301
|
Natarajan V. Mind the Gap between the Endothelium and E3 Ubiquitin Ligase: TRIM21 Is a Viable Therapeutic Target in Sepsis-induced Endothelial Dysfunction. Am J Respir Cell Mol Biol 2020; 61:676-677. [PMID: 31199667 PMCID: PMC6890406 DOI: 10.1165/rcmb.2019-0161ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Viswanathan Natarajan
- Department of Pharmacologyand.,Department of MedicineUniversity of IllinoisChicago, Illinois
| |
Collapse
|
302
|
Pre-operative evaluation of microcirculation for the prediction of complications after cardiac surgery under extracorporeal circulation: Study protocol. Eur J Anaesthesiol 2020; 36:613-615. [PMID: 31274547 DOI: 10.1097/eja.0000000000000968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
303
|
Consoli DC, Jesse JJ, Klimo KR, Tienda AA, Putz ND, Bastarache JA, Harrison FE. A Cecal Slurry Mouse Model of Sepsis Leads to Acute Consumption of Vitamin C in the Brain. Nutrients 2020; 12:E911. [PMID: 32224930 PMCID: PMC7231213 DOI: 10.3390/nu12040911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (ascorbate, ASC) is a critical antioxidant in the body with specific roles in the brain. Despite a recent interest in vitamin C therapies for critical care medicine, little is known about vitamin C regulation during acute inflammation and critical illnesses such as sepsis. Using a cecal slurry (CS) model of sepsis in mice, we determined ASC and inflammatory changes in the brain following the initial treatment. ASC levels in the brain were acutely decreased by approximately 10% at 4 and 24 h post CS treatment. Changes were accompanied by a robust increase in liver ASC levels of up to 50%, indicating upregulation of synthesis beginning at 4 h and persisting up to 7 days post CS treatment. Several key cytokines interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor alpha (TNFα), and chemokine (C-X-C motif) ligand 1 (CXCL1, KC/Gro) were also significantly elevated in the cortex at 4 h post CS treatment, although these levels returned to normal by 48 h. These data strongly suggest that ASC reserves are directly challenged throughout illness and recovery from sepsis. Given the timescale of this response, decreases in cortical ASC are likely driven by hyper-acute neuroinflammatory processes. However, future studies are required to confirm this relationship and to investigate how this deficiency may subsequently impact neuroinflammation.
Collapse
Affiliation(s)
- David C. Consoli
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| | - Jordan J. Jesse
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Kelly R. Klimo
- Undergraduate Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA;
| | - Adriana A. Tienda
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| | - Nathan D. Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.J.); (N.D.P.); (J.A.B.)
| | - Fiona E. Harrison
- Division of Diabetes, Endocrinology, and Metabolism; Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.C.C.); (A.A.T.)
| |
Collapse
|
304
|
Outcomes of Adult Patients With Septic Shock Undergoing Extracorporeal Membrane Oxygenation Therapy. Ann Thorac Surg 2020; 110:871-877. [PMID: 32074505 DOI: 10.1016/j.athoracsur.2019.12.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) has been shown to provide benefits in children, but not adults, with septic shock. This study described the clinical outcomes of adults in septic shock who underwent ECMO. METHODS This study retrospectively investigated adults who were supported on venoarterial or venovenous modes of ECMO and who had septic shock at the time of cannulation from January 1, 2009 to December 31, 2016 at a quaternary medical center in the United States. The primary outcomes were rate of survival to hospital discharge and time to survival using Kaplan-Meier survival estimates. This study analyzed survival by mode, previous cardiac arrest, and timing of cannulation (<96 and ≥96 hours after admission to the intensive care unit). Secondary outcomes were complications and days of ECMO support, length of stay in the intensive care unit, and hospitalization days. RESULTS Of 243 patients supported on ECMO during this 7-year period, 32 met the criteria for septic shock, and the majority had a pulmonary source of infection (72%). The most common mode of support was venovenous ECMO (65%), and median ejection fraction was 51%. Median time on ECMO was 5.8 days (interquartile range, 2.6, 11.3 days). Survival to hospital discharge was 13 of 32 (41%), whereas median survival was 14.5 days (interquartile range, 5.2, 23.7 days). There was no statistically significant difference in survival by subgroup, including ECMO mode. Health care-associated infections were frequent (25%). CONCLUSIONS This cohort of patients undergoing ECMO had equivalent median survival compared with literature-based estimates of other cohorts of patients with septic shock.
Collapse
|
305
|
Li X, Li L, Shi Y, Yu S, Ma X. Different signaling pathways involved in the anti-inflammatory effects of unfractionated heparin on lipopolysaccharide-stimulated human endothelial cells. JOURNAL OF INFLAMMATION-LONDON 2020; 17:5. [PMID: 32063752 PMCID: PMC7011532 DOI: 10.1186/s12950-020-0238-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 02/01/2023]
Abstract
Background There is a complex interplay between inflammatory response and coagulation in sepsis. Heparin is used as a recognized anticoagulant and possesses multiple biological properties that possibly affect sepsis. This study aimed to determine the possible signaling pathways involved in the anti-inflammatory effects of unfractionated heparin (UFH) on lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cells (HPMECs). Methods HPMECs were transfected with siRNA targeting IκB-α. Cells were treated with UFH (0.01 U/ml~ 10 U/ml) 15 min before adding LPS (10 μg/ml). We detected the markers of systemic inflammatory response. Release of interleukin (IL)-6, IL-8 were evaluated at 3 h by ELISA and at 1 h by qRT-PCR. After 1 h, nuclear factor-κB (NF-κB) as well as phosphorylated inhibitor κB-α (IκB-α), signal transducer and activator of transcription-3 (STAT3) and ERK1/2, JNK, p38 mitogen-activated protein kinase (MAPK) expressions were evaluated by Western blot. DNA binding was conducted to further prove the activation of NF-κB pathway. Results In HPMECs, UFH obviously inhibited LPS-stimulated production of IL-6 and IL-8, especially in 10 U/ml. UFH inhibited LPS-induced phosphorylation of IκB-α, ERK1/2, JNK, p38 MAPK and STAT3. UFH also suppressed LPS-stimulated nuclear translocation of NF-κB. Importantly, transfection with siRNA targeting IκB-α induced more obvious inflammatory response. UFH suppressed cytokines production and phosphorylation of different signaling pathways in IκB-α silencing cells. Conclusion These results demonstrate that UFH exerts the anti-inflammatory effects on LPS-stimulated HPMECs by different signaling pathways.
Collapse
Affiliation(s)
- Xu Li
- Department of Critical Care Medicine, the First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001 Liaoning Province People's Republic of China
| | - Lu Li
- Department of Critical Care Medicine, the First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001 Liaoning Province People's Republic of China
| | - Yuequan Shi
- Department of Critical Care Medicine, the First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001 Liaoning Province People's Republic of China
| | - Sihan Yu
- Department of Critical Care Medicine, the First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001 Liaoning Province People's Republic of China
| | - Xiaochun Ma
- Department of Critical Care Medicine, the First Affiliated Hospital, China Medical University, North Nanjing Street 155, Shenyang, 110001 Liaoning Province People's Republic of China
| |
Collapse
|
306
|
Abstract
Microvascular dysfunction is a frequent complication of many chronic and acute conditions, especially in the critically ill. Moreover, the severity of microvascular alterations is associated with development of organ dysfunction and poor outcome. The complexities and heterogeneity of critical illness, especially in the elderly patient, requires more mechanistically oriented clinical trials that monitor the effectiveness of existing therapies and of those to come. Recent advances in the ability to obtain physiologically based assessments of microcirculatory function at the bedside will make microcirculatory-guided resuscitation a point of care reality.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals and Université Libre de Bruxelles, Bd du Triomphe 201, 1160 Brussels, Belgium
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611, Little Rock, AR 72212, USA.
| |
Collapse
|
307
|
Deng Q, Pan B, Alam HB, Liang Y, Wu Z, Liu B, Mor-Vaknin N, Duan X, Williams AM, Tian Y, Zhang J, Li Y. Citrullinated Histone H3 as a Therapeutic Target for Endotoxic Shock in Mice. Front Immunol 2020; 10:2957. [PMID: 31998291 PMCID: PMC6962130 DOI: 10.3389/fimmu.2019.02957] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis results in millions of deaths every year, with acute lung injury (ALI) being one of the leading causes of mortality in septic patients. As neutrophil extracellular traps (NETs) are abundant in sepsis, neutralizing components of NETs may be a useful strategy to improve outcomes of sepsis. Citrullinated histone H3 (CitH3) has been recently shown to be involved in the NET formation. In this study, we demonstrate that CitH3 damages human umbilical vein endothelial cells (HUVECs) and potentiates NET formation through a positive feedback mechanism. We developed a novel CitH3 monoclonal antibody to target peptidylarginine deiminase (PAD) 2 and PAD 4 generated CitH3. In a mouse model of lethal lipopolysaccharide (LPS) induced shock, neutralizing CitH3 with the newly developed anti-CitH3 monoclonal antibody attenuates inflammatory responses, ameliorates ALI, and improves survival. Our study suggests that effectively blocking circulating CitH3 might be a potential therapeutic method for the treatment of endotoxemia.
