is being developed as an iron chelator with selective anticancer activity. We investigated the mechanism whereby Dp44mT kills breast cancer cells, both as a single agent and in combination with doxorubicin. Dp44mT alone induced selective cell killing in the breast cancer cell line MDA-MB-231 when compared with healthy mammary epithelial cells (MCF-12A). It induces G(1) cell cycle arrest and reduces cancer cell clonogenic growth at nanomolar concentrations. Dp44mT, but not the iron chelator desferal, induces DNA double-strand breaks quantified as S139 phosphorylated histone foci (gamma-H2AX) and Comet tails induced in MDA-MB-231 cells. Doxorubicin-induced cytotoxicity and DNA damage were both enhanced significantly in the presence of low concentrations of Dp44mT. The chelator caused selective poisoning of DNA topoisomerase IIalpha (top2alpha) as measured by an in vitro DNA cleavage assay and cellular topoisomerase-DNA complex formation. Heterozygous Nalm-6 top2alpha knockout cells (top2alpha(+/-)) were partially resistant to Dp44mT-induced cytotoxicity compared with isogenic top2alpha(+/+) or top2beta(-/-) cells. Specificity for top2alpha was confirmed using top2alpha and top2beta small interfering RNA knockdown in HeLa cells. The results show that Dp44mT is cytotoxic to breast cancer cells, at least in part, due to selective inhibition of top2alpha. Thus, Dp44mT may serve as a mechanistically unique treatment for cancer due to its dual ability to chelate iron and inhibit top2alpha activity.
Collapse
Affiliation(s)
- V Ashutosh Rao
- US Department of Health and Human Services, Laboratory of Biochemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
314
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
315
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
316
|
Abstract
PURPOSE OF REVIEW To explore the role of iron physiology in the brain of healthy adults and review how increased brain iron deposition has been associated with common neurodegenerative diseases that affect the elderly. RECENT FINDINGS Because iron plays a role in oxygen transportation, myelin synthesis, neurotransmitter production, and electron transfers, it serves as a crucial cofactor in normal central nervous metabolism. However, an increased level of brain iron may promote neurotoxicity due to free radical formation, lipid peroxidation, and ultimately, cellular death. Advanced neuroimaging techniques and pathological studies have demonstrated increased brain iron with aging, and increased iron deposition has also been observed in patients with a constellation of neurological diseases, including Alzheimer's disease, Parkinson's disease, and stroke. SUMMARY Pathologic and neurologic imaging coupled with experimentation have increased our understanding of the link between iron and neurodegeneration. A potential implication is that disease-modifying therapies aimed at removing excess iron may one day be part of the armamentarium employed by clinicians to decrease the burden of neurodegenerative diseases in the elderly.
Collapse
Affiliation(s)
- James M Stankiewicz
- Partners MS center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02445, USA.
| | | |
Collapse
|
317
|
Abstract
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
Collapse
|
318
|
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 2008; 457:318-21. [PMID: 19037245 PMCID: PMC2756102 DOI: 10.1038/nature07472] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/30/2008] [Indexed: 12/27/2022]
Abstract
Tissue macrophages comprise a heterogeneous group of cell types differing in location, surface markers and function1. Red pulp macrophages are a distinct splenic subset involved in removing senescent red blood cells2. Transcription factors such as PU.1 and C/EBPα play general roles in myelomonocytic development3,4, but the transcriptional basis for producing tissue macrophage subsets remains unknown. Here we show that Spi-C, a PU.1 related transcription factor, selectively controls the development of red pulp macrophages. Spi-C is highly expressed in red pulp macrophages, but not monocytes, dendritic cells or other tissue macrophages. Spi-C−/− mice exhibit a cell-autonomous defect in the development of red pulp macrophages that is corrected by retroviral Spi-C expression in bone marrow cells, but have normal monocyte and other macrophage subsets. Red pulp macrophages highly express genes involved in capturing circulating hemoglobin and iron regulation. Spi-C−/− mice show normal trapping of red blood cells in the spleen, but fail to phagocytose these red blood cells efficiently, and develop an iron overload localized selectively to splenic red pulp. Thus, Spi-C controls development of red pulp macrophages required for red blood cell recycling and iron homeostasis.
