301
|
Kim HN, Yoon SY, Lim CS, Lee CK, Yoon J. Phylogenetic analysis of human parainfluenza type 3 virus strains responsible for the outbreak during the COVID-19 pandemic in Seoul, South Korea. J Clin Virol 2022; 153:105213. [DOI: 10.1016/j.jcv.2022.105213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
|
302
|
Molina-Mora JA. Insights into the mutation T1117I in the spike and the lineage B.1.1.389 of SARS-CoV-2 circulating in Costa Rica. GENE REPORTS 2022; 27:101554. [PMID: 35155843 PMCID: PMC8824091 DOI: 10.1016/j.genrep.2022.101554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 10/28/2022]
Abstract
Emerging mutations and genotypes of the SARS-CoV-2 virus, responsible for the COVID-19 pandemic, have been reported globally. In Costa Rica during the year 2020, a predominant genotype carrying the mutation T1117I in the spike (S:T1117I) was previously identified. To investigate the possible effects of this mutation on the function of the spike, i.e. the biology of the virus, different bioinformatic pipelines based on phylogeny, natural selection, and co-evolutionary models, molecular docking, and epitopes prediction were implemented. Results of the phylogeny of sequences carrying the S:T1117I worldwide showed a polyphyletic group, with the emergence of local lineages. In Costa Rica, the mutation is found in the lineage B.1.1.389 and it is suggested to be a product of positive/adaptive selection. Different changes in the function of the spike protein and more stable interaction with a ligand (nelfinavir drug) were found. Only one epitope out 742 in the spike was affected by the mutation, with some different properties, but suggesting scarce changes in the immune response and no influence on the vaccine effectiveness. Jointly, these results suggest a partial benefit of the mutation for the spread of the virus with this genotype during the year 2020 in Costa Rica, although possibly not strong enough with the introduction of new lineages during early 2021 which became predominant later. In addition, the bioinformatic analyses used here can be applied as an in silico strategy to eventually study other mutations of interest for the SARS-CoV-2 virus and other pathogens.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
303
|
Freitas L, Nery MF. Positive selection in multiple salivary gland proteins of Anophelinae reveals potential targets for vector control. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105271. [PMID: 35339698 DOI: 10.1016/j.meegid.2022.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Anopheles is a genus belonging to the Culicidae family, which has great medical importance due to its role as a vector of Plasmodium, the causative agent of malaria. Great focus has been given to the salivary gland proteins (SGPs) group from Anopheles' functional genomics. This class of proteins is essential to blood-feeding behavior as they have attributes such as vasodilators and anti-clotting properties. Recently, a comprehensive review on Anopheles SGPs was performed; however, the authors did not deeply explore the adaptive molecular evolution of these genes. In this context, this work aimed to perform a more detailed analysis of the adaptive molecular evolution of SGPs in Anopheles, carrying out positive selection and gene family evolution analysis on 824 SGPs. Our results show that most SGPs have positively selected codon sites that can be used as targets in developing new strategies for vector control and that younger SGPs evolve at a faster rate than older SGPs. Notably, we could not find any evidence of an accelerated shift in SGPs' rates of gene gain and loss compared with other proteins, as suggested in previous works.
Collapse
Affiliation(s)
- Lucas Freitas
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
304
|
Divergent Viruses Discovered in Swine Alter the Understanding of Evolutionary History and Genetic Diversity of the Respirovirus Genus and Related Porcine Parainfluenza Viruses. Microbiol Spectr 2022; 10:e0024222. [PMID: 35647875 PMCID: PMC9241844 DOI: 10.1128/spectrum.00242-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Paramyxoviridae is a rapidly growing family of viruses, whose potential for cross-species transmission makes it difficult to predict the harm of newly emerging viruses to humans and animals. To better understand their diversity, evolutionary history, and co-evolution with their hosts, we analyzed a collection of porcine parainfluenza virus (PPIV) genomes to reconstruct the species classification basis and evolutionary history of the Respirovirus genus. We sequenced 17 complete genomes of porcine respirovirus 1 (also known as porcine parainfluenza virus 1; PPIV-1), thereby nearly tripling the number of currently available PPIV-1 genomes. We found that PPIV-1 was widely prevalent in China with two divergent lineages, PPIV-1a and PPIV-1b. We further provided evidence that a new species, porcine parainfluenza virus 2 (PPIV-2), had recently emerged in China. Our results pointed to a need for revising the current species demarcation criteria of the Respirovirus genus. In addition, we used PPIV-1 as an example to explore recombination and diversity of the Respirovirus genus. Interestingly, we only detected heterosubtypic recombination events between PPIV-1a and PPIV-1b with no intrasubtypic recombination events. The recombination hotspots highlighted a diverse geography-dependent genome structure of paramyxovirus infecting swine in China. Furthermore, we found no evidence of co-evolution between respirovirus and its host, indicating frequent cross-species transmission. In summary, our analyses showed that swine can be infected with a broad range of respiroviruses and recombination may serve as an important evolutionary mechanism for the Respirovirus genus’ greater diversity in genome structure than previously anticipated. IMPORTANCE Livestock have emerged as critically underrecognized sources of paramyxovirus diversity, including pigs serving as the source of Nipah virus (NiV) and swine parainfluenza virus type 3, and goats and bovines harboring highly divergent viral lineages. Here, we identified a new species of Respirovirus genus named PPIV-2 in swine and proposed to revise the species demarcation criteria of the Respirovirus genus. We found heterosubtypic recombination events and high genetic diversity in PPIV-1. Further, we showed that genetic recombination may have occurred in the Respirovirus genus which may be associated with host range expansion. The continued expansion of Respirovirus genus diversity in livestock with relatively high human contact rates requires enhanced surveillance and ongoing evaluation of emerging cross-species transmission threats.
Collapse
|
305
|
Gröhs Ferrareze PA, Zimerman RA, Franceschi VB, Caldana GD, Netz PA, Thompson CE. Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of selected mutations. J Biomol Struct Dyn 2022; 41:3110-3128. [PMID: 35594172 DOI: 10.1080/07391102.2022.2076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Vinícius Bonetti Franceschi
- Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Dickin Caldana
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paulo Augusto Netz
- Graduate Program in Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
306
|
Mancilla-Morales MD, Velarde E, Contreras-Rodríguez A, Gómez-Lunar Z, Rosas-Rodríguez JA, Heras J, Soñanez-Organis JG, Ruiz EA. Characterization, Selection, and Trans-Species Polymorphism in the MHC Class II of Heermann’s Gull (Charadriiformes). Genes (Basel) 2022; 13:genes13050917. [PMID: 35627302 PMCID: PMC9140796 DOI: 10.3390/genes13050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann’s Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann’s Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann’s Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann’s Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.
Collapse
Affiliation(s)
- Misael Daniel Mancilla-Morales
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Hidalgo 617, Colonia Río Jamapa, Boca del Rio, Veracruz CP 94290, Mexico;
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico; (A.C.-R.); (Z.G.-L.)
| | - Zulema Gómez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico; (A.C.-R.); (Z.G.-L.)
| | - Jesús A. Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico;
| | - Joseph Heras
- Departament of Biology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA;
| | - José G. Soñanez-Organis
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico;
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| |
Collapse
|
307
|
Han A, Sun B, Sun Z, Xu X, Yang Q, Xie D, Guan W, Lou Y. Molecular Characterization and Phylogenetic Analysis of the 2019 Dengue Outbreak in Wenzhou, China. Front Cell Infect Microbiol 2022; 12:829380. [PMID: 35663472 PMCID: PMC9161089 DOI: 10.3389/fcimb.2022.829380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.