Collapse
Affiliation(s)
- Qiufang Deng
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Baihong Pan
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yingjian Liang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States.,The First Hospital, China Medical University, Shenyang, China
| | - Zhenyu Wu
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, IL, United States
| | - Aaron M Williams
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yuzi Tian
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Justin Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
308
|
Li Z, Yin M, Zhang H, Ni W, Pierce RW, Zhou HJ, Min W. BMX Represses Thrombin-PAR1-Mediated Endothelial Permeability and Vascular Leakage During Early Sepsis. Circ Res 2020; 126:471-485. [PMID: 31910739 DOI: 10.1161/circresaha.119.315769] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown. OBJECTIVE We aimed to delineate the function of BMX in thrombin-mediated endothelial permeability and the vascular leakage that occurs with sepsis in cecal ligation and puncture models. METHODS AND RESULTS The cecal ligation and puncture model was applied to WT (wild type) and BMX-KO (BMX global knockout) mice to induce sepsis. Meanwhile, the electric cell-substrate impedance sensing assay was used to detect transendothelial electrical resistance in vitro and, the modified Miles assay was used to evaluate vascular leakage in vivo. We showed that BMX loss caused lung injury and inflammation in early cecal ligation and puncture-induced sepsis. Disruption of BMX increased thrombin-mediated permeability in mice and cultured endothelial cells by 2- to 3-fold. The expression of BMX in macrophages, neutrophils, platelets, and lung epithelial cells was undetectable compared with that in endothelial cells, indicating that endothelium dysfunction, rather than leukocyte and platelet dysfunction, was involved in vascular permeability and sepsis. Mechanistically, biochemical and cellular analyses demonstrated that BMX specifically repressed thrombin-PAR1 (protease-activated receptor-1) signaling in endothelial cells by directly phosphorylating PAR1 and promoting its internalization and deactivation. Importantly, pretreatment with the selective PAR1 antagonist SCH79797 rescued BMX loss-mediated endothelial permeability and pulmonary leakage in early cecal ligation and puncture-induced sepsis. CONCLUSIONS Acting as a negative regulator of PAR1, BMX promotes PAR1 internalization and signal inactivation through PAR1 phosphorylation. Moreover, BMX-mediated PAR1 internalization attenuates endothelial permeability to protect vascular leakage during early sepsis.
Collapse
Affiliation(s)
- Zhao Li
- From the The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.L.).,Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Mingzhu Yin
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.).,Department of Dermatology, Hunan Engineering Research, Center of Skin Health and Disease, Xiangya Hospital, Central South University, China (M.Y.)
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Weiming Ni
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Richard W Pierce
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| |
Collapse
|
309
|
MLCK and ROCK mutualism in endothelial barrier dysfunction. Biochimie 2020; 168:83-91. [DOI: 10.1016/j.biochi.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023]
|
310
|
Ibrahim RR, Amer RA, Abozeid AA, Elsharaby RM, Shafik NM. Micro RNA 146a gene variant / TNF-α / IL-6 / IL-1 β; A cross-link axis inbetween oxidative stress, endothelial dysfunction and neuro-inflammation in acute ischemic stroke and chronic schizophrenic patients. Arch Biochem Biophys 2020; 679:108193. [DOI: 10.1016/j.abb.2019.108193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
|
311
|
Guven G, Hilty MP, Ince C. Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purif 2019; 49:143-150. [PMID: 31851980 DOI: 10.1159/000503775] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
This paper briefly reviews the physiological components of the microcirculation, focusing on its function in homeostasis and its central function in the realization of oxygen transport to tissue cells. Its pivotal role in the understanding of circulatory compromise in states of shock and renal compromise is discussed. Our introduction of hand-held vital microscopes (HVM) to clinical medicine has revealed the importance of the microcirculation as a central target organ in states of critical illness and inadequate response to therapy. Technical and methodological developments have been made in hardware and in software including our recent introduction and validation of automatic analysis software called MicroTools, which now allows point-of-care use of HVM imaging at the bedside for instant availability of functional microcirculatory parameters needed for microcirculatory targeted resuscitation procedures to be a reality.
Collapse
Affiliation(s)
- Goksel Guven
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Matthias P Hilty
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands,
| |
Collapse
|
312
|
Astapenko D, Turek Z, Dostal P, Hyspler R, Ticha A, Kaska M, Zadak Z, Skulec R, Lehmann C, Cerny V. Effect of short-term administration of lipid emulsion on endothelial glycocalyx integrity in ICU patients – A microvascular and biochemical pilot study. Clin Hemorheol Microcirc 2019; 73:329-339. [DOI: 10.3233/ch-190564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David Astapenko
- Department of Anesthesiology and Intensive Care, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Research and Development, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zdenek Turek
- Department of Anesthesiology and Intensive Care, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Dostal
- Department of Anesthesiology and Intensive Care, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radomir Hyspler
- Centre for Research and Development, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
- Departement of Clinical Biochemistry Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Alena Ticha
- Centre for Research and Development, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
- Departement of Clinical Biochemistry Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milan Kaska
- Department of Surgery, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zdenek Zadak
- Centre for Research and Development, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Roman Skulec
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, J. E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Vladimir Cerny
- Department of Anesthesiology and Intensive Care, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Research and Development, University Hospital of Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, J. E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
313
|
Huang X, Han S, Liu X, Wang T, Xu H, Xia B, Kong G, Li J, Zhu W, Hu H, Hao D, Wang X. Both UFH and NAH alleviate shedding of endothelial glycocalyx and coagulopathy in LPS-induced sepsis. Exp Ther Med 2019; 19:913-922. [PMID: 32010252 PMCID: PMC6966138 DOI: 10.3892/etm.2019.8285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis commonly progresses to disseminated intravascular coagulation and induces the activation of heparanase (HPA) and the shedding of endothelial glycocalyx constituents, including syndecan-1 (SDC-1) and heparan sulphate (HS). However, the degradation of glycocalyx and its association with coagulation disorders remains undetermined. The present study aimed to evaluate the effect of unfractionated heparin (UFH) and N-acetylheparin (NAH), which is a non-anticoagulant heparin derivative, on endothelial glycocalyx and coagulation function in a lipopolysaccharide (LPS)-induced sepsis rat model, and to compare the differences observed in coagulation function between UFH and NAH. Experimental rats were randomly assigned to four groups: Control; LPS; UFH + LPS; and NAH + LPS. Rats were administered UFH or NAH and subsequently, ~1 min later, administered LPS (10 mg/kg; intravenous). The blood and lung tissues of rats were collected 0.5, 2 and 6 h after LPS injection, and were used for subsequent analysis. The results demonstrated that HPA activity and SDC-1 and HS levels increased, and this increase was associated with inflammatory cytokines and coagulation/fibrinolysis markers in the sepsis rat model. Histopathological examination was performed, and the lung injury score and lung wet/dry ratio indicated that UFH and NAH also significantly improved lung tissue injury. The results of the ELISA analysis demonstrated that UFH and NAH treatment: i) significantly decreased the levels of inflammatory cytokines including tumor necrosis factor-α and interleukin-6; ii) inhibited HPA activity and protected the integrity of the glycocalyx, which was identified by decreased HS and SDC-1 levels; and iii) decreased the levels of prothrombin fragment 1+2, thrombin-antithrombin complex, and plasminogen activator inhibitor-1 and increased the levels of fibrinogen and antithrombin-III. Preconditioning with UFH decreased the plasma activated partial thromboplastin time. These results indicated that UFH and NAH may alleviate sepsis-induced coagulopathy, and this effect may have been due to an inhibition of HPA activity and decrease in the shedding of the endothelial glycocalyx.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Shasha Han
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Tao Wang
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Haixiao Xu
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Bingyan Xia
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Guiqing Kong
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Jiankui Li
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Weiwei Zhu
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Haoran Hu
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Dong Hao
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiaozhi Wang
- Department of Respiratory Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
314
|
|
315
|
Re-Evaluating Biologic Pharmacotherapies that Target the Host Response during Sepsis. Int J Mol Sci 2019; 20:ijms20236049. [PMID: 31801287 PMCID: PMC6929091 DOI: 10.3390/ijms20236049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
Multiple organ dysfunction syndrome (MODS) caused by the systemic inflammatory response during sepsis is responsible for millions of deaths worldwide each year, and despite broad consensus concerning its pathophysiology, no specific or effective therapies exist. Recent efforts to treat and/or prevent MODS have included a variety of biologics, recombinant proteins targeting various components of the host response to the infection (e.g., inflammation, coagulation, etc.) Improvements in molecular biology and pharmaceutical engineering have enabled a wide range of utility for biologics to target various aspects of the systemic inflammatory response. The majority of clinical trials to date have failed to show clinical benefit, but some have demonstrated promising results in certain patient populations. In this review we summarize the underlying rationale and outcome of major clinical trials where biologics have been tested as a pharmacotherapy for MODS in sepsis. A brief description of the study design and overall outcome for each of the major trials are presented. Emphasis is placed on discussing targets and/or trials where promising results were observed. Post hoc analyses of trials where therapy demonstrated harm or additional risk to certain patient subgroups are highlighted, and details are provided about specific trials where more stringent inclusion/exclusion criteria are warranted.
