301
|
Zhou LJ, Jiang L, Zhai HQ, Wan JM. [Current status and strategies for improvement of rice grain chalkiness]. YI CHUAN = HEREDITAS 2009; 31:563-72. [PMID: 19586854 DOI: 10.3724/sp.j.1005.2009.00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This paper reviews the current status of correlation between rice chalkiness and other rice quality characters, formative mechanism, and classical and molecular genetics for rice chalkiness. The formation of rice chalkiness proves to be a complicated physiological process and tightly relate to "source-sink" of rice, dynamics of grain filing, biosynthesis and accumulation of starch in endosperm. Rice chalkiness is a complicated quantitative trait, which is controlled by maternal effects, endosperm effects, and cytoplasmic effects. There are some stable quantitative trait loci (QTL) for rice chalkiness on many rice chromosomes. Of them, three genes controlling rice chalkiness, which have an impact on starch synthesis, starch metabolism, and fruit development, have been cloned. But the manipulative network and formative mechanisms of rice chalkiness remain unclear. At present in breeding practice, decrease of rice chalkiness has become one of the main aims in rice quality breeding, especially for indica rice. The direction of genetic research and improvement strategy of rice chalkiness in future were discussed in this review.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Crop Genetics, Nanjing Agri-cultural University, Nanjing, China
| | | | | | | |
Collapse
|
302
|
Yan HB, Pan XX, Jiang HW, Wu GJ. Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:815-25. [PMID: 19593540 DOI: 10.1007/s00122-009-1091-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/08/2009] [Indexed: 05/10/2023]
Abstract
Gene duplication and divergence are important evolutionary processes. It has been suggested that a whole genome duplication (WGD) event occurred in the Gramineae, predating its divergence, and a second WGD occurred in maize during its evolution. In this study we compared the fate of the genes involved in the core pathway of starch biosynthesis following the ancient and second WGDs in maize and rice. In total, thirty starch synthesis genes were detected in the maize genome, which covered all the starch synthesis gene families encoded by 27 genes in rice. All of these genes, except ZmGBSSIIb and ZmBEIII, are anchored within large-scale synteny blocks of rice and maize chromosomes. Previous findings and our results indicate that two of the current copies of many starch synthesis genes (including AGPL, AGPS, GBSS, SSII, SSIII, and BEII) probably arose from the ancient WGD in the Gramineae and are still present in the maize and rice genome. Furthermore, two copies of at least six genes (AGPS1, SSIIb, SSIIIb, GBSSII, BEI, and ISA3) appear to have been retained in the maize genome after its second WGD, although complete coding regions were only detected among the duplicate sets of AGPS1, SSIIb, and SSIIIb. The expression patterns of the remaining duplicate sets of starch synthesis genes (AGPL1/2, AGPS1/2, SSIIa/b, SSIIIa/b, GBSSI/II, and BEIIa/b) differ in their expression and could be classified into two groups in maize. The first group is mainly expressed in the endosperm, whereas the second is expressed in other organs and the early endosperm development. The four duplicate sets of ZmGBSSII, ZmSSIIb, ZmSSIIIb and AGPS1, which arose from the second WGD diverged in gene structure and/or expression patterns in maize. These results indicated that some duplicated starch synthesis genes were remained, whereas others diverged in gene structure and/or expression pattern in maize. For most of the duplicated genes, one of the copies has disappeared in the maize genome after the WGD and the subsequent "diploidization".
Collapse
Affiliation(s)
- Hong-Bo Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, 510650 Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
303
|
Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1009-23. [PMID: 19190097 PMCID: PMC2652056 DOI: 10.1093/jxb/ern349] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) allelic sugary1 (sug1) mutants defective in isoamylase 1 (ISA1) accumulate varying levels of starch and phytoglycogen in their endosperm, and the activity of a pullulanase-type of a debranching enzyme (PUL) was found to correlate closely with the severity of the sug1 phenotype. Thus, three PUL-deficient mutants were generated to investigate the function of PUL in starch biosynthesis. The reduction of PUL activity had no pleiotropic effects on the other enzymes involved in starch biosynthesis. The short chains (DP < or = 13) of amylopectin in PUL mutants were increased compared with that of the wild type, but the extent of the changes was much smaller than that of sug1 mutants. The alpha-glucan composition [amylose, amylopectin, water-soluble polysaccharide (WSP)] and the structure of the starch components (amylose and amylopectin) of the PUL mutants were essentially the same, although the average chain length of the B(2-3) chains of amylopectin in the PUL mutant was approximately 3 residues longer than that of the wild type. The double mutants between the PUL-null and mild sug1 mutants still retained starch in the outer layer of endosperm tissue, while the amounts of WSP and short chains (DP < or = 7) of amylopectin were higher than those of the sug1 mutant; this indicates that the PUL function partially overlaps with that of ISA1 and its deficiency has a much smaller effect on the synthesis of amylopectin than ISA1 deficiency and the variation of the sug1 phenotype is not significantly dependent on the PUL activities.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita City, Akita, 010-0195 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Streb S, Delatte T, Umhang M, Eicke S, Schorderet M, Reinhardt D, Zeeman SC. Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. THE PLANT CELL 2008; 20:3448-66. [PMID: 19074683 PMCID: PMC2630441 DOI: 10.1105/tpc.108.063487] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/17/2008] [Accepted: 11/24/2008] [Indexed: 05/20/2023]
Abstract
Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure. Quadruple mutants lacking all four DBE proteins (Isoamylase1 [ISA1], ISA2, and ISA3, and Limit-Dextrinase) are devoid of starch granules and instead accumulate highly branched glucans, distinct from amylopectin and from previously described phytoglycogen. A fraction of these glucans are present as discrete, insoluble, nanometer-scale particles, but the structure and properties of this material are radically altered compared with wild-type amylopectin. Superficially, these data support the hypothesis that debranching is required for amylopectin synthesis. However, our analyses show that soluble glucans in the quadruple DBE mutant are degraded by alpha- and beta-amylases during periods of net accumulation, giving rise to maltose and branched malto-oligosaccharides. The additional loss of the chloroplastic alpha-amylase AMY3 partially reverts the phenotype of the quadruple DBE mutant, restoring starch granule biosynthesis. We propose that DBEs function in normal amylopectin synthesis by promoting amylopectin crystallization but conclude that they are not mandatory for starch granule synthesis.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Plant Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
305
|
Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. ACTA ACUST UNITED AC 2008; 51:863-71. [PMID: 18815749 DOI: 10.1007/s11427-008-0120-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/22/2008] [Indexed: 10/21/2022]
Abstract
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amylopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch biosynthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm development, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amylopectin changed continually during the development of rice grains and varied between two rice cultivars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.