Collapse
Affiliation(s)
- Axiang Han
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Zhewei Sun
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danli Xie
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
308
|
Liu Y, Ahator SD, Wang H, Feng Q, Xu Y, Li C, Zhou X, Zhang LH. Microevolution of the mexT and lasR Reinforces the Bias of Quorum Sensing System in Laboratory Strains of Pseudomonas aeruginosa PAO1. Front Microbiol 2022; 13:821895. [PMID: 35495693 PMCID: PMC9041413 DOI: 10.3389/fmicb.2022.821895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa strain PAO1 has routinely been used as a laboratory model for quorum sensing (QS). However, the microevolution of P. aeruginosa laboratory strains resulting in genetic and phenotypic variations have caused inconsistencies in QS research. To investigate the underlying causes of these variations, we analyzed 5 Pseudomonas aeruginosa PAO1 sublines from our laboratory using a combination of phenotypic characterization, high throughput genome sequencing, and bioinformatic analysis. The major phenotypic variations among the sublines spanned across the levels of QS signals and virulence factors such as pyocyanin and elastase. Furthermore, the sublines exhibited distinct variations in motility and biofilm formation. Most of the phenotypic variations were mapped to mutations in the lasR and mexT, which are key components of the QS circuit. By introducing these mutations in the subline PAO1-E, which is devoid of such mutations, we confirmed their influence on QS, virulence, motility, and biofilm formation. The findings further highlight a possible divergent regulatory mechanism between the LasR and MexT in the P. aeruginosa. The results of our study reveal the effects of microevolution on the reproducibility of most research data from QS studies and further highlight mexT as a key component of the QS circuit of P. aeruginosa.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Research group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yinuo Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
309
|
Xu W, Navarro-López R, Solis-Hernandez M, Liljehult-Fuentes F, Molina-Montiel M, Lagunas-Ayala M, Rocha-Martinez M, Ferrara-Tijera E, Pérez de la Rosa J, Berhane Y. Evolutionary Dynamics of Mexican Lineage H5N2 Avian Influenza Viruses. Viruses 2022; 14:v14050958. [PMID: 35632700 PMCID: PMC9146523 DOI: 10.3390/v14050958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
We have demonstrated for the first time a comprehensive evolutionary analysis of the Mexican lineage H5N2 avian influenza virus (AIV) using complete genome sequences (n = 189), from its first isolation in 1993 until 2019. Our study showed that the Mexican lineage H5N2 AIV originated from the North American wild bird gene pool viruses around 1990 and is currently circulating in poultry populations of Mexico, the Dominican Republic, and Taiwan. Since the implementation of vaccination in 1995, the highly pathogenic AIV (HPAIV) H5N2 virus was eradicated from Mexican poultry in mid-1995. However, the low pathogenic AIV (LPAIV) H5N2 virus has continued to circulate in domestic poultry populations in Mexico, eventually evolving into five distinct clades. In the current study, we demonstrate that the evolution of Mexican lineage H5N2 AIVs involves gene reassortments and mutations gained over time. The current circulating Mexican lineage H5N2 AIVs are classified as LPAIV based on the amino acid sequences of the hemagglutinin (HA) protein cleavage site motif as well as the results of the intravenous pathogenicity index (IVPI). The immune pressure from vaccinations most likely has played a significant role in the positive selection of antigenic drift mutants within the Mexican H5N2 AIVs. Most of the identified substitutions in these viruses are located on the critical antigenic residues of the HA protein and as a result, might have contributed to vaccine failures. This study highlights and stresses the need for vaccine updates while emphasizing the importance of continued molecular monitoring of the HA protein for its antigenic changes compared to the vaccines used.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
| | - Roberto Navarro-López
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Mario Solis-Hernandez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Diseases of Animals, Mexico City 64590, Mexico; (M.S.-H.); (F.L.-F.)
| | - Francisco Liljehult-Fuentes
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Diseases of Animals, Mexico City 64590, Mexico; (M.S.-H.); (F.L.-F.)
| | - Miguel Molina-Montiel
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - María Lagunas-Ayala
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Marisol Rocha-Martinez
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Eduardo Ferrara-Tijera
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Juan Pérez de la Rosa
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
- Correspondence: ; Tel.: +1-204-789-7062
| |
Collapse
|
310
|
Wan H, Adams RL, Lindenbach BD, Pyle AM. The In Vivo and In Vitro Architecture of the Hepatitis C Virus RNA Genome Uncovers Functional RNA Secondary and Tertiary Structures. J Virol 2022; 96:e0194621. [PMID: 35353000 PMCID: PMC9044954 DOI: 10.1128/jvi.01946-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus that remains one of the main contributors to chronic liver disease worldwide. Studies over the last 30 years have demonstrated that HCV contains a highly structured RNA genome and many of these structures play essential roles in the HCV life cycle. Despite the importance of riboregulation in this virus, most of the HCV RNA genome remains functionally unstudied. Here, we report a complete secondary structure map of the HCV RNA genome in vivo, which was studied in parallel with the secondary structure of the same RNA obtained in vitro. Our results show that HCV is folded extensively in the cellular context. By performing comprehensive structural analyses on both in vivo data and in vitro data, we identify compact and conserved secondary and tertiary structures throughout the genome. Genetic and evolutionary functional analyses demonstrate that many of these elements play important roles in the virus life cycle. In addition to providing a comprehensive map of RNA structures and riboregulatory elements in HCV, this work provides a resource for future studies aimed at identifying therapeutic targets and conducting further mechanistic studies on this important human pathogen. IMPORTANCE HCV has one of the most highly structured RNA genomes studied to date, and it is a valuable model system for studying the role of RNA structure in protein-coding genes. While previous studies have identified individual cases of regulatory RNA structures within the HCV genome, the full-length structure of the HCV genome has not been determined in vivo. Here, we present the complete secondary structure map of HCV determined both in cells and from corresponding transcripts generated in vitro. In addition to providing a comprehensive atlas of functional secondary structural elements throughout the genomic RNA, we identified a novel set of tertiary interactions and demonstrated their functional importance. In terms of broader implications, the pipeline developed in this study can be applied to other long RNAs, such as long noncoding RNAs. In addition, the RNA structural motifs characterized in this study broaden the repertoire of known riboregulatory elements.
Collapse
Affiliation(s)
- Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Rebecca L. Adams
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
311
|
Mwangi PN, Page NA, Seheri ML, Mphahlele MJ, Nadan S, Esona MD, Kumwenda B, Kamng'ona AW, Donato CM, Steele DA, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Evolutionary changes between pre- and post-vaccine South African group A G2P[4] rotavirus strains, 2003-2017. Microb Genom 2022; 8. [PMID: 35446251 PMCID: PMC9453071 DOI: 10.1099/mgen.0.000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.
Collapse
Affiliation(s)
- Peter N Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nicola A Page
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa.,Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - M Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.,Office of the Deputy Vice Chancellor for Research and Innovation, North-West University, Potchefstroom 2351, South Africa.,South African Medical Research Council, Pretoria 0001, South Africa
| | - Sandrama Nadan
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | - Mathew D Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Benjamin Kumwenda
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Arox W Kamng'ona
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Celeste M Donato
- Department of Medical Laboratory Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre3, Malawi.,Enteric Diseases Group, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Melboune 3052, Australia.,Department of Paediatrics, the University of Melbourne, Parkville 3010, Australia
| | - Duncan A Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Valantine N Ndze
- Faculty of Health Sciences, University of Buea, P.O Box 63 Buea, Cameroon
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O Box LG581, Legon, Ghana
| | - Khuzwayo C Jere
- Center for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L697BE, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
312
|
Andersen LW, Jacobsen MW, Frydenberg J, Møller JD, Jensen TS. Phylogeography using mitogenomes: A rare Dipodidae,
Sicista betulina
, in North‐western Europe. Ecol Evol 2022; 12:e8865. [PMID: 35475180 PMCID: PMC9022092 DOI: 10.1002/ece3.8865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization's explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.
Collapse
Affiliation(s)
| | - Magnus W. Jacobsen
- Department of Ecoscience Aarhus University Aarhus C Denmark
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | |
Collapse
|
313
|
Comparative Genomic Analysis of Vibrio cincinnatiensis Provides Insights into Genetic Diversity, Evolutionary Dynamics, and Pathogenic Traits of the Species. Int J Mol Sci 2022; 23:ijms23094520. [PMID: 35562911 PMCID: PMC9101195 DOI: 10.3390/ijms23094520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio cincinnatiensis is a poorly understood pathogenic Vibrio species, and the underlying mechanisms of its genetic diversity, genomic plasticity, evolutionary dynamics, and pathogenicity have not yet been comprehensively investigated. Here, a comparative genomic analysis of V. cincinnatiensis was constructed. The open pan-genome with a flexible gene repertoire exhibited genetic diversity. The genomic plasticity and stability were characterized by the determinations of diverse mobile genetic elements (MGEs) and barriers to horizontal gene transfer (HGT), respectively. Evolutionary divergences were exhibited by the difference in functional enrichment and selective pressure between the different components of the pan-genome. The evolution on the Chr I and Chr II core genomes was mainly driven by purifying selection. Predicted essential genes in V. cincinnatiensis were mainly found in the core gene families on Chr I and were subject to stronger evolutionary constraints. We identified diverse virulence-related elements, including the gene clusters involved in encoding flagella, secretion systems, several pili, and scattered virulence genes. Our results indicated the pathogenic potential of V. cincinnatiensis and highlighted that HGT events from other Vibrio species promoted pathogenicity. This pan-genome study provides comprehensive insights into this poorly understood species from the genomic perspective.