Collapse
|
316
|
Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell Tissue Res 2019; 379:223-230. [PMID: 31754781 DOI: 10.1007/s00441-019-03119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Roodbari
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Saberianpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
317
|
Hauschildt J, Schrimpf C, Thamm K, Retzlaff J, Idowu TO, von Kaisenberg C, Haller H, David S. Dual Pharmacological Inhibition of Angiopoietin-2 and VEGF-A in Murine Experimental Sepsis. J Vasc Res 2019; 57:34-45. [PMID: 31726451 DOI: 10.1159/000503787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sepsis is a pathological host response to infection leading to vascular barrier breakdown due to elevated levels of angiopoietin-2 (Angpt-2) and vascular endothelial growth factor-A (VEGF-A). Here, we tested a novel heterodimeric bispecific monoclonal IgG1-cross antibody of Angpt-2 and VEGF - termed "A2V." METHODS Cecal ligation and puncture was used to induce murine polymicrobial sepsis. Organs and blood were harvested for fluorescence immunohistochemistry and RT-PCR, and survival was recorded. In vitro endothelial cells were stimulated with plasma from septic shock patients costimulated with A2V or IgG antibody followed by immunocytochemistry and real-time transendothelial electrical resistance. RESULTS Septic mice treated with A2V had a reduced induction of the endothelial adhesion molecule ICAM-1, leading to a trend towards less transmigration of inflammatory cells (A2V: 42.2 ± 1.0 vs. IgG 48.5 ± 1.7 Gr-1+ cells/HPF, p = 0.08) and reduced tissue levels of inflammatory cytokines (e.g., IL-6 mRNA: A2V 9.4 ± 3.2 vs. IgG 83.9 ± 36.7-fold over control, p = 0.03). Endothelial permeability was improved in vivo and in vitro in stimulated endothelial cells with septic plasma. Survival was improved by 38% (p = 0.02). CONCLUSION Dual inhibition of Angpt-2 and VEGF-A improves murine sepsis morbidity and mortality, making it a potential therapeutic against vascular barrier breakdown.
Collapse
Affiliation(s)
- Janine Hauschildt
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Kristina Thamm
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jennifer Retzlaff
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Temitayo O Idowu
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany,
| |
Collapse
|
318
|
The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proc Natl Acad Sci U S A 2019; 116:23618-23624. [PMID: 31712416 DOI: 10.1073/pnas.1912409116] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are highly specialized across vascular beds. However, given their interspersed anatomic distribution, comprehensive characterization of the molecular basis for this heterogeneity in vivo has been limited. By applying endothelial-specific translating ribosome affinity purification (EC-TRAP) combined with high-throughput RNA sequencing analysis, we identified pan EC-enriched genes and tissue-specific EC transcripts, which include both established markers and genes previously unappreciated for their presence in ECs. In addition, EC-TRAP limits changes in gene expression after EC isolation and in vitro expansion, as well as rapid vascular bed-specific shifts in EC gene expression profiles as a result of the enzymatic tissue dissociation required to generate single-cell suspensions for fluorescence-activated cell sorting or single-cell RNA sequencing analysis. Comparison of our EC-TRAP with published single-cell RNA sequencing data further demonstrates considerably greater sensitivity of EC-TRAP for the detection of low abundant transcripts. Application of EC-TRAP to examine the in vivo host response to lipopolysaccharide (LPS) revealed the induction of gene expression programs associated with a native defense response, with marked differences across vascular beds. Furthermore, comparative analysis of whole-tissue and TRAP-selected mRNAs identified LPS-induced differences that would not have been detected by whole-tissue analysis alone. Together, these data provide a resource for the analysis of EC-specific gene expression programs across heterogeneous vascular beds under both physiologic and pathologic conditions.
Collapse
|
319
|
Le KTT, Chu X, Jaeger M, Plantinga JA, Matzaraki V, Withoff S, Joosten LAB, Netea MG, Wijmenga C, Li Y, Moser J, Kumar V. Leukocyte-Released Mediators in Response to Both Bacterial and Fungal Infections Trigger IFN Pathways, Independent of IL-1 and TNF-α, in Endothelial Cells. Front Immunol 2019; 10:2508. [PMID: 31708927 PMCID: PMC6824321 DOI: 10.3389/fimmu.2019.02508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
In sepsis, dysregulated immune responses to infections cause damage to the host. Previous studies have attempted to capture pathogen-induced leukocyte responses. However, the impact of mediators released after pathogen-leukocyte interaction on endothelial cells, and how endothelial cell responses vary depending on the pathogen-type is lacking. Here, we comprehensively characterized the transcriptomic responses of human leukocytes and endothelial cells to Gram negative-bacteria, Gram positive-bacteria, and fungi. We showed that whole pathogen lysates induced strong activation of leukocytes but not endothelial cells. Interestingly, the common response of leukocytes to various pathogens converges on endothelial activation. By exposing endothelial cells to leukocyte-released mediators, we observed a strong activation of endothelial cells at both transcription and protein levels. By adding IL-1RA and TNF-α antibody in leukocyte-released mediators before exposing to endothelial cells, we identified specific roles for IL-1 and TNF-α in driving the most, but not all, endothelial activation. We also showed for the first time, activation of interferon response by endothelial cells in response to leukocyte-released mediators, independently from IL-1 and TNF-α pathways. Our study therefore, not only provides pathogen-dependent transcriptional changes in leukocytes and endothelial cells during infections, but also reveals a role for IFN, together with IL1 and TNFα signaling, in mediating leukocyte-endothelial interaction in infections.
Collapse
Affiliation(s)
- Kieu T T Le
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Xiaojing Chu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Josée A Plantinga
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Immunology, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
320
|
Bioassay for Endothelial Damage Mediators Retrieved by Hemoadsorption. Sci Rep 2019; 9:14522. [PMID: 31601835 PMCID: PMC6787199 DOI: 10.1038/s41598-019-50517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hemoadsorption devices are used to treat septic shock by adsorbing inflammatory cytokines and as yet incompletely defined danger and pathogen associated molecular patterns. In an ideal case, hemoadsorption results in immediate recovery of microvascular endothelial cells’ (mEC) function and rapid recovery from catecholamine-dependency and septic shock. We here tested a single device, which consists of polystyrene-divinylbenzene core particles of 450 μm diameter with a high affinity for hydrophobic compounds. The current study aimed at the proof of concept that endothelial-specific damage mediators are adsorbed and can be recovered from hemoadsorption devices. Because of excellent clinical experience, we tested protein fractions released from a hemoadsorber in a novel endothelial bioassay. Video-based, long-term imaging of mEC proliferation and cell death were evaluated and combined with apoptosis and ATP measurements. Out of a total of 39 fractions recovered from column fractionation, we identified 3 fractions that caused i) inhibition of mEC proliferation, ii) increased cell death and iii) induction of apoptosis in mEC. When adding these 3 fractions to mEC, their ATP contents were reduced. These fractions contained proteins of approximately 15 kDa, and high amounts of nucleic acid, which was at least in part oxidized. The efficacy for endothelial cell damage prevention by hemoadsorption can be addressed by a novel endothelial bioassay and long-term video observation procedures. Protein fractionation of the hemoadsorption devices used is feasible to study and define endothelial damage ligands on a molecular level. The results suggest a significant effect by circulating nucleic acids – bound to an as yet undefined protein, which may constitute a major danger-associated molecular pattern (DAMP) in the exacerbation of inflammation when patients experience septic shock. Hemoadsorption devices may thus limit endothelial damage, through the binding of nucleic acid-bearing aggregates and thus contribute to improved endothelial barrier function.