Collapse
|
306
|
The use of micro-beam X-ray diffraction for the characterization of starch crystal structure in rice mutant kernels of waxy, amylose extender, and sugary1. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
307
|
Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. THE PLANT CELL 2008; 20:1833-49. [PMID: 18621947 PMCID: PMC2518224 DOI: 10.1105/tpc.107.054007] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 06/02/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
Plastidial phosphorylase (Pho1) accounts for approximately 96% of the total phosphorylase activity in developing rice (Oryza sativa) seeds. From mutant stocks induced by N-methyl-N-nitrosourea treatment, we identified plants with mutations in the Pho1 gene that are deficient in Pho1. Strikingly, the size of mature seeds and the starch content in these mutants showed considerable variation, ranging from shrunken to pseudonormal. The loss of Pho1 caused smaller starch granules to accumulate and modified the amylopectin structure. Variation in the morphological and biochemical phenotype of individual seeds was common to all 15 pho1-independent homozygous mutant lines studied, indicating that this phenotype was caused solely by the genetic defect. The phenotype of the pho1 mutation was temperature dependent. While the mutant plants grown at 30 degrees C produced mainly plump seeds at maturity, most of the seeds from plants grown at 20 degrees C were shrunken, with a significant proportion showing severe reduction in starch accumulation. These results strongly suggest that Pho1 plays a crucial role in starch biosynthesis in rice endosperm at low temperatures and that one or more other factors can complement the function of Pho1 at high temperatures.
Collapse
Affiliation(s)
- Hikaru Satoh
- Plant Genetic Resources, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Kishine M, Suzuki K, Nakamura S, Ohtsubo K. Grain qualities and their genetic derivation of 7 new rice for Africa (NERICA) varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4605-10. [PMID: 18512938 DOI: 10.1021/jf800141y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
NERICA are interspecific rice varieties from crossing between the high-yielding Asian rice ( Oryza sativa spp. Japonica) with locally adapted African rice ( Oryza glaberrima). In this study, we analyzed grain qualities of 7 NERICA varieties (NERICA 1 to 7) and genetic derivation of quality-related genes. Quality analyses of NERICA grains showed that 7 NERICA varieties were clearly classified into two groups based on the difference of amylose content, and the difference influenced the pasting and physical properties of grains. Genetic analysis of the gene encoding granule-bound starch synthase I (GBSSI), which is known as a key enzyme on amylose synthesis in rice grain, revealed that varieties with higher amylose content ( approximately 29%) have the gene derived from O. glaberrima parent, and group 2 with lower amylose content ( approximately 22%) have the gene from O. sativa parent. These results indicated that the difference in amylose content as well as grain properties among 7 NERICA varieties is mainly determined by the genetic derivation of GBSSI. Further genetic analysis of starch synthesis-related genes suggested that the genetic derivation of SSIIa also influences the chain length of amylopectin in 7 NERICA varieties.
Collapse
Affiliation(s)
- Masahiro Kishine
- National Food Research Institute, 2-1-12, Kan-nondai, Tsukuba, 305-8642, Japan
| | | | | | | |
Collapse
|
309
|
Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4686-4694. [PMID: 18512943 DOI: 10.1021/jf072822m] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The relationship between the slow digestion property of cooked maize starch and its molecular fine structure was investigated. Results of the in vitro Englyst assay showed a range of rapidly digestible starch (RDS) (70.1-98.9%), slowly digestible starch (SDS) (0.2-20.3%), and resistant starch (RS) (0.0-13.7%) among the tested maize mutant flour samples. Further analysis showed that amylose content was significantly correlated ( R = 0.763, P < 0.001) with RS amount but not with that of SDS, indicating that amylopectin is the starch molecule associated with SDS. Total starch debranching analysis revealed a parabolic relationship between SDS content and the weight ratio of amylopectin short chains (DP < 13, named SF) to long chains (DP >/= 13, named LF), which means amylopectin with a higher amount of either short chains or long chains can produce relatively high amounts of SDS. Furthermore, debranching analysis of the SDS materials from samples with the highest and lowest weight ratios of SF/LF (both had a high amount SDS) showed significantly different profiles, indicating there is not a uniform molecular structure for SDS. Thus, genetic mutants of maize samples have a good potential to provide raw starch materials of high nutritional quality. An additional finding showed that a simple and comparably high-throughput technique of Rapid Visco-Analyzer (RVA) can be used to screen genetic mutants on the basis of their RVA profiles.