Collapse
|
319
|
Unger EL, Earley CJ, Beard JL. Diurnal cycle influences peripheral and brain iron levels in mice. J Appl Physiol (1985) 2008; 106:187-93. [PMID: 18988764 DOI: 10.1152/japplphysiol.91076.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron movement between organ pools involves a dynamic equilibrium of iron efflux and uptake, and homeostatic mechanisms are likely involved in providing iron to cells and organs when required. Daily iron levels in the plasma pool fluctuate with the diurnal cycle, but clear explanations regarding the objectives and regulation of the flux are lacking. The association between diurnal cycle and iron flux is relevant in the disease of restless legs syndrome (RLS), where individuals display diurnal deficits in motor control, have impaired brain iron metabolism, and perhaps altered iron uptake from the plasma pool. The goal of the present study was to examine diurnal variations in peripheral and regional brain iron to evaluate iron flux between organs in iron-sufficient and iron-deficient mice. In mice fed control diet, liver iron was elevated 30-40%, and plasma iron was reduced 20-30% in the active dark period compared with the inactive light phase. Dietary iron deficiency eliminated this variation in liver iron in male and female mice and in plasma iron in male mice. Reductions in ventral midbrain and nucleus accumbens iron and ferritin were apparent in iron-deficient mice during both diurnal phases, but only during the light phase was an approximately 25% reduction in whole brain iron observed, suggesting different brain iron requirements between phases. These data demonstrate that iron flux between organs is sensitive to diurnal regulatory biology. Importantly, variations in brain iron may have temporal implications regarding neural functioning and may contribute to the diurnal cycle-dependent symptoms of RLS.
Collapse
Affiliation(s)
- Erica L Unger
- Department of Nutrition Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
320
|
Girelli D, De Domenico I, Bozzini C, Campostrini N, Busti F, Castagna A, Soriani N, Cremonesi L, Ferrari M, Colombari R, Ward DM, Kaplan J, Corrocher R. Clinical, pathological, and molecular correlates in ferroportin disease: a study of two novel mutations. J Hepatol 2008; 49:664-71. [PMID: 18713659 PMCID: PMC2605969 DOI: 10.1016/j.jhep.2008.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND/AIMS Clinico-pathological manifestations of ferroportin (Fpn) disease (FD) are heterogeneous, with some patients presenting with iron overload predominantly in macrophages ("M" phenotype), others predominantly in hepatocytes ("H" phenotype). This appears to reflect functional heterogeneity of Fpn mutants, with loss-of-function generally resulting in the M type. METHODS Two unrelated probands with "non-HFE" hemochromatosis were screened for Fpn mutations. Mutants were functionally characterized by immunofluorescence microscopy, evaluation of their ability to bind hepcidin and export iron, and by expressing them in zebrafish. RESULTS Two novel Fpn mutations were identified: I152F in patient-1, presenting with typical M phenotype; and L233P in patient-2, presenting with ambiguous features (massive overload in both macrophages and hepatocytes). Molecular studies suggested loss of function in both cases. The I152F, normally localized on cell membrane and internalized by hepcidin, showed a unique "primary" deficit of iron export capability. The L233P did not appropriately traffic to cell surface. Loss of function was confirmed by expressing both mutants in vivo in zebrafish, resulting in iron limited erythropoiesis. Clinical manifestations were likely enhanced in both patients by non-genetic factors (HCV, alcohol). CONCLUSIONS The combination of careful review of clinico-pathological data with molecular studies can yield compelling explanations for phenotype heterogeneity in FD.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico GB Rossi, Verona, Italy.