Collapse
|
321
|
Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D'Agati VD, Tatonetti NP, Barasch J, Devarajan P. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 2019; 15:599-612. [PMID: 31439924 PMCID: PMC7303545 DOI: 10.1038/s41581-019-0184-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
The acute loss of kidney function has been diagnosed for many decades using the serum concentration of creatinine - a muscle metabolite that is an insensitive and non-specific marker of kidney function, but is now used for the very definition of acute kidney injury (AKI). Fortunately, myriad new tools have now been developed to better understand the relationship between acute tubular injury and elevation in serum creatinine (SCr). These tools include unbiased gene and protein expression analyses in kidney, urine and blood, the localization of specific gene transcripts in pathological biopsy samples by rapid in-situ RNA technology and single-cell RNA-sequencing analyses. However, this molecular approach to AKI has produced a series of unexpected problems, because the expression of specific kidney-derived molecules that are indicative of injury often do not correlate with SCr levels. This discrepancy between kidney injury markers and SCr level can be reconciled by the recognition that many separate subtypes of AKI exist, each with distinct patterning of molecular markers of tubular injury and SCr data. In this Review, we describe the weaknesses of isolated SCr-based diagnoses, the clinical and molecular subtyping of acute tubular injury, and the role of non-invasive biomarkers in clinical phenotyping. We propose a conceptual model that synthesizes molecular and physiological data along a time course spanning from acute cellular injury to organ failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
322
|
Abstract
Sepsis remains a major scientific and medical challenge, for which, apart from significant refinements in supportive therapy, treatment has barely changed over the last few decades. During sepsis, both vascular tone and vascular integrity are compromised, and contribute to the development of shock. The free circulating peptide adrenomedullin (ADM) is involved in the regulation of the endothelial barrier function and tone of blood vessels. Several animal studies have shown that ADM administration improves outcome of sepsis. However, in higher dosages, ADM administration may cause hypotension, limiting its clinical applicability. Moreover, ADM has a very short half-life and easily adheres to surfaces, further hampering its clinical use. The non-neutralizing anti-ADM antibody Adrecizumab (HAM8101) which causes a long-lasting increase of plasma ADM has shown promising results in animal models of systemic inflammation and sepsis; it reduced inflammation, attenuated vascular leakage, and improved hemodynamics, kidney function, and survival. Combined with an excellent safety profile derived from animal and phase I human studies, Adrecizumab represents a promising candidate drug for the adjunctive treatment of sepsis. In this review, we first provide a brief overview of the currently available data on the role of adrenomedullin in sepsis and describe its effects on endothelial barrier function and vasodilation. Furthermore, we provide a novel hypothesis concerning the mechanisms of action through which Adrecizumab may exert its beneficial effects in sepsis.
Collapse
|
323
|
Roul D, Rozec B, Ferron M, Erfanian M, Persello A, Audigane L, Grabherr A, Erraud A, Merlet N, Guijarro D, Muramatsu I, Lauzier B, Gauthier C. β 1-Adrenergic cardiac contractility is increased during early endotoxemic shock: Involvement of cyclooxygenases. Life Sci 2019; 236:116865. [PMID: 31525428 DOI: 10.1016/j.lfs.2019.116865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS Endothelial dysfunction is one of the earliest symptoms in septic patients and plays an important role in the cardiovascular alterations. However, the endothelial mechanisms involved in the impaired sympathetic regulation of the cardiovascular system are not clear. This study aimed to determine the role of the endocardial endothelium (EE) in the cardiac β-adrenergic (β-AR) remodeling at the early phase of endotoxemic shock. MAIN METHODS Rats received either lipopolysaccharide (LPS) or saline (control) intravenously. Three hours later, β-AR cardiac contractility was evaluated on papillary muscles with or without a functional EE. KEY FINDINGS Isoproterenol-induced contractility was strongly increased in papillary muscles from LPS rats. A similar increase was observed with a β1-AR stimulation, whereas β2-AR and β3-AR produced similar contractility in control and LPS treatments. The removal of the EE did not modify β1-AR-induced contractility in controls, whereas it abolished the increased β1-AR response in LPS-treated muscles. In LPS-treated papillary muscle, the increased β1-AR-induced contractility was not modified by pretreatment with a NOS inhibitor or an endothelin receptor antagonist. Conversely, the increased β1-AR-induced contractility was abolished by indomethacin, a non-selective cyclooxygenase (COX) inhibitor, as well as by selective inhibitors of COX1 and COX2. An early treatment with indomethacin improved the survival of LPS rat. SIGNIFICANCE Our results suggest that the EE is involved in the increased cardiac β1-AR contractility in the early phase of endotoxemic shock. This effect is mediated through the activation of COX1 and COX2 and suggests these may be novel putative therapeutic targets during endotoxemic shock.
Collapse
Affiliation(s)
- David Roul
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Rozec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.
| | - Marine Ferron
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Leslie Audigane
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Nolwenn Merlet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Damien Guijarro
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | | | | |
Collapse
|
324
|
Uz Z, Aykut G, Massey M, Ince Y, Ergin B, Shen L, Toraman F, van Gulik TM, Ince C. Leukocyte-Endothelium Interaction in the Sublingual Microcirculation of Coronary Artery Bypass Grafting Patients. J Vasc Res 2019; 57:8-15. [PMID: 31505501 DOI: 10.1159/000501826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/01/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim of this study was to apply an innovative methodology to incident dark-field (IDF) imaging in coronary artery bypass grafting (CABG) patients for the identification and quantification of rolling leukocytes along the sublingual microcirculatory endothelium. METHODS This study was a post hoc analysis of a prospective study that evaluated the perioperative course of the sublingual microcirculation in CABG patients. Video images were captured using IDF imaging following the induction of anesthesia (T0) and cardiopulmonary bypass (CPB) (T1) in 10 patients. Rolling leukocytes were identified and quantified using frame averaging, which is a technique that was developed for correctly identifying leukocytes. RESULTS The number of rolling leukocytes increased significantly from T0 (7.5 [6.4-9.1] leukocytes/capillary-postcapillary venule/4 s) to T1 (14.8 [13.2-15.5] leukocytes/capillary-postcapillary venule/4 s) (p < 0.0001). A significant increase in systemic leukocyte count was also detected from 7.4 ± 0.9 × 109/L (preoperative) to 12.4 ± 4.4 × 109/L (postoperative) (p < 0.01). CONCLUSION The ability to directly visualize leukocyte-endothelium interaction using IDF imaging facilitates the diagnosis of a systemic inflammatory response after CPB via the identification of rolling leukocytes. Integration of the frame averaging algorithm into the software of handheld vital microscopes may enable the use of microcirculatory leukocyte count as a real-time parameter at the bedside.
Collapse
Affiliation(s)
- Zühre Uz
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, .,Department of Experimental Surgery and Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Güçlü Aykut
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Michael Massey
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasin Ince
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bülent Ergin
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lucinda Shen
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fevzi Toraman
- Department of Anesthesiology and Reanimation, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Thomas M van Gulik
- Department of Experimental Surgery and Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
325
|
Kim WY, Lee SH, Kim DY, Ryu HJ, Chon GR, Park YY, Fu Y, Huh JW, Lim CM, Koh Y, Choi EY, Hong SB. Serum developmental endothelial locus-1 is associated with severity of sepsis in animals and humans. Sci Rep 2019; 9:13005. [PMID: 31506547 PMCID: PMC6737092 DOI: 10.1038/s41598-019-49564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Disruption of the endothelial glycocalyx has a prominent role in the pathophysiology of sepsis. Developmental endothelial locus-1 (Del-1) is an endothelial-derived anti-inflammatory factor. We hypothesized that degradation of the endothelial glycocalyx during sepsis may increase serum Del-1. A mouse model of sepsis was created using cecal ligation and puncture. In septic mice, the endothelial glycocalyx was nearly completely degraded, with less formation of Del-1 in the endothelium and extracellular matrix than in control mice. Serum Del-1 levels were significantly increased in the septic mice with increasing severity of sepsis. Serum Del-1 levels were also measured in 84 patients with sepsis and septic shock and in 20 control subjects. The median serum Del-1 level in patients with sepsis was significantly higher than that in healthy controls. The high Del-1 group had higher illness severity scores and contained more patients with organ dysfunction than the low Del-1 group. The 90-day mortality rate was significantly higher in the high Del-1 group than in the low Del-1 group. Multivariate analysis indicated a tendency for a high serum Del-1 level to be associated with a higher mortality risk. Increased serum Del-1 may be a novel diagnostic biomarker of sepsis and an indicator of disease severity.
