301
|
Kolbus A, Pilat S, Husak Z, Deiner EM, Stengl G, Beug H, Baccarini M. Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J Exp Med 2002; 196:1347-53. [PMID: 12438425 PMCID: PMC2193984 DOI: 10.1084/jem.20020562] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Raf kinases are key signal transducers activated by mitogens or oncogenes. The best studied Raf isoform, Raf-1, was identified as an inhibitor of apoptosis by conventional and conditional gene ablation in mice. c-raf-1(-)(/)(-) embryos are growth retarded and anemic, and die at midgestation with anomalies in the placenta and fetal liver. Here, we show that Raf-1-deficient primary erythroblasts cannot be expanded in culture due to their accelerated differentiation into mature erythrocytes. In addition, Raf-1 expression is down-regulated in differentiating wild-type cells, whereas overexpression of activated Raf-1 delays differentiation. As recently described for human erythroid precursors, we find that caspase activation is necessary for the differentiation of murine fetal liver erythroblasts. Differentiation-associated caspase activation is accelerated in erythroid progenitors lacking Raf-1 and delayed by overexpression of the activated kinase. These results reveal an essential function of Raf-1 in erythropoiesis and demonstrate that the ability of Raf-1 to restrict caspase activation is biologically relevant in a context distinct from apoptosis.
Collapse
Affiliation(s)
- Andrea Kolbus
- Research Institute of Molecular Pathology, Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
302
|
Ussat S, Werner U, Adam-Klages S. Species-specific differences in the usage of several caspase substrates. Biochem Biophys Res Commun 2002; 297:1186-90. [PMID: 12372412 DOI: 10.1016/s0006-291x(02)02358-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of caspases cleaving a plethora of specific substrates is pivotal for initiation as well as execution of apoptosis. The recognition motif for caspases is a tetrapeptide sequence containing an essential aspartic acid residue at the fourth position (often DXXD). Here, we report that the caspase cleavage sites of most identified substrates show a high degree of conservation between different species. However, we have identified differences in the cleavage sites of five substrates between murine and human proteins leading to either select processing in only one species or to different cleavage patterns. Finally, we provide evidence that murine c-Abl but not its human homolog serves as efficient substrate during apoptosis.
Collapse
Affiliation(s)
- Sandra Ussat
- Institut für Immunologie, Christian-Albrechts-Universität Kiel, 24105, Kiel, Germany
| | | | | |
Collapse
|
303
|
Secchiero P, Gonelli A, Mirandola P, Melloni E, Zamai L, Celeghini C, Milani D, Zauli G. Tumor necrosis factor-related apoptosis-inducing ligand induces monocytic maturation of leukemic and normal myeloid precursors through a caspase-dependent pathway. Blood 2002; 100:2421-9. [PMID: 12239152 DOI: 10.1182/blood-2002-01-0047] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of the human HL-60 cell line with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resulted in rapid (6-24 hours) cytotoxicity associated with progressive maturation of the surviving cells along the monocytic lineage. The occurrence of monocytic maturation was demonstrated by a significant increase of both CD14 and CD11b surface expression, the acquisition of morphologic features typical of mature monocytes, and phagocytic capacity in TRAIL-treated cultures. By using selective pharmacologic inhibitors, it was possible to demonstrate that activation of the caspase cascade played a crucial role in mediating TRAIL cytotoxicity and monocytic maturation of HL-60 cells. Moreover, experiments performed using agonistic polyclonal antibodies, which mimic the interactions between TRAIL and each TRAIL receptor, indicated that TRAIL-R1 was responsible for mediating the TRAIL-induced maturation. Importantly, the maturational effects of TRAIL were observed also in primary normal CD34(+) cells, seeded in serum-free liquid cultures for 4 to 8 days in the presence of SCF + GM-CSF. After treatment with TRAIL for 3 additional days, a significant increase in CD14 and CD11b expression, coupled with an increased number of mature monocytes and macrophages, was noticed in the absence of cytotoxicity. These data disclose a novel role for TRAIL as a positive regulator of myeloid differentiation. Moreover, the dichotomous effect of TRAIL on malignant cells (early induction of apoptosis and monocytic maturation of the surviving cells) might have important therapeutic implications for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
304
|
Stroh C, Cassens U, Samraj AK, Sibrowski W, Schulze-Osthoff K, Los M. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. FASEB J 2002; 16:1651-3. [PMID: 12207004 DOI: 10.1096/fj.02-0034fje] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryopreserved cells and tissues are increasingly used for stem cell transplantation and tissue engineering. However, their freezing, storage, and thawing is associated with severe damage, suggesting the need for better cryopreservation methods. Here, we show that activation of caspase-3 is induced during the freeze-thaw process. Moreover, we demonstrate that prevention of caspase activation by the caspase inhibitor zVAD-fmk strongly improves the recovery and survival of several cryopreserved cell types and hematopoietic progenitor cells. A short preincubation with the caspase inhibitor after thawing also enhances the colony-forming activity of hematopoietic progenitor cells up to threefold. Furthermore, overexpression of Bcl-2, but not the blockade of the death receptor signaling, confers protection, indicating that cryoinjury-associated cell death is mediated by a Bcl-2-controlled mitochondrial pathway. Thus, our data suggest the use of zVAD-fmk as an efficient cryoprotective agent. The addition of caspase inhibitors may be an important tool for the cryopreservation of living cells and advantageous in cell transplantation, tissue engineering, and other genetic technologies.
