301
|
Kiefer SM, Robbins L, Barina A, Zhang Z, Rauchman M. SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat 2008; 29:1133-40. [PMID: 18470945 DOI: 10.1002/humu.20759] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in SALL1 lead to the dominant multiorgan congenital anomalies that define Townes-Brocks syndrome (TBS). The majority of these mutations result in premature termination codons that would be predicted to trigger nonsense-mediated decay (NMD) of mutant mRNA and cause haploinsufficiency. Our previous studies using a gene targeted mouse model (Sall1-DeltaZn) suggested that TBS phenotypes are due to expression of a truncated mutant protein, not haploinsufficiency. In this report, we strengthen this hypothesis by showing that expression of the mutant protein alone in transgenic mice is sufficient to cause limb phenotypes that are characteristic of TBS patients. We prove that the same pathogenetic mechanism elucidated in mice is occurring in humans by demonstrating that truncated SALL1 protein is expressed in cells derived from a TBS patient. TBS mutant protein is capable of dominant negative activity that results in ectopic activation of two downstream genes, Nppa and Shox2, in the developing heart and limb. We propose a model for the pathogenesis of TBS in which truncated Sall1 protein causes derepression of Sall-responsive target genes.
Collapse
Affiliation(s)
- Susan M Kiefer
- Research and Education Service Line, St. Louis Veterans Administration Medical Center, U.S. Department of Veterans Affairs, St. Louis, Missouri 63106, USA
| | | | | | | | | |
Collapse
|
302
|
Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 2008; 24:552-63. [PMID: 18937996 DOI: 10.1016/j.tig.2008.08.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/26/2022]
Abstract
Approximately one-third of alleles causing genetic diseases carry premature termination codons (PTCs), which lead to the production of truncated proteins. The past decade has seen considerable interest in therapeutic approaches aimed at readthrough of in-frame PTCs to enable synthesis of full-length proteins. However, attempts to readthrough PTCs in many diseases resulted in variable effects. Here, we focus on the efforts of such therapeutic approaches in cystic fibrosis and Duchenne muscular dystrophy and discuss the factors contributing to successful readthrough and how the nonsense-mediated mRNA decay (NMD) pathway regulates this response. A deeper understanding of the molecular basis for variable response to readthrough of PTCs is necessary so that appropriate therapies can be developed to treat many human genetic diseases caused by PTCs.
Collapse
Affiliation(s)
- Liat Linde
- Department of Genetics, The Life Sciences Institute, Givat Ram Campus, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
303
|
Purevsuren J, Fukao T, Hasegawa Y, Fukuda S, Kobayashi H, Yamaguchi S. Study of deep intronic sequence exonization in a Japanese neonate with a mitochondrial trifunctional protein deficiency. Mol Genet Metab 2008; 95:46-51. [PMID: 18693053 DOI: 10.1016/j.ymgme.2008.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Mitochondrial trifunctional protein (MTP) comprises heterooctamer alpha4beta4 and a deficiency in this protein causes a mitochondrial long-chain beta-oxidation defect. Here, we describe the molecular basis of an MTPbeta-subunit deficiency in a Japanese neonate. Mutation screening at the genomic level including all exons and exon-intron boundaries identified a novel c.1136A>G (H346R) mutation in exon 13 of the maternal allele, but none in the paternal allele. Analysis by RT-PCR identified paternal-specific 106- and 56-bp intronic insertions between exons 7 and 8, which introduced premature terminations. This intronic exonization was caused by a deep intronic mutation in intron 7 on the paternal allele that generates a cryptic splice donor site. This is the first report of a deep intronic mutation in MTP deficiency.
Collapse
Affiliation(s)
- Jamiyan Purevsuren
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|
304
|
Abstract
Edc3 is an enhancer of decapping and serves as a scaffold that aggregates mRNA ribonucleoproteins together for P-body formation. Edc3 forms a network of interactions with the components of the mRNA decapping machinery and has a modular domain architecture consisting of an N-terminal Lsm domain, a central FDF domain, and a C-terminal YjeF-N domain. We have determined the crystal structure of the N-terminally truncated human Edc3 at a resolution of 2.2 A. The structure reveals that the YjeF-N domain of Edc3 possesses a divergent Rossmann fold topology that forms a dimer, which is supported by sedimentation velocity and sedimentation equilibrium analysis in solution. The dimerization interface of Edc3 is highly conserved in eukaryotes despite the overall low sequence homology across species. Structure-based site-directed mutagenesis revealed dimerization is required for efficient RNA binding, P-body formation, and likely for regulating the yeast Rps28B mRNA as well, suggesting that the dimeric form of Edc3 is a structural and functional unit in mRNA degradation.