Collapse
Affiliation(s)
- Won-Young Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Young Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Ryu
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyu Rak Chon
- Department of Internal Medicine, Cheongju St. Mary's Hospital, Cheongju, Republic of Korea
| | - Yun Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yan Fu
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
326
|
Ferrara G, Kanoore Edul VS, Caminos Eguillor JF, Buscetti MG, Canales HS, Lattanzio B, Gatti L, Ince C, Dubin A. Effects of fluid and norepinephrine resuscitation in a sheep model of endotoxin shock and acute kidney injury. J Appl Physiol (1985) 2019; 127:788-797. [DOI: 10.1152/japplphysiol.00172.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of renal failure in septic shock is complex. Although microvascular dysfunction has been proposed as a mechanism, there are controversial findings about the characteristics of microvascular redistribution and the effects of resuscitation. Our hypothesis was that the normalization of systemic hemodynamics with fluids and norepinephrine fails to improve acute kidney injury. To test this hypothesis, we assessed systemic and renal hemodynamics and oxygen metabolism in 24 anesthetized and mechanically ventilated sheep. Renal cortical microcirculation was evaluated by SDF-videomicroscopy. Shock ( n = 12) was induced by intravenous administration of endotoxin. After 60 min of shock, 30 mL/kg of saline solution was infused and norepinephrine was titrated to reach a mean blood pressure of 70 mmHg for 2 h. These animals were compared with a sham group ( n = 12). After endotoxin administration, mean blood pressure, cardiac index, and systemic O2 transport and consumption decreased ( P < 0.05 for all). Resuscitation improved these variables. Endotoxin shock also reduced renal blood flow and O2 transport and consumption (205[157–293] vs. 131 [99–185], 28.4[19.0–38.2] vs. 15.8[13.5–23.2], and 5.4[4.0–8.8] vs. 3.7[3.3–4.5] mL·min−1·100 g−1, respectively); cortical perfused capillary density (23.8[23.5–25.9] vs. 17.5[15.1–19.0] mm/mm2); and creatinine clearance (62.4[39.2–99.4] vs. 10.7[4.4–23.5] mL/min). After 2 h of resuscitation, these variables did not improve (174[91–186], 20.5[10.8–22.7], and 3.8[1.9–4.8] mL·min−1·100 g−1, 19.9[18.6–22.1] mm/mm2, and 5.9[1.0–11.9] mL/min). In conclusion, endotoxin shock induced severe renal failure associated with decreased renal flow, O2 transport and consumption, and cortical microcirculation. Normalization of systemic hemodynamics with fluids and norepinephrine failed to improve renal perfusion, oxygenation, and function. NEW & NOTEWORTHY This experimental model of endotoxin shock induced severe renal failure, which was associated with abnormalities in renal regional blood flow, microcirculation, and oxygenation. Derangements included the compromise of peritubular microvascular perfusion. Improvements in systemic hemodynamics through fluids and norepinephrine were unable to correct these abnormalities.
Collapse
Affiliation(s)
- Gonzalo Ferrara
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Vanina Siham Kanoore Edul
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | | | - María Guillermina Buscetti
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Héctor Saúl Canales
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Bernardo Lattanzio
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Luis Gatti
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arnaldo Dubin
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| |
Collapse
|
327
|
Slovinski AP, Hajjar LA, Ince C. Microcirculation in Cardiovascular Diseases. J Cardiothorac Vasc Anesth 2019; 33:3458-3468. [PMID: 31521493 DOI: 10.1053/j.jvca.2019.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Microcirculation is a system composed of interconnected microvessels, which is responsible for the distribution of oxygenated blood among and within organs according to regional metabolic demand. Critical medical conditions, e. g., sepsis, and heart failure are known triggers of microcirculatory disturbance, which usually develops early in such clinical pictures and represents an independent risk factor for mortality. Therefore, hemodynamic resuscitation aiming at restoring microcirculatory perfusion is of paramount importance. Until recently, however, resuscitation protocols were based on macrohemodynamic variables, which increases the risk of under or over resuscitation. The introduction of hand-held video-microscopy (HVM) into clinical practice has allowed real-time analysis of microcirculatory variables at the bedside and, hence, favored a more individualized approach. In the cardiac intensive care unit scenario, HVM provides essential information on patients' hemodynamic status, e. g., to classify the type of shock, to adequate the dosage of vasopressors or inotropes according to demand and define safer limits, to guide fluid therapy and red blood cell transfusion, to evaluate response to treatment, among others. Nevertheless, several drawbacks have to be addressed before HVM becomes a standard of care.
Collapse
Affiliation(s)
| | | | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, 's-Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| |
Collapse
|
328
|
Guerci P, Ergin B, Uz Z, Ince Y, Westphal M, Heger M, Ince C. Glycocalyx Degradation Is Independent of Vascular Barrier Permeability Increase in Nontraumatic Hemorrhagic Shock in Rats. Anesth Analg 2019; 129:598-607. [DOI: 10.1213/ane.0000000000003918] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
329
|
Bioimpedance-measured volume overload predicts longer duration of mechanical ventilation in intensive care unit patients. Can J Anaesth 2019; 66:1458-1463. [DOI: 10.1007/s12630-019-01450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
|
330
|
Impaired vascular reactivity in sepsis - a systematic review with meta-analysis. ACTA ACUST UNITED AC 2019; 4:e151-e161. [PMID: 31448347 PMCID: PMC6704762 DOI: 10.5114/amsad.2019.86754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
Introduction Vascular dysfunction due to reduced nitric oxide bioavailability plays an important role in the pathogenesis of sepsis. This meta-analysis examines evidence from published literature to evaluate whether in the adult population the presence/severity of sepsis is associated with impaired vasoreactivity. Material and methods We performed a search of the Medline, Scopus, and EMBASE databases to identify observational studies using measurement of reactive hyperaemia in adult patients with sepsis. After data extraction using predefined protocol, qualitative synthesis of findings was performed regarding consistency of findings between methods, evidence of association between vascular reactivity and severity of sepsis, multiple organ failure, and death. A meta-analyses of standardised mean differences in vasoreactivity between groups was performed, in which data were available for relevant outcomes. Results Eighteen studies using four methods to measure vascular reactivity from a total of 466 were included in the analysis. The pooled standardised mean difference estimate showed that septic patients had less reactive hyperaemia than controls (-2.59, 95% CI: -3.46 to -1.72; p < 0.00001), and peak hyperaemic blood flow was lower in patients with sepsis than in the control group (SMD = -1.42, 95% CI: -2.14 to -0.70; p = 0.0001). The combined SMD between non survivors and survivors was -0.36 (95% CI: -0.67 to -0.06; p = 0.02) for reactive hyperaemia and -0.70 (95% CI: -1.13 to -0.27; p = 0.001) for peak hyperaemic blood flow. Conclusions Septic patients have attenuated vascular reactivity when compared to healthy volunteers. There are insufficient data indicating that these changes can identify patients at risk of worsening organ failure or death.
Collapse
|
331
|
Vardon-Bounes F, Ruiz S, Gratacap MP, Garcia C, Payrastre B, Minville V. Platelets Are Critical Key Players in Sepsis. Int J Mol Sci 2019; 20:ijms20143494. [PMID: 31315248 PMCID: PMC6679237 DOI: 10.3390/ijms20143494] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Host defense against infection is based on two crucial mechanisms: the inflammatory response and the activation of coagulation. Platelets are involved in both hemostasis and immune response. These mechanisms work together in a complex and synchronous manner making the contribution of platelets of major importance in sepsis. This is a summary of the pathophysiology of sepsis-induced thrombocytopenia, microvascular consequences, platelet-endothelial cells and platelet–pathogens interactions. The critical role of platelets during sepsis and the therapeutic implications are also reviewed.
Collapse
Affiliation(s)
- Fanny Vardon-Bounes
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France.
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France.
| | - Stéphanie Ruiz
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
| | - Cédric Garcia
- Hematology Laboratory, Toulouse University Hospital, 31059 Toulouse, France
| | - Bernard Payrastre
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
- Hematology Laboratory, Toulouse University Hospital, 31059 Toulouse, France
| | - Vincent Minville
- Anesthesiology and Critical Care Unit, Toulouse University Hospital, 31059 Toulouse, France
- INSERM I2MC (Institut des Maladies Cardiovasculaires et Métaboliques) UMR 1048, Toulouse University Hospital, 31059 Toulouse, France
| |
Collapse
|
332
|
Vlasov TD, Nesterovich II, Shimanski DA. Endothelial dysfunction: from the particular to the general. Return to the «Old Paradigm»? ACTA ACUST UNITED AC 2019. [DOI: 10.24884/1682-6655-2019-18-2-19-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The vascular endothelium is a heterogeneous structure with diverse functions, being an active metabolic system. Endothelial cells mediate inflammatory and immune processes, regulate leukocyte adhesion, permeability and vascular tone, participate in the hemostasis system, stimulate the processes of angiogenesis. Endothelial dysfunction can initiate individual disorders, but more often it is a universal link in the pathogenesis of many diseases. Currently, endothelial dysfunction is presented as an imbalance between the production of vasodilating, angioprotective, antiproliferative factors, on the one hand, and vasoconstrictive, prothrombotic, proliferative factors, on the other hand. The manifestations of endothelial dysfunction, the direction and severity of these changes may vary depending on the disease. The review provides examples of combined endothelial disorders in the most studied and common diseases (essential hypertension, type 2 diabetes, systemic diseases of the connective tissue, atherosclerosis, and malignant tumors). Despite the presence of rare cases of isolated endothelial dysfunction, it can be argued that in the absolute majority of diseases, endothelial dysfunction has combined type of violations. The allocation of individual endothelial disorder spectra, typical for a specific disease, is problematic, due to the universality and nonspecificity of the manifestations of endothelial dysfunction. These conclusions allow us to return to the origins of this problem, considering endothelial dysfunction as a holistic concept, not limited to a certain range of its disorders.