Collapse
Affiliation(s)
- Genyi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
310
|
Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. PLANT PHYSIOLOGY 2008; 146:1878-91. [PMID: 18263778 PMCID: PMC2287356 DOI: 10.1104/pp.108.116244] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/07/2008] [Indexed: 05/20/2023]
Abstract
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Borén M, Glaring MA, Ghebremedhin H, Olsson H, Blennow A, Jansson C. Molecular and physicochemical characterization of the high-amylose barley mutant Amo1. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
312
|
Li JH, Guiltinan MJ, Thompson DB. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules. Carbohydr Res 2007; 342:2619-27. [PMID: 17765880 DOI: 10.1016/j.carres.2007.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/16/2007] [Accepted: 07/23/2007] [Indexed: 11/20/2022]
Abstract
In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation.
Collapse
Affiliation(s)
- Ji-Hong Li
- Department of Horticulture and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
313
|
Rahman S, Bird A, Regina A, Li Z, Philippe Ral J, McMaugh S, Topping D, Morell M. Resistant starch in cereals: Exploiting genetic engineering and genetic variation. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2007.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
314
|
Shu X, Jia L, Gao J, Song Y, Zhao H, Nakamura Y, Wu D. The Influences of Chain Length of Amylopectin on Resistant Starch in Rice (Oryza sativa L.). STARCH-STARKE 2007. [DOI: 10.1002/star.200700640] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
315
|
Han Y, Bendik E, Sun FJ, Gasic K, Korban SS. Genomic isolation of genes encoding starch branching enzyme II (SBEII) in apple: toward characterization of evolutionary disparity in SbeII genes between monocots and eudicots. PLANTA 2007; 226:1265-76. [PMID: 17564724 DOI: 10.1007/s00425-007-0555-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/17/2007] [Indexed: 05/15/2023]
Abstract
Two genes encoding starch branching enzyme II (SBEII) have been identified in apple. These genes share 94 and 92% identity in coding DNA sequences and amino acid sequences, respectively; moreover, they have similar expression patterns. Both genes are expressed in vegetative and reproductive tissues, including leaves, buds, flowers, and fruits. Based on genomic Southern blots, there are two copies of SbeII genes in the apple genome. Comparisons of genomic sequences between monocots and eudicots have revealed that the genomic structure of SbeII genes is conserved. However, the 5'-terminal region of coding DNA sequences of SbeII genes shows greater divergence than the 3'-terminal region between monocots and eudicots. Phylogenetic analysis of DNA sequences has demonstrated that the duplication patterns of SbeII genes are different between monocots and eudicots. In monocots, the duplication of SbeII genes must have occurred prior to the radiation of grasses (Poaceae); while, in eudicots, the expansion of SbeII genes must have followed the process of speciation.
Collapse
Affiliation(s)
- Yuepeng Han
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
316
|
Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. PLANT PHYSIOLOGY 2007; 144:2009-23. [PMID: 17586688 PMCID: PMC1949899 DOI: 10.1104/pp.107.102533] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Starch synthase IIIa (SSIIIa)-deficient rice (Oryza sativa) mutants were generated using retrotransposon insertion and chemical mutagenesis. The lowest migrating SS activity bands on glycogen-containing native polyacrylamide gel, which were identified to be those for SSIIIa, were completely absent in these mutants, indicating that they are SSIIIa null mutants. The amylopectin B(2) to B(4) chains with degree of polymerization (DP) >/= 30 and the M(r) of amylopectin in the mutant were reduced to about 60% and 70% of the wild-type values, respectively, suggesting that SSIIIa plays an important part in the elongation of amylopectin B(2) to B(4) chains. Chains with DP 6 to 9 and DP 16 to 19 decreased while chains with DP 10 to 15 and DP 20 to 25 increased in the mutants amylopectin. These changes in the SSIIIa mutants are almost opposite images of those of SSI-deficient rice mutant and were caused by 1.3- to 1.7-fold increase of the amount of SSI in the mutants endosperm. Furthermore, the amylose content and the extralong chains (DP >/= 500) of amylopectin were increased by 1.3- and 12-fold, respectively. These changes in the composition in the mutants starch were caused by 1.4- to 1.7-fold increase in amounts of granules-bound starch synthase (GBSSI). The starch granules of the mutants were smaller with round shape, and were less crystalline. Thus, deficiency in SSIIIa, the second major SS isozyme in developing rice endosperm affected the structure of amylopectin, amylase content, and physicochemical properties of starch granules in two ways: directly by the SSIIIa deficiency itself and indirectly by the enhancement of both SSI and GBSSI gene transcripts.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita City, Akita 010-0195, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Han Y, Sun FJ, Rosales-Mendoza S, Korban SS. Three orthologs in rice, Arabidopsis, and Populus encoding starch branching enzymes (SBEs) are different from other SBE gene families in plants. Gene 2007; 401:123-30. [PMID: 17698298 DOI: 10.1016/j.gene.2007.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 11/18/2022]
Abstract
Starch branching enzymes (SBEs) play important roles in plant starch synthesis. Three orthologs encoding SBEs in rice, Arabidopsis thaliana, and Populus trichocarpa are described. Putative amino acid sequences of these three SBE genes show approximately 30% identity to those of SBEI and SBEII from plants such as maize, barley, and wheat. More interestingly, they share approximately 31% amino acid sequence identity with those of glycogen-branching enzymes from such animals as mouse, horse, and monkey. The three genes have similar genomic structures, but their structural features are quite different from those of genes of both SBEI and SBEII families in plants. Based on phylogenetic analysis and genomic structure comparison, it is proposed that the three SBE genes represent a new family of SBEs.
