301
|
Smith JP, Fonkoua LK, Moody TW. The Role of Gastrin and CCK Receptors in Pancreatic Cancer and other Malignancies. Int J Biol Sci 2016; 12:283-91. [PMID: 26929735 PMCID: PMC4753157 DOI: 10.7150/ijbs.14952] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gastrointestinal (GI) peptide gastrin is an important regulator of the release of gastric acid from the stomach parietal cells and it also plays an important role in growth of the gastrointestinal tract. It has become apparent that gastrin and its related peptide cholecystokinin (CCK) are also significantly involved with growth of GI cancers as well as other malignancies through activation of the cholecystokinin-B (CCK-B) receptor. Of interest, gastrin is expressed in the embryologic pancreas but not in the adult pancreas; however, gastrin becomes re-expressed in pancreatic cancer where it stimulates growth of this malignancy by an autocrine mechanism. Strategies to down-regulate gastrin or interfere with its interface with the CCK receptor with selective antibodies or receptor antagonists hold promise for the treatment of pancreatic cancer and other gastrin--responsive tumors.
Collapse
Affiliation(s)
- Jill P Smith
- 1. Department of Medicine, Georgetown University, Washington, DC, USA
| | - Lionel K Fonkoua
- 2. Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Terry W Moody
- 3. National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
302
|
Shi M, He X, Wei W, Wang J, Zhang T, Shen X. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway. Apoptosis 2016; 20:843-57. [PMID: 25690319 DOI: 10.1007/s10495-015-1106-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic processes. TNC mediated gemcitabine chemo-resistance via modulating cell apoptosis in pancreatic cancer. TNC resulted in the enrichment of pancreatic cancer cells in S-phase with a concomitant decrease in number of cells in G1 phase. The present study indicated TNC in cellular matrix induces an activation of ERK1/2/NF-κB/p65 signaling cascade and thereby mediates resistance to apoptosis in pancreatic cancer. TNC could serve as a diagnostic marker and predictor of gemcitabine response and potentially as a target for chemotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Meiyan Shi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
303
|
Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1616781. [PMID: 26881012 PMCID: PMC4735911 DOI: 10.1155/2016/1616781] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy.
Collapse
|
304
|
Mettu NB, Abbruzzese JL. Clinical Insights Into the Biology and Treatment of Pancreatic Cancer. J Oncol Pract 2016; 12:17-23. [DOI: 10.1200/jop.2015.009092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.
Collapse
|
305
|
Li FF, Chen BJ, Li W, Li L, Zha M, Zhou S, Bachem MG, Sun ZL. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell. J Diabetes Res 2016; 2016:6924593. [PMID: 26697502 PMCID: PMC4678093 DOI: 10.1155/2016/6924593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis.
Collapse
Affiliation(s)
- Feng-Fei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Bi-Jun Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Zha
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - S. Zhou
- Department of Clinical Chemistry, University Hospital Ulm, 89081 Ulm, Germany
| | - M. G. Bachem
- Department of Clinical Chemistry, University Hospital Ulm, 89081 Ulm, Germany
| | - Zi-Lin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
- *Zi-Lin Sun:
| |
Collapse
|
306
|
Subclinical Inflammation and Endothelial Dysfunction in Patients with Chronic Pancreatitis and Newly Diagnosed Pancreatic Cancer. Dig Dis Sci 2016; 61:1121-9. [PMID: 26597191 PMCID: PMC4789226 DOI: 10.1007/s10620-015-3972-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have suggested that various cytokines may be important players in the development and progression of chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC). AIMS We studied endothelial dysfunction and subclinical inflammation in patients with newly diagnosed pancreatic adenocarcinoma and CP. METHODS A total of 45 patients were included in the present investigation, 27 with CP and 18 with PC. In addition, the study included 13 age- and body weight-matched healthy subjects served as controls. In all subjects, plasma adiponectin, TNF-alfa, interleukin 6 (IL-6), interleukin 1beta (IL-1β), E-selectin, thrombomodulin, adhesion molecules ICAM and VCAM, and endothelin-1 were assessed. RESULTS PC and CP patients as compared with controls had significantly greater plasma adiponectin (13,292 and 12,227 vs 5408 ng/ml; p < 0.0003), TNF-alfa (22.1 and 23.1 vs 13 pg/ml; p < 0.0002), and IL-6 (6.6 and 7.3 vs 3.3 pg/ml; p < 0.0001). Moreover, there was significantly higher concentration of ICAM (931 and 492 vs 290 ng/ml; p < 0.005) and VCAM (1511 and 1080 vs 840 ng/ml; p < 0.01) in PC and CP patients. When PC and CP patients with and without diabetes were considered separately, there was no difference in adiponectin, cytokines, and parameters of endothelial dysfunction. CONCLUSION In summary, our data indicate that patients with CP and PC express high levels of several cytokines compared with healthy individuals, especially adiponectin, TNF-α and IL-6. Serum TNF-α and ICAM concentrations coordinately increase in advanced CP. Furthermore, especially in PC subjects, elevated markers of endothelial dysfunction are present. This study provides additional evidence that changes in inflammatory cytokine and adhesion molecules in PC and CP are not likely related to endocrine disorders.