| | | | - Claudia Bozzini
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| | - Natascia Campostrini
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| | - Fabiana Busti
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| | - Nadia Soriani
- Genomic Unit for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy,Diagnostica e Ricerca San Raffaele SpA, Milan, Italy
| | - Laura Cremonesi
- Genomic Unit for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy,Diagnostica e Ricerca San Raffaele SpA, Milan, Italy,Vita-Salute University, Milan, Italy
| | | | - Diane McVey Ward
- Department of Pathology, University of Utah, Salt Lake City, USA
| | - Jerry Kaplan
- Department of Pathology, University of Utah, Salt Lake City, USA
| | - Roberto Corrocher
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| |
Collapse
|
321
|
Zhang AS, Canonne-Hergaux F, Gruenheid S, Gros P, Ponka P. Use of Nramp2-transfected Chinese hamster ovary cells and reticulocytes from mk/mk mice to study iron transport mechanisms. Exp Hematol 2008; 36:1227-35. [PMID: 18722041 PMCID: PMC2655630 DOI: 10.1016/j.exphem.2008.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We investigated mechanisms involved in iron (Fe) transport by DMT1 (endosomal Fe(II) exporter, encoded by the Nramp2 gene) using wild-type Chinese hamster ovary (CHO) cells and Nramp2-transfected CHO cells, as well as reticulocytes from normal and mk/mk mice that have a defect in DMT1. MATERIALS AND METHODS CHO cells and reticulocytes were incubated with 59Fe bound to various ligands. The radioiron was present in its Fe(II) or Fe(III) forms or bound to transferrin (Tf), and the internalized 59Fe measured under varying experimental conditions. Additionally, 125I-Tf interaction with reticulocytes was investigated and 59Fe incorporation into their heme was determined. RESULTS Hyperexpression of DMT1 in CHO cells greatly increases their capacity to acquire ferrous iron. Although CHO-Nramp2 cells showed an increase in Fe(III) uptake as compared to CHO cells, they transported Fe(III) with much lower efficacy than Fe(II). In addition to their defect in Fe uptake, mk/mk reticulocytes also showed a decrease in Tf receptor levels. CONCLUSIONS Given that CHO cells acquire iron from Fe(II)-ascorbate with much higher rates than from Fe(III)-Tf, Tf-receptor levels represent the rate-limiting step in their iron uptake. As Fe(III) transport by CHO-Nramp2 cells can be inhibited by the impermeable oxidant K3Fe(CN)6, a membrane ferric reductase is probably needed for reduction of Fe(III) to Fe(II), which is then transported by DMT1. DMT1 is not a limiting factor in Fe acquisition by normal reticulocytes and their heme synthesis.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
322
|
Lesnikov V, Gorden N, Fausto N, Spaulding E, Campbell J, Shulman H, Fleming RE, Deeg HJ. Transferrin fails to provide protection against Fas-induced hepatic injury in mice with deletion of functional transferrin-receptor type 2. Apoptosis 2008; 13:1005-12. [PMID: 18561026 DOI: 10.1007/s10495-008-0233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We reported previously that Fas-induced hepatic failure in normal mice was attenuated or prevented by exogenous transferrin (Tf), particularly apoTf. Here we show in C57BL6J/129 mice with genetic inactivation of transferrin receptor 2 (TfR2(Y245X)), that Fas-induced hepatotoxicity (apoptosis; rise in plasma aspartate aminotransferase (AST) levels) was comparable to that in wild-type mice, but was not modified by pretreatment with Tf. Rises in plasma AST were preceded by a decline in serum iron levels. AST elevations and iron declines were more profound in female than in male mice. Female mice also showed higher baseline levels of Bcl-xL in hepatocytes, which declined significantly upon treatment with agonistic anti-Fas antibody. These data confirm the cytoprotective function of Tf, and show a novel property of TfR2. Both apoptotic Fas responses and cytoprotective effects of Tf were associated with significant shifts in plasma iron levels, which quantitatively differed between male and female mice.