Collapse
|
314
|
Fei Z, Jiao A, Xu M, Wu J, Wang Y, Yu J, Lu L, Jiang W, Zhu G, Sun W, Chen Z, Zhang Y, Ren S, Liu F, Zhang L. Genetic diversity and evolution of goose astrovirus in the east of China. Transbound Emerg Dis 2022; 69:e2059-e2072. [PMID: 35384346 DOI: 10.1111/tbed.14542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Goose astrovirus (GAstV), an agent of fatal visceral gout in goslings, has been widely circulating in eastern China since 2017, but little is known about its genetic diversity and systematic evolution. In this study, we isolated and sequenced nine nearly full-length GAstV genomes and conducted comprehensive genetic diversity and evolutionary analysis and compared them with other reported GAstV sequences. Our results indicated that two genotypic species of GAstV were circulating in China, and GAstV-2 subgenotype II-c had arisen as the dominant genotype in Shandong province and across the whole country. Multiple alignment of GAstV amino acid sequences revealed several characteristic mutations in GAstV-2 II-c strains, as well as additional residues in the nine new isolates which varied over time. Phylogenetic analysis of three open reading frames demonstrated different evolutionary histories. Evidence of natural recombination was also detected in GAstV, with most of the recombination occurring in the GAstV-2 II-c subgenotype. Molecular adaptation analyses revealed that the evolution of GAstV was shaped by strong negative selection, although a number of amino acids, which potentially affect host infection and cell entry, were subjected to positive pressure. Overall, these findings improve our understanding of the epidemiology and evolution of GAstV and may help in the development of vaccines and diagnostics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiguo Fei
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Anqi Jiao
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China.,College of Life Sciences, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong, China
| | - Yu Wang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Jiang Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Lu Lu
- Emerging Economic Formats Research Institute, Shandong Management University, 3500 Dingxiang Road, Jinan, Shandong, China
| | - Wanchun Jiang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199 Guangming South Street, Handan, Hebei, China
| | - Gaungwei Zhu
- Qilu Normal University, 2 Wenbo Road, Jinan, Shandong, China
| | - Wenbo Sun
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Zhi Chen
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Sufang Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Fei Liu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| | - Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, 202 Gongye North Road, Jinan, Shandong, China
| |
Collapse
|
315
|
McDougal MB, Boys IN, De La Cruz-Rivera P, Schoggins JW. Evolution of the interferon response: lessons from ISGs of diverse mammals. Curr Opin Virol 2022; 53:101202. [DOI: 10.1016/j.coviro.2022.101202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
|
316
|
Epidemiology and Genetic Diversity of PCV2 Reveals That PCV2e Is an Emerging Genotype in Southern China: A Preliminary Study. Viruses 2022; 14:v14040724. [PMID: 35458454 PMCID: PMC9026887 DOI: 10.3390/v14040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD), caused by porcine circovirus type 2 (PCV2), has ravaged the pig industry, causing huge economic loss. At present, PCV2b and PCV2d are highly prevalent genotypes worldwide, while in China, in addition to PCV2b and PCV2d, a newly emerged PCV2e genotype detected in the Fujian province has attracted attention, indicating that PCV2 genotypes in China are more abundant. A preliminary study was conducted to better understand the genetic diversity and prevalence of PCV2 genotypes in southern China. We collected 79 random lung samples from pigs with respiratory signs, from 2018 to 2021. We found a PCV2-positivity rate of 29.1%, and frequent co-infections of PCV2 with PCV3, Streptococcus suis (S. suis), and other porcine pathogens. All PCV2-positive samples were sequenced and subjected to whole-genome analysis. Phylogenetic analysis, based on the PCV2 ORF2 gene and complete genomes, found that PCV2 strains identified in this study belonged to genotypes PCV2a (1), PCV2b (6), PCV2d (10), and PCV2e (6). Importantly, PCV2e was identified for the first time in some provinces, including Guangdong and Jiangxi. Additionally, we found two positively selected sites in the ORF2 region, located on the previously reported antigenic epitopes. Moreover, codon 63, one of the positively selected sites, has different types of amino acids in different genotypes. In conclusion, this study shows that PCV2e is an emerging genotype circulating in southern China, which warrants urgent, specific surveillance to aid the development of prevention and control strategies in China.
Collapse
|
317
|
Stica CJ, Barrero RA, Murray RZ, Devine GJ, Phillips MJ, Frentiu FD. Global Evolutionary History and Dynamics of Dengue Viruses Inferred from Whole Genome Sequences. Viruses 2022; 14:v14040703. [PMID: 35458433 PMCID: PMC9030598 DOI: 10.3390/v14040703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Dengue is an arboviral disease caused by dengue virus (DENV), leading to approximately 25,000 deaths/year and with over 40% of the world’s population at risk. Increased international travel and trade, poorly regulated urban expansion, and warming global temperatures have expanded the geographic range and incidence of the virus in recent decades. This study used phylogenetic and selection pressure analyses to investigate trends in DENV evolution, using whole genome coding sequences from publicly available databases alongside newly sequenced isolates collected between 1963–1997 from Southeast Asia and the Pacific. Results revealed very similar phylogenetic relationships when using the envelope gene and the whole genome coding sequences. Although DENV evolution is predominantly driven by negative selection, a number of amino acid sites undergoing positive selection were found across the genome, with the majority located in the envelope and NS5 genes. Some genotypes appear to be diversifying faster than others within each serotype. The results from this research improve our understanding of DENV evolution, with implications for disease control efforts such as Wolbachia-based biocontrol and vaccine design.
Collapse
Affiliation(s)
- Caleb J. Stica
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, P Block, 2 George Street, Brisbane, QLD 4000, Australia;
| | - Rachael Z. Murray
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, KG-Q Block, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia;
| | - Gregor J. Devine
- Mosquito Control Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Matthew J. Phillips
- School of Biology and Environmental Science, Queensland University of Technology, R Block, 2 George Street, Brisbane, QLD 4000, Australia;
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia;
- Correspondence:
| |
Collapse
|
318
|
Alex CE, Canuti M, Schlesinger MS, Jackson KA, Needle D, Jardine C, Nituch L, Bourque L, Lang AS, Pesavento PA. Natural disease and evolution of an amdoparvovirus endemic in striped skunks (
Mephitis mephitis
). Transbound Emerg Dis 2022; 69:e1758-e1767. [DOI: 10.1111/tbed.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charles E. Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture University of New Hampshire Durham NH USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative University of Guelph Guelph ON Canada
| | - Larissa Nituch
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry Peterborough ON Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative – Atlantic Region University of Prince Edward Island 550 University Ave Charlottetown PE C1A4P3 Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| |
Collapse
|
319
|
Ratcliffe FC, Garcia de Leaniz C, Consuegra S. MHC class I-α population differentiation in a commercial fish, the European sea bass (Dicentrarchus labrax). Anim Genet 2022; 53:340-351. [PMID: 35274334 PMCID: PMC9314080 DOI: 10.1111/age.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Identifying population structuring in highly fecund marine species with high dispersal rates is challenging, but critical for conservation and stock delimitation for fisheries management. European sea bass (Dicentrarchus labrax) is a commercial species of fisheries and aquaculture relevance whose stocks are declining in the North Atlantic, despite management measures to protect them and identifying their fine population structure is needed for managing their exploitation. As for other marine fishes, neutral genetic markers indicate that eastern Atlantic sea bass form a panmictic population and is currently managed as arbitrarily divided stocks. The genes of the major histocompatibility complex (MHC) are key components of the adaptive immune system and ideal candidates to assess fine structuring arising from local selective pressures. We used Illumina sequencing to characterise allelic composition and signatures of selection at the MHC class I-α region of six D. labrax populations across the Atlantic range. We found high allelic diversity driven by positive selection, corresponding to moderate supertype diversity, with 131 alleles clustering into four to eight supertypes, depending on the Bayesian information criterion threshold applied, and a mean number of 13 alleles per individual. Alleles could not be assigned to particular loci, but private alleles allowed us to detect regional genetic structuring not found previously using neutral markers. Our results suggest that MHC markers can be used to detect cryptic population structuring in marine species where neutral markers fail to identify differentiation. This is particularly critical for fisheries management, and of potential use for selective breeding or identifying escapes from sea farms.
Collapse
Affiliation(s)
- Frances C Ratcliffe
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
320
|
Yépez Y, Marcano-Ruiz M, Bezerra RS, Fam B, Ximenez JPB, Silva WA, Bortolini MC. Evolutionary history of the SARS-CoV-2 Gamma variant of concern (P.1): a perfect storm. Genet Mol Biol 2022; 45:e20210309. [PMID: 35266951 PMCID: PMC8908351 DOI: 10.1590/1678-4685-gmb-2021-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Rafael S Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Bibiana Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - João PB Ximenez
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Wilson A Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
- Instituto de Pesquisa do Câncer de Guarapuava, Guarapuava, PR,
Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
321
|
Perez M, Breusing C, Angers B, Beinart RA, Won YJ, Young CR. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc Biol Sci 2022; 289:20212137. [PMID: 35259985 PMCID: PMC8905170 DOI: 10.1098/rspb.2021.2137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.