Collapse
|
307
|
Strobel O, Dadabaeva N, Felix K, Hackert T, Giese NA, Jesenofsky R, Werner J. Isolation and culture of primary human pancreatic stellate cells that reflect the context of their tissue of origin. Langenbecks Arch Surg 2015; 401:89-97. [PMID: 26712717 DOI: 10.1007/s00423-015-1343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. PURPOSE (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. METHODS PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. RESULTS Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. CONCLUSIONS Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Collapse
Affiliation(s)
- Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Nigora Dadabaeva
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Klaus Felix
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Ralf Jesenofsky
- Department of Internal Medicine 2, University Medicine Mannheim, Mannheim, Germany
| | - Jens Werner
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
308
|
Saini S, Jacob TG, Bhardwaj D, Roy TS. Age-related changes in the ductular system and stellate cells of human pancreas. J ANAT SOC INDIA 2015. [DOI: 10.1016/j.jasi.2015.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
309
|
Lakiotaki E, Sakellariou S, Evangelou K, Liapis G, Patsouris E, Delladetsima I. Vascular and ductal elastotic changes in pancreatic cancer. APMIS 2015; 124:181-7. [DOI: 10.1111/apm.12482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Eleftheria Lakiotaki
- First Department of Pathology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| | - Stratigoula Sakellariou
- First Department of Pathology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| | - Kostantinos Evangelou
- Molecular Carcinogenesis Group; Laboratory of Histology-Embryology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| | - George Liapis
- First Department of Pathology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| | - Efstratios Patsouris
- First Department of Pathology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| | - Ioanna Delladetsima
- First Department of Pathology; Medical School; National and Kapodistrian University of Athens; Goudi Greece
| |
Collapse
|
310
|
Akinleye A, Iragavarapu C, Furqan M, Cang S, Liu D. Novel agents for advanced pancreatic cancer. Oncotarget 2015; 6:39521-37. [PMID: 26369833 PMCID: PMC4741843 DOI: 10.18632/oncotarget.3999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is relatively insensitive to conventional chemotherapy. Therefore, novel agents targeting dysregulated pathways (MAPK/ERK, EGFR, TGF-β, HEDGEHOG, NOTCH, IGF, PARP, PI3K/AKT, RAS, and Src) are being explored in clinical trials as monotherapy or in combination with cytotoxic chemotherapy. This review summarizes the most recent advances with the targeted therapies in the treatment of patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Chaitanya Iragavarapu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Muhammad Furqan
- Division of Hematology/Oncology, Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Department of Oncology, Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
311
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett 2015; 381:194-200. [PMID: 26571462 DOI: 10.1016/j.canlet.2015.10.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) are responsible for producing the collagenous stroma in pancreatic cancer. Findings from the majority of in vitro and in vivo studies to date indicate that PSCs interact with cancer cells as well as with other cellular elements in the stroma including immune cells, endothelial cells and neuronal cells to set up a growth permissive microenvironment for pancreatic tumours. However, two recent studies reporting a protective effect of myofibroblasts in pancreatic cancer have served to remind researchers of the possibility that the role of PSCs in this disease may be context and time-dependent, such that any possible early protective role of PSCs is subverted in later stages by the ability of cancer cells to turn PSCs into cancer-promoting aides. This concept is supported by the development in recent years of several novel therapeutic approaches targeting the stroma that have been successfully applied in pre-clinical settings to inhibit disease progression. A multi-pronged approach aimed at tumour cells as well as stromal elements may be the key to achieving better clinical outcomes in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
| |
Collapse
|
312
|
Hu H, Jiao F, Han T, Wang LW. Functional significance of macrophages in pancreatic cancer biology. Tumour Biol 2015; 36:9119-26. [PMID: 26411672 PMCID: PMC4689759 DOI: 10.1007/s13277-015-4127-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease that is usually diagnosed at late stage with few effective therapies. Despite the rapid progress on the genomics and proteomics of the neoplastic cells, therapies that targeted the pancreatic cancer cells proved to be inefficient, which promoted the researchers to turn their attentions to the microenvironment. Currently, various studies had proposed the microenvironment to be a contributing factor for PDA and pervasive researches showed that macrophages within the malignancy correlate with the malignant phenotype of the disease and were reported to a new therapeutic target. Generally, the pro-tumoral effects of macrophages can be summarized as angiogenesis promotion, immunosuppression, matrix remodeling and so on. Hence, a comprehensive understanding of the biologic behaviors of macrophages and their critical role in PDA development may provide new directions for the managements of the lethal disease. In this review, we will summarize the recent advancements on macrophages as pivotal players in PDA biology and the current knowledge about anti-macrophages as a novel strategy against cancer, with the expectation that more efficient therapies will be developed in the near future.
Collapse
Affiliation(s)
- Hai Hu
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Feng Jiao
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Ting Han
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Li-Wei Wang
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China.
| |
Collapse
|
313
|
Geng ZM, Li QH, Li WZ, Zheng JB, Shah V. Activated human hepatic stellate cells promote growth of human hepatocellular carcinoma in a subcutaneous xenograft nude mouse model. Cell Biochem Biophys 2015; 70:337-47. [PMID: 24676678 DOI: 10.1007/s12013-014-9918-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor cell microenvironment defines cancer development, also in hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) are believed to be the key contributors to tumor microenvironment in HCC, yet their precise role in cancer progression is still unclear. The aim of this study was to determine the effect of human HSCs on progression of HCC using a subcutaneous xenograft nude mouse model. Nude mice were stratified to receive subcutaneous injections of human HCC cell line HepG2 and human HSC line LX-2 (HepG2 + LX-2), HepG2 alone, LX-2 alone, or phosphate-buffered saline. Tumor growth was assessed by measuring tumor size. After 30 days, final tumor size, weight, and histology were assessed. Compared with mice that were only injected HepG2 cells, mice injected with HepG2 + LX-2 exhibited more rapid tumor growth, increased tumor size and weight, higher tumor cell numbers due to increased proliferation and reduced apoptosis, increased fibrotic bands containing LX-2 cells, and increased tumor angiogenesis. In conclusion, HSCs play a significant role in promotion of HCC growth.
Collapse
Affiliation(s)
- Zhi-min Geng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 Yan Ta Xi Lu, Xi'an, 710061, People's Republic of China,
| | | | | | | | | |
Collapse
|
314
|
Khan S, Jaggi M, Chauhan SC. Revisiting stroma in pancreatic cancer. Oncoscience 2015; 2:819-20. [PMID: 26682261 PMCID: PMC4671936 DOI: 10.18632/oncoscience.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
315
|
Torres C, Linares A, Alejandre MJ, Palomino-Morales RJ, Caba O, Prados J, Aránega A, Delgado JR, Irigoyen A, Martínez-Galán J, Ortuño FM, Rojas I, Perales S. Prognosis Relevance of Serum Cytokines in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:518284. [PMID: 26346854 PMCID: PMC4539422 DOI: 10.1155/2015/518284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
The overall survival of patients with pancreatic ductal adenocarcinoma is extremely low. Although gemcitabine is the standard used chemotherapy for this disease, clinical outcomes do not reflect significant improvements, not even when combined with adjuvant treatments. There is an urgent need for prognosis markers to be found. The aim of this study was to analyze the potential value of serum cytokines to find a profile that can predict the clinical outcome in patients with pancreatic cancer and to establish a practical prognosis index that significantly predicts patients' outcomes. We have conducted an extensive analysis of serum prognosis biomarkers using an antibody array comprising 507 human cytokines. Overall survival was estimated using the Kaplan-Meier method. Univariate and multivariate Cox's proportional hazard models were used to analyze prognosis factors. To determine the extent that survival could be predicted based on this index, we used the leave-one-out cross-validation model. The multivariate model showed a better performance and it could represent a novel panel of serum cytokines that correlates to poor prognosis in pancreatic cancer. B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF expressions portend a poor prognosis for patients with pancreatic cancer and these cytokines could represent novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Carolina Torres
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | - Ana Linares
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | - Maria José Alejandre
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | | | - Octavio Caba
- Department of Health Sciences, University of Jaen, 23071 Jaen, Spain
| | - Jose Prados
- Department of Human Anatomy and Embryology, University of Granada, 18012 Granada, Spain
| | - Antonia Aránega
- Department of Human Anatomy and Embryology, University of Granada, 18012 Granada, Spain
| | - Juan R. Delgado
- Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | - Antonio Irigoyen
- Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | | | - Francisco M. Ortuño
- Department of Computer Architecture and Computer Technology (CITIC-UGR), University of Granada, 18071 Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology (CITIC-UGR), University of Granada, 18071 Granada, Spain
| | - Sonia Perales
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
316
|
Abstract
OBJECTIVE We describe the first mouse model of pancreatic intraepithelial neoplasia (PanIN) lesions induced by alcohol in the presence and absence of chronic pancreatitis. METHODS Pdx1-Cre;LSL-K-ras mice were exposed to Lieber-DeCarli alcohol diet for 6 weeks with cerulein injections. The PanIN lesions and markers of fibrosis, inflammation, histone deacetylation, epithelial-to-mesenchymal transition (EMT), and cancer stemness were measured by immunohistochemistry and Western. RESULTS Exposure of Pdx1-Cre;LSL-K-ras mice to an alcohol diet significantly stimulated fibrosis and slightly but not significantly increased the level of PanIN lesions associated with an increase in tumor-promoting M2 macrophages. Importantly, the alcohol diet did not increase activation of stellate cells. Alcohol diet and cerulein injections resulted in synergistic and additive effects on PanIN lesion and M2 macrophage phenotype induction, respectively. Cerulein pancreatitis caused stellate cell activation, EMT, and cancer stemness in the pancreas. Pancreatitis caused histone deacetylation, which was promoted by the alcohol diet. Pancreatitis increased EMT and cancer stemness markers, which were not further affected by the alcohol diet. CONCLUSIONS The results suggest that alcohol has independent effects on promotion of PDAC associated with fibrosis formed through a stellate cell-independent mechanism and that it further promotes early PDAC and M2 macrophage induction in the context of chronic pancreatitis.
