301
|
White C, McGeown G. Imaging of changes in sarcoplasmic reticulum [Ca(2+)] using Oregon Green BAPTA 5N and confocal laser scanning microscopy. Cell Calcium 2002; 31:151-9. [PMID: 12027380 DOI: 10.1054/ceca.2001.0269] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe experiments in which the low affinity indicator Oregon Green BAPTA 5N was used to record the spatially resolved changes in [Ca(2+)] from intracellular stores in rat gastric myocytes. Cells were loaded with the membrane permeant form of the indicator and imaged using a confocal scanning laser microscope. In doubly stained cells the Oregon Green signal colocalized with BIODIPY 558/568 Brefeldin A, a label for the endo/sarcoplasmic reticulum (SR) and Golgi apparatus. Oregon Green BAPTA 5N was calibrated in gastric myocytes, giving an in situ K(d) of 90 microM. The resting free [Ca(2+)] within the SR averaged 65 microM. A reversible decrease in Oregon Green fluorescence was observed on bath application of Inositol triphosphate (IP(3)) (10 microM) to permeabilized cells. Similar changes were also observed when cyclopiazonic acid (5 microM) was applied to intact myocytes, again with recovery of store [Ca(2+)] following drug washout. Identical patterns of Ca(2+) depletion were seen when caffeine (1 microM) and carbachol (10 microM) were applied sequentially to the same cells, suggesting that activation of ryanodine and IP(3)-sensitive channels can result in the release of Ca(2+) from the same regions of the SR.
Collapse
Affiliation(s)
- C White
- Smooth Muscle Research Group, Queens University Belfast, UK
| | | |
Collapse
|
302
|
Sumi Y, Suzuki T. Recent advances in the histochemical staining of heavy metals by means of chelating agents, with special reference to cadmium. Microsc Res Tech 2002; 56:332-40. [PMID: 11877811 DOI: 10.1002/jemt.10036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review discusses the way of improving the sensitivity and specificity of chelating agents used for the histochemical demonstration of trace amounts of heavy metals in cells and tissues. In the search for a more sensitive and specific agent, various chelating agents have been prepared and their staining properties for various metals examined. Of those developed 1-(2-benzothiazolylazo)-2-naphthol (BTAN), 2-(8-quinolylazo)-4,5-(diphenyl)imidazole (QAI), and 2-(5-bromo-2-pridylazo)-5-(diethylamino)phenol (BrPADAP) were far superior to conventional staining agents in staining sensitivity. This was particularly so for staining cadmium. When modifying chelating agents to increase staining sensitivity, hydrophobicity of the agent molecules, selection of substituent groups, and the position of the groups added to the agent molecules must be taken into consideration. The most frequently mentioned factors in a staining mechanism are complex-tissue attractive forces, and recent studies have made it clear that weak interactions, such as hydrogen bonds and hydrophobic interactions, contribute significantly. The Hansch pi values were a useful indication of the hydrophobicity of metal staining agents. The published values for stability constants of metal complexes were found to be unreliable guides for choosing a masking agent to block interfering metals. The polyphosphates, aminopolycarboxylic acids, and alkylamines were among the most useful masking agents for metal staining from a practical standpoint.
Collapse
Affiliation(s)
- Y Sumi
- St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
303
|
Solovyova N, Veselovsky N, Toescu E, Verkhratsky A. Ca(2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca(2+)-induced Ca(2+) release triggered by physiological Ca(2+) entry. EMBO J 2002; 21:622-30. [PMID: 11847110 PMCID: PMC125857 DOI: 10.1093/emboj/21.4.622] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In cultured rat dorsal root ganglia neurons, we measured membrane currents, using the patch-clamp whole-cell technique, and the concentrations of free Ca(2+) in the cytosol ([Ca(2+)](i)) and in the lumen of the endoplasmic reticulum (ER) ([Ca(2+)](L)), using high- (Fluo-3) and low- (Mag-Fura-2) affinity Ca(2+)-sensitive fluorescent probes and video imaging. Resting [Ca(2+)](L) concentration varied between 60 and 270 microM. Activation of ryanodine receptors by caffeine triggered a rapid fall in [Ca(2+)](L) levels, which amounted to only 40--50% of the resting [Ca(2+)](L) value. Using electrophysiological depolarization, we directly demonstrate the process of Ca(2+)-induced Ca(2+) release triggered by Ca(2+) entry through voltage-gated Ca(2+) channels. The amplitude of Ca(2+) release from the ER lumen was linearly dependent on I(Ca).