Collapse
Affiliation(s)
- Yuepeng Han
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
318
|
Ryoo N, Yu C, Park CS, Baik MY, Park IM, Cho MH, Bhoo SH, An G, Hahn TR, Jeon JS. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). PLANT CELL REPORTS 2007; 26:1083-95. [PMID: 17297616 DOI: 10.1007/s00299-007-0309-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 01/12/2007] [Accepted: 01/15/2007] [Indexed: 05/13/2023]
Abstract
To elucidate the role of SSIIIa during starch synthesis in rice (Oryza sativa L.) endosperm, we characterized null mutants of this gene, generated by T-DNA insertions. Scanning electron microscope (SEM) analysis revealed that the starch granules in these mutants are smaller and rounder compared with the wild type controls, and that the mutant endosperm is characterized by a loosely packed central portion exhibiting a floury-like phenotype. Hence, the OsSSIIIa (Oryza sativa SSIIIa) mutations are referred to as white-core floury endosperm 5-1 (flo5-1) and flo5-2. Based upon their X-ray diffraction patterns, the crystallinity of the starch in the flo5 mutant endosperm is decreased compared with wild type. Through determination of the chain-length distribution of the mutant endosperm starch, we found that flo5-1 and flo5-2 mutants have reduced the content of long chains with degree of polymerization (DP) 30 or greater compared with the controls. This suggests that OsSSIIIa/Flo5 plays an important role in generating relatively long chains in rice endosperm. In addition, DP 6 to 8 and DP 16 to 20 appeared to be reduced in endosperm starch of flo5-1 and flo5-2, whereas DP 9 to 15 and DP 22 to 29 were increased in these mutants. By the use of differential scanning calorimetry (DSC), the gelatinization temperatures of endosperm starch were found to be 1-5 degrees C lower than those of the control. We propose a distinct role for OsSSIIIa/Flo5 and the coordinated action of other SS isoforms during starch synthesis in the seed endosperm of rice.
Collapse
Affiliation(s)
- Nayeon Ryoo
- Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Cheng F, Zhang Q, Zhu H, Zhao N, Wang F, Chen K, Zhang G. The difference in amylose content within a panicle as affected by the panicle morphology of rice cultivars. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2006.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
320
|
Abstract
Starch is a primary product of photosynthesis in leaves. In most plants, a large fraction of the carbon assimilated during the day is stored transiently in the chloroplast as starch for use during the subsequent night. Photosynthetic partitioning into starch is finely regulated, and the amount of carbohydrate stored is dependent on the environmental conditions, particularly day length. This regulation is applied at several levels to control the flux of carbon from the Calvin cycle into starch biosynthesis. Starch is composed primarily of branched glucans with an architecture that allows the formation of a semi-crystalline insoluble granule. Biosynthesis has been most intensively studied in non-photosynthetic starch-storing organs, such as developing seeds and tubers. Biosynthesis in leaves has received less attention, but recent reverse-genetic studies of Arabidopsis (thale cress) have produced data generally consistent with what is known for storage tissues. The pathway involves starch synthases, which elongate the glucan chains, and branching enzymes. Remarkably, enzymes that partially debranch glucans are also required for normal amylopectin synthesis. In the last decade, our understanding of starch breakdown in leaves has advanced considerably. Starch is hydrolysed to maltose and glucose at night via a pathway that requires recently discovered proteins in addition to well-known enzymes. These sugars are exported from the plastid to support sucrose synthesis, respiration and growth. In the present review we provide an overview of starch biosynthesis, starch structure and starch degradation in the leaves of plants. We focus on recent advances in each area and highlight outstanding questions.
Collapse
Affiliation(s)
- Samuel C Zeeman
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
321
|
Takemoto-Kuno Y, Suzuki K, Nakamura S, Satoh H, Ohtsubo K. Soluble starch synthase I effects differences in amylopectin structure between indica and japonica rice varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:9234-40. [PMID: 17117815 DOI: 10.1021/jf061200i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effect of soluble starch synthase I (SSI) on differences of amylopectin structure between the indica and japonica rice varieties was investigated. Native-PAGE/active staining analysis showed that the SSI activity of an indica rice variety, "Kasalath", was significantly lower than that of a japonica rice variety, "Nipponbare", and that the low activity in "Kasalath" was maintained during seed development. The result of northern blot analyses suggests that the low expression of SSI in "Kasalath" is controlled at the transcription levels of SSI mRNA. Chain length distribution of amylopectin in F3 endosperms derived from a cross between two varieties showed that not only SSIIa but also SSI regulated the population of short chains. These results indicate that the low activity of SSI gives rise to the decrease of short chains in amylopectin of indica rice varieties, suggesting that SSI effects the differences in physicochemical properties between two varieties.