Collapse
|
317
|
Neural Regulation of Pancreatic Cancer: A Novel Target for Intervention. Cancers (Basel) 2015; 7:1292-312. [PMID: 26193320 PMCID: PMC4586771 DOI: 10.3390/cancers7030838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment is known to play a pivotal role in driving cancer progression and governing response to therapy. This is of significance in pancreatic cancer where the unique pancreatic tumor microenvironment, characterized by its pronounced desmoplasia and fibrosis, drives early stages of tumor progression and dissemination, and contributes to its associated low survival rates. Several molecular factors that regulate interactions between pancreatic tumors and their surrounding stroma are beginning to be identified. Yet broader physiological factors that influence these interactions remain unclear. Here, we discuss a series of preclinical and mechanistic studies that highlight the important role chronic stress plays as a physiological regulator of neural-tumor interactions in driving the progression of pancreatic cancer. These studies propose several approaches to target stress signaling via the β-adrenergic signaling pathway in order to slow pancreatic tumor growth and metastasis. They also provide evidence to support the use of β-blockers as a novel therapeutic intervention to complement current clinical strategies to improve cancer outcome in patients with pancreatic cancer.
Collapse
|
318
|
Heller A, Gaida MM, Männle D, Giese T, Scarpa A, Neoptolemos JP, Hackert T, Strobel O, Hoheisel JD, Giese NA, Bauer AS. Stratification of pancreatic tissue samples for molecular studies: RNA-based cellular annotation procedure. Pancreatology 2015; 15:423-31. [PMID: 26118650 DOI: 10.1016/j.pan.2015.05.480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/30/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Meaningful profiling of pancreatic cancer samples is particularly challenging due to their complex cellular composition. Beyond tumor cells, surgical biopsies contain desmoplastic stroma with infiltrating inflammatory cells, adjacent normal parenchyma, and "non-pancreatic tissues". The risk of misinterpretation rises when the heterogeneous cancer tissues are sub-divided into smaller fragments for multiple analytic procedures. Pre-analytic histological evaluation is the best option to characterize pancreatic tissue samples. Our aim was to develop a complement or alternative procedure to determine the cellular composition of pancreatic cancerous biopsies, basing on intra-analytic molecular annotation. A standard process for sample stratification at a molecular level does not yet exist. Particularly in the case of retrospective or data depository-based studies, when hematoxylin-eosin stained sections are not available, it supports the correct interpretation of expression profiles. METHODS A five-gene transcriptional signature (RNACellStrat) was defined that allows cell type-specific stratification of pancreatic tissues. Testing biopsy material from biobanks with this procedure demonstrated high correspondence of molecular (qRT-PCR and microarray) and histologic (hematoxylin-eosin stain) evaluations. RESULTS Notably, about a quarter of randomly selected samples (tissue fragments) were exposed as inappropriate for subsequent clinico-pathological interpretation. CONCLUSIONS Via immediate intra-analytical procedure, our RNA-based stratification RNACellStrat increases the accuracy and reliability of the conclusions drawn from diagnostic and prognostic molecular information.
Collapse
Affiliation(s)
- Anette Heller
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - D Männle
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Aldo Scarpa
- Department of Pathology and ARC-NET Research Centre, University of Verona, Verona, Italy
| | - John P Neoptolemos
- National Institute for Health Research, Pancreas Biomedical Research Unit and the Liverpool Experimental Cancer Medicine Centre, Liverpool, UK
| | - Thilo Hackert
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Research Cancer Center, Heidelberg, Germany
| | - Nathalia A Giese
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Andrea S Bauer
- Functional Genome Analysis, German Research Cancer Center, Heidelberg, Germany
| |
Collapse
|
319
|
Abstract
The abundant stromal/desmoplastic reaction, a characteristic feature of a majority of pancreatic adenocarcinomas (PDAC), has only recently been receiving some attention regarding its possible role in the pathobiology of pancreatic cancer. It is now well established that the cells predominantly responsible for producing the collagenous stroma are pancreatic stellate cells (PSCs). In addition to extracellular matrix proteins, the stroma also exhibits cellular elements including, immune cells, endothelial cells and neural cells. Evidence is accumulating to indicate the presence of significant interactions between PSCs and cancer cells as well as between PSCs and other cell types in the stroma. The majority of research reports to date, using in vitro and in vivo approaches, suggest that these interactions facilitate local growth as well as distant metastasis of pancreatic cancer, although a recent study using animals depleted of myofibroblasts has raised some questions regarding the central role of myofibroblasts in cancer progression. Nonetheless, novel therapeutic strategies have been assessed, mainly in the pre-clinical setting, in a bid to interrupt stromal-tumour interactions and inhibit disease progression. The next important challenge is for the translation of such pre-clinical strategies to the clinical situation so as to improve the outcome of patients with pancreatic cancer.
Collapse
|
320
|
Khan S, Ebeling MC, Chauhan N, Thompson PA, Gara RK, Ganju A, Yallapu MM, Behrman SW, Zhao H, Zafar N, Singh MM, Jaggi M, Chauhan SC. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer Res 2015; 75:2292-304. [PMID: 25840985 PMCID: PMC4452412 DOI: 10.1158/0008-5472.can-14-2397] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/21/2015] [Indexed: 12/29/2022]
Abstract
The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mara C Ebeling
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, South Dakota
| | - Rishi K Gara
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Haotian Zhao
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, Tennessee
| | | | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
321
|
Moir JAG, Mann J, White SA. The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol 2015; 24:232-8. [PMID: 26080604 DOI: 10.1016/j.suronc.2015.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/11/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The prognosis of pancreatic cancer remains desperately poor, with little progress made over the past 30 years despite the development of new combination chemotherapy regimens. Stromal activity is especially prominent in the tissue surrounding pancreatic tumours, and has a profound influence in dictating tumour development and dissemination. Pancreatic stellate cells (PaSCs) have a key role in this tumour microenvironment, and have been the subject of much research in the past decade. This review examines the relationship between PaSCs and cancer cells. METHODS A comprehensive literature search was performed of multiple databases up to March 2014, including Medline, Pubmed and Google Scholar. RESULTS A complex bidirectional interplay exists between PaSCs and cancer cells, resulting in a perpetuating loop of increased activity and an overriding pro-tumorigenic effect. This involves a number of signalling pathways that also impacts on other stromal components and vasculature, contributing to chemoresistance. The Reverse Warburg Effect is also introduced as a novel concept in tumour stroma. CONCLUSION This review highlights the pancreatic tumour microenvironment, and in particular PaSCs, as an ideal target for therapeutics. There are a number of cellular processes involving PaSCs which could hold the key to more effectively treating pancreatic cancer. The feasibility of targeting these pathways warrant further in depth investigation, with the aim of reducing the aggressiveness of pancreatic cancer and improving chemodelivery.