Collapse
|
305
|
Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008; 29:1037-47. [PMID: 18454449 DOI: 10.1002/humu.20763] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
306
|
Axonal neuropathy with unusual pattern of amyotrophy and alacrima associated with a novel AAAS mutation p.Leu430Phe. Eur J Hum Genet 2008; 16:1499-506. [DOI: 10.1038/ejhg.2008.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
307
|
Haque ME, Grasso D, Miller C, Spremulli LL, Saada A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 2008; 8:254-61. [PMID: 18539099 PMCID: PMC2517634 DOI: 10.1016/j.mito.2008.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Mutations in mitochondrial small subunit ribosomal proteins MRPS16 or MRPS22 cause severe, fatal respiratory chain dysfunction due to impaired translation of mitochondrial mRNAs. The loss of either MRPS16 or MRPS22 was accompanied by the loss of most of another small subunit protein MRPS11. However, MRPS2 was reduced only about 2-fold in patient fibroblasts. This observation suggests that the small ribosomal subunit is only partially able to assemble in these patients. Two large subunit ribosomal proteins, MRPL13 and MRPL15, were present in substantial amounts suggesting that the large ribosomal subunit is still present despite a non-functional small subunit.
Collapse
Affiliation(s)
- Md. Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Domenick Grasso
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Chaya Miller
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| | - Linda L Spremulli
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Ann Saada
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| |
Collapse
|
308
|
Rio Frio T, Wade NM, Ransijn A, Berson EL, Beckmann JS, Rivolta C. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J Clin Invest 2008; 118:1519-31. [PMID: 18317597 PMCID: PMC2262031 DOI: 10.1172/jci34211] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/09/2008] [Indexed: 01/13/2023] Open
Abstract
Dominant mutations in the gene encoding the mRNA splicing factor PRPF31 cause retinitis pigmentosa, a hereditary form of retinal degeneration. Most of these mutations are characterized by DNA changes that lead to premature termination codons. We investigated 6 different PRPF31 mutations, represented by single-base substitutions or microdeletions, in cell lines derived from 9 patients with dominant retinitis pigmentosa. Five of these mutations lead to premature termination codons, and 1 leads to the skipping of exon 2. Allele-specific measurement of PRPF31 transcripts revealed a strong reduction in the expression of mutant alleles. As a consequence, total PRPF31 protein abundance was decreased, and no truncated proteins were detected. Subnuclear localization of the full-length PRPF31 that was present remained unaffected. Blocking nonsense-mediated mRNA decay significantly restored the amount of mutant PRPF31 mRNA but did not restore the synthesis of mutant proteins, even in conjunction with inhibitors of protein degradation pathways. Our results indicate that most PRPF31 mutations ultimately result in null alleles through the activation of surveillance mechanisms that inactivate mutant mRNA and, possibly, proteins. Furthermore, these data provide compelling evidence that the pathogenic effect of PRPF31 mutations is likely due to haploinsufficiency rather than to gain of function.
Collapse
Affiliation(s)
- Thomas Rio Frio
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nicholas M. Wade
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Adriana Ransijn
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Eliot L. Berson
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA.
Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
309
|
Frank V, den Hollander AI, Brüchle NO, Zonneveld MN, Nürnberg G, Becker C, Du Bois G, Kendziorra H, Roosing S, Senderek J, Nürnberg P, Cremers FPM, Zerres K, Bergmann C. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome. Hum Mutat 2008; 29:45-52. [PMID: 17705300 DOI: 10.1002/humu.20614] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the list of ciliary disorders (ciliopathies). By positional cloning in a distantly related multiplex family, we mapped a novel locus for MKS to a 3-Mb interval on 12q21. Sequencing of the CEP290 gene located in the minimal critical region showed a homozygous 1-bp deletion supposed to lead to loss of function of the encoded centrosomal protein CEP290/nephrocystin-6. CEP290 is thought to be involved in chromosome segregation and localizes to cilia, centrosomes, and the nucleus. Subsequent analysis of another consanguineous multiplex family revealed homozygous haplotypes and the same frameshift mutation. Our findings add to the increasing body of evidence that ciliopathies can cause a broad spectrum of disease phenotypes, and pleiotropic effects of CEP290 mutations range from single organ involvement with isolated Leber congenital amaurosis to Joubert syndrome and lethal early embryonic multisystemic malformations in Meckel-Gruber syndrome. We compiled clinical and genetic data of all patients with CEP290 mutations described so far. No clear-cut genotype-phenotype correlations were apparent as almost all mutations are nonsense, frameshift, or splice-site changes and scattered throughout the gene irrespective of the patients' phenotypes. Conclusively, other factors than the type and location of CEP290 mutations may underlie phenotypic variability.
Collapse
Affiliation(s)
- Valeska Frank
- Department of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Anczuków O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM, Mazoyer S. Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat 2008; 29:65-73. [PMID: 17694537 DOI: 10.1002/humu.20590] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) mechanism is an evolutionarily conserved process ensuring the degradation of transcripts carrying premature termination codon(s). NMD is believed to prevent the synthesis of truncated proteins that could be detrimental to the cell. However, although numerous studies have assessed the efficiency of this mechanism at the mRNA level, data are lacking in regard to whether NMD fulfills its expected goal at the protein level. In this study, we have investigated whether endogenous alleles of breast cancer predisposing genes carrying nonsense codons were able to produce detectable amounts of truncated proteins in lymphoblastoid cell lines. A total of 20 truncating BRCA1 mutations were analyzed, along with the 1100delC CHEK2 and the 770delT TP53 mutations. All the studied alleles triggered NMD, the amount of mutant transcript ranging from 16 to 63% of that of the wild-type species. We found that BRCA1 and CHK2 truncated proteins could not be detected, even when NMD was inhibited. This suggests that BRCA1 and CHK2 truncated proteins are highly unstable. Conversely, the p53 protein encoded by the 770delT allele is as abundant as the wild-type protein, as removal of the C-terminal p53 domain leads to a stabilized mutant protein, whose abundance is markedly increased when NMD is inhibited. Therefore, our results show that it is not possible to infer the presence of truncated proteins in cells from carriers of a truncated mutation without experimental verification, as each case is expected to be different.
Collapse
Affiliation(s)
- Olga Anczuków
- Laboratoire de Génétique Moléculaire, Signalisation et Cancer UMR5201 CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
311
|
Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008; 29:22-32. [PMID: 17879353 DOI: 10.1002/humu.20605] [Citation(s) in RCA: 424] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the occurrence of tumors of the parathyroids, pancreas, and anterior pituitary. The MEN1 gene, which was identified in 1997, consists of 10 exons that encode a 610-amino acid protein referred to as menin. Menin is predominantly a nuclear protein that has roles in transcriptional regulation, genome stability, cell division, and proliferation. Germline mutations usually result in MEN1 or occasionally in an allelic variant referred to as familial isolated hyperparathyroidism (FIHP). MEN1 tumors frequently have loss of heterozygosity (LOH) of the MEN1 locus, which is consistent with a tumor suppressor role of MEN1. Furthermore, somatic abnormalities of MEN1 have been reported in MEN1 and non-MEN1 endocrine tumors. The clinical aspects and molecular genetics of MEN1 are reviewed together with the reported 1,336 mutations. The majority (>70%) of these mutations are predicted to lead to truncated forms of menin. The mutations are scattered throughout the>9-kb genomic sequence of the MEN1 gene. Four, which consist of c.249_252delGTCT (deletion at codons 83-84), c.1546_1547insC (insertion at codon 516), c.1378C>T (Arg460Ter), and c.628_631delACAG (deletion at codons 210-211) have been reported to occur frequently in 4.5%, 2.7%, 2.6%, and 2.5% of families, respectively. However, a comparison of the clinical features in patients and their families with the same mutations reveals an absence of phenotype-genotype correlations. The majority of MEN1 mutations are likely to disrupt the interactions of menin with other proteins and thereby alter critical events in cell cycle regulation and proliferation.