Collapse
Affiliation(s)
- Christopher Stroh
- Institute of Experimental Dermatology, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
305
|
Sordet O, Rébé C, Dubrez-Daloz L, Boudard D, Solary E. Intracellular redistribution of procaspases during TPA-induced differentiation of U937 human leukemic cells. Leukemia 2002; 16:1569-70. [PMID: 12145703 DOI: 10.1038/sj.leu.2402524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Accepted: 12/13/2001] [Indexed: 11/09/2022]
|
306
|
Claessens YE, Fontenay-Roupie M. [Physiopathology of myelodysplastic syndromes]. PATHOLOGIE-BIOLOGIE 2002; 50:261-7. [PMID: 12085671 DOI: 10.1016/s0369-8114(02)00298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myelodysplastic syndromes are clonal diseases of the hematopoietic stem cell with normal or increased bone marrow cellularity and peripheral cytopenias. Pathophysiology of these diseases is complex with frequent ras mutations, a growth defect of immature progenitors mainly erythroid progenitors, and increased apoptosis of differentiated cells. This growth defect could be linked to (1) a resistance to hematopoietic cytokine stimulation although, erythropoietin receptor expression and functionality are normal and/or (2) increased susceptibility to apoptosis due to overexpression of the death domain receptor Fas on CD34+, CD33+ and GPA+ cells. Stromal cells are thought to produce increased quantities of inhibitory cytokines such as TNF-alpha, TGF-beta, IFN gamma et IL-1. Better understanding of MDS pathophysiology is required for applying adequate therapy either blocking apoptosis or stimulating hematopoiesis.
Collapse
Affiliation(s)
- Y E Claessens
- Laboratoire d'Hématologie AP-HP et Département d'Hématologie, Institut Cochin, INSERM CNRS, Université René Descartes, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75679 Paris, France
| | | |
Collapse
|
307
|
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367-93. [PMID: 11965491 DOI: 10.1038/sj.cdd.4400950] [Citation(s) in RCA: 409] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.
Collapse
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| |
Collapse
|
308
|
Luciano F, Ricci JE, Herrant M, Bertolotto C, Mari B, Cousin JL, Auberger P. T and B leukemic cell lines exhibit different requirements for cell death: correlation between caspase activation, DFF40/DFF45 expression, DNA fragmentation and apoptosis in T cell lines but not in Burkitt's lymphoma. Leukemia 2002; 16:700-7. [PMID: 11960352 DOI: 10.1038/sj.leu.2402401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Accepted: 12/05/2001] [Indexed: 12/18/2022]
Abstract
The execution phase of apoptosis occurs through the activation and function of caspases which cleave key substrates that orchestrate the death process. Here, we have compared the sensitivity of various T and B cell lines to death receptor or staurosporine-induced apoptosis. First, we found a lack of correlation between death receptor expression and sensitivity to Fas or Trail. By contrast, a correlation between caspase activation, DNA fragmentation and cell death in T cell lines was evidenced. Among T cells, CEM underwent apoptosis in response to CH11 but were resistant to Trail in agreement with the absence of Trail receptors (DR4 and DR5) on their surface. The B cell line SKW 6.4 was sensitive to CH11 and staurosporine but resistant to Trail. As B cell lines expressed significant levels of DR4 and DR5, resistance to Trail in SKW 6.4 is likely due to the expression of the decoy receptor DcR1. Burkitt's lymphoma such as RPMI 8866 and Raji did not exhibit DNA fragmentation in response to CH11, Trail or staurosporine but showed long-term caspase-dependent loss of viability upon effector treatment. The B cell lines used in this study express very weak or undetectable levels of DFF40 and relatively high levels of DFF45. Interestingly, cytosolic extracts from RPMI 88.66 but not other B lymphoma exhibit altered levels of cytochrome c-dependent caspase activation. Taken together, our results show that: (1) death receptor expression does not correlate with sensitivity to apoptosis; (2) the very low ratio of DFF40 vs. DFF45 is unlikely to explain by itself the lack of DNA fragmentation observed in certain B cell lines; and (3) a defective cytochrome c-dependent caspase activation might account at least in part for the insensitivity of certain Burkitt's lymphoma (RPMI 88.66) to apoptosis. Thus it seems that resistance of Burkitt's lymphoma to apoptosis is not governed by a general mechanism, but is rather multifactorial and differs from one cell line to another.