Collapse
Affiliation(s)
- John A G Moir
- Freeman Hospital, Department of HPB and Transplant Surgery, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Fibrosis Lab, Newcastle upon Tyne, United Kingdom.
| | - Jelena Mann
- Institute of Cellular Medicine, Fibrosis Lab, Newcastle upon Tyne, United Kingdom
| | - Steve A White
- Freeman Hospital, Department of HPB and Transplant Surgery, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
322
|
Pandol SJ, Edderkaoui M. What are the macrophages and stellate cells doing in pancreatic adenocarcinoma? Front Physiol 2015; 6:125. [PMID: 26029109 PMCID: PMC4432577 DOI: 10.3389/fphys.2015.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease characterized by a dense desmoplastic stroma. Chemo- and radio-therapeutic strategies based on targeting cancer cells have failed in improving the outcome of this cancer suggesting important roles for stroma in therapy resistance. Cells in the tumor stroma have been shown to regulate proliferation, resistance to apoptosis and treatments, epithelial to mesenchymal transition (EMT) and stemness of cancer cells. Stellate cells in their activated state have been thought over the past decade to only have tumor promoting roles. However, recent findings suggest that stellate cells may have protective roles as well. The present review highlights the latest findings on the role of two major components of tumor stroma, pancreatic stellate cells and macrophages, in promoting or inhibiting pancreatic cancer, focused on their effects on EMT and cancer stemness.
Collapse
Affiliation(s)
- Stephen J Pandol
- Departments of Medicine and Biological Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Veterans Affairs Greater Los Angeles Healthcare System and University of California, Los Angeles Los Angeles, CA, USA
| | - Mouad Edderkaoui
- Departments of Medicine and Biological Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Veterans Affairs Greater Los Angeles Healthcare System and University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
323
|
Kurosawa J, Tawada K, Mikata R, Ishihara T, Tsuyuguchi T, Saito M, Shimofusa R, Yoshitomi H, Ohtsuka M, Miyazaki M, Yokosuka O. Prognostic relevance of apparent diffusion coefficient obtained by diffusion-weighted MRI in pancreatic cancer. J Magn Reson Imaging 2015; 42:1532-7. [DOI: 10.1002/jmri.24939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jo Kurosawa
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Katsunobu Tawada
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Rintaro Mikata
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Takeshi Ishihara
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Toshio Tsuyuguchi
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Masayoshi Saito
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Ryota Shimofusa
- Department of Radiology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
324
|
Sclafani F, Iyer R, Cunningham D, Starling N. Management of metastatic pancreatic cancer: Current treatment options and potential new therapeutic targets. Crit Rev Oncol Hematol 2015; 95:318-36. [PMID: 25921418 DOI: 10.1016/j.critrevonc.2015.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a malignancy with a poor prognosis, with the majority of patients diagnosed with advanced disease on presentation. Treatment options remain limited with little progress over the last 40 years. This review will focus on the current management of metastatic pancreatic ductal adenocarcinoma, with a discussion of new and future treatment strategies based on an improved understanding of tumour biology and mechanisms of pathogenesis.
Collapse
Affiliation(s)
| | - Ridhima Iyer
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | | | | |
Collapse
|
325
|
Liu Y, Du L. Role of pancreatic stellate cells and periostin in pancreatic cancer progression. Tumour Biol 2015; 36:3171-7. [PMID: 25840689 DOI: 10.1007/s13277-015-3386-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and one of the five most lethal malignancies characterized by prominent desmoplastic reaction. Accumulating evidences indicate that tumor desmoplasia plays a pivotal role in PDAC progression, and it has been largely ignored until recent times. It has now been unequivocally shown that pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Periostin, also known as osteoblast-specific factor 2, is a secretory protein and originally identified as an osteoblast-specific factor that expressed in periosteum. Periostin is exclusively produced by activated PSCs, and periostin overexpression presents in various malignant tumors and closely relates with disease progression. In addition, periostin has been suggested to stimulate pancreatic cancer cells proliferation and enhance their resistance to serum starvation and hypoxia. Therefore, the interplay between cancer cells and stromal cells plays a vital role in PDAC development. However, the function of periostin in pancreatic cancer development is controversial. This review summarizes existing knowledge about the role of PSCs in cancer stroma production, the interaction between PSCs and pancreatic cancer cells, tumor angiogenesis, and hypoxic microenvironment, with particular focus on the expression and function as well as signaling pathways of periostin in PDAC cells and PSCs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China
| | | |
Collapse
|
326
|
Sharbeen G, McCarroll J, Goldstein D, Phillips PA. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer. Front Nutr 2015; 2:10. [PMID: 25988138 PMCID: PMC4428371 DOI: 10.3389/fnut.2015.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches are urgently needed to tackle this devastating disease. The base excision repair (BER) pathway has been identified as a predictor of therapeutic response, prognostic factor, and therapeutic target in a variety of cancers. This review will discuss our current understanding of BER in PDA and its potential to improve PDA treatment.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney, NSW , Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| |
Collapse
|
327
|
Lastraioli E, Perrone G, Sette A, Fiore A, Crociani O, Manoli S, D'Amico M, Masselli M, Iorio J, Callea M, Borzomati D, Nappo G, Bartolozzi F, Santini D, Bencini L, Farsi M, Boni L, Di Costanzo F, Schwab A, Onetti Muda A, Coppola R, Arcangeli A. hERG1 channels drive tumour malignancy and may serve as prognostic factor in pancreatic ductal adenocarcinoma. Br J Cancer 2015; 112:1076-87. [PMID: 25719829 PMCID: PMC4366888 DOI: 10.1038/bjc.2015.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Background: hERG1 channels are aberrantly expressed in human cancers. The expression, functional role and clinical significance of hERG1 channels in pancreatic ductal adenocarcinoma (PDAC) is lacking. Methods: hERG1 expression was tested in PDAC primary samples assembled as tissue microarray by immunohistochemistry using an anti-hERG1 monoclonal antibody (α-hERG1-MoAb). The functional role of hERG1 was studied in PDAC cell lines and primary cultures. ERG1 expression during PDAC progression was studied in Pdx-1-Cre,LSL-KrasG12D/+,LSL-Trp53R175H/+ transgenic (KPC) mice. ERG1 expression in vivo was determined by optical imaging using Alexa-680-labelled α-hERG1-MoAb. Results: (i) hERG1 was expressed at high levels in 59% of primary PDAC; (ii) hERG1 blockade decreased PDAC cell growth and migration; (iii) hERG1 was physically and functionally linked to the Epidermal Growth Factor-Receptor pathway; (iv) in transgenic mice, ERG1 was expressed in PanIN lesions, reaching high expression levels in PDAC; (v) PDAC patients whose primary tumour showed high hERG1 expression had a worse prognosis; (vi) the α-hERG1-MoAb could detect PDAC in vivo. Conclusions: hERG1 regulates PDAC malignancy and its expression, once validated in a larger cohort also comprising of late-stage, non-surgically resected cases, may be exploited for diagnostic and prognostic purposes in PDAC either ex vivo or in vivo.