Collapse
Affiliation(s)
- Manuel C Lemos
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, United Kingdom
| | | |
Collapse
|
312
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
313
|
van der Zee J, Urwin H, Engelborghs S, Bruyland M, Vandenberghe R, Dermaut B, De Pooter T, Peeters K, Santens P, De Deyn PP, Fisher EM, Collinge J, Isaacs AM, Van Broeckhoven C. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet 2007; 17:313-22. [PMID: 17956895 DOI: 10.1093/hmg/ddm309] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The charged multivesicular body protein 2B gene (CHMP2B) was recently associated with frontotemporal lobar degeneration (FTLD) linked to chromosome 3 in a Danish FTLD family (FTD-3). In this family, a mutation in the acceptor splice site of exon 6 produced two aberrant transcripts predicting two C-truncated CHMP2B proteins due to a read through of intron 5 (p.Met178ValfsX2) and a cryptic splicing event within exon 6 (p.Met178LeufsX30). Extensive mutation analysis of CHMP2B in Belgian patients (N = 146) identified one nonsense mutation in exon 5 (c.493C>T) in a familial FTLD patient, predicting a C-truncated protein p.Gln165X analogous to the Danish mutant proteins. Overexpression of Belgian p.Gln165X in human neuroblastoma SK-N-SH cells showed the formation of large, aberrant endosomal structures that were highly similar to those observed for Danish p.Met178ValfsX2. Together, these data suggest that C-truncating mutations in CHMP2B might underlie the pathogenic mechanism in FTLD by disturbing endosome function. We also describe a missense mutation in exon 5 of CHMP2B (p.Asn143Ser) in a familial patient with cortical basal degeneration. However, the pathogenic character of this mutation remains elusive.
Collapse
Affiliation(s)
- Julie van der Zee
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Tanahashi H, Tabira T. A novel beta-site amyloid precursor protein cleaving enzyme (BACE) isoform regulated by nonsense-mediated mRNA decay and proteasome-dependent degradation. Neurosci Lett 2007; 428:103-8. [PMID: 17961921 DOI: 10.1016/j.neulet.2007.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/15/2007] [Accepted: 09/15/2007] [Indexed: 11/29/2022]
Abstract
Proteolytic cleavage of amyloid beta-peptide (Abeta) from amyloid precursor protein (APP) is a key event in the pathogenesis of Alzheimer's disease. Beta-site amyloid precursor protein cleaving enzyme (BACE) cleaves the APP at the N-terminus of Abeta. We investigated whether particular stress conditions modify the expression and activity of BACE, and found that treatment of human neuroblastoma cells with protein synthesis inhibitors induced expression of a novel splice variant of BACE. This unusual transcript, I-127, is produced by usage of an internal splicing donor site in exon 3. The splicing event leads to a premature termination codon, as well as elimination of one of two conserved aspartic protease active sites, a transmembrane domain, and a C-terminal cytoplasmic tail from BACE. Low levels of this mRNA were found in the human brain. When expressed in cells, I-127 had no effect on Abeta secretion and was retained in the endoplasmic reticulum without propeptide removal. It was also unstable with a turnover t(1/2) of approximately 2h; normal BACE had a turnover t(1/2) of approximately 8h. Finally, I-127 was degraded in a proteasome-dependent manner. Thus, I-127 is regulated by both nonsense-mediated mRNA decay (NMD) and proteasome-dependent degradation.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Division of Demyelinating Disease and Aging, National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
315
|
Kim H, Wajid M, Kraemer L, Shimomura Y, Christiano AM. Nonsense mutations in the hairless gene underlie APL in five families of Pakistani origin. J Dermatol Sci 2007; 48:207-11. [PMID: 17869066 PMCID: PMC3341169 DOI: 10.1016/j.jdermsci.2007.