Collapse
Affiliation(s)
- Vladimir Lesnikov
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D1-100, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
323
|
|
324
|
Zhang AS, Enns CA. Iron homeostasis: recently identified proteins provide insight into novel control mechanisms. J Biol Chem 2008; 284:711-5. [PMID: 18757363 DOI: 10.1074/jbc.r800017200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Iron is an essential nutrient required for a variety of biochemical processes. It is a vital component of the heme in hemoglobin, myoglobin, and cytochromes and is also an essential cofactor for non-heme enzymes such as ribonucleotide reductase, the limiting enzyme for DNA synthesis. When in excess, iron is toxic because it generates superoxide anions and hydroxyl radicals that react readily with biological molecules, including proteins, lipids, and DNA. As a result, humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Disruption of these processes causes either iron-deficient anemia or iron overload disorders. In this minireview, we focus on the roles of recently identified proteins in the regulation of iron homeostasis.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
325
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
326
|
Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 2008; 112:2539-45. [PMID: 18523150 DOI: 10.1182/blood-2008-04-149773] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proteolytic events at the cell surface are essential in the regulation of signal transduction pathways. During the past years, the family of type II transmembrane serine proteases (TTSPs) has acquired an increasing relevance because of their privileged localization at the cell surface, although our current understanding of the biologic function of most TTSPs is limited. Here we show that matriptase-2 (Tmprss6), a recently described member of the TTSP family, is an essential regulator of iron homeostasis. Thus, Tmprss6(-/-) mice display an overt phenotype of alopecia and a severe iron deficiency anemia. These hematologic alterations found in Tmprss6(-/-) mice are accompanied by a marked up-regulation of hepcidin, a negative regulator of iron export into plasma. Likewise, Tmprss6(-/-) mice have reduced ferroportin expression in the basolateral membrane of enterocytes and accumulate iron in these cells. Iron-dextran therapy rescues both alopecia and hematologic alterations of Tmprss6(-/-) mice, providing causal evidence that the anemic phenotype of these mutant mice results from the blockade of intestinal iron export into plasma after dietary absorption. On the basis of these findings, we conclude that matriptase-2 activity represents a novel and relevant step in hepcidin regulation and iron homeostasis.
Collapse
|
327
|
Tacchini L, Gammella E, De Ponti C, Recalcati S, Cairo G. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem 2008; 283:20674-86. [PMID: 18519569 DOI: 10.1074/jbc.m800365200] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation generates various changes in body iron homeostasis, including iron sequestration in the reticuloendothelial system with ensuing hypoferremia and anemia of chronic disease. Increased iron accumulation is caused by hepcidin-mediated down-regulation of the iron export protein ferroportin and higher iron uptake. However, enhanced iron acquisition by macrophages cannot be accounted for by the previously reported transferrin receptor (TfR1) down-regulation in macrophages exposed to lipopolysaccharide (LPS)/interferon gamma (IFNgamma) because it impairs a major iron uptake mechanism. Because TfR1 is up-regulated by the hypoxia-inducible factor (HIF-1), we investigated the effect of inflammatory and anti-inflammatory signals on HIF-1-mediated TfR1 gene expression. Exposure of mouse macrophages (RAW 264.7 and J774A.1 cells or peritoneal macrophages) to LPS/IFNgamma up-regulated NF-kappaB, which in turn rapidly and transiently activated HIF-1-dependent TfR1 expression and iron uptake. Activation of an anti-inflammatory pathway by pre-exposure to the adenosine A(2A) receptor agonist CGS21680 prevented the inducing effect of LPS/IFNgamma on HIF-1 and TfR1 expression by inhibiting NF-kappaB activity, whereas treatment with CGS21680 alone increased HIF-1-mediated TfR1 expression by means of an NF-kappaB-independent signaling pathway. In conclusion, an interplay of the HIF-1 and NF-kappaB pathways controls TfR1 transcription in inflammation. The consequent changes in TfR1 expression may be involved in modulating iron retention in inflammatory macrophages, thus possibly contributing to the development of hypoferremia in the early phases preceding the down-regulation of macrophage ferroportin by hepcidin.
Collapse
Affiliation(s)
- Lorenza Tacchini
- Institute of General Pathology, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
328
|
Kambe T, Weaver BP, Andrews GK. The genetics of essential metal homeostasis during development. Genesis 2008; 46:214-28. [PMID: 18395838 DOI: 10.1002/dvg.20382] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The essential metals copper, zinc, and iron play key roles in embryonic, fetal, and postnatal development in higher eukaryotes. Recent advances in our understanding of the molecules involved in the intricate control of the homeostasis of these metals and the availability of natural mutations and targeted mutations in many of the genes involved have allowed for elucidation of the diverse roles of these metals during development. Evidence suggests that the ability of the embryo to control the homeostasis of these metals becomes essential at the blastocyst stage and during early morphogenesis. However, these metals play unique roles throughout development and exert pleiotropic, metal-specific, and often cell-specific effects on morphogenesis, growth, and differentiation. Herein, we briefly review the major players known to be involved in the homeostasis of each of these essential metals and their known roles in development.