Collapse
Affiliation(s)
- E Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - G Perrone
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Sette
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - A Fiore
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - O Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - S Manoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M D'Amico
- 1] Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy [2] DI.V.A.L Toscana Srl, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - M Masselli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - J Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M Callea
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - D Borzomati
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - G Nappo
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - F Bartolozzi
- Casa di Cura Villa Margherita, Viale di Villa Massimo 48, Rome 00161, Italy
| | - D Santini
- Department of Medical Oncology, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - L Bencini
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Farsi
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - L Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria Careggi/Istituto Toscano Tumori, Largo Brambilla 3, Florence 50134, Italy
| | - F Di Costanzo
- Department of Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Schwab
- Physiologisches Institut II, University of Münster, Robert-Koch-Str. 27b, Münster D-48149, Germany
| | - A Onetti Muda
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - R Coppola
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| |
Collapse
|
328
|
Lucas T, Benihoud K, Vigant F, Schmidt CQA, Bachem MG, Simmet T, Kochanek S. Hexon modification to improve the activity of oncolytic adenovirus vectors against neoplastic and stromal cells in pancreatic cancer. PLoS One 2015; 10:e0117254. [PMID: 25692292 PMCID: PMC4332860 DOI: 10.1371/journal.pone.0117254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety.
Collapse
Affiliation(s)
- Tanja Lucas
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - Karim Benihoud
- Univ. Paris-Sud, Orsay Cedex, France and CNRS UMR 8203, Institut Gustave Roussy, Villejuif Cedex, France
| | - Frédéric Vigant
- Univ. Paris-Sud, Orsay Cedex, France and CNRS UMR 8203, Institut Gustave Roussy, Villejuif Cedex, France
| | - Christoph Q. Andreas Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
- Tierforschungszentrum, Ulm University, Ulm, Germany
| | - Max G. Bachem
- Department of Clinical Chemistry, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
329
|
Apte MV, Pirola RC, Wilson JS. Pancreatic Stellate Cells. STELLATE CELLS IN HEALTH AND DISEASE 2015:271-306. [DOI: 10.1016/b978-0-12-800134-9.00016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
330
|
Zhu J, Thakolwiboon S, Liu X, Zhang M, Lubman DM. Overexpression of CD90 (Thy-1) in pancreatic adenocarcinoma present in the tumor microenvironment. PLoS One 2014; 9:e115507. [PMID: 25536077 PMCID: PMC4275230 DOI: 10.1371/journal.pone.0115507] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/24/2014] [Indexed: 01/15/2023] Open
Abstract
CD90 (Thy-1) plays important roles in oncogenesis and shows potential as a candidate marker for cancer stem cells (CSCs) in various malignancies. Herein, we investigated the expression of CD90 in pancreatic adenocarcinoma (PDAC), with a comparison to normal pancreas and non-malignant pancreatic disease, by immunohistochemical (IHC) analysis of tissue microarrays containing 183 clinical tissue specimens. Statistical analysis was performed to evaluate the correlation between CD90 expression and the major clinicopathological factors after adjustment of age and gender. The IHC data showed that CD90 was significantly overexpressed in PDAC and its metastatic cancers as compared to chronic pancreatitis and benign islet tumors, while it was negative in normal pancreas and 82.7% of adjacent normal pancreas tissues. The abundant CD90 expression was predominantly present in PDAC stroma, such as fibroblasts and vascular endothelial cells, which could serve as a promising marker to distinguish pancreatic adenocarcinoma from normal pancreas and non-malignant pancreatic diseases. Double immunostaining of CD90 with CD24, a CSC marker for PDAC, showed that there was little overlap between these two markers. However, CD90+ fibroblast cells were clustered around CD24+ malignant ducts, suggesting that CD90 may be involved in the tumor-stroma interactions and promote pancreatic cancer development. Furthermore, CD90 mostly overlapped with α-smooth muscle actin (αSMA, a marker of activated pancreatic stellate cells (PSCs)) in PDAC stroma, which demonstrated that CD90+ stromal cells consist largely of activated PSCs. Double immunostaining of CD90 and a vascular endothelial cell marker CD31 demonstrated that CD90 expression on vascular endothelial cells was significantly increased in PDACs as compared to normal pancreas and non-malignant pancreatic diseases. Our findings suggest that CD90 could serve as a promising marker for pancreatic adenocarcinoma where desmoplastic stroma plays an important role in tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States of America
| | - Smathorn Thakolwiboon
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States of America
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Xinhua Liu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States of America
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Zhang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States of America
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
331
|
Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 2014; 5:78-94. [PMID: 24393789 PMCID: PMC3960190 DOI: 10.18632/oncotarget.1569] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advanced pancreatic ductal adenocarcinoma (PDAC) and hepatocellular carcinoma (HCC) are non-curable diseases with a particularly poor prognosis. Over the last decade, research has increasingly focused on the microenvironment surrounding cancer cells, and its role in tumour development and progression. PDAC and HCC differ markedly regarding their pathological features: PDAC are typically stromal-predominant, desmoplastic, poorly vascularized tumours, whereas HCC are cellular and highly vascularized. Despite these very different settings, PDAC and HCC share transforming growth factor-β (TGF-β) as a common key-signalling mediator, involved in epithelial-to-mesenchymal transition, invasion, and stroma-tumour dialogue. Recently, novel drugs blocking the TGF-β pathway have entered clinical evaluation demonstrating activity in patients with advanced PDAC and HCC. TGF-β signalling is complex and mediates both pro- and anti-tumoural activities in cancer cells depending on their context, in space and time, and their microenvironment. In this review we provide a comprehensive overview of the role of the TGF-β pathway and its deregulation in PDAC and HCC development and progression at the cellular and microenvironment levels. We also summarize key preclinical and clinical data on the role of TGF-β as a target for therapeutic intervention in PDAC and HCC, and explore perspectives to optimize TGF-β inhibition therapy.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM U728 and U773 and Department of Medical Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, Clichy, France
| | | | | | | | | | | | | |
Collapse
|
332
|
Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 2014; 147:22-31. [PMID: 25444759 DOI: 10.1016/j.pharmthera.2014.11.001] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The TGFβ signaling pathway has pleiotropic functions regulating cell growth, differentiation, apoptosis, motility and invasion, extracellular matrix production, angiogenesis, and immune response. TGFβ signaling deregulation is frequent in tumors and has crucial roles in tumor initiation, development and metastasis. TGFβ signaling inhibition is an emerging strategy for cancer therapy. The role of the TGFβ pathway as a tumor-promoter or suppressor at the cancer cell level is still a matter of debate, due to its differential effects at the early and late stages of carcinogenesis. In contrast, at the microenvironment level, the TGFβ pathway contributes to generate a favorable microenvironment for tumor growth and metastasis throughout all the steps of carcinogenesis. Then, targeting the TGFβ pathway in cancer may be considered primarily as a microenvironment-targeted strategy. In this review, we focus on the TGFβ pathway as a target for cancer therapy. In the first part, we provide a comprehensive overview of the roles played by this pathway and its deregulation in cancer, at the cancer cell and microenvironment levels. We go on to describe the preclinical and clinical results of pharmacological strategies to target the TGFβ pathway, with a highlight on the effects on tumor microenvironment. We then explore the perspectives to optimize TGFβ inhibition therapy in different tumor settings.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM U728 & U773 and Department of Medical Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | | | - Romain Cohen
- AAREC Filia Research, Translational Department, 1 place Paul Verlaine, 92100 Boulogne-Billancourt, France
| | - Jérôme Cros
- Department of Pathology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Sandrine Faivre
- INSERM U728 & U773 and Department of Medical Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Eric Raymond
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics and Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | - Armand de Gramont
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics and Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland.