Collapse
Affiliation(s)
- Maëva Perez
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
322
|
Lee K, Pusterla N, Barnum SM, Lee DH, Martínez-López B. Investigation of cross-regional spread and evolution of equine influenza H3N8 at US and global scales using Bayesian phylogeography based on balanced subsampling. Transbound Emerg Dis 2022; 69:e1734-e1748. [PMID: 35263501 DOI: 10.1111/tbed.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Equine influenza virus (EIV) is a highly contagious pathogen of equids, and a well-known burden in global equine health. EIV H3N8 variants seasonally emerged and resulted in EIV outbreaks in the United States (US) and worldwide. The present study evaluated the pattern of cross-regional EIV H3N8 spread and evolutionary characteristics at US and global scales using Bayesian phylogeography with balanced subsampling based on regional horse population size. A total of 297 Haemagglutinin (HA) sequences of global EIV H3N8 were collected from 1963 to 2019 and subsampled to global subset (n = 67), raw US sequences (n = 100) and US subset (n = 44) datasets. Discrete trait phylogeography analysis was used to estimate the transmission history of EIV using four global and US genome datasets. The North American lineage was the major source of globally dominant EIV variants and spread to other global regions. The US EIV strains generally spread from the southern and midwestern regions to other regions. The EIV H3N8 accumulated approximately three nucleotide substitutions per year in the HA gene under heterogenous local positive selection. Our findings will guide better decision making of target intervention strategies of EIV H3N8 infection and provide the better scheme of genomic surveillance in the US and global equine health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Samantha M Barnum
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
323
|
Noll D, Leon F, Brandt D, Pistorius P, Le Bohec C, Bonadonna F, Trathan PN, Barbosa A, Rey AR, Dantas GPM, Bowie RCK, Poulin E, Vianna JA. Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci Rep 2022; 12:3767. [PMID: 35260629 PMCID: PMC8904570 DOI: 10.1038/s41598-022-07562-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA has been widely used in phylogeography, evidence has emerged that factors such as climate, food availability, and environmental pressures that produce high levels of stress can exert a strong influence on mitochondrial genomes, to the point of promoting the persistence of certain genotypes in order to compensate for the metabolic requirements of the local environment. As recently discovered, the gentoo penguins (Pygoscelis papua) comprise four highly divergent lineages across their distribution spanning the Antarctic and sub-Antarctic regions. Gentoo penguins therefore represent a suitable animal model to study adaptive processes across divergent environments. Based on 62 mitogenomes that we obtained from nine locations spanning all four gentoo penguin lineages, we demonstrated lineage-specific nucleotide substitutions for various genes, but only lineage-specific amino acid replacements for the ND1 and ND5 protein-coding genes. Purifying selection (dN/dS < 1) is the main driving force in the protein-coding genes that shape the diversity of mitogenomes in gentoo penguins. Positive selection (dN/dS > 1) was mostly present in codons of the Complex I (NADH genes), supported by two different codon-based methods at the ND1 and ND4 in the most divergent lineages, the eastern gentoo penguin from Crozet and Marion Islands and the southern gentoo penguin from Antarctica respectively. Additionally, ND5 and ATP6 were under selection in the branches of the phylogeny involving all gentoo penguins except the eastern lineage. Our study suggests that local adaptation of gentoo penguins has emerged as a response to environmental variability promoting the fixation of mitochondrial haplotypes in a non-random manner. Mitogenome adaptation is thus likely to have been associated with gentoo penguin diversification across the Southern Ocean and to have promoted their survival in extreme environments such as Antarctica. Such selective processes on the mitochondrial genome may also be responsible for the discordance detected between nuclear- and mitochondrial-based phylogenies of gentoo penguin lineages.
Collapse
Affiliation(s)
- D Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - F Leon
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - D Brandt
- Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - P Pistorius
- Department of Zoology, 11DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - C Le Bohec
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France.,Département de Biologie Polaire, Centre Scientifique de Monaco, 98000, Monaco City, Monaco
| | - F Bonadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier Cedex 5, France
| | | | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas - Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Argentina.,Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina.,Wildlife Conservation Society, Buenos Aires, Argentina
| | - G P M Dantas
- PPG in Vertebrate Biology, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - R C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - E Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - J A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile. .,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile. .,Fondo de Desarrollo de Áreas Prioritarias (FONDAP), Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
324
|
Sebastian W, Sukumaran S, Gopalakrishnan A. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity (Edinb) 2022; 128:236-249. [PMID: 35256764 PMCID: PMC8986858 DOI: 10.1038/s41437-022-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Clupeoid fish can be considered excellent candidates to understand the role of mitochondrial DNA in adaptive evolution, as they have colonized different habitats (marine, brackish, freshwater, tropical and temperate regions) over millions of years. Here, we investigate patterns of tRNA location, codon usage bias, and lineage-specific diversifying selection signals to provide novel insights into how evolutionary improvements of mitochondrial metabolic efficiency have allowed clupeids to adapt to different habitats. Based on whole mitogenome data of 70 Clupeoids with a global distribution we find that purifying selection was the dominant force acting and that the mutational deamination pressure in mtDNA was stronger than the codon/amino acid constraints. The codon usage pattern appears evolved to achieve high translational efficiency (codon/amino acid-related constraints), as indicated by the complementarity of most codons to the GT-saturated tRNA anticodon sites (retained by deamination-induced pressure) and usage of the codons of the tRNA genes situated near to the control region (fixed by deamination pressure) where transcription efficiency was high. The observed shift in codon preference patterns between marine and euryhaline/freshwater Clupeoids indicates possible selection for improved translational efficiency in mitochondrial genes while adapting to low-salinity habitats. This mitogenomic plasticity and enhanced efficiency of the metabolic machinery may have contributed to the evolutionary success and abundance of Clupeoid fish.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
325
|
Thayale Purayil F, Sudalaimuthuasari N, Li L, Aljneibi R, Al Shamsi AMK, David N, Kottackal M, AlZaabi M, Balan J, Kurup SS, Hazzouri KM, Amiri KMA. Transcriptome Profiling and Functional Validation of RING-Type E3 Ligases in Halophyte Sesuvium verrucosum under Salinity Stress. Int J Mol Sci 2022; 23:ijms23052821. [PMID: 35269961 PMCID: PMC8911510 DOI: 10.3390/ijms23052821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Owing to their sessile nature, plants have developed a tapestry of molecular and physiological mechanisms to overcome diverse environmental challenges, including abiotic stresses. Adaptive radiation in certain lineages, such as Aizoaceae, enable their success in colonizing arid regions and is driven by evolutionary selection. Sesuvium verrucosum (commonly known as Western sea-purslane) is a highly salt-tolerant succulent halophyte belonging to the Aizoaceae family; thus, it provides us with the model-platform for studying plant adaptation to salt stress. Various transcriptional and translational mechanisms are employed by plants to cope with salt stress. One of the systems, namely, ubiquitin-mediated post-translational modification, plays a vital role in plant tolerance to abiotic stress and other biological process. E3 ligase plays a central role in target recognition and protein specificity in ubiquitin-mediated protein degradation. Here, we characterize E3 ligases in Sesuvium verrucosum from transcriptome analysis of roots in response to salinity stress. Our de novo transcriptome assembly results in 131,454 transcripts, and the completeness of transcriptome was confirmed by BUSCO analysis (99.3% of predicted plant-specific ortholog genes). Positive selection analysis shows 101 gene families under selection; these families are enriched for abiotic stress (e.g., osmotic and salt) responses and proteasomal ubiquitin-dependent protein catabolic processes. In total, 433 E3 ligase transcripts were identified in S. verrucosum; among these transcripts, single RING-type classes were more abundant compared to multi-subunit RING-type E3 ligases. Additionally, we compared the number of single RING-finger E3 ligases with ten different plant species, which confirmed the abundance of single RING-type E3 ligases in different plant species. In addition, differential expression analysis showed significant changes in 13 single RING-type E3 ligases (p-value < 0.05) under salinity stress. Furthermore, the functions of the selected E3 ligases genes (12 genes) were confirmed by yeast assay. Among them, nine genes conferred salt tolerance in transgenic yeast. This functional assay supports the possible involvement of these E3 ligase in salinity stress. Our results lay a foundation for translational research in glycophytes to develop stress tolerant crops.
Collapse
Affiliation(s)
- Fayas Thayale Purayil
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Ling Li
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Ruwan Aljneibi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Aysha Mohammed Khamis Al Shamsi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Nelson David
- Center for Genomics and Systems Biology, New York University, Abu-Dhabi P.O. Box 129188, United Arab Emirates;
| | - Martin Kottackal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Mariam AlZaabi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Jithin Balan
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Correspondence: (K.M.H.); (K.M.A.A.); Tel.: +971-37135624 (K.M.A.A.)