Collapse
Affiliation(s)
- Yoko Takemoto-Kuno
- National Food Research Institute (NFRI), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan
| | | | | | | | | |
Collapse
|
322
|
Dumez S, Wattebled F, Dauvillee D, Delvalle D, Planchot V, Ball SG, D'Hulst C. Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. THE PLANT CELL 2006; 18:2694-709. [PMID: 17028209 PMCID: PMC1626616 DOI: 10.1105/tpc.105.037671] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Three genes, BE1, BE2, and BE3, which potentially encode isoforms of starch branching enzymes, have been found in the genome of Arabidopsis thaliana. Although no impact on starch structure was observed in null be1 mutants, modifications in amylopectin structure analogous to those of other branching enzyme II mutants were detected in be2 and be3. No impact on starch content was found in any of the single mutant lines. Moreover, three double mutant combinations were produced (be1 be2, be1 be3, and be2 be3), and the impact of the mutations on starch content and structure was analyzed. Our results suggest that BE1 has no apparent function for the synthesis of starch in the leaves, as both be1 be2 and be1 be3 double mutants display the same phenotype as be2 and be3 separately. However, starch synthesis was abolished in be2 be3, while high levels of alpha-maltose were assayed in the cytosol. This result indicates that the functions of both BE2 and BE3, which belong to class II starch branching enzymes, are largely redundant in Arabidopsis. Moreover, we demonstrate that maltose accumulation depends on the presence of an active ADP-glucose pyrophosphorylase and that the cytosolic transglucosidase DISPROPORTIONATING ENZYME2, required for maltose metabolization, is specific for beta-maltose.
Collapse
Affiliation(s)
- Sylvain Dumez
- Unité de Glycobiologie Structurale et Fonctionelle, Unité Mixte de Recherche 8576, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
323
|
Shu X, Jiao G, Fitzgerald MA, Yang C, Shu Q, Wu D. Starch Structure and Digestibility of Rice High in Resistant Starch. STARCH-STARKE 2006. [DOI: 10.1002/star.200600501] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
324
|
Mutisya J, Sun C, Palmqvist S, Baguma Y, Odhiambo B, Jansson C. Transcriptional regulation of the sbeIIb genes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): importance of the barley sbeIIb second intron. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:770-80. [PMID: 16616588 DOI: 10.1016/j.jplph.2005.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 04/26/2005] [Indexed: 05/08/2023]
Abstract
The transcriptional activity of the sorghum sbeIIb gene, encoding starch branching enzyme IIb, is seed specific, with expression in both the endosperm and the embryo. In comparison, expression of barley sbeIIb is confined to the endosperm, whereas that of barley sbeIIa occurs in endosperm, embryonic and vegetative tissues. It has been suggested that the second intron of barley sbeIIb may be instrumental in conferring endosperm-specific expression. Therefore, to further investigate the regulatory mechanisms of barley and sorghum sbe, we examined the tissue-specific activity of the sorghum sbe promoter in transient assays of green fluorescent protein (gfp) reporter constructs. We found that, when linked to the barley sbeIIb second intron, the sorghum sbeIIb promoter could not drive gfp transcription in sorghum or barley embryonic cells. Similar results were obtained for the barley sbeIIa promoter. Database searches showed that sequences homologous to the barley sbeIIb intron also exist in introns and flanking regions of some other grass genes. Deletion mutagenesis of the sorghum sbeIIb promoter identified the minimal promoters required for high- and low-level expression, respectively, but did not reveal any putative promoter elements crucial for expression. A sequence with similarity to the SURE element, implicated in sugar signaling, was located in the distal promoter region of sorghum sbeIIb, upstream of the minimal promoters. SURE elements are present in the proximal promoter regions of the sugar-regulated barley iso1 gene, and barley sbeIIb. In keeping in line with these observations, RNA-gel blot analyses demonstrated that expression of barley sbeIIb was sugar inducible, whereas that of sorghum sbeIIb was not.
Collapse
Affiliation(s)
- Joel Mutisya
- Department of Plant Biology and Forest Genetics, The Swedish University of Agricultural Sciences, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
325
|
Yamamori M, Kato M, Yui M, Kawasaki M. Resistant starch and starch pasting properties of a starch synthase IIa-deficient wheat with apparent high amylose. ACTA ACUST UNITED AC 2006. [DOI: 10.1071/ar05176] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bread wheat (Triticum aestivum L.) analysed in this study has been produced by genetically eliminating the starch synthase IIa and shows apparent high amylose (HA) in the flour starch. Some starch properties of the HA wheat were analysed. The HA wheat contained 2.8–3.6% resistant starch (RS), much more than the normal (control) wheat, which contained almost no RS. Autoclaving the HA and normal wheat starches increased RS. The former contained 10.5% RS and the latter 5.9 or 6.8% RS. Swelling of the HA wheat starch and its pasting properties using Rapid ViscoAnalyzer (RVA) were investigated. Swelling power (g/g) of the HA wheat in 0.1% AgNO3 and swelling volume (mL/g) in urea solution were significantly less than those of the normal wheat. The RVA profile of the HA wholemeal and starch also differed from the normal. The peak viscosity, minimum viscosity, and final viscosity of HA were low, and breakdown (peak minus minimum viscosity) was very small. These findings show that amount of resistant starch and pasting properties are unique in the HA wheat starch, probably caused by lack of starch synthase IIa.
Collapse
|
326
|
Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:3229-44. [PMID: 16275672 DOI: 10.1093/jxb/eri292] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A comprehensive analysis of the transcript levels of genes which encode starch-synthesis enzymes is fundamental for the assessment of the function of each enzyme and the regulatory mechanism for starch biosynthesis in source and sink organs. Using quantitative real-time RT-PCR, an examination was made of the expression profiles of 27 rice genes encoding six classes of enzymes, i.e. ADPglucose pyrophosphorylase (AGPase), starch synthase, starch branching enzyme, starch debranching enzyme, starch phosphorylase, and disproportionating enzyme in developing seeds and leaves. The modes of gene expression were tissue- and developmental stage-specific. Four patterns of expression in the seed were identified: group 1 genes, which are expressed very early in grain formation and are presumed to be involved in the construction of fundamental cell machineries, de novo synthesis of glucan primers, and initiation of starch granules; group 2 genes, which are highly expressed throughout endosperm development; group 3 genes, which have transcripts that are low at the onset but which rise steeply at the start of starch synthesis in the endosperm and are thought to play essential roles in endosperm starch synthesis; and group 4 genes, which are expressed scantly, mainly at the onset of grain development, and might be involved in synthesis of starch in the pericarp. The methodology also revealed that the defect in the cytosolic AGPase small subunit2b (AGPS2b) transcription from the AGPS2 gene in endosperm sharply enhanced the expressions of endosperm and leaf plastidial AGPS1, the endosperm cytosolic AGPase large subunit2 (AGPL2), and the leaf plastidial AGPL1.