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Atrichia with papular lesions (APL) is a rare autosomal recessive form of inherited alopecia. Affected individuals present with a distinct pattern of total hair loss on the scalp, axilla and body shortly after birth and are essentially devoid of eyelashes and eyebrows. This form of hair loss is irreversible and the histology is consistent with an absence of mature hair follicles. In addition to total atrichia, APL patients also present with papules and follicular cysts filled with cornified material. Mutations in the Hairless (HR) gene have been shown to underlie APL. OBJECTIVE Here, we studied five unrelated large Pakistani families with clinical manifestations of APL. METHODS Based on previous reports of HR mutations in APL, we performed direct DNA sequencing analysis. RESULTS DNA sequencing of the HR gene in APL patients revealed three novel nonsense mutations in five unrelated families. All affected individuals were homozygous for a nonsense mutation due to C-to-T transitions at different positions in the amino acid sequence. Two families carry the mutation Q323X (CAG-TAG) in exon 3, two families harbor the mutation Q502X (CAG-TAG) in exon 6, and one family had a mutation at R940X (CGA-TGA) in exon 14. Haplotype analysis revealed that all affected individuals of both APL1 and APL16 families were homozygous for the same haplotype, and likewise, the mutation in families APL2 and APL19 was on the same haplotype. CONCLUSIONS We report three novel nonsense mutations in the HR gene in APL. Two of the newly identified mutations, Q323X and Q502X, were found to be shared between unrelated families and marker analysis confirmed an identical homozygous haplotype for APL1 and APL16, and for APL2 and APL19. These findings suggest that Q323X and Q502X did not arise independently, but instead appear to have been propagated in the population. Collectively, these findings contribute further evidence for the involvement of hairless mutations in papular atrichia.
Collapse
Affiliation(s)
- Hyunmi Kim
- Department of Dermatology, Columbia University, New York, NY
| | - Muhammad Wajid
- Department of Dermatology, Columbia University, New York, NY
| | - Liv Kraemer
- Department of Dermatology, Columbia University, New York, NY
| | | | - Angela M. Christiano
- Department of Dermatology, Columbia University, New York, NY
- Department of Genetics and Development, Columbia University, New York, NY
| |
Collapse
|
316
|
Wajid M, Bazzi H, Rockey J, Lubetkin J, Zlotogorski A, Christiano AM. Localized Autosomal Recessive Hypotrichosis Due to a Frameshift Mutation in the Desmoglein 4 Gene Exhibits Extensive Phenotypic Variability within a Pakistani Family. J Invest Dermatol 2007; 127:1779-82. [PMID: 17392831 DOI: 10.1038/sj.jid.5700791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
317
|
Abstract
We previously reported a transgenic Caenorhabditis elegans model for tauopathies in which expression of human tau in neurons caused insoluble phosphorylated tau accumulation, neurodegeneration and uncoordinated movement (Unc). To identify genes participating in tau neurotoxicity, we conducted a forward genetic screen for mutations that ameliorate tau-induced uncoordination. The recessive mutation sut-1(bk79) partially suppresses the Unc phenotype, tau aggregation and neurodegenerative changes caused by tau. We identified the sut-1 gene and found it encodes a novel protein. We conducted a yeast two hybrid screen to identify SUT-1 binding partners and found UNC-34, the C. elegans homolog of the cytoskeletal regulatory protein Enabled (ENA). In vitro protein binding assays and genetic studies validated the interaction between SUT-1 and UNC-34. The SUT-1/UNC-34 protein-protein interaction plays a role in both the normal function of UNC-34 and in the tau-induced phenotype. Thus, we have found a conserved molecular pathway participating in tau neurotoxicity in C. elegans.
Collapse
Affiliation(s)
- Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | |
Collapse
|
318
|
Khajavi M, Lupski JR. Reply to Inácio et al. Eur J Hum Genet 2007. [DOI: 10.1038/sj.ejhg.5201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
319
|
You KT, Li LS, Kim NG, Kang HJ, Koh KH, Chwae YJ, Kim KM, Kim YK, Park SM, Jang SK, Kim H. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors. PLoS Biol 2007; 5:e109. [PMID: 17456004 PMCID: PMC1854916 DOI: 10.1371/journal.pbio.0050109] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/16/2007] [Indexed: 01/28/2023] Open
Abstract
Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs). Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD) system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant), and some PTC-containing mRNAs can escape from the NMD system (NMD-escape). We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.