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.); Tel.: +971-37135624 (K.M.A.A.)
| |
Collapse
|
326
|
Chen Y, Wang Y, Guo J, Yang J, Zhang X, Wang Z, Cheng Y, Du Z, Qi Z, Huang Y, Dennis M, Wei Y, Yang D, Huang L, Liang Z. Integrated Transcriptomics and Proteomics to Reveal Regulation Mechanism and Evolution of SmWRKY61 on Tanshinone Biosynthesis in Salvia miltiorrhiza and Salvia castanea. FRONTIERS IN PLANT SCIENCE 2022; 12:820582. [PMID: 35309951 PMCID: PMC8928407 DOI: 10.3389/fpls.2021.820582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 05/27/2023]
Abstract
Tanshinones found in Salvia species are the main active compounds for the treatment of cardiovascular and cerebrovascular diseases, but their contents are hugely different in different species. For example, tanshinone IIA content in Salvia castanea Diels f. tomentosa Stib. is about 49 times higher than that in Salvia miltiorrhiza Bunge. The molecular mechanism responsible for this phenomenon remains largely unknown. To address this, we performed comparative transcriptomic and proteomic analyses of S. miltiorrhiza and S. castanea. A total of 296 genes in S. castanea and 125 genes in S. miltiorrhiza were highly expressed at both the transcriptional and proteome levels, including hormone signal regulation, fungus response genes, transcription factors, and CYP450. Among these differentially expressed genes, the expression of SmWRKY61 was particularly high in S. castanea. Overexpression of SmWRKY61 in S. miltiorrhiza could significantly increase the content of tanshinone I and tanshinone IIA, which were 11.09 and 33.37 times of the control, respectively. Moreover, SmWRKY61 had a strong regulatory effect, elevating the expression levels of tanshinone pathway genes such as DXS2, CMK, HMGS2, 1, KSL1, KSL2, CYP76AH1, and CYP76AK3. For the WRKY family, 79 SmWRKYs were originally obtained and classified into three main groups. Collinearity analysis indicated a more specific extension of WRKY gene family in Salvia genus. In 55 Salvia species, only 37 species contained the WRKY61 sequence, and high SmWRKY61 expression in some Salvia L. species was often accompanied by high tanshinone accumulation. The above results suggest that SmWRKY61 is a highly effective regulator of tanshinone accumulation and may be a key factor resulting in high tanshinone accumulation in S. castanea.
Collapse
Affiliation(s)
- Yue Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanting Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zixuan Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ying Cheng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zewei Du
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhechen Qi
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Yukun Wei
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
327
|
Pan-Genome Analysis of Delftia tsuruhatensis Reveals Important Traits Concerning the Genetic Diversity, Pathogenicity, and Biotechnological Properties of the Species. Microbiol Spectr 2022; 10:e0207221. [PMID: 35230132 PMCID: PMC9045143 DOI: 10.1128/spectrum.02072-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Delftia tsuruhatensis strains have long been known to promote plant growth and biological control. Recently, it has become an emerging opportunistic pathogen in humans. However, the genomic characteristics of the genetic diversity, pathogenicity, and biotechnological properties have not yet been comprehensively investigated. Here, a comparative pan-genome analysis was constructed. The open pan-genome with a large and flexible gene repertoire exhibited a high degree of genetic diversity. The purifying selection was the main force to drive pan-genome evolution. Significant differences were observed in the evolutionary relationship, functional enrichment, and degree of selective pressure between the different components of the pan-genome. A high degree of genetic plasticity was characterized by the determinations of diverse mobile genetic elements (MGEs), massive genomic rearrangement, and horizontal genes. Horizontal gene transfer (HGT) plays an important role in the genetic diversity of this bacterium and the formation of genomic traits. Our results revealed the occurrence of diverse virulence-related elements associated with macromolecular secretion systems, virulence factors associated with multiple nosocomial infections, and antimicrobial resistance, indicating the pathogenic potential. Lateral flagellum, T1SS, T2SS, T6SS, Tad pilus, type IV pilus, and a part of virulence-related genes exhibited general properties, whereas polar flagellum, T4SS, a part of virulence-related genes, and resistance genes presented heterogeneous properties. The pan-genome also harbors abundant genetic traits related to secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter, indicating rhizosphere adaptation, plant growth promotion, and great potential uses in agriculture and biological control. This study provides comprehensive insights into this uncommon species from the genomic perspective. IMPORTANCED. tsuruhatensis is considered a plant growth-promoting rhizobacterium (PGPR), an organic pollutant degradation strain, and an emerging opportunistic pathogen to the human. However, the genetic diversity, the evolutionary dynamics, and the genetic basis of these remarkable traits are still little known. We constructed a pan-genome analysis for D. tsuruhatensis and revealed extensive genetic diversity and genetic plasticity exhibited by open pan-genome, diverse mobile genetic elements (MGEs), genomic rearrangement, and horizontal genes. Our results highlight that horizontal gene transfer (HGT) and purifying selection are important forces in D. tsuruhatensis genetic evolution. The abundant virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance could contribute to the pathogenicity of this bacterium. Therefore, clinical microbiologists need to be aware of D. tsuruhatensis as an opportunistic pathogen. The genetic profiles of secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter could provide insight into the genetic armory of potential applications for agriculture and biological control of D. tsuruhatensis in general.
Collapse
|
328
|
Wheeler LC, Walker JF, Ng J, Deanna R, Dunbar-Wallis A, Backes A, Pezzi PH, Palchetti MV, Robertson HM, Monaghan A, Brandão de Freitas L, Barboza GE, Moyroud E, Smith SD. Transcription factors evolve faster than their structural gene targets in the flavonoid pigment pathway. Mol Biol Evol 2022; 39:6536971. [PMID: 35212724 PMCID: PMC8911815 DOI: 10.1093/molbev/msac044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix–loop–helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Joseph F Walker
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Amy Dunbar-Wallis
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro H Pezzi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - M Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Holly M Robertson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Andrew Monaghan
- Research Computing,University of Colorado, 3100 Marine Street, 597 UCB Boulder, CO 80303
| | - Loreta Brandão de Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Nacional de Córdoba,Haya de la Torre y Medina Allende, Córdoba, Argentina
| | - Edwige Moyroud
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| |
Collapse
|
329
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
330
|
He K, Liang CH, Zhu Y, Dunn P, Zhao A, Minias P. Reconstructing Macroevolutionary Patterns in Avian MHC Architecture With Genomic Data. Front Genet 2022; 13:823686. [PMID: 35251132 PMCID: PMC8893315 DOI: 10.3389/fgene.2022.823686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) is a hyper-polymorphic genomic region, which forms a part of the vertebrate adaptive immune system and is crucial for intra- and extra-cellular pathogen recognition (MHC-I and MHC-IIA/B, respectively). Although recent advancements in high-throughput sequencing methods sparked research on the MHC in non-model species, the evolutionary history of MHC gene structure is still poorly understood in birds. Here, to explore macroevolutionary patterns in the avian MHC architecture, we retrieved contigs with antigen-presenting MHC and MHC-related genes from available genomes based on third-generation sequencing. We identified: 1) an ancestral avian MHC architecture with compact size and tight linkage between MHC-I, MHC-IIA/IIB and MHC-related genes; 2) three major patterns of MHC-IIA/IIB unit organization in different avian lineages; and 3) lineage-specific gene translocation events (e.g., separation of the antigen-processing TAP genes from the MHC-I region in passerines), and 4) the presence of a single MHC-IIA gene copy in most taxa, showing evidence of strong purifying selection (low dN/dS ratio and low number of positively selected sites). Our study reveals long-term macroevolutionary patterns in the avian MHC architecture and provides the first evidence of important transitions in the genomic arrangement of the MHC region over the last 100 million years of bird evolution.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- *Correspondence: Ke He, ; Piotr Minias,
| | - Chun-hong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Peter Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Łódź, Poland
- *Correspondence: Ke He, ; Piotr Minias,
| |
Collapse
|
331
|
Zimerman RA, Ferrareze PAG, Cadegiani FA, Wambier CG, Fonseca DDN, de Souza AR, Goren A, Rotta LN, Ren Z, Thompson CE. Comparative Genomics and Characterization of SARS-CoV-2 P.1 (Gamma) Variant of Concern From Amazonas, Brazil. Front Med (Lausanne) 2022; 9:806611. [PMID: 35242782 PMCID: PMC8885995 DOI: 10.3389/fmed.2022.806611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND P.1 lineage (Gamma) was first described in the State of Amazonas, northern Brazil, in the end of 2020, and has emerged as a very important variant of concern (VOC) of SARS-CoV-2 worldwide. P.1 has been linked to increased infectivity, higher mortality, and immune evasion, leading to reinfections and potentially reduced efficacy of vaccines and neutralizing antibodies. METHODS The samples of 276 patients from the State of Amazonas were sent to a central referral laboratory for sequencing by gold standard techniques, through Illumina MiSeq platform. Both global and regional phylogenetic analyses of the successfully sequenced genomes were conducted through maximum likelihood method. Multiple alignments were obtained including previously obtained unique human SARS-CoV-2 sequences. The evolutionary histories of spike and non-structural proteins from ORF1a of northern genomes were described and their molecular evolution was analyzed for detection of positive (FUBAR, FEL, and MEME) and negative (FEL and SLAC) selective pressures. To further evaluate the possible pathways of evolution leading to the emergence of P.1, we performed specific analysis for copy-choice recombination events. A global phylogenomic analysis with subsampled P.1 and B.1.1.28 genomes was applied to evaluate the relationship among samples. RESULTS Forty-four samples from the State of Amazonas were successfully sequenced and confirmed as P.1 (Gamma) lineage. In addition to previously described P.1 characteristic mutations, we find evidence of continuous diversification of SARS-CoV-2, as rare and previously unseen P.1 mutations were detected in spike and non-structural protein from ORF1a. No evidence of recombination was found. Several sites were demonstrated to be under positive and negative selection, with various mutations identified mostly in P.1 lineage. According to the Pango assignment, phylogenomic analyses indicate all samples as belonging to the P.1 lineage. CONCLUSION P.1 has shown continuous evolution after its emergence. The lack of clear evidence for recombination and the positive selection demonstrated for several sites suggest that this lineage emergence resulted mainly from strong evolutionary forces and progressive accumulation of a favorable signature set of mutations.