Collapse
Affiliation(s)
- F Luciano
- INSERM U 526, Activation des cellules Hématopoïétiques, Equipe labellisée par la Ligue Nationale contre le Cancer, IFR 50, Faculté de Médecine, Nice, France
| | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
Despite discoveries concerning the molecular abnormalities that led to the thalassemic syndromes, it still is not known how accumulation of excess unmatched alpha-globin in beta thalassemia and beta-globin in alpha thalassemia leads to red blood cell hemolysis in the peripheral blood, and in the beta thalassemias particularly, premature destruction of erythroid precursors in marrow (ineffective erythropoiesis). Oxidant injury may cause hemolysis, but there is no evidence that it causes ineffective erythropoiesis. Hemoglobin E/beta thalassemia is now a worldwide clinical problem. The reasons underlying the heterogeneity and occasional severity of the syndrome remain obscure. Ineffective erythropoiesis now appears to be caused by accelerated apoptosis, in turn caused primarily by deposition of alpha-globin chains in erythroid precursors. However, it is not clear how alpha-globin deposition causes apoptosis. The author uses new observations on the control of erythropoiesis to provide a framework for studying the enhanced thalassemic erythroid apoptosis.
Collapse
Affiliation(s)
- Stanley L Schrier
- Division of Hematology, Stanford University School of Medicine, Stanford, California 94305-5156, USA.
| |
Collapse
|
310
|
Abstract
Commitment of hematopoietic cells to the erythroid lineage involves the actions of several transcription factors, including TAL1, LMO2, and GATA-2. The differentiation of committed erythroid progenitor cells involves other transcription factors, including NF-E2 and EKLF. Upon binding erythropoietin, the principal regulator of erythropoiesis, cell surface erythropoietin receptors dimerize and activate specific intracellular kinases, including Janus family tyrosine protein kinase 2, phosphoinositol-3 kinase, and mitogen-activated protein kinase. Important substrates of these kinases are tyrosines in the erythropoietin receptors themselves and the signal transducer and transcription activator proteins. Erythropoietin prevents erythroid cell apoptosis. Some of the apoptotic tendency of erythroid cells can be attributed to proapoptotic molecules produced by hematopoietic cells, macrophages, and stromal cells. Cell divisions accompanying terminal erythroid differentiation are finely controlled by cell cycle regulators, and disruption of these terminal divisions causes erythroid cell apoptosis. In reticulocyte maturation, regulated degradation of internal organelles involves a lipoxygenase, whereas survival requires the antiapoptotic protein Bcl-x.
Collapse
Affiliation(s)
- Mark J Koury
- Department of Medicine, Vanderbilt University, and Nashville Veterans Administration Medical Centers, Nashville, Tennessee 37232-6305, USA.
| | | | | |
Collapse
|
311
|
Tolkovsky AM, Xue L, Fletcher GC, Borutaite V. Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 2002; 84:233-40. [PMID: 12022954 DOI: 10.1016/s0300-9084(02)01371-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a 'clean' fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system.
Collapse
Affiliation(s)
- Aviva M Tolkovsky
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | |
Collapse
|
312
|
Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 2001; 8:1197-206. [PMID: 11753567 DOI: 10.1038/sj.cdd.4400905] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Revised: 04/13/2001] [Accepted: 04/23/2001] [Indexed: 11/09/2022] Open
Abstract
Although proteases of the caspase family are essential mediators of apoptosis in nucleated cells, in anucleate cells their presence and potential functions are almost completely unknown. Human erythrocytes are a major cell population that does not contain a cell nucleus or other organelles. However, during senescence they undergo certain morphological alterations resembling apoptosis. In the present study, we found that mature erythrocytes contain considerable amounts of caspase-3 and -8, whereas essential components of the mitochondrial apoptotic cascade such as caspase-9, Apaf-1 and cytochrome c were missing. Strikingly, although caspases of erythrocytes were functionally active in vitro, they failed to become activated in intact erythrocytes either during prolonged storage or in response to various proapoptotic stimuli. Following an increase of cytosolic calcium, instead the cysteine protease calpain but not caspases became activated and mediated fodrin cleavage and other morphological alterations such as cell shrinkage. Our results therefore suggest that erythrocytes do not have a functional death system. In addition, because of the presence of procaspases and the absence of a cell nucleus and mitochondria erythrocytes may be an attractive system to dissect the role of certain apoptosis-regulatory pathways.