Collapse
Affiliation(s)
- Kwon Tae You
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Long Shan Li
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Nam-Gyun Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ju Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Kwi Hye Koh
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Joon Chwae
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology, Pochon Cha University College of Medicine, Pocheon, Gyeonggi, Korea
| | - Kyoung Mi Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sung Mi Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Sung Key Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Projects for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
320
|
Inácio A, Silva AL, Morgado A, Pereira FJC, Lavinha J, Romão L. Comment on 'Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease'. Eur J Hum Genet 2007; 15:533-4; author reply 534. [PMID: 17342150 DOI: 10.1038/sj.ejhg.5201808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
321
|
Gilat R, Shweiki D. A novel function for alternative polyadenylation as a rescue pathway from NMD surveillance. Biochem Biophys Res Commun 2007; 353:487-92. [PMID: 17188645 DOI: 10.1016/j.bbrc.2006.12.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Premature termination codon (PTC) containing transcripts are subjected to a rapid degradation via nonsense-mediated decay (NMD) surveillance mechanism. By and large degradation is desired in order to prevent the translation of truncated, most likely deleterious, protein. Nevertheless, several dissimilar NMD-rescue events, capable of turning NMD-candidates into NMD-immune, are described. Yet, the extent and nature of this phenomenon is unknown. We screened the human genome for NMD-candidates transcripts. Among which we sub-grouped "pseudo-NMD" genes, which all their annotated transcripts contain PTCs, and therefore allegedly are transcribed but never translated. Here we show that alternative polyadenylation can rescue prematurely terminated transcripts, by truncating the pre-mRNA so that the PTC is now "legally" positioned. ESTs-based analysis shows that NMD-rescued genes are indeed expressed in human tissues. Furthermore, predicted NMD-rescue variants' existence is computationally verified. Hence, we suggest a novel role for the exon-truncated class of alternative polyadenylation as an NMD-rescue regulatory mechanism.
Collapse
Affiliation(s)
- Roi Gilat
- Bioinformatics Program, School of Computer Science, The Academic College of Tel Aviv-Yaffo, 4 Antokolsky St., Tel-Aviv 64044, Israel
| | | |
Collapse
|
322
|
Wiszniewski W, Lewis RA, Lupski JR. Achromatopsia: the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Hum Genet 2007; 121:433-9. [PMID: 17265047 DOI: 10.1007/s00439-006-0314-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/08/2006] [Indexed: 11/29/2022]
Abstract
Achromatopsia (ACHM) or rod monochromacy is an autosomal recessive and genetically heterogeneous retinal disorder. It is characterized by a lack of color discrimination, poor visual acuity, photodysphoria, pendular infantile nystagmus, and abnormal photopic electroretinographic (ERG) recordings with preservation of rod-mediated function. Mutations in three known genes are causative; including genes for the alpha and beta subunits of the cyclic nucleotide-gated cation channel (CNGA3 and CNGB3, respectively) and cone photoreceptor transducin--GNAT2. We investigated the prevalence of mutations in achromatopsia-causing genes in a cohort of 16 families with both clinical and electrophysiologic evidence consistent with autosomal recessive transmission, including one subject with achromatopsia and maternal isodisomy for chromosome 14. The most frequent mutation, p.T383fsX in CNGB3, accounted for 75% (18/24) of disease-associated alleles; intragenic SNPs in unrelated patients revealed transmission of a common haplotype consistent with a founder effect. Homozygous p.T383fsX mutation in CNGB3 that maps to chromosome 8 was detected in a patient with achromatopsia and systemic features associated with uniparental disomy (UPD) of chromosome 14. Two novel variants, p.R223G and p.A621E were found in CNGA3. We conclude that CNGA3 and CNGB3 mutations are responsible for the substantial majority of achromatopsia. Furthermore, the CNGB3 mutation p.T383fsX is a predominant mutation, results from a founder effect, and is responsible for the ACHM in the original clinical report of UPD 14.
Collapse
Affiliation(s)
- Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
323
|
Furniss D, Critchley P, Giele H, Wilkie AOM. Nonsense-mediated decay and the molecular pathogenesis of mutations inSALL1 andGLI3. Am J Med Genet A 2007; 143A:3150-60. [PMID: 18000979 DOI: 10.1002/ajmg.a.32097] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dominic Furniss
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|