Collapse
Affiliation(s)
| | - N. Veselovsky
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| | - E.C. Toescu
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| | - A. Verkhratsky
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT,
School of Medicine, Birmingham University, Birmingham B15 2TT, UK and Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, The Ukraine Corresponding author e-mail:
| |
Collapse
|
304
|
Caro AA, Cederbaum AI. Role of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells. J Biol Chem 2002; 277:104-13. [PMID: 11689564 DOI: 10.1074/jbc.m107864200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The objective of this work was to investigate whether CYP2E1- and oxidative stress-dependent toxicity in HepG2 cells is mediated by an increase of cytosolic Ca2+ and activation of Ca2+-modulated processes. HepG2 cells expressing CYP2E1 (E47 cells) or control cells not expressing CYP2E1 (C34 cells) were preloaded with arachidonic acid (AA, up to 10 microm) and, after washing, incubated with iron-nitrilotriacetic acid (up to 100 microm) for variable periods (up to 12 h). Toxicity was greater in E47 cells than in C34 cells at all times and combinations of iron/AA tested. Cytosolic calcium increased with incubation time in both cell lines, but the increase was higher in E47 cells than in C34 cells. The rise in calcium was an early event and preceded the developing toxicity. Toxicity in E47 cells and the increase in Ca2+ were inhibited by omission of Ca2+ from the extracellular medium, and toxicity was restored by reincorporation of Ca2+. An inhibitor of Ca2+ release from intracellular stores did not prevent the toxicity or the increase in Ca2+, reflecting a role for the influx of extracellular Ca2+ in the toxicity. Reactive oxygen production was similar in media with or without calcium, indicating that calcium was not modulating CYP2E1-dependent oxidative stress. Toxicity, lipid peroxidation, and the increase of Ca2+ in E47 cells exposed to iron-AA were inhibited by alpha-tocopherol. E47 cells (but not C34 cells) exposed to iron-AA showed increased calpain activity in situ (40-fold). The toxicity in E47 cells mirrored calpain activation and was inhibited by calpeptin, suggesting that calpain activation plays a causal role in toxicity. These results suggest that CYP2E1-dependent toxicity in this model depends on the activation of lipid peroxidation, followed by an increased influx of extracellular Ca2+ and activation of Ca2+-dependent proteases.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
305
|
Thomas D, Mason MJ, Mahaut-Smith MP. Depolarisation-evoked Ca2+ waves in the non-excitable rat megakaryocyte. J Physiol 2001; 537:371-8. [PMID: 11731571 PMCID: PMC2278975 DOI: 10.1111/j.1469-7793.2001.00371.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. A combination of patch clamp, confocal microscopy and immunohistochemistry was used to examine the spatial properties of Ca2+ signalling in the rat megakaryocyte, a non-excitable cell type in which membrane potential can markedly modulate agonist-evoked Ca2+ release. 2. Intracellular calcium ion concentration ([Ca2+]i) increases, stimulated by both ADP and depolarisation, frequently originated from a peripheral locus and spread as a wave throughout the cell. Spatially restricted [Ca2+]i increases, consistent with elementary Ca2+ release events, were occasionally observed prior to ADP-evoked waves. 3. ADP- and depolarisation-evoked Ca2+ waves travelled approximately twice as fast around the periphery of the cell compared to across its radius, leading to a curvilinear wavefront. There was no significant difference between wave velocities generated by the two stimuli. 4. Immunohistochemical staining of type III IP3 receptors, the endoplasmic reticulum-specific protein GRP78/BiP and calreticulin indicated a major peripheral location of the cellular Ca2+ stores which probably accounts for the accelerated wave velocity at the cell periphery. 5. These data demonstrate that [Ca2+]i increases, stimulated by depolarisation or the agonist ADP, have indistinguishable spatial properties, providing evidence that similar underlying mechanisms are responsible for their generation.