Collapse
Affiliation(s)
- C P Berg
- Department of Internal Medicine I, Medical Clinics, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 2001; 8:1143-56. [PMID: 11753563 DOI: 10.1038/sj.cdd.4400946] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/20/2001] [Accepted: 08/20/2001] [Indexed: 11/09/2022] Open
Abstract
Human mature erythrocytes have been considered as unable to undergo programmed cell death (PCD), due to their lack of mitochondria, nucleus and other organelles, and to the finding that they survive two conditions that induce PCD in vitro in all human nucleated cells, treatment with staurosporine and serum deprivation. Here we report that mature erythrocytes can undergo a rapid self-destruction process sharing several features with apoptosis, including cell shrinkage, plasma membrane microvesiculation, phosphatidylserine externalization, and leading to erythrocyte disintegration, or, in the presence of macrophages, to macrophage ingestion of dying erythrocytes. This regulated form of PCD was induced by Ca(2+) influx, and prevented by cysteine protease inhibitors that allowed erythrocyte survival in vitro and in vivo. The cysteine proteinases involved seem not to be caspases, since (i) proforms of caspase 3, while present in erythrocytes, were not activated during erythrocyte death; (ii) cytochrome c, a critical component of the apoptosome, was lacking; and (iii) cell-free assays did not detect activated effectors of nuclear apoptosis in dying erythrocytes. Our findings provide the first identification that a death program can operate in the absence of mitochondria. They indicate that mature erythrocytes share with all other mammalian cell types the capacity to self-destruct in response to environmental signals, and imply that erythrocyte survival may be modulated by therapeutic intervention.
Collapse
Affiliation(s)
- D Bratosin
- National Institute for Biological Science Research and Development, Bucharest, Rumania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
|
315
|
Qian J, Ramroop K, McLeod A, Bandari P, Livingston DH, Harrison JS, Rameshwar P. Induction of hypoxia-inducible factor-1alpha and activation of caspase-3 in hypoxia-reoxygenated bone marrow stroma is negatively regulated by the delayed production of substance P. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4600-8. [PMID: 11591789 DOI: 10.4049/jimmunol.167.8.4600] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bone marrow (BM), which is the major site of immune cell development in the adult, responds to different stimuli such as inflammation and hemorrhagic shock. Substance P (SP) is the major peptide encoded by the immune/hemopoietic modulator gene, preprotachykinin-1 (PPT-I). Differential gene expression using a microarray showed that SP reduced hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA levels in BM stroma. Because long-term hypoxia induced the expression of PPT-I in BM mononuclear cells, we used timeline studies to determine whether PPT-I is central to the biologic responses of BM stroma subjected to 30-min hypoxia (pO(2) = 35 mm Hg) followed by reoxygenation. HIF-1alpha mRNA and protein levels were increased up to 12 h. At this time, beta-PPT-I mRNA was detected with the release of SP at 16 h. SP release correlated with down-regulation of HIF-1alpha to baseline. A direct role for SP in HIF-1alpha expression was demonstrated as follows: 1) transient knockout of beta-PPT-I showed an increase in HIF-1alpha expression up to 48 h of reoxygenation; and 2) HIF-1alpha expression remained baseline during reoxygenation when stroma was subjected to hypoxia in the presence of SP. Reoxygenation activated the PPT-I promoter with concomitant nuclear translocation of HIF-1alpha that can bind to the respective consensus sequences within the PPT-I promoter. SP reversed active caspase-3, an indicator of apoptosis and erythropoiesis, to homeostasis level after reoxygenation of hypoxic stroma. The results show that during reoxgenation the PPT-I gene acts as a negative regulator on the expression of HIF-1alpha and active caspase-3 in BM stroma subjected to reoxygenation.