| |
Collapse
|
333
|
Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett 2014; 356:721-32. [PMID: 25449434 DOI: 10.1016/j.canlet.2014.10.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Excessive matrix production by pancreatic stellate cells promotes local growth and metastasis of pancreatic ductal adenocarcinoma and provides a barrier for drug delivery. Collagen type V is a fibrillar, regulatory collagen up-regulated in the stroma of different malignant tumors. Here we show that collagen type V is expressed by pancreatic stellate cells in the stroma of pancreatic ductal adenocarcinoma and affects the malignant phenotype of various pancreatic cancer cell lines by promoting adhesion, migration and viability, also after treatment with chemotherapeutic drugs. Pharmacological and antibody-mediated inhibition of β1-integrin signaling abolishes collagen type V-induced effects on pancreatic cancer cells. Ablation of collagen type V secretion of pancreatic stellate cells by siRNA reduces invasion and proliferation of pancreatic cancer cells and tube formation of endothelial cells. Moreover, stable knock-down of collagen type V in pancreatic stellate cells reduces metastasis formation and angiogenesis in an orthotopic mouse model of ductal adenocarcinoma. In conclusion, paracrine loops involving cancer and stromal elements and mediated by collagen type V promote the malignant phenotype of pancreatic ductal adenocarcinoma and underline the relevance of epithelial-stromal interactions in the progression of this aggressive neoplasm.
Collapse
|
334
|
Wang Z, Li J, Chen X, Duan W, Ma Q, Li X. Disrupting the balance between tumor epithelia and stroma is a possible therapeutic approach for pancreatic cancer. Med Sci Monit 2014; 20:2002-6. [PMID: 25327552 PMCID: PMC4211416 DOI: 10.12659/msm.892523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of highly lethal malignant tumor. PDAC is locally invasive and is surrounded by a dense desmoplasia or fibrosis, which can involve adjacent vital structures. Previously, the effect of pancreatic stellate cells (PSCs) of stroma in the progression of PDAC has received more attention, and most in vitro and in vivo studies revealed that PSCs appear to confer biological aggressiveness. However, clinical trials targeting desmoplasia or PSCs showed disappointing results. Recent studies found that stromal components, especially activated PSCs, are able to inhibit the occurrence and progression of PDAC. Inhibition of the stroma or desmoplasia through genetic regulations or drugs accelerates the formation and progression of PDAC. Thus, we hypothesized that in various times and spaces, there is a balance between the tumor epithelia and stroma; once the balance is upset, the tumor traits may undergo certain changes. Therefore, finding the key changing points of this relationship to corrupt or influence it, instead of blindly inhibiting the stroma motivation or simply maintaining stroma activation, will destroy the cooperation or promote the competition and antagonism among cells. This approach may render tumors more vulnerable and thus unable to resist anti-cancer therapies.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jiahui Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
335
|
Abstract
A recent article in Cell shows that vitamin D receptor activation reprograms reactive stroma in the tumor microenvironment to a less inflammatory, quiescent state and is associated with increased drug retention, tumor response, and survival in pancreatic cancer models. Stroma reprogramming, as opposed to ablation, may emerge as a new treatment paradigm.
Collapse
Affiliation(s)
- David R Rowley
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
336
|
Abstract
OBJECTIVES Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. METHODS The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. RESULTS Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). CONCLUSIONS These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.
Collapse
|
337
|
Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: A conspiracy theory. World J Gastroenterol 2014; 20:11216-11229. [PMID: 25170206 PMCID: PMC4145760 DOI: 10.3748/wjg.v20.i32.11216] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is characterised by a prominent desmoplastic/stromal reaction that has received little attention until recent times. Given that treatments focusing on pancreatic cancer cells alone have failed to significantly improve patient outcome over many decades, research efforts have now moved to understanding the pathophysiology of the stromal reaction and its role in cancer progression. In this regard, our Group was the first to identify the cells (pancreatic stellate cells, PSCs) that produced the collagenous stroma of pancreatic cancer and to demonstrate that these cells interacted closely with cancer cells to facilitate local tumour growth and distant metastasis. Evidence is accumulating to indicate that stromal PSCs may also mediate angiogenesis, immune evasion and the well known resistance of pancreatic cancer to chemotherapy and radiotherapy. This review will summarise current knowledge regarding the critical role of pancreatic stellate cells and the stroma in pancreatic cancer biology and the therapeutic approaches being developed to target the stroma in a bid to improve the outcome of this devastating disease.
Collapse
|
338
|
Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer 2014; 50:2570-82. [PMID: 25091797 DOI: 10.1016/j.ejca.2014.06.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis. To date patient outcomes have not improved principally due to the limited number of patients suitable for surgical resections and the radiation and chemotherapy resistance of these tumours. In the last decade, a failure of conventional therapies has forced researchers to re-examine the environment of PDAC. The tumour environment has been demonstrated to consist of an abundance of stroma containing many cells but predominantly pancreatic stellate cells (PSCs). Recent research has focused on understanding the interaction between PSCs and PDAC cells in vitro and in vivo. It is believed that the interaction between these cells is responsible for supporting tumour growth, invasion and metastasis and creating the barrier to delivery of chemotherapeutics. Novel approaches which focus on the interactions between PDAC and PSCs which sustain the tumour microenvironment may achieve significant patient benefits. This manuscript reviews the current evidence regarding PSCs, their interaction with PDAC cells and the potential implication this may have for future therapies. METHODS A PubMed search was carried out for the terms 'pancreas cancer' OR 'pancreatic cancer', AND 'pancreatic stellate cells', NOT 'hepatic stellate cells'. All studies were screened and assessed for their eligibility and manuscripts exploring the relationship between PSCs and PDAC were included. The studies were subdivided into in vitro and in vivo groups. RESULTS One hundred and sixty-six manuscripts were identified and reduced to seventy-three in vitro and in vivo studies for review. The manuscripts showed that PDAC cells and PSCs interact with each other to enhance proliferation, reduce apoptosis and increase migration and invasion of cancer cells. The pathways through which they facilitate these actions provide potential targets for future novel therapies. CONCLUSION There is accumulating evidence supporting the multiple roles of PSCs in establishing the tumour microenvironment and supporting the survival of PDAC. To further validate these findings there is a need for greater use of physiologically relevant models of pancreatic cancer in vitro such as three dimensional co-cultures and the use of orthotopic and genetically engineered murine (GEM) models in vivo.