Collapse
Affiliation(s)
| | | | | | - Carlos Gustavo Wambier
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | | | - Andy Goren
- Applied Biology, Inc., Irvine, CA, United States
| | - Liane Nanci Rotta
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Zhihua Ren
- Suzhou Kintor Pharmaceutical, Inc., Suzhou, China
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
332
|
Fernandes AP, Águeda-Pinto A, Pinheiro A, Rebelo H, Esteves PJ. Evolution of TRIM5 and TRIM22 in Bats Reveals a Complex Duplication Process. Viruses 2022; 14:v14020345. [PMID: 35215944 PMCID: PMC8879501 DOI: 10.3390/v14020345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/29/2022] Open
Abstract
The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.
Collapse
Affiliation(s)
- Alexandre P. Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Ana Águeda-Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Ana Pinheiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
- CIBIO/InBIO, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
- CITS—Centro de Investigac¸ão em Tecnologias da Saúde, Instituto Politécnico de Saúde do Norte (IPSN), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
333
|
Forni D, Sironi M, Cagliani R. Evolutionary history of type II transmembrane serine proteases involved in viral priming. Hum Genet 2022; 141:1705-1722. [PMID: 35122525 PMCID: PMC8817155 DOI: 10.1007/s00439-022-02435-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/15/2022] [Indexed: 11/24/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host–pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| |
Collapse
|
334
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
335
|
The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities. Cell Death Differ 2022; 29:293-305. [PMID: 34974533 PMCID: PMC8817008 DOI: 10.1038/s41418-021-00914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.
Collapse
|
336
|
Zhu X, Chen W, Ma C, Wang X, Sun J, Nie J, Shi J, Hu Y. Whole genome analysis identifies intra-serotype recombinants and positive selection sites of dengue virus in mainland China from 2015 to 2020. Virus Res 2022; 311:198705. [PMID: 35121087 DOI: 10.1016/j.virusres.2022.198705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immune selection pressure can drive the virus to mutate, so as to achieve immune escape and epidemic of the virus. Thus, surveillance of recombinants and positively selected mutants of the dengue virus (DENV) are vital for preventing and controlling the dengue fever outbreak. However, little is known about recombinants and positively selected mutants of circulating DENV strains in mainland China. In this study, those variants with recombination and adaptive evolutionary sites of circulating DENV strains were identified during 2015-2020. Phylogenetic analysis showed that the DENV-2 was the dominant epidemic serotype, and the dengue epidemic in China was closely related to the imported virus from Southeast Asian countries. Recombination analysis based on 291 complete genomes of naturally circulating DENV identified 10 new intra-serotype recombinant variants. Two or three recombination regions in a single dengue isolate were also observed. The breakpoints of recombinants were distributed in different regions of the genome. In particular, two recombinant strains (strain DENV-4/China/YN/15DGR394 (2015) and XLLM10666) with extremely large exchange fragments were detected. This large-scale gene fragment exchange (eight genomic regions) of strain DENV-4/China/YN/15DGR394 (2015) with substitutions at both the 5' and 3' ends of the genome, had never been described before. Moreover, selection pressure analyses revealed seven positive selection sites located in regions encoding the NS1, NS3 and NS5 proteins. Overall, this study is the first to report ten specific intra-serotype recombinants and seven positive selection sites of Chinese epidemic strains of DENV, which highlight their significance for DENV surveillance and effective control.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanxin Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Chunli Ma
- Kunming Medical University, Kunming, Yunnan, China
| | - Xin Wang
- Kunming Medical University, Kunming, Yunnan, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jianyun Nie
- Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
337
|
Martin KR, Mansfield KL, Savage AE. Adaptive evolution of major histocompatibility complex class I immune genes and disease associations in coastal juvenile sea turtles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211190. [PMID: 35154791 PMCID: PMC8825991 DOI: 10.1098/rsos.211190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.
Collapse
Affiliation(s)
- Katherine R. Martin
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Katherine L. Mansfield
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Anna E. Savage
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| |
Collapse
|
338
|
Maduna SN, Vivian-Smith A, Jónsdóttir ÓDB, Imsland AK, Klütsch CF, Nyman T, Eiken HG, Hagen SB. Mitogenomics of the suborder Cottoidei (Teleostei: Perciformes): Improved assemblies, mitogenome features, phylogeny, and ecological implications. Genomics 2022; 114:110297. [DOI: 10.1016/j.ygeno.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
339
|
Raman P, Rominger MC, Young JM, Molaro A, Tsukiyama T, Malik HS. Novel classes and evolutionary turnover of histone H2B variants in the mammalian germline. Mol Biol Evol 2022; 39:6517784. [PMID: 35099534 PMCID: PMC8857922 DOI: 10.1093/molbev/msac019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Histones and their posttranslational modifications facilitate diverse chromatin functions in eukaryotes. Core histones (H2A, H2B, H3, and H4) package genomes after DNA replication. In contrast, variant histones promote specialized chromatin functions, including DNA repair, genome stability, and epigenetic inheritance. Previous studies have identified only a few H2B variants in animals; their roles and evolutionary origins remain largely unknown. Here, using phylogenomic analyses, we reveal the presence of five H2B variants broadly present in mammalian genomes. Three of these variants have been previously described: H2B.1, H2B.L (also called subH2B), and H2B.W. In addition, we identify and describe two new variants: H2B.K and H2B.N. Four of these variants originated in mammals, whereas H2B.K arose prior to the last common ancestor of bony vertebrates. We find that though H2B variants are subject to high gene turnover, most are broadly retained in mammals, including humans. Despite an overall signature of purifying selection, H2B variants evolve more rapidly than core H2B with considerable divergence in sequence and length. All five H2B variants are expressed in the germline. H2B.K and H2B.N are predominantly expressed in oocytes, an atypical expression site for mammalian histone variants. Our findings suggest that H2B variants likely encode potentially redundant but vital functions via unusual chromatin packaging or nonchromatin functions in mammalian germline cells. Our discovery of novel histone variants highlights the advantages of comprehensive phylogenomic analyses and provides unique opportunities to study how innovations in chromatin function evolve.