Collapse
Affiliation(s)
- J Qian
- Department of Medicine, Trauma Division, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|
316
|
Hristoskova S, Holzgreve W, Hahn S. More Than One-Half of the Erythroblasts in the Fetal Circulation and Cord Blood Are TUNEL Positive. Clin Chem 2001. [DOI: 10.1093/clinchem/47.10.1870] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sashka Hristoskova
- Laboratory for Prenatal Medicine, Department of Obstetrics and Gynaecology, University of Basel, Schanzenstrasse 46, CH-4031 Basel, Switzerland
| | - Wolfgang Holzgreve
- Laboratory for Prenatal Medicine, Department of Obstetrics and Gynaecology, University of Basel, Schanzenstrasse 46, CH-4031 Basel, Switzerland
| | - Sinuhe Hahn
- Laboratory for Prenatal Medicine, Department of Obstetrics and Gynaecology, University of Basel, Schanzenstrasse 46, CH-4031 Basel, Switzerland
| |
Collapse
|
317
|
Ratajczak J, Majka M, Kijowski J, Baj M, Pan ZK, Marquez LA, Janowska-Wieczorek A, Ratajczak MZ. Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. Br J Haematol 2001; 115:195-204. [PMID: 11722433 DOI: 10.1046/j.1365-2141.2001.03058.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to identify signal transduction pathways activated by erythropoietin (EpO) and erythropoietin co-stimulatory factors (kit ligand), insulin-like growth factor, thrombopoietin, interleukin 3 and granulocyte-macrophage colony-stimulating factor) in normal human bone marrow CD34(+) cells and d 11 erythroid burst forming unit derived glycophorin+ cells. The activation of these signal transduction pathways was further correlated with various biological effects such as (i) cell proliferation, (ii) inhibition of apoptosis, (iii) activation of adhesion and (iv) secretion of the matrix metalloproteinases (MMPs) MMP-9 and MMP-2, and vascular endothelial growth factor (VEGF). We found that in human CD34(+) cells and erythroblasts erythropoietic factors may activate similar but different signalling pathways, and that activation of each of the JAK-STAT, MAPK p42/44 or PI-3K-AKT axes alone is not sufficient either to stimulate cell proliferation or inhibit apoptosis, suggesting that these processes are regulated by orchestrated activation of multiple signalling cascades. Accordingly, we found that although cell proliferation was more related to simultaneous activation of JAK-STAT and MAPK p42/44, the effect on cell survival correlated with activation of PI-3K-AKT, MAPK p42/44 and JAK-STAT proteins. We also demonstrated that differentiating normal human erythroid cells lose their adhesive properties and secrete angiopoietic factors such as MMP-9, MMP-2 and VEGF, and we postulate that this secretion by early erythroid cells may play a role in their maturation and egress from the haematopoietic niches of the bone marrow.
Collapse
Affiliation(s)
- J Ratajczak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Somervaille TC, Linch DC, Khwaja A. Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 2001; 98:1374-81. [PMID: 11520785 DOI: 10.1182/blood.v98.5.1374] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevention of apoptosis is a key function of growth factors in the regulation of erythropoiesis. This study examined the role of the constitutively active serine/threonine kinase glycogen synthase kinase-3 (GSK3), a target of the phosphoinositide-3-kinase (PI3K)/Akt pathway, in the regulation of apoptosis in primary human erythroid progenitors. GSK3 phosphorylation at its key regulatory residues S21 (alpha isoform) and S9 (beta isoform) was high in steady-state culture, disappeared on growth factor withdrawal, and returned in response to treatment of cells with either erythropoietin or stem cell factor. Phosphorylation correlated with a PI3K-dependent reduction of 25% to 30% in measured GSK3 activity. LY294002, a specific inhibitor of PI3K, induced apoptosis in growth factor-replete erythroid cells to a degree similar to growth factor deprivation, whereas the Mek1 inhibitor U0126 had no effect, implicating PI3K and not mitogen-activated protein kinase in survival signaling. Growth factor-deprived erythroblasts, which undergo apoptosis rapidly, were protected from apoptosis by both lithium chloride, a GSK3 selective inhibitor, and inhibition of caspase activity. However, the clonogenic potential of single cells, which more accurately reflects cell survival, was maintained by lithium chloride, but not by caspase inhibition. Furthermore, lithium chloride, but not caspase inhibition, prevented the appearance of the conformational form of Bax associated with apoptosis induction. In summary, GSK3 activity is suppressed by erythropoietin and stem cell factor in human erythroid progenitor cells, and increased GSK3 activity, brought about by growth factor withdrawal, may regulate commitment to cell death through a caspase-independent pathway that results in a conformational change in Bax.
Collapse
Affiliation(s)
- T C Somervaille
- Department of Hematology, Royal Free and University College Medical School, London, United Kingdom.
| | | | | |
Collapse
|