Collapse
Affiliation(s)
- Jonathan Haqq
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom.
| | - Lynne M Howells
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Matthew S Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Will P Steward
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
339
|
Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 2014; 111:E3091-100. [PMID: 25024225 PMCID: PMC4121834 DOI: 10.1073/pnas.1411679111] [Citation(s) in RCA: 395] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
Collapse
Affiliation(s)
- John J Lee
- Institute for Stem Cell Biology and Regenerative Medicine,Division of Oncology, Department of Medicine
| | - Rushika M Perera
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Huaijun Wang
- Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Dai-Chen Wu
- Institute for Stem Cell Biology and Regenerative Medicine
| | - X Shawn Liu
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Shiwei Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
| | - Julien Fitamant
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | - Krishna S Ghanta
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sally Kawano
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Julia M Nagle
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Vikram Deshpande
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yves Boucher
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
| | - Tomoyo Kato
- Department of Chemical and Systems Biology, and
| | | | - Jürgen K Willmann
- Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine,Department of Biochemistry,Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
340
|
Coleman SJ, Watt J, Arumugam P, Solaini L, Carapuca E, Ghallab M, Grose RP, Kocher HM. Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 2014; 20:8471-8481. [PMID: 25024603 PMCID: PMC4093698 DOI: 10.3748/wjg.v20.i26.8471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer carries a terrible prognosis, as the fourth most common cause of cancer death in the Western world. There is clearly a need for new therapies to treat this disease. One of the reasons no effective treatment has been developed in the past decade may in part, be explained by the diverse influences exerted by the tumour microenvironment. The tumour stroma cross-talk in pancreatic cancer can influence chemotherapy delivery and response rate. Thus, appropriate preclinical in vitro models which can bridge simple 2D in vitro cell based assays and complex in vivo models are required to understand the biology of pancreatic cancer. Here we discuss the evolution of 3D organotypic models, which recapitulare the morphological and functional features of pancreatic ductal adenocarcinoma (PDAC). Organotypic cultures are a valid high throughput preclinical in vitro model that maybe a useful tool to help establish new therapies for PDAC. A huge advantage of the organotypic model system is that any component of the model can be easily modulated in a short time-frame. This allows new therapies that can target the cancer, the stromal compartment or both to be tested in a model that mirrors the in vivo situation. A major challenge for the future is to expand the cellular composition of the organotypic model to further develop a system that mimics the PDAC environment more precisely. We discuss how this challenge is being met to increase our understanding of this terrible disease and develop novel therapies that can improve the prognosis for patients.
Collapse
|
341
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
342
|
Elsner A, Lange F, Fitzner B, Heuschkel M, Krause BJ, Jaster R. Distinct antifibrogenic effects of erlotinib, sunitinib and sorafenib on rat pancreatic stellate cells. World J Gastroenterol 2014; 20:7914-7925. [PMID: 24976727 PMCID: PMC4069318 DOI: 10.3748/wjg.v20.i24.7914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study if three clinically available small molecule kinase inhibitors (SMI), erlotinib, sunitinib and sorafenib, exert antifibrogenic effects on pancreatic stellate cells (PSC) and analyze the basis of their action.
METHODS: Cultured rat PSC were exposed to SMI. Cell proliferation and viability were assessed employing 5-bromo-2’-deoxyuridine incorporation assay and flow cytometry, respectively. 2-Deoxy-2-[18F] fluoroglucose (18F-FDG) uptake was measured to study metabolic activity. Exhibition of the myofibroblastic PSC phenotype was monitored by immunofluorescence analysis of α-smooth muscle actin (α-SMA) expression. Levels of mRNA were determined by real-time PCR, while protein expression and phosphorylation were analyzed by immunoblotting. Transforming growth factor-β1 (TGF-β1) levels in culture supernatants were quantified by ELISA.
RESULTS: All three SMI inhibited cell proliferation and 18F-FDG uptake in a dose-dependent manner and without significant cytotoxic effects. Furthermore, additive effects of the drugs were observed. Immunoblot analysis showed that sorafenib and sunitib, but not erlotinib, efficiently blocked activation of the AKT pathway, while all three drugs displayed little effect on phosphorylation of ERK1/2. Cells treated with sorafenib or sunitinib expressed less interleukin-6 mRNA as well as less collagen type 1 mRNA and protein. Sorafenib was the only drug that also upregulated the expression of matrix metalloproteinase-2 and reduced the secretion of TGF-β1 protein. All three drugs showed insignificant or discordant effects on the mRNA and protein levels of α-SMA.
CONCLUSION: The tested SMI, especially sorafenib, exert inhibitory effects on activated PSC, which should be further evaluated in preclinical studies.
Collapse
|
343
|
Pomianowska E, Sandnes D, Grzyb K, Schjølberg AR, Aasrum M, Tveteraas IH, Tjomsland V, Christoffersen T, Gladhaug IP. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. BMC Cancer 2014; 14:413. [PMID: 24912820 PMCID: PMC4084579 DOI: 10.1186/1471-2407-14-413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/20/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. METHODS Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [(3)H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [(3)H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. RESULTS Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. CONCLUSIONS The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors.
Collapse
Affiliation(s)
- Ewa Pomianowska
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Dagny Sandnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Aasa R Schjølberg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Aasrum
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingun H Tveteraas
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vegard Tjomsland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| | - Thoralf Christoffersen
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ivar P Gladhaug
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Rikshospitalet, PO Box 4956, Nydalen 0424 Oslo, Norway
| |
Collapse
|
344
|
Coleman SJ, Grose RP, Kocher HM. Fibroblast growth factor family as a potential target in the treatment of hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:43-54. [PMID: 27508175 PMCID: PMC4918266 DOI: 10.2147/jhc.s48958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular cancer (HCC) is currently the third leading cause of cancer death worldwide. The prognosis of patients diagnosed with late-stage disease is dismal due to high resistance to conventional systemic therapies. The introduction of sorafenib, despite its limited efficacy, as the standard systemic therapy for advanced HCC has paved a way for targeted molecular therapies for HCC. Fibroblast growth factor (FGF) signaling plays an important role in the developing embryo and the adult. The FGF signaling pathway is often hijacked by cancer cells, including HCC. Several alterations in FGF signaling correlate with poor outcome in HCC patients, suggesting that this family of signaling molecules plays an important role in the development of HCC. Multikinase inhibitors targeting FGF signaling are currently under investigation in clinical trials. This review discusses the current understanding of the biological and clinical implications of aberrant FGF signaling in the prognosis, diagnosis, and treatment of HCC.
Collapse
Affiliation(s)
- Stacey J Coleman
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
345
|
Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM, Brunner TB. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol 2014; 111:243-51. [PMID: 24780634 DOI: 10.1016/j.radonc.2014.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. MATERIALS AND METHODS We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. RESULTS We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFβ neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. CONCLUSION These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFβ and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms.