Collapse
Affiliation(s)
- Pravrutha Raman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Mary C Rominger
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
- Whitman College, Walla Walla, Washington, 99362, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Antoine Molaro
- Genetics, Reproduction and Development (GReD) Institute, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Toshio Tsukiyama
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA
| |
Collapse
|
340
|
Baker EP, Sayegh R, Kohler KM, Borman W, Goodfellow CK, Brush ER, Barber MF. Evolution of host-microbe cell adherence by receptor domain shuffling. eLife 2022; 11:73330. [PMID: 35076392 PMCID: PMC8860441 DOI: 10.7554/elife.73330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Stable adherence to epithelial surfaces is required for colonization by diverse host-associated microbes. Successful attachment of pathogenic microbes to host cells via adhesin molecules is also the first step in many devastating infections. Despite the primacy of epithelial adherence in establishing host-microbe associations, the evolutionary processes that shape this crucial interface remain enigmatic. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) encompass a multifunctional family of vertebrate cell surface proteins which are recurrent targets of bacterial adhesins at epithelial barriers. Here, we show that multiple members of the primate CEACAM family exhibit evidence of repeated natural selection at protein surfaces targeted by bacteria, consistent with pathogen-driven evolution. Divergence of CEACAM proteins between even closely related great apes is sufficient to control molecular interactions with a range of bacterial adhesins. Phylogenetic analyses further reveal that repeated gene conversion of CEACAM extracellular domains during primate divergence plays a key role in limiting bacterial adhesin host tropism. Moreover, we demonstrate that gene conversion has continued to shape CEACAM diversity within human populations, with abundant human CEACAM1 variants mediating evasion of adhesins from pathogenic Neisseria. Together this work reveals a mechanism by which gene conversion shapes first contact between microbes and animal hosts. Trillions of bacteria live in and on the human body. Most of them are harmless but some can cause serious infections. To grow in or on the body, bacteria often attach to proteins on the surface of cells that make up the lining of tissues like the gut or the throat. In some cases, bacteria use these proteins to invade the cells causing an infection. Genetic mutations in the genes encoding these proteins that protect against infection are more likely to be passed on to future generations. This may lead to rapid spread of these beneficial genes in a population. A family of proteins called CEACAMs are frequent targets of infection-causing bacteria. These proteins have been shown to play a role in cancer progression. But they also play many helpful roles in the body, including helping transmit messages between cells, aiding cell growth, and helping the immune system recognize pathogens. Scientists are not sure if these multi-tasking CEACAM proteins can evolve to evade bacteria without affecting their other roles. Baker et al. show that CEACAM proteins targeted by bacteria have undergone rapid evolution in primates. In the experiments, human genes encoding CEACAMs were compared with equivalent genes from 19 different primates. Baker et al. found the changes in human and primate CEACAMs often occur through a process called gene conversion. Gene conversion occurs when DNA sections are copied and pasted from one gene to another. Using laboratory experiments, they showed that some of these changes enabled CEACAM proteins to prevent certain harmful bacteria from binding. The experiments suggest that some versions of CEACAM genes may protect humans or other primates against bacterial infections. Studies in natural populations are needed to test if this is the case. Learning more about how CEACAM proteins evolve and what they do may help scientists better understand the role they play in cancer and help improve cancer care. Studying CEACAM evolution may also help scientists understand how bacteria and other pathogens drive protein evolution in the body.
Collapse
Affiliation(s)
- EmilyClare P Baker
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Ryan Sayegh
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Kristin M Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Wyatt Borman
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Claire K Goodfellow
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Eden R Brush
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Matthew F Barber
- Department of Biology, University of Oregon, Eugene, United States
| |
Collapse
|
341
|
Individual copy number variation and extensive diversity between major MHC-DAB1 allelic lineages in the European bitterling. Immunogenetics 2022; 74:497-505. [PMID: 35015128 PMCID: PMC9467946 DOI: 10.1007/s00251-021-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Polymorphism of the major histocompatibility complex (MHC), DAB1 gene was characterized for the first time in the European bitterling (Rhodeus amarus), a freshwater fish employed in studies of host-parasite coevolution and mate choice, taking advantage of newly designed primers coupled with high-throughput amplicon sequencing. Across 221 genotyped individuals, we detected 1–4 variants per fish, with 28% individuals possessing 3–4 variants. We identified 36 DAB1 variants, and they showed high sequence diversity mostly located within predicted antigen-binding sites, and both global and codon-specific excess of non-synonymous mutations. Despite deep divergence between two major allelic lineages, functional diversity was surprisingly low (3 supertypes). Overall, these findings suggest the role of positive and balancing selection in promotion and long-time maintenance of DAB1 polymorphism. Further investigations will clarify the role of pathogen-mediated selection to drive the evolution of DAB1 variation.
Collapse
|
342
|
Xie B, Dashevsky D, Rokyta D, Ghezellou P, Fathinia B, Shi Q, Richardson MK, Fry BG. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins. BMC Biol 2022; 20:4. [PMID: 34996434 PMCID: PMC8742412 DOI: 10.1186/s12915-021-01208-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.
Collapse
Affiliation(s)
- Bing Xie
- Institute of Biology Leiden, Leiden University, 2333BE, Leiden, The Netherlands
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
- Australian National Insect Collection, Commonwealth Science and Industry Research Organization, ACT, Canberra, 2601 Australia
| | - Darin Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 24105 USA
| | - Parviz Ghezellou
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411 Iran
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, Yasouj, 75914 Iran
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 China
| | | | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
| |
Collapse
|
343
|
Abbas G, Zhang Y, Sun X, Chen H, Ren Y, Wang X, Ahmad MZ, Huang X, Li G. Molecular Characterization of Infectious Bronchitis Virus Strain HH06 Isolated in a Poultry Farm in Northeastern China. Front Vet Sci 2022; 8:794228. [PMID: 34977225 PMCID: PMC8716591 DOI: 10.3389/fvets.2021.794228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Spike (S) glycoprotein is an important virulent factor for coronaviruses (CoVs), and variants of CoVs have been characterized based on S gene analysis. We present phylogenetic relationship of an isolated infectious bronchitis virus (IBV) strain with reference to the available genome and protein sequences based on network, multiple sequence, selection pressure, and evolutionary fingerprinting analysis in People's Republic of China. One hundred and elven strains of CoVs i.e., Alphacoronaviruses (Alpha-CoVs; n = 12), Betacoronaviruses (Beta-CoVs; n = 37), Gammacoronaviruses (Gamma-CoVs; n = 46), and Deltacoronaviruses (Delta-CoVs; n = 16) were selected for this purpose. Phylogenetically, SARS-CoV-2 and SARS-CoVs clustered together with Bat-CoVs and MERS-CoV of Beta-CoVs (C). The IBV HH06 of Avian-CoVs was closely related to Duck-CoV and partridge S14, LDT3 (teal and chicken host). Beluga whale-CoV (SW1) and Bottlenose dolphin-CoVs of mammalian origin branched distantly from other animal origin viruses, however, making group with Avian-CoVs altogether into Gamma-CoVs. The motif analysis indicated well-conserved domains on S protein, which were similar within the same phylogenetic class and but variable at different domains of different origins. Recombination network tree indicated SARS-CoV-2, SARS-CoV, and Bat-CoVs, although branched differently, shared common clades. The MERS-CoVs of camel and human origin spread branched into a different clade, however, was closely associated closely with SARS-CoV-2, SARS-CoV, and Bat-CoVs. Whereas, HCoV-OC43 has human origin and branched together with bovine CoVs with but significant distant from other CoVs like SARS CoV-2 and SARS-CoV of human origin. These findings explain that CoVs' constant genetic recombination and evolutionary process that might maintain them as a potential veterinary and human epidemic threat.
Collapse
Affiliation(s)
- Ghulam Abbas
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowei Sun
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Chen
- College of Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Muhammad Zulfiqar Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, Pakistan
| | - Xiaodan Huang
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
344
|
Seabra SG, Libin PJK, Theys K, Zhukova A, Potter BI, Nebenzahl-Guimaraes H, Gorbalenya AE, Sidorov IA, Pimentel V, Pingarilho M, de Vasconcelos ATR, Dellicour S, Khouri R, Gascuel O, Vandamme AM, Baele G, Cuypers L, Abecasis AB. OUP accepted manuscript. Virus Evol 2022; 8:veac029. [PMID: 35478717 PMCID: PMC9035895 DOI: 10.1093/ve/veac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Zika virus (ZIKV) disease caused a public health emergency of international concern that started in February 2016. The overall number of ZIKV-related cases increased until November 2016, after which it declined sharply. While the evaluation of the potential risk and impact of future arbovirus epidemics remains challenging, intensified surveillance efforts along with a scale-up of ZIKV whole-genome sequencing provide an opportunity to understand the patterns of genetic diversity, evolution, and spread of ZIKV. However, a classification system that reflects the true extent of ZIKV genetic variation is lacking. Our objective was to characterize ZIKV genetic diversity and phylodynamics, identify genomic footprints of differentiation patterns, and propose a dynamic classification system that reflects its divergence levels. We analysed a curated dataset of 762 publicly available sequences spanning the full-length coding region of ZIKV from across its geographical span and collected between 1947 and 2021. The definition of genetic groups was based on comprehensive evolutionary dynamics analyses, which included recombination and phylogenetic analyses, within- and between-group pairwise genetic distances comparison, detection of selective pressure, and clustering analyses. Evidence for potential recombination events was detected in a few sequences. However, we argue that these events are likely due to sequencing errors as proposed in previous studies. There was evidence of strong purifying selection, widespread across the genome, as also detected for other arboviruses. A total of 50 sites showed evidence of positive selection, and for a few of these sites, there was amino acid (AA) differentiation between genetic clusters. Two main genetic clusters were defined, ZA and ZB, which correspond to the already characterized ‘African’ and ‘Asian’ genotypes, respectively. Within ZB, two subgroups, ZB.1 and ZB.2, represent the Asiatic and the American (and Oceania) lineages, respectively. ZB.1 is further subdivided into ZB.1.0 (a basal Malaysia sequence sampled in the 1960s and a recent Indian sequence), ZB.1.1 (South-Eastern Asia, Southern Asia, and Micronesia sequences), and ZB.1.2 (very similar sequences from the outbreak in Singapore). ZB.2 is subdivided into ZB.2.0 (basal American sequences and the sequences from French Polynesia, the putative origin of South America introduction), ZB.2.1 (Central America), and ZB.2.2 (Caribbean and North America). This classification system does not use geographical references and is flexible to accommodate potential future lineages. It will be a helpful tool for studies that involve analyses of ZIKV genomic variation and its association with pathogenicity and serve as a starting point for the public health surveillance and response to on-going and future epidemics and to outbreaks that lead to the emergence of new variants.