Collapse
|
333
|
Predictors, Prevalence, and Outcomes of Early Crystalloid Responsiveness Among Initially Hypotensive Patients With Sepsis and Septic Shock. Crit Care Med 2019; 46:189-198. [PMID: 29112081 DOI: 10.1097/ccm.0000000000002834] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The prevalence of responsiveness to initial fluid challenge among hypotensive sepsis patients is unclear. To avoid fluid overload, and unnecessary treatment, it is important to differentiate these phenotypes. We aimed to 1) determine the proportion of hypotensive sepsis patients sustaining favorable hemodynamic response after initial fluid challenge, 2) determine demographic and clinical risk factors that predicted refractory hypotension, and 3) assess the association between timeliness of fluid resuscitation and refractoriness. DESIGN Secondary analysis of a prospective, multisite, observational, consecutive-sample cohort. SETTING Nine tertiary and community hospitals over 1.5 years. PATIENTS Inclusion criteria 1) suspected or confirmed infection, 2) greater than or equal to two systemic inflammatory response syndrome criteria, 3) systolic blood pressure less than 90 mm Hg, greater than 40% decrease from baseline, or mean arterial pressure less than 65 mm Hg. MEASUREMENTS AND MAIN RESULTS Sex, age, heart failure, renal failure, immunocompromise, source of infection, initial lactate, coagulopathy, temperature, altered mentation, altered gas exchange, and acute kidney injury were used to generate a risk score. The primary outcome was sustained normotension after fluid challenge without vasopressor titration. Among 3,686 patients, 2,350 (64%) were fluid responsive. Six candidate risk factors significantly predicted refractoriness in multivariable analysis: heart failure (odds ratio, 1.43; CI, 1.20-1.72), hypothermia (odds ratio, 1.37; 1.10-1.69), altered gas exchange (odds ratio, 1.33; 1.12-1.57), initial lactate greater than or equal to 4.0 mmol/L (odds ratio, 1.28; 1.08-1.52), immunocompromise (odds ratio, 1.23; 1.03-1.47), and coagulopathy (odds ratio, 1.23; 1.03-1.48). High-risk patients (≥ three risk factors) had 70% higher (CI, 48-96%) refractory risk (19% higher absolute risk; CI, 14-25%) versus low-risk (zero risk factors) patients. Initiating fluids in greater than 2 hours also predicted refractoriness (odds ratio, 1.96; CI, 1.49-2.58). Mortality was 15% higher (CI, 10-18%) for refractory patients. CONCLUSIONS Two in three hypotensive sepsis patients were responsive to initial fluid resuscitation. Heart failure, hypothermia, immunocompromise, hyperlactemia, and coagulopathy were associated with the refractory phenotype. Fluid resuscitation initiated after the initial 2 hours more strongly predicted refractoriness than any patient factor tested.
Collapse
|
334
|
Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin 2019; 40:867-878. [PMID: 30617294 DOI: 10.1038/s41401-018-0189-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
Magnesium lithospermate B (MLB) is an active component of Salvia miltiorrhiza Radix, a traditional Chinese herb used in treating cardiovascular diseases. In this study, we investigated the protective effects of MLB against inflammation-induced endothelial dysfunction in vitro and in vivo, and the underlying mechanisms. Endothelial dysfunction was induced in human dermal microvascular endothelial cells (HMEC-1) in vitro by lipopolysaccharide (LPS, 1 μg/mL). We showed that pretreatment with MLB (10-100 μM) dose-dependently inhibited LPS-induced upregulation of inflammatory cytokines ICAM1, VCAM1, and TNFα, which contributed to reduced leukocytes adhesion and attenuation of endothelial hyperpermeability in HMEC-1 cells. SD rats were injected with LPS (10 mg/kg, ip) to induce endothelial dysfunction in vivo. We showed that pretreatment with MLB (25-100 mg/kg, ip) dose-dependently restored LPS-impaired endothelial-dependent vasodilation in superior mesenteric artery (SMA), attenuated leukocyte adhesion in mesenteric venules and decreased vascular leakage in the lungs. We further elucidated the mechanisms underlying the protective effects of MLB, and revealed that MLB pretreatment inhibited NF-κB activation through inhibition of IκBα degradation and subsequent phosphorylation of NF-κB p65 in vitro and in vivo. In HMEC-1 cells, MLB pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Knockdown of Nrf2 with siRNA abolished the inhibitory effects of MLB on IκBα degradation and ICAM1 up-regulation, which were mimicked by PKC inhibition (Gö6983) or PI3K/Akt inhibition (LY294002). In summary, our results demonstrate that MLB inhibits NF-κB activation through PKC- and PI3K/Akt-mediated Nrf2 activation in HMEC-1 cells and protects against LPS-induced endothelial dysfunction in murine model of acute inflammation.
Collapse
|
335
|
Mayne ES, Louw S. Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 2019; 6:ofz303. [PMID: 31737735 PMCID: PMC6847507 DOI: 10.1093/ofid/ofz303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease, venous thrombosis, and microvascular disease in people with HIV (PWH) is predicted to increase in an aging HIV-infected population. Endothelial damage and dysfunction is a risk factor for cardiovascular events in PWH and is characterized by impaired vascular relaxation and decreased nitric oxide availability. Vascular disease has been attributed to direct viral effects, opportunistic infections, chronic inflammation, effects of antiretroviral therapy, and underlying comorbid conditions, like hypertension and use of tobacco. Although biomarkers have been examined to predict and prognosticate thrombotic and cardiovascular disease in this population, more comprehensive validation of risk factors is necessary to ensure patients are managed appropriately. This review examines the pathogenesis of vascular disease in PWH and summarizes the biomarkers used to predict vascular disease in this population.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service
| | - Susan Louw
- Department of Molecular Medicine Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
336
|
Ni J, Lin M, Jin Y, Li J, Guo Y, Zhou J, Hong G, Zhao G, Lu Z. Gas6 Attenuates Sepsis-Induced Tight Junction Injury and Vascular Endothelial Hyperpermeability via the Axl/NF-κB Signaling Pathway. Front Pharmacol 2019; 10:662. [PMID: 31263416 PMCID: PMC6585310 DOI: 10.3389/fphar.2019.00662] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial functional dysregulation and barrier disruption are involved the initiation and development of sepsis. Growth arrest-specific protein 6 (Gas6), one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk), is confirmed to have beneficial functions in hemostasis, inflammation, and cancer growth. Here, we demonstrated the protective effects of Gas6 on multi-organ dysfunction syndrome (MODS) in sepsis and the underlying mechanisms. We investigated Gas6-ameliorated MODS by inhibiting vascular endothelial hyperpermeability in a mouse model of sepsis. Additionally, in vitro, under lipopolysaccharide (LPS) stimulation in vascular endothelial cells, Gas6 attenuated vascular endothelial hyperpermeability by reinforcing the tight junction proteins occludin, zonula occludens-1 (ZO-1), and claudin5. Furthermore, Gas6 substantially suppressed NF-κB p65 activation. In addition, blocking the Gas6 receptor, Axl, partially reduced the protective effect of Gas6 on the vascular endothelial barrier and diminished the inhibitive effect of Gas6 on NF-κB p65 activation. Taken together, this study suggests that Gas6 has a protective effect on MODS in sepsis by inhibiting the vascular endothelial hyperpermeability and alteration of tight junction and that the Axl/NF-κB signaling pathway underlies these effects.
Collapse
Affiliation(s)
- Jingjing Ni
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaotong Lin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yayong Guo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jindong Zhou
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
337
|
A clinical and pathological description of 320 cases of naturally acquired Babesia rossi infection in dogs. Vet Parasitol 2019; 271:22-30. [PMID: 31303199 DOI: 10.1016/j.vetpar.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 11/23/2022]
Abstract
Babesia rossi causes the most severe clinical disease in dogs of all the babesia parasites. We included 320 naturally-infected dogs that presented for care at the Onderstepoort Veterinary Academic Hospital between 2006 and 2016. All dogs had mono-infections confirmed by multiplex PCR. The data allowed more accurate clinical classification of the disease and identified parameters that were associated with disease severity and death. Odds ratios for dying were significant (P < 0.05) for increased band neutrophil count, collapse at presentation; presence of cerebral signs; hypoglycaemia; hyperlactatemia; high urea, high creatinine; hyperbilirubinaemia; hypercortisolaemia; and hypothyroxinaemia. Joint component analysis confirmed that the variables with significant odds ratios grouped together with death. Yet, multivariate logistic regression was unable to identify a group of significant independent predictors of death. Receiver Operator Characteristic curves indicated that low total thyroid hormone, high bilirubin, high serum urea and high cortisol concentrations were the variables with the highest sensitivity and specificity for death. These data provide both the clinician and researcher with a set of easily-measured laboratory and clinical assessments to classify cases into those that are uncomplicated and those that are complicated. The disease is complex and multisystemic and probably involves mechanisms more proximal in the pathogenesis than those that have been evaluated.