Collapse
Affiliation(s)
- Osama Al-Assar
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Fevzi Demiciorglu
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Serena Lunardi
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Maria Manuela Gaspar-Carvalho
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - William Gillies McKenna
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Ruth M Muschel
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Thomas B Brunner
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK.
| |
Collapse
|
346
|
Akagawa S, Ohuchida K, Torata N, Hattori M, Eguchi D, Fujiwara K, Kozono S, Cui L, Ikenaga N, Ohtsuka T, Aishima S, Mizumoto K, Oda Y, Tanaka M. Peritoneal myofibroblasts at metastatic foci promote dissemination of pancreatic cancer. Int J Oncol 2014; 45:113-20. [PMID: 24756180 DOI: 10.3892/ijo.2014.2391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/27/2013] [Indexed: 11/05/2022] Open
Abstract
Myofibroblasts in the stroma of pancreatic cancers promote tumor proliferation, invasion and metastasis by increasing extracellular matrix and secretion of several growth factors. In contrast, the role of myofibroblasts at peritoneally disseminated sites of pancreatic cancer has not yet been determined. This study was designed to assess the role of myofibroblasts at peritoneally disseminated sites of pancreatic cancer. Three primary cultures of human peritoneal myofibroblasts (hPMFs) were established from disseminated sites of pancreatic cancer and their interactions with the SUIT-2 and CAPAN-1 human pancreatic cancer cell lines were analyzed in vitro. Using a model in BALB/c nu/nu mice, we compared the dissemination ability of intraperitoneally implanted pancreatic cancer cells, with and without hPMFs, and examined the presence of green fluorescent protein (GFP)-labeled hPMFs at peritoneally disseminated sites in mice. hPMFs significantly promoted the migration and invasion of pancreatic cancer cells (P<0.05), while the cancer cells significantly promoted the migration and invasion of hPMFs (P<0.05). In vivo, the number of peritoneally disseminated nodules, more than 3 mm in size, was significantly greater in mice implanted with cancer cells plus hPMFs compared to mice implanted with cancer cells alone, with GFP-labeled hPMFs surviving in the peritoneal cavity of the former. hPMFs promote the peritoneal dissemination of pancreatic cancer. The cancer-stromal cell interaction in the peritoneal cavity may be a new therapeutic target to prevent the dissemination of pancreatic cancer.
Collapse
Affiliation(s)
- Shin Akagawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Hattori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Eguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Fujiwara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Kozono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
347
|
Abstract
FGFR (fibroblast growth factor receptor) signalling plays critical roles in embryogensis, adult physiology, tissue repair and many pathologies. Of particular interest over recent years, it has been implicated in a wide range of cancers, and concerted efforts are underway to target different aspects of FGFR signalling networks. A major focus has been identifying the canonical downstream signalling pathways in cancer cells, and these are now relatively well understood. In the present review, we focus on two distinct but emerging hot topics in FGF biology: its role in stromal cross-talk during cancer progression and the potential roles of FGFR signalling in the nucleus. These neglected areas are proving to be of great interest clinically and are intimately linked, at least in pancreatic cancer. The importance of the stroma in cancer is well accepted, both as a conduit/barrier for treatment and as a target in its own right. Nuclear receptors are less acknowledged as targets, largely due to historical scepticism as to their existence or importance. However, increasing evidence from across the receptor tyrosine kinase field is now strong enough to make the study of nuclear growth factor receptors a major area of interest.
Collapse
|
348
|
McCarroll JA, Naim S, Sharbeen G, Russia N, Lee J, Kavallaris M, Goldstein D, Phillips PA. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front Physiol 2014; 5:141. [PMID: 24782785 PMCID: PMC3988387 DOI: 10.3389/fphys.2014.00141] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Joshua A McCarroll
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
349
|
Ramsay EE, Decollogne S, Joshi S, Corti A, Apte M, Pompella A, Hogg PJ, Dilda PJ. Employing pancreatic tumor γ-glutamyltransferase for therapeutic delivery. Mol Pharm 2014; 11:1500-11. [PMID: 24654974 DOI: 10.1021/mp400664t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
γ-Glutamyltransferase (γGT) is a cell surface enzyme that catalyzes hydrolysis of the bond linking the glutamate and cysteine residues of glutathione and glutathione-S-conjugates. We have observed that human pancreatic tumor cells and tumor-associated stellate cells express high levels of this enzyme when compared to normal pancreatic epithelial and stellate cells. Detection of the protein in tumor sections correlated with γGT activity on the surface of the cultured tumor and stellate cells. We tested whether the tumor γGT could be employed to deliver a therapeutic to the tumor endothelial cells. GSAO is a glutathione-S-conjugate of a trivalent arsenical that is activated to enter endothelial cells by γGT cleavage of the γ-glutamyl residue. The arsenical moiety triggers proliferation arrest and death of the endothelial cells by targeting the mitochondria. Human pancreatic tumor and stellate cell γGT activated GSAO in culture and γGT activity positively correlated with GSAO-mediated proliferation arrest and death of endothelial cells in Transwell and coculture systems. A soluble form of γGT is found in blood, and we measured the rate of activation of GSAO by this enzyme. We calculated that systemically administered GSAO would circulate through the pancreatic blood supply several times before appreciable activation by normal blood levels of γGT. In support of this finding, tumor γGT activity positively correlated with GSAO-mediated inhibition of pancreatic tumor angiogenesis and tumor growth in mice. Our findings indicate that pancreatic tumor γGT can be used to deliver a therapeutic to the tumor.
Collapse
Affiliation(s)
- Emma E Ramsay
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, Buzhardt E, Yull FE, Blackwell TS, Sosa-Pineda B, Whitehead RH, Beauchamp RD, Wilson KT, Means AL. Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. J Transl Med 2014; 94:409-21. [PMID: 24535260 PMCID: PMC3992484 DOI: 10.1038/labinvest.2014.10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer occurs in the setting of a profound fibrotic microenvironment that often dwarfs the actual tumor. Although pancreatic fibrosis has been well studied in chronic pancreatitis, its development in pancreatic cancer is much less well understood. This article describes the dynamic remodeling that occurs from pancreatic precursors (pancreatic intraepithelial neoplasias (PanINs)) to pancreatic ductal adenocarcinoma, highlighting similarities and differences between benign and malignant disease. Although collagen matrix is a commonality throughout this process, early stage PanINs are virtually free of periostin while late stage PanIN and pancreatic cancer are surrounded by an increasing abundance of this extracellular matrix protein. Myofibroblasts also become increasingly abundant during progression from PanIN to cancer. From the earliest stages of fibrogenesis, macrophages are associated with this ongoing process. In vitro co-culture indicates there is cross-regulation between macrophages and pancreatic stellate cells (PaSCs), precursors to at least some of the fibrotic cell populations. When quiescent PaSCs were co-cultured with macrophage cell lines, the stellate cells became activated and the macrophages increased cytokine production. In summary, fibrosis in pancreatic cancer involves a complex interplay of cells and matrices that regulate not only the tumor epithelium but the composition of the microenvironment itself.
Collapse
Affiliation(s)
- Chanjuan Shi
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | - M. Kay Washington
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | | | - Yiannis Drosos
- Dept. of Genetics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Frank L. Revetta
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | | | | | - Fiona E. Yull
- Dept. of Cancer Biology, Vanderbilt University, Nashville TN
| | | | | | | | - R. Daniel Beauchamp
- Dept. of Surgery, Vanderbilt University, Nashville TN,Dept. of Cell and Developmental Biology, Vanderbilt University, Nashville TN
| | - Keith T. Wilson
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN,Dept. of Medicine, Vanderbilt University, Nashville TN,Dept. of Cancer Biology, Vanderbilt University, Nashville TN,Veterans Affairs Tennessee Valley Healthcare System, Nashville TN
| | - Anna L. Means
- Dept. of Surgery, Vanderbilt University, Nashville TN,Dept. of Cell and Developmental Biology, Vanderbilt University, Nashville TN
| |
Collapse
|