Collapse
Affiliation(s)
- Takashi Ohdan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | |
Collapse
|
327
|
Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp PJ, Morell MK, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. PLANTA 2005; 222:899-909. [PMID: 16172866 DOI: 10.1007/s00425-005-0032-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 06/02/2005] [Indexed: 05/04/2023]
Abstract
Studies of maize starch branching enzyme mutants suggest that the amylose extender high amylose starch phenotype is a consequence of the lack of expression of the predominant starch branching enzyme II isoform expressed in the endosperm, SBEIIb. However, in wheat, the ratio of SBEIIb and SBEIIa expression are inversely related to the expression levels observed in maize and rice. Analysis of RNA at 15 days post anthesis suggests that there are about 4-fold more RNA for SBE IIa than for SBE IIb. The genes for SBE IIa and SBE IIb from wheat are distinguished in the size of the first three exons, allowing isoform-specific antibodies to be produced. These antibodies were used to demonstrate that in the soluble fraction, the amount of SBE IIa protein is two to three fold higher than SBIIb, whereas in the starch granule, there is two to three fold more SBE IIb protein amount than SBE IIa. In a further difference to maize and rice, the genes for SBE IIa and SBE IIb are both located on the long arm of chromosome 2 in wheat, in a position not expected from rice-maize-wheat synteny.
Collapse
MESH Headings
- 1,4-alpha-Glucan Branching Enzyme/genetics
- 1,4-alpha-Glucan Branching Enzyme/metabolism
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Edible Grain/enzymology
- Edible Grain/genetics
- Gene Expression
- Genes, Plant
- In Situ Hybridization, Fluorescence
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- Ahmed Regina
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, P.O. Box 1600, Australian Capital Territory, 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Kang HG, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:901-11. [PMID: 15941402 DOI: 10.1111/j.1365-313x.2005.02423.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have isolated a floury endosperm-4 (flo4) rice mutant with a floury-white endosperm but a normal outer portion. Scanning electron microscopic analysis revealed that this abnormal endosperm consisted of loosely packed starch granules. The mutant phenotype was generated by T-DNA insertion into the fifth intron of the OsPPDKB gene encoding pyruvate orthophosphate dikinase (PPDK). Plants containing flo4-1 produced no OsPPDKB transcript or the OsPPDKB protein in their developing kernels and leaves. We obtained two additional alleles, flo4-2 and flo4-3, that also showed the same white-core endosperm phenotype. The flo4 kernels weighed about 6% less than wild-type ones. Starch contents in both kernel types were similar, but the total protein content was slightly higher in the mutant kernels. Moreover, lipid contents were significantly increased in the flo4 kernels. Expression analyses demonstrated that the cytosolic mRNA of OsPPDKB was induced in the reproductive organs after pollination, and greatly increased until about 10 days after fertilization. This mRNA was localized mainly in the endosperm, aleurone, and scutellum of the developing kernel. Our results suggest that cytosolic PPDK functions in rice to modulate carbon metabolism during grain filling.
Collapse
Affiliation(s)
- Hong-Gyu Kang
- Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
329
|
Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. PLANT MOLECULAR BIOLOGY 2005; 58:213-27. [PMID: 16027975 DOI: 10.1007/s11103-005-6507-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 04/26/2005] [Indexed: 05/03/2023]
Abstract
Four amino acids were variable between the 'active' indica-type and 'inactive' japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively. The SSIIa gene fragments shuffling experiments revealed that Val-737 and Leu-781 are essential not only for the optimal SSIIa activity, but also for the capacity to synthesize indica-type amylopectin. Surprisingly, however, a combination of Phe-781 and Gly-604 could restore about 44% of the SSIIa activity provided that Val-737 was conserved. The introduction of the 'active' indica-type SSIIa gene enabled the japonica-type cv. Kinmaze to synthesize indica-type amylopectin. The starch in the transformed japonica rice plants exhibited gelatinization-resistant properties that are characteristic of indica-rice starch. Transformed lines expressing different levels of the IR36 SSIIa protein produced a variety of starches with amylopectin chain-length distribution patterns that correlated well with their onset temperatures of gelatinization. The present study confirmed that the SSIIa activity determines the type of amylopectin structure of rice starch to be either the typical indica-type or japonica-type, by playing a specific role in the synthesis of the long B(1) chains by elongating short A and B(1) chains, notwithstanding the presence of functional two additional SSII genes, a single SSI gene, two SSIII genes, and two SSIV genes in rice plants.