Collapse
|
338
|
Martinez-Quinones P, Komic A, McCarthy CG, Webb RC, Wenceslau CF. Targeting Endothelial Barrier Dysfunction Caused by Circulating Bacterial and Mitochondrial N-Formyl Peptides With Deformylase. Front Immunol 2019; 10:1270. [PMID: 31244835 PMCID: PMC6563851 DOI: 10.3389/fimmu.2019.01270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Despite recent advances in our understanding of the mechanisms underlying systemic inflammatory response syndrome (SIRS) and sepsis, the current therapeutic approach to these critically ill patients is centered around supportive care including fluid resuscitation, vasopressors and source control. The incidence of SIRS and sepsis continues to increase in the United States and patients die due to failure to respond to the traditional therapies of nitric oxide blockade, adrenergic agonists, etc. Bacterial and mitochondrial N-formyl peptides (NFPs) act as damage-associated molecular patterns and activate the innate immune system through formyl peptide receptors (FPR) located in immune and non-immune cells, including the vascular endothelium. The resulting inflammatory response manifests as capillary leak, tissue hypoperfusion and vasoplegia, partially due to endothelium barrier breakdown. Potential strategies to prevent this response include decreasing NFP release, breakdown of NFPs, and blocking NFPs from binding FPR. We propose the use of deformylase, the degrading enzyme for NFPs, as potential therapeutic approach to prevent the deleterious effects of NFPs in SIRS and sepsis.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Amel Komic
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - R Clinton Webb
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | | |
Collapse
|
339
|
Abstract
Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Department of Paediatrics and Child Care, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
| |
Collapse
|
340
|
Mignemi NA, McClatchey PM, Kilchrist KV, Williams IM, Millis BA, Syring KE, Duvall CL, Wasserman DH, McGuinness OP. Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis. Am J Physiol Endocrinol Metab 2019; 316:E1012-E1023. [PMID: 30860883 PMCID: PMC6620574 DOI: 10.1152/ajpendo.00501.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
Abstract
Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.
Collapse
Affiliation(s)
- Nicholas A Mignemi
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - P Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Biophotonics Center, Vanderbilt University , Nashville, Tennessee
| | - Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| |
Collapse
|
341
|
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 2019; 17:10. [PMID: 31160889 PMCID: PMC6542012 DOI: 10.1186/s12959-019-0198-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to protective “immune response”, sepsis is characterized by destructive “endothelial response” of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form “microthrombi”. These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
342
|
Kazune S, Grabovskis A, Cescon C, Strike E, Vanags I. Association between increased arterial stiffness and clinical outcomes in patients with early sepsis: a prospective observational cohort study. Intensive Care Med Exp 2019; 7:26. [PMID: 31098834 PMCID: PMC6522594 DOI: 10.1186/s40635-019-0252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Conduit arteries, especially the aorta, play a major role in ensuring efficient cardiac function and optimal microvascular flow due to their viscoelastic properties. Studies in animals and on isolated arteries show that acute systemic inflammation can cause aortic stiffening which affects hemodynamic efficiency. Carotid-femoral pulse wave velocity, a measure of aortic stiffness, may be useful as a bedside investigational method in patients with early sepsis admitted to intensive care, as circulatory changes can lead to multiple organ failure and increased mortality. This study aims to investigate arterial stiffness in early sepsis and its association with clinical outcomes. Methods This prospective observational study included adult patients with severe sepsis or septic shock admitted to our intensive care unit (n = 45). Their carotid-femoral pulse wave velocity was measured within 24 h of admission. We assessed the progression of multiple organ as well as cardiovascular failure by sequential SOFA scores. Prediction models for the progression of multiple organ and cardiovascular failure were constructed using multivariate logistic regression with pulse wave velocity and vasopressor use as predictors. A Cox proportional hazards model was used to examine the relationship between pulse wave velocity and survival time. Results The median pulse wave velocity for the cohort was 14.6 (8.1–24.7) m/s. There was no association between pulse wave velocity and the progression of multiple organ failure, before or after adjustment for vasopressor use. No association was found between pulse wave velocity and subsequent improvement in cardiovascular failure in the subgroup of patients who had cardiovascular instability at baseline. Cox regression and survival analyses with age, APACHE II, and baseline SOFA as confounders showed a shorter hospital survival time for patients with pulse wave velocity > 24.7 m/s (HR = 9.45, 95% CI 1.24–72.2; P = 0.03). Conclusions Patients with severe sepsis and septic shock admitted to intensive care have higher arterial stiffness than in the general population. No convincing association was found between pulse wave velocity at admission and the progression of multiple organ or cardiovascular failure, although the group with pulse wave velocity > 24.7 m/s had shorter survival time. Electronic supplementary material The online version of this article (10.1186/s40635-019-0252-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sigita Kazune
- Department of Anesthesiology, Hospital of Traumatology and Orthopedics, 22 Duntes Street, Riga, LV-1013, Latvia. .,Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia. .,Department of Anesthesiology and Reanimatology, Riga Stradins University, Riga, Latvia.
| | - Andris Grabovskis
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | | | - Eva Strike
- Department of Anesthesiology and Cardiac Surgery, Pauls Stradins Clinical University Hospital, Riga, Latvia.,Department of Anesthesiology and Reanimatology, Riga Stradins University, Riga, Latvia
| | - Indulis Vanags
- Department of Anesthesiology and Reanimatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
343
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
344
|
García-Hernández R, Espigares-López MI, García-Palacios MV, Gámiz Sánchez R, Miralles-Aguiar F, Calderón Seoane E, Pernia Romero A, Torres LM. A pilot study into the use of Continuous Venous Hyperfiltration to manage patients in a critical state with dysregulated inflammation. ACTA ACUST UNITED AC 2019; 66:370-380. [PMID: 31084978 DOI: 10.1016/j.redar.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Haemofiltration paradigms used to manage critically ill patients with a dysregulated inflammatory response (DIR) assess kidney function to monitor its onset, adaptation, and completion. A Continuous Venous Hyperfiltration (CONVEHY) protocol is presented, in which a non-specific adsorption membrane (AN69-ST-Heparin Grafted) is used with citrate as an anticoagulant and substitution fluid. CONVEHY uses tools readily available to achieve kidney related and non-related objectives, and it is guided by the monitoring of pathophysiological responses. OBJECTIVES To compare the response to an AN69-ST-HG membrane when heparin (He, n=5: Standard protocol) or citrate (Ci, n=6: CONVEHY protocol) was used to evaluate whether a larger study into the benefits of this protocol would be feasible. MATERIALS AND METHODS In a retrospective pilot study, the benefits of the CONVEHY protocol to manage patients with a DIR in a surgical critical care unit (CCUs) were assessed by evaluating the SOFA (Sequential Organ Failure Assessment) (He 11 ± 2.35; Ci 11 ± 3.63: p=0.54) and APACHE II (He 28.60 ± 9.40; Ci 24 ± 8.46: p=0.93) scores. RESULTS Nights in hospital (He 35.2 ± 16.3 nights; Ci 9 ± 2.53: p=0.004), hospital admission after discharge from the CCUs (He 40.25 ± 21.82; Ci 13.2 ± 4.09: p=0.063), patients hospitalised >20 days (He 80%; Ci 0%: p=0.048), days requiring mechanical ventilation (He 16 ± 5.66; Ci 4 ± 1.72: p=0.004), and the predicted (55.39 ± 26.13%) versus real mortality in both groups (9.1%: p=0.004). CONCLUSIONS The CONVEHY protocol improves the clinical responses of patients with DIR, highlighting the potential value of performing larger and confirmatory studies.