Collapse
Affiliation(s)
- D Thomas
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | |
Collapse
|
306
|
Noguchi T, Arai R, Motegi F, Nakano K, Mabuchi I. Contractile ring formation in Xenopus egg and fission yeast. Cell Struct Funct 2001; 26:545-54. [PMID: 11942608 DOI: 10.1247/csf.26.545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How actin filaments (F-actin) and myosin II (myosin) assemble to form the contractile ring was investigated with fission yeast and Xenopus egg. In fission yeast cells, an aster-like structure composed of F-actin cables is formed at the medial cortex of the cell during prophase to metaphase, and a single F-actin cable(s) extends from this structure, which seems to be a structural basis of the contractile ring. In early mitosis, myosin localizes as dots in the medial cortex independently of F-actin. Then they fuse with each other and are packed into a thin contractile ring. At the growing ends of the cleavage furrow of Xenopus eggs, F-actin at first assembles to form patches. Next they fuse with each other to form short F-actin bundles. The short bundles then form long bundles. Myosin seems to be transported by the cortical movement to the growing end and assembles there as spots earlier than F-actin. Actin polymerization into the patches is likely to occur after accumulation of myosin. The myosin spots and the F-actin patches are simultaneously reorganized to form the contractile ring bundles. The idea that a Ca signal triggers cleavage furrow formation was tested with Xenopus eggs during the first cleavage. We could not detect any Ca signals such as a Ca wave, Ca puffs or even Ca blips at the growing end of the cleavage furrow. Furthermore, cleavages are not affected by Ca-chelators injected into the eggs at concentrations sufficient to suppress the Ca waves. Thus we conclude that formation of the contractile ring is not induced by a Ca signal at the growing end of the cleavage furrow.
Collapse
Affiliation(s)
- T Noguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
307
|
Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD. Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 2001; 114:3979-89. [PMID: 11739630 DOI: 10.1242/jcs.114.22.3979] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elementary Ca2+ signals, such as ‘Ca2+ puffs’, which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses.
Collapse
Affiliation(s)
- S C Tovey
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Powell JA, Carrasco MA, Adams DS, Drouet B, Rios J, Müller M, Estrada M, Jaimovich E. IP3 receptor function and localization in myotubes: an unexplored Ca2+ signaling pathway in skeletal muscle. J Cell Sci 2001; 114:3673-83. [PMID: 11707519 DOI: 10.1242/jcs.114.20.3673] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present evidence for an unexplored inositol 1,4,5-trisphosphate-mediated Ca2+ signaling pathway in skeletal muscle. RT-PCR methods confirm expression of all three known isotypes of the inositol trisphosphate receptor in cultured rodent muscle. Confocal microscopy of cultured mouse muscle, doubly labeled for inositol receptor type 1 and proteins of known distribution, reveals that the receptors are localized to the I band of the sarcoplasmic reticulum, and this staining is continuous with staining of the nuclear envelope region. These results suggest that the receptors are positioned to mediate a slowly propagating Ca2+ wave that follows the fast Ca2+ transient upon K+ depolarization. This slow wave, imaged using fluo-3, resulted in an increase in nucleoplasmic Ca2+ lasting tens of seconds, but not contraction; the slow wave was blocked by both the inositol trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and the phospholipase C inhibitor U-73122. To test the hypothesis that these slow Ca2+ signals are involved in signal cascades leading to regulation of gene expression, we assayed for early effects of K+ depolarization on mitogen-activated protein kinases, specifically extracellular-signal related kinases 1 and 2 and the transcription factor cAMP response element-binding protein (CREB). Within 30-60 seconds following depolarization, phosphorylation of both the kinases and CREB was evident and could be inhibited by 2-aminoethoxydiphenyl borate. These results suggest a signaling system mediated by Ca2+ and inositol trisphosphate that could regulate gene expression in muscle cells.
Collapse
Affiliation(s)
- J A Powell
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Pacher P, Hajnóczky G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J 2001; 20:4107-4121. [PMID: 11483514 PMCID: PMC149166 DOI: 10.1093/emboj/20.15.4107] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 05/29/2001] [Accepted: 06/13/2001] [Indexed: 11/14/2022] Open
Abstract
Generation of mitochondrial signals is believed to be important in the commitment to apoptosis, but the mechanisms coordinating the output of individual mitochondria remain elusive. We show that in cardiac myotubes exposed to apoptotic agents, Ca2+ spikes initiate depolarization of mitochondria in discrete subcellular regions, and these mitochondria initiate slow waves of depolarization and Ca2+ release propagating through the cell. Traveling mitochondrial waves are prevented by Bcl-x(L), involve permeability transition pore (PTP) opening, and yield cytochrome c release, caspase activation and nuclear apoptosis. Mitochondrial Ca2+ uptake is critical for wave propagation, and mitochondria at the origin of waves take up Ca2+ particularly effectively, providing a mechanism that may underlie selection of the initiation sites. Thus, apoptotic agents transform the mitochondria into an excitable state by sensitizing PTP to Ca2+. Expansion of the local excitation by mitochondrial waves propagating through the whole cell can be especially important in activation of the apoptotic machinery in large cells.
Collapse
Affiliation(s)
| | - György Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, 1020 Locust str Suite 253 JAH, PA 19107, USA
Corresponding author e-mail:
| |
Collapse
|