Collapse
Affiliation(s)
- Taiho Kambe
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
329
|
Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 2008; 453:1127-31. [PMID: 18418376 DOI: 10.1038/nature06934] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 03/31/2008] [Indexed: 11/08/2022]
Abstract
Haems are metalloporphyrins that serve as prosthetic groups for various biological processes including respiration, gas sensing, xenobiotic detoxification, cell differentiation, circadian clock control, metabolic reprogramming and microRNA processing. With a few exceptions, haem is synthesized by a multistep biosynthetic pathway comprising defined intermediates that are highly conserved throughout evolution. Despite our extensive knowledge of haem biosynthesis and degradation, the cellular pathways and molecules that mediate intracellular haem trafficking are unknown. The experimental setback in identifying haem trafficking pathways has been the inability to dissociate the highly regulated cellular synthesis and degradation of haem from intracellular trafficking events. Caenorhabditis elegans and related helminths are natural haem auxotrophs that acquire environmental haem for incorporation into haemoproteins, which have vertebrate orthologues. Here we show, by exploiting this auxotrophy to identify HRG-1 proteins in C. elegans, that these proteins are essential for haem homeostasis and normal development in worms and vertebrates. Depletion of hrg-1, or its paralogue hrg-4, in worms results in the disruption of organismal haem sensing and an abnormal response to haem analogues. HRG-1 and HRG-4 are previously unknown transmembrane proteins, which reside in distinct intracellular compartments. Transient knockdown of hrg-1 in zebrafish leads to hydrocephalus, yolk tube malformations and, most strikingly, profound defects in erythropoiesis-phenotypes that are fully rescued by worm HRG-1. Human and worm proteins localize together, and bind and transport haem, thus establishing an evolutionarily conserved function for HRG-1. These findings reveal conserved pathways for cellular haem trafficking in animals that define the model for eukaryotic haem transport. Thus, uncovering the mechanisms of haem transport in C. elegans may provide insights into human disorders of haem metabolism and reveal new drug targets for developing anthelminthics to combat worm infestations.
Collapse
|
330
|
Swinkels DW, Wetzels JFM. Hepcidin: a new tool in the management of anaemia in patients with chronic kidney disease? Nephrol Dial Transplant 2008; 23:2450-3. [DOI: 10.1093/ndt/gfn267] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
331
|
Mercier A, Watt S, Bähler J, Labbé S. Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. EUKARYOTIC CELL 2008; 7:493-508. [PMID: 18223116 PMCID: PMC2268518 DOI: 10.1128/ec.00446-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/18/2008] [Indexed: 12/30/2022]
Abstract
The fission yeast Schizosaccharomyces pombe responds to the deprivation of iron by inducing the expression of the php4+ gene, which encodes a negative regulatory subunit of the heteromeric CCAAT-binding factor. Once formed, the Php2/3/4/5 transcription complex is required to inactivate a subset of genes encoding iron-using proteins. Here, we used a pan-S. pombe microarray to study the transcriptional response to iron starvation and identified 86 genes that exhibit php4+-dependent changes on a genome-wide scale. One of these genes encodes the iron-responsive transcriptional repressor Fep1, whose mRNA levels were decreased after treatment with the permeant iron chelator 2,2'-dipyridyl. In addition, several genes encoding the components of iron-dependent biochemical pathways, including the tricarboxylic acid cycle, mitochondrial respiration, amino acid biosynthesis, and oxidative stress defense, were downregulated in response to iron deficiency. Furthermore, Php4 repressed transcription when brought to a promoter using a yeast DNA-binding domain, and iron deprivation was required for this repression. On the other hand, Php4 was constitutively active when glutathione levels were depleted within the cell. Based on these and previous results, we propose that iron-dependent inactivation of Php4 is regulated at two distinct levels: first, at the transcriptional level by the iron-responsive GATA factor Fep1 and second, at the posttranscriptional level by a mechanism yet to be identified, which inhibits Php4-mediated repressive function when iron is abundant.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | |
Collapse
|