Collapse
Affiliation(s)
- R García-Hernández
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España.
| | - M I Espigares-López
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - M V García-Palacios
- Facultativo especialista de Área de Medicina Preventiva, H.U. Puerta del Mar, Cádiz, España
| | - R Gámiz Sánchez
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - F Miralles-Aguiar
- Residente de Anestesiología y Reanimación. Médico especialista en Medicina Intensiva. H.U. Puerta del Mar, Cádiz, España
| | - E Calderón Seoane
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - A Pernia Romero
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - L M Torres
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | | | | |
Collapse
|
345
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
346
|
Lee YS, Min KH, Lee SY, Shim JJ, Kang KH, Cho WH, Jeon D, Kim YS. The value of glycated hemoglobin as predictor of organ dysfunction in patients with sepsis. PLoS One 2019; 14:e0216397. [PMID: 31059556 PMCID: PMC6502339 DOI: 10.1371/journal.pone.0216397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/21/2019] [Indexed: 12/29/2022] Open
Abstract
Background In patients with sepsis, an inflammatory response can lead to destruction of the glycocalyx. These alterations cause the progression of organ dysfunction. Destruction of the glycocalyx can also occur in chronic hyperglycemia. Glycated hemoglobin (HbA1c) is a reliable marker of premorbid hyperglycemia. We investigated the association between HbA1c level at admission and the degree of organ dysfunction progression 72 hours after admission and ICU mortality. Methods and findings This study was a retrospective observational study. Logistic regression and correlation analyses were performed to evaluate the association between the HbA1c level and the degree of organ dysfunction progression 72 hours after ICU admission. We applied survival analysis to examine the association between HbA1c level and ICU mortality. A total of 90 patients were included in this study. The association between HbA1c level and degree of organ dysfunction progression was significant (r = 0.320; P = 0.002). Multivariable logistic regression analysis showed that high HbA1c level (≥6.5%) (OR, 2.98; 95% CI, 1.033–8.567; P = 0.043) were significant, independent predictors of severe organ dysfunction progression. Patients with an HbA1c level ≥6.5% exhibited significantly greater liver and kidney dysfunction progression 72 hours after ICU admission compared with those with an HbA1c level <6.5%. Kaplan-Meier analysis showed that the survival period was significantly shorter in patients with an HbA1c level ≥6.5% than in those with an HbA1c level <6.5% (P < 0.001). Multivariable Cox proportional hazard analysis showed that HbA1c level ≥6.5% (HR, 3.49; 95% CI, 1.802–6.760; P <0.001) were significant, independent predictors of ICU mortality. Conclusions In patients with sepsis, the HbA1c level at ICU admission is associated with progression of organ dysfunction 72 hours later and with ICU mortality. It may be important to assess HbA1c level at ICU admission because it may be a predictor of ICU outcome. For patients with a high HbA1c level (≥6.5%), greater attention should be paid to the possibility of organ dysfunction progression.
Collapse
Affiliation(s)
- Young Seok Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, Republic of Korea
| | - Kyung Hoon Min
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, Republic of Korea
| | - Jae Jeong Shim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, Republic of Korea
| | - Kyung Ho Kang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Guro Hospital, Seoul, Republic of Korea
| | - Woo Hyun Cho
- Department of Pulmonary and Critical Care Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Doosoo Jeon
- Department of Pulmonary and Critical Care Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun Seong Kim
- Department of Pulmonary and Critical Care Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
347
|
Morrison VV, Bozhedomov AY. Dynamics of hemostasis parameters and endothelial dysfunction markers in patients with thermal injury. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burn injuries kill thousands of people. The aim of this study was to investigate the dynamics of systemic inflammatory response parameters, endothelial dysfunction markers and hemostasis impairment in patients with thermal burn injuries. The study was conducted in 51 patients aged 16 to 80 years presenting with moderate to severe thermal burns. The systemic inflammatory response was assessed based on the levels of tumor necrosis factor α (TNFα), a number of interleukins (IL6, IL12), the С-reactive protein, and the monocyte chemoattractant protein 1 (MCP-1). Hemostatic impairments were inferred from the results of coagulation tests that measured the activated partial thromboplastin time (APTT), the prothrombin index (PI), the prothrombin time (PT) and the platelet count. Endothelial dysfunction was analyzed based on the levels of vascular endothelial growth factor (VEGF), total endothelin (TE) and circulating endothelial cells. The dynamics of the listed parameters were studied over 45 days following the injury. Endothelial dysfunction markers peaked on days 3–15 (VEGF 828.9 ± 993.2 pg/mL, TE 3.0 ± 1.7 fmol/mL, CEC 6.4 ± 6.0 • 104/l, IL6 264.4 ± 131.2 pg/mL, TNFα 41.4 ± 111.9 pg/ml, C-reactive protein 128.3 ± 52.4 nmol/mL). Coagulation was significantly impaired during the same period (APTT 41.4 ± 17.7 s, PI 83.6 ± 15.4%, PT 22.3 ± 10.0 s). By day 30–35, blood concentrations of proinflammatory cytokines and inflammation mediators had declined (TNFα 3.9 ± 9.6 pg/mL, IL6 49.0 ± 35.9 pg/mL, С-reactive protein 81.9 ± 341 nmol/ml); in that phase, the coagulation potential was continuing to decrease (APTT 51.8 ± 34.1 s, PI 82.9 ± 19.4%, PT 24.9 ± 21.4 s). The study demonstrates that damage to the endothelium results from both injured tissue breakdown and inflammation mediators. The risk of thromboembolic and hemorrhagic complications is the highest on days 7 through 15 following thermal injury. Further research is needed to study the mechanisms of endothelial damage in patients with thermal burns.
Collapse
Affiliation(s)
- VV Morrison
- Saratov State Medical University, Saratov, Russia
| | - AYu Bozhedomov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
348
|
Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019; 197:361-369. [PMID: 31028466 DOI: 10.1007/s00408-019-00228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.
Collapse
|
349
|
Heun Y, Pircher J, Czermak T, Bluem P, Hupel G, Bohmer M, Kraemer BF, Pogoda K, Pfeifer A, Woernle M, Ribeiro A, Hübner M, Kreth S, Claus RA, Weis S, Ungelenk L, Krötz F, Pohl U, Mannell H. Inactivation of the tyrosine phosphatase SHP-2 drives vascular dysfunction in Sepsis. EBioMedicine 2019; 42:120-132. [PMID: 30905847 PMCID: PMC6491420 DOI: 10.1016/j.ebiom.2019.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Sepsis, the most severe form of infection, involves endothelial dysfunction which contributes to organ failure. To improve therapeutic prospects, elucidation of molecular mechanisms underlying endothelial vascular failure is of essence. Methods Polymicrobial contamination induced sepsis mouse model and primary endothelial cells incubated with sepsis serum were used to study SHP-2 in sepsis-induced endothelial inflammation. SHP-2 activity was assessed by dephosphorylation of pNPP, ROS production was measured by DCF oxidation and protein interactions were assessed by proximity ligation assay. Vascular inflammation was studied in the mouse cremaster model and in an in vitro flow assay. Findings We identified ROS-dependent inactivation of the tyrosine phosphatase SHP-2 to be decisive for endothelial activation in sepsis. Using in vivo and in vitro sepsis models, we observed a significant reduction of endothelial SHP-2 activity, accompanied by enhanced adhesion molecule expression. The impaired SHP-2 activity was restored by ROS inhibitors and an IL-1 receptor antagonist. SHP-2 activity inversely correlated with the adhesive phenotype of endothelial cells exposed to IL-1β as well as sepsis serum via p38 MAPK and NF-κB. In vivo, SHP-2 inhibition accelerated IL-1β-induced leukocyte adhesion, extravasation and vascular permeability. Mechanistically, SHP-2 directly interacts with the IL-1R1 adaptor protein MyD88 via its tyrosine 257, resulting in reduced binding of p85/PI3-K to MyD88. Interpretation Our data show that SHP-2 inactivation by ROS in sepsis releases a protective break, resulting in endothelial activation. Fund German Research Foundation, LMU Mentoring excellence and FöFoLe Programme, Verein zur Förderung von Wissenschaft und Forschung, German Ministry of Education and Research.
Collapse
Affiliation(s)
- Yvonn Heun
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Czermak
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany
| | - Philipp Bluem
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Georg Hupel
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Monica Bohmer
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Bjoern F Kraemer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center University of Bonn, Sigmund-Freud-Straße 25, Bonn 53105, Germany
| | - Markus Woernle
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr.1, Munich 80336, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr.1, Munich 80336, Germany
| | - Max Hübner
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Department of Anesthesiology, Klinikum der Universität München, Marchioninistraße 15, München 81377, Germany
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Department of Anesthesiology, Klinikum der Universität München, Marchioninistraße 15, München 81377, Germany
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena 07747, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Luisa Ungelenk
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Florian Krötz
- Interventional Cardiology, Starnberg Community Hospital, Oßwaldstr. 1, Starnberg 82319, Germany
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany; Munich Cluster for Systems Neurology, (SyNergy), Munich, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany; Hospital Pharmacy, University Hospital, Ludwig-Maximilians-University, Marchioninistraße 15, München 81377, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
350
|
McKleroy W, Lyn-Kew K. 500 Million Alveoli from 30,000 Feet: A Brief Primer on Lung Anatomy. Methods Mol Biol 2019; 1809:3-15. [PMID: 29987778 DOI: 10.1007/978-1-4939-8570-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The lungs are a complex organ that fulfill multiple life-sustaining roles including transfer of oxygen and carbon dioxide between the ambient environment and the bloodstream, host defense, and immune homeostasis. As in any biological system, an understanding of the underlying anatomy is prerequisite for successful experimental design and appropriate interpretation of data, regardless of the precise experimental model or procedure in use. This chapter provides an overview of human lung anatomy focused on the airways, the ultrastructure or parenchyma of the lung, the pulmonary vasculature, the innervation of the lungs, and the pulmonary lymphatic system. We will also discuss notable anatomic differences between mouse and human lungs.
Collapse
Affiliation(s)
- William McKleroy
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA.,Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth Lyn-Kew
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|