Collapse
Affiliation(s)
| | | | | | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 rue du Dr Roux, Paris F-75015, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25-28 rue du Dr Roux, Paris F-75015, France
| | | | - Hanna Nebenzahl-Guimaraes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | | | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Herestraat 49 - box 1030, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP 264/3, 50 av. F.D. Roosevelt, Bruxelles B-1050, Belgium
| | | | | | | | | | - Lize Cuypers
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| |
Collapse
|
345
|
Coelho LP, Alves R, del Río ÁR, Myers PN, Cantalapiedra CP, Giner-Lamia J, Schmidt TS, Mende DR, Orakov A, Letunic I, Hildebrand F, Van Rossum T, Forslund SK, Khedkar S, Maistrenko OM, Pan S, Jia L, Ferretti P, Sunagawa S, Zhao XM, Nielsen HB, Huerta-Cepas J, Bork P. Towards the biogeography of prokaryotic genes. Nature 2022; 601:252-256. [PMID: 34912116 PMCID: PMC7613196 DOI: 10.1038/s41586-021-04233-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.
Collapse
Affiliation(s)
- Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China. .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Álvaro Rodríguez del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Pernille Neve Myers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carlos P. Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Joaquín Giner-Lamia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Thomas Sebastian Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Daniel R. Mende
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Askarbek Orakov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Falk Hildebrand
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Earlham Institute, Norwich Research Park, Norwich, UK,Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | - Thea Van Rossum
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sofia K. Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Experimental and Clinical Research Center (ECRC), a joint venture of the Max Delbrück Centre (MDC) and Charité University Hospital, Berlin, Germany,Berlin Initiative of Health, Berlin, Germany
| | - Supriya Khedkar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Oleksandr M. Maistrenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shaojun Pan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
| | - Longhao Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
| | - Pamela Ferretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
| | | | - Jaime Huerta-Cepas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Max Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea. .,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
346
|
|
347
|
A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. Microbiol Spectr 2021; 9:e0129421. [PMID: 34851175 PMCID: PMC8635132 DOI: 10.1128/spectrum.01294-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Porcine parvovirus genotype 1 (PPV1) causes reproductive disorder in swine and is prevalent in China. Recently, six new genotypes of PPVs (PPV2 through PPV7) have also been detected in Chinese swine herds. However, the coinfection status of all these seven genotypes of PPVs (PPV1-7) in China was not clarified yet. In this study, we developed a panel of PPV1–7 PCR assays with satisfied specificity, sensitivity and reproducibility and then applied to the detection of PPV1–7 in 435 clinical samples collected from eight provinces of China in 2016–2020. A total of 55.40% samples (241 out of 435) were PPV positive, while PPV2 and PPV3 (both 22.53%) belonging to the genus of Tetraparvovirus were the most prevalent genotypes. Noticeably, PPV1–7 strains were more prevalent in nursery and finishing pigs than in suckling pigs. In addition, coinfection could be detected in all eight provinces and 27.36% (119/435) samples were coinfected with two to five genotypes of PPVs. Meanwhile, the coinfection of PPVs with PCV2 was 22.30% (97/435). Twenty complete genomes of representative PPV1–7 were determined, and phylogenetic analysis confirmed the genotyping results by sequence comparisons and PCR assays. Remarkably, the PPV7 HBTZ20180519-152 strain from domestic pig was recombined from parental JX15-like and JX38-like isolates from wild boars. Selective pressure analysis based on VP2 sequences of PPV1–7 showed that they were predominantly under negative selection, while few positive selection sites could be detected in VP2 of PPV7. Overall, this systematic investigation unveils high prevalence and coinfection of PPV1–7 in China from 2016 to 2020. IMPORTANCE Porcine parvoviruses (PPVs) are prevalent in China associating with reproductive failure in swine. The coinfection of seven genotypes of PPVs (PPV1-7) might have synergistic effects on PPV1 associated SMEDI syndrome. However, the coinfection status of PPV1–7 in China is not clear yet. This study showed that PPV1–7 strains are highly prevalent (55.40%) in China and mainly in nursery and finishing pigs in recent years. In addition, the coinfections of different genotypes of PPVs (27.36%) and PPVs with PCV2 (22.30%) are common. Geographic analysis indicated that different genotypes of PPVs are widely cocirculating in China. Intriguingly, a PPV7 strain from the domestic pig was detected as a recombinant from two wild boar isolates. Selective pressure analyses showed that PPV1–7 are mainly under purifying selection. Our findings provide the first systematic investigation on the prevalence, coinfection, and evolution of PPV1 through PPV7 in Chinese swineherds from 2016 to 2020.
Collapse
|
348
|
Fiddaman SR, Vinkler M, Spiro SG, Levy H, Emerling CA, Boyd AC, Dimopoulos EA, Vianna JA, Cole TL, Pan H, Fang M, Zhang G, Hart T, Frantz LAF, Smith AL. Adaptation and cryptic pseudogenization in penguin Toll-like Receptors. Mol Biol Evol 2021; 39:6460345. [PMID: 34897511 PMCID: PMC8788240 DOI: 10.1093/molbev/msab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
Collapse
Affiliation(s)
- Steven R Fiddaman
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University Prague, Czech Republic
| | - Simon G Spiro
- Wildlife Health Services, Zoological Society of London Regent's Park, London, UK
| | - Hila Levy
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | | | - Amy C Boyd
- Jenner Institute, University of Oxford Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford Oxford, UK
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Theresa L Cole
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark
| | - Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tom Hart
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Fogg Building, Queen Mary University of London Mile End Rd, Bethnal Green, London E1 4DQ, UK.,Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
349
|
Caraballo DA, Lema C, Novaro L, Gury-Dohmen F, Russo S, Beltrán FJ, Palacios G, Cisterna DM. A Novel Terrestrial Rabies Virus Lineage Occurring in South America: Origin, Diversification, and Evidence of Contact between Wild and Domestic Cycles. Viruses 2021; 13:v13122484. [PMID: 34960753 PMCID: PMC8707302 DOI: 10.3390/v13122484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Universitaria-Pabellón II, Buenos Aires C1428EHA, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053ABH, Argentina
- Correspondence:
| | - Cristina Lema
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| | - Laura Novaro
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Federico Gury-Dohmen
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Susana Russo
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Daniel M. Cisterna
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| |
Collapse
|
350
|
Shaffer CM, Michener DC, Vlasava NB, Chotkowski H, Tzanetakis IE. Population genetics of cycas necrotic stunt virus and the development of multiplex RT-PCR diagnostics. Virus Res 2021; 309:198655. [PMID: 34906655 DOI: 10.1016/j.virusres.2021.198655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Cycas necrotic stunt virus (CNSV) has an extensive host range and is detected in an accelerated pace around the globe in several agricultural crops. One of the plant species affected is peony (Paeonia lactiflora Pall.). The virus is asymptomatic in most peony cultivars, but there have been reports of symptoms in others. It is thus important to study CNSV and its population structure to gain insights into its evolution and epidemiology. The outputs of this study, in addition to the in-depth analysis of the virus population structure, include the development of a multiplex RT-PCR detection protocol that can amplify all published CNSV isolate sequences; allowing for accurate, reliable detection of the virus and safeguarding its susceptible, clonally-propagated hosts.
Collapse
Affiliation(s)
- Cullen M Shaffer
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | - David C Michener
- University of Michigan Matthaei Botanical Gardens & Nichols Arboretum, Ann Arbor, MI 48105, United States
| | | | | | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States.
| |
Collapse
|