Collapse
|
330
|
Castro JV, Dumas C, Chiou H, Fitzgerald MA, Gilbert RG. Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules 2005; 6:2248-59. [PMID: 16004469 DOI: 10.1021/bm0500401] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A methodology is developed for interpreting the molecular weight distributions of debranched amylopectin, based on techniques developed for quantitatively and qualitatively finding mechanistic information from the molecular weight distributions of synthetic polymers. If the only events occurring are random chain growth and stoppage (i.e., the rates are independent of degree of polymerization over the range in question), then the number of chains of degree of polymerization N, P(N), is linear in ln P(N) with a negative slope, where the slope gives the ratio of the stoppage and growth rates. This starting point suggests that mechanistic inferences can be made from a plot of lnP against N. Application to capillary electrophoresis data for the P(N) of debranched starch from across the major taxa, from bacteria (Escherichia coli), green algae (Chlamydomonas reinhardtii), mammals (Bos), and flowering plants (Oryza sativa, rice; Zea mays, maize; Triticum aestivum, wheat; Hordeum vulgare, barley; and Solanum tuberosum, potato), gives insights into the biosynthetic pathways, showing the differences and similarities of the alpha-1,4-glucans produced by the various species. Four characteristic regions for storage starch from the higher plants are revealed: (1) an initial increasing region corresponding to the formation of new branches, (2) a linear ln P region with negative slope, indicating random growth and stoppage, (3) a region corresponding to the formation of the crystalline lamellae and subsequent elongation of chains, and (4) a second linear ln P with negative slope region. Each region can be assigned to specific enzymatic processes in starch synthesis, including determining the ranges of degrees of polymerization which are subject to random and nonrandom processes.
Collapse
Affiliation(s)
- Jeffrey V Castro
- Key Centre for Polymer Colloids, School of Chemistry F11, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
331
|
Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, Ugaki M, Kawasaki S, Nakamura Y. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:507-16. [PMID: 17147623 DOI: 10.1111/j.1467-7652.2004.00097.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
When the starch branching enzyme IIb (BEIIb) gene was introduced into a BEIIb-defective mutant, the resulting transgenic rice plants showed a wide range of BEIIb activity and the fine structure of their amylopectins showed considerable variation despite having the two other BE isoforms, BEI and BEIIa, in their endosperm at the same levels as in the wild-type. The properties of the starch granules, such as their gelatinization behaviour, morphology and X-ray diffraction pattern, also changed dramatically depending on the level of BEIIb activity, even when this was either slightly lower or higher than that of the wild-type. The over-expression of BEIIb resulted in the accumulation of excessive branched, water-soluble polysaccharides instead of amylopectin. These results imply that the manipulation of BEIIb activity is an effective strategy for the generation of novel starches for use in foodstuffs and industrial applications.
Collapse
Affiliation(s)
- Naoki Tanaka
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Gibbon BC, Wang X, Larkins BA. Altered starch structure is associated with endosperm modification in Quality Protein Maize. Proc Natl Acad Sci U S A 2003; 100:15329-34. [PMID: 14660797 PMCID: PMC307567 DOI: 10.1073/pnas.2136854100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical basis of modified kernel texture in Quality Protein Maize (QPM) is poorly understood. Proteomic analysis of several QPM lines indicated increased levels of granule-bound starch synthase I in the soluble nonzein protein fraction of these genotypes. Increased extraction of this enzyme reflected a change in starch structure, which was manifested as shorter amylopectin branches and increased starch-granule swelling. In mature kernels, these alterations in starch structure were associated with interconnections between starch granules that resulted in a vitreous kernel phenotype. Understanding the molecular basis for this previously uncharacterized starch structure will accelerate the development of QPM.
Collapse
Affiliation(s)
- Bryan C Gibbon
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85741, USA
| | | | | |
Collapse
|
333
|
Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. PLANT PHYSIOLOGY 2003; 133:1111-21. [PMID: 14526120 PMCID: PMC281607 DOI: 10.1104/pp.103.021527] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2003] [Revised: 03/03/2003] [Accepted: 07/10/2003] [Indexed: 05/18/2023]
Abstract
We have isolated a starch mutant that was deficient in starch-branching enzyme I (BEI) from the endosperm mutant stocks of rice (Oryza sativa) induced by the treatment of fertilized egg cells with N-methyl-N-nitrosourea. The deficiency of BEI in this mutant was controlled by a single recessive gene, tentatively designated as starch-branching enzyme mutant 1 (sbe1). The mutant endosperm exhibited the normal phenotype and contained the same amount of starch as the wild type. However, the mutation apparently altered the fine structure of amylopectin. The mutant amylopectin was characterized by significant decrease in both long chains with degree of polymerization (DP) > or = 37 and short chains with DP 12 to 21, marked increase in short chains with DP < or = 10 (A chains), and slight increase in intermediate chains with DP 24 to 34, suggesting that BEI specifically synthesizes B1 and B2-3 chains. The endosperm starch from the sbe1 mutant had a lower onset concentration for urea gelatinization and a lower onset temperature for thermo-gelatinization compared with the wild type, indicating that the genetic modification of amylopectin fine structure is responsible for changes in physicochemical properties of sbe1 starch.
Collapse
Affiliation(s)
- Hikaru Satoh
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Kang HJ, Hwang IK, Kim KS, Choi HC. Comparative structure and physicochemical properties of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:6598-603. [PMID: 14558783 DOI: 10.1021/jf0344946] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new rice mutant Suweon 464 (S-464) derived from a high-quality rice, Ilpumbyeo (IP), revealed a striking difference in cooking quality from IP. The physicochemical properties of S-464 and IP were compared. S-464 was unusually high in amylose and fiber contents, had B-type crystallinity of starch, and had a markedly lower proportion of short chains in the distribution of glucan-chain fractions of debranched starch as compared with IP. Scanning electron microscopy revealed that starch granules of S-464 were much smaller in size than those of IP and that many of them were not separated from amyloplasts. The physicochemical properties of S-464 would contribute to poor gelatinization, lower swelling power, higher hardness, and less stickiness when cooked. Although S-464 may not be desirable for cooked rice, the mutant could be an excellent candidate for other processed food products on the basis of its unusual properties of starch and high fiber, protein, and lipid contents.
Collapse
Affiliation(s)
- Hee-Jin Kang
- Department of Food and Nutrition, Seoul National University, 13-408, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
335
|
James MG, Denyer K, Myers AM. Starch synthesis in the cereal endosperm. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:215-22. [PMID: 12753970 DOI: 10.1016/s1369-5266(03)00042-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pathway of starch synthesis in the cereal endosperm is unique, and requires enzyme isoforms that are not present in other cereal tissues or non-cereal plants. Recent information on the functions of individual enzyme isoforms has provided insight into how the linear chains and branch linkages in cereal starch are synthesized and distributed. Genetic analyses have led to the formulation of models for the roles of de-branching enzymes in cereal starch production, and reveal pleiotropic effects that suggest that certain enzymes may be physically associated. For the first time, tools for global analyses of starch biosynthesis are available for cereal crops, and are heralded by the draft sequence of the rice genome.
Collapse
Affiliation(s)
- Martha G James
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
336
|
Fujita N, Kubo A, Suh DS, Wong KS, Jane JL, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. PLANT & CELL PHYSIOLOGY 2003; 44:607-18. [PMID: 12826626 DOI: 10.1093/pcp/pcg079] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita-city, Akita, 010-0195 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. PHYTOCHEMISTRY 2003; 63:53-9. [PMID: 12657298 DOI: 10.1016/s0031-9422(03)00005-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.
Collapse
Affiliation(s)
- Huawu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029, PR China
| | | | | |
Collapse
|
338
|
Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. PLANT & CELL PHYSIOLOGY 2002; 43:718-25. [PMID: 12154134 DOI: 10.1093/pcp/pcf091] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Starch is made up of amylose (linear alpha-1,4-polyglucans) and amylopectin (alpha-1,6-branched polyglucans). Amylopectin has a distinct fine structure called multiple cluster structure and is synthesized by multiple subunits or isoforms of four classes of enzymes: ADPglucose pyrophosphorylase, soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE). In the present paper, based on analyses of mutants and transgenic lines of rice in which each enzyme activity is affected, the contribution of the individual isoform to the fine structure of amylopectin in rice endosperm is evaluated, and a new model referred to as the "two-step branching and improper branch clearing model" is proposed to explain how amylopectin is synthesized. The model emphasizes that two sets of reactions, alpha-1,6-branch formation and the subsequent alpha-1,4-chain elongation, are catalyzed by distinct BE and SS isoforms, respectively, are fundamental to the construction of the cluster structure. The model also assesses the role of DBE, namely isoamylase or in addition pullulanase, to remove unnecessary alpha-1,6-glucosidic linkages that are occasionally formed at improper positions apart from two densely branched regions of the cluster.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Laboratory of Plant Physiology, Department of Biological Production, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, 010-0195 Japan.
| |
Collapse
|
339
|
Hamada S, Ito H, Hiraga S, Inagaki K, Nozaki K, Isono N, Yoshimoto Y, Takeda Y, Matsui H. Differential characteristics and subcellular localization of two starch-branching enzyme isoforms encoded by a single gene in Phaseolus vulgaris L. J Biol Chem 2002; 277:16538-46. [PMID: 11864975 DOI: 10.1074/jbc.m110497200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Starch-branching enzymes (SBE) have a dominant role for amylopectin structure as they define chain length and frequency of branch points. We have previously shown that one of the SBE isoforms of kidney bean (Phaseolus vulgaris L.), designated PvSBE2, has a molecular mass (82 kDa) significantly smaller than those reported for isologous SBEs from pea (SBEI), maize (BEIIb), and rice (RBE3). Additionally, in contrast to the dual location of the pea SBEI in both the soluble and starch granule fractions, PvSBE2 was found only in the soluble fraction during seed development. Analysis of a pvsbe2 cDNA suggested that PvSBE2 is generated from a larger precursor with a putative plastid targeting sequence of 156 residues. Here we describe the occurrence of a larger 100-kDa form (LF-PvSBE2) of PvSBE2 found both in the soluble and starch granule fractions of the developing seeds. The determined N-terminal sequence, VKSSHDSD, of LF-PvSBE2 corresponded to a peptide sequence located 111 amino acids upstream from the N terminus of purified PvSBE2, suggesting that LF-PvSBE2 and PvSBE2 are products of the same gene. Analysis of the products by 5'-RACE (rapid amplification of cDNA ends) and reverse transcription PCR indicated that the two transcripts for pre-LF-PvSBE2 and pre-PvSBE2 are generated by alternative splicing. Recombinant LF-PvSBE2 (rLF-PvSBE2) was purified from Escherichia coli and the kinetic properties were compared with those of recombinant PvSBE2 (rPvSBE2). rLF-PvSBE2 had much higher affinity for amylopectin (K(m) = 4.4 mg/ml) than rPvSBE2 (18.4 mg/ml), whereas the V(max) of rLF-PvSBE2 (135 units/mg) for this substrate was much lower than that of rPvSBE2 (561 units/mg). These results suggest that the N-terminal extension of LF-PvSBE2 plays a critical role for localization in starch granules by altering its enzymatic properties.
Collapse
Affiliation(s)
- Shigeki Hamada
- Department of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|