301
|
Wu B, Li P, Hong X, Xu C, Wang R, Liang Y. The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production. MOLECULAR PLANT 2022; 15:887-903. [PMID: 35276409 DOI: 10.1016/j.molp.2022.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) production is a conserved immune response in Arabidopsis primarily mediated by respiratory burst oxidase homolog D (RBOHD), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase associated with the plasma membrane. A rapid increase in NADPH is necessary to fuel RBOHD proteins and thus maintain ROS production. However, the molecular mechanism by which NADPH is generated to fuel RBOHD remains unclear. In this study, we isolated a new mutant allele of FLAGELLIN-INSENSITIVE 4 (FIN4), which encodes the first enzyme in de novo NAD biosynthesis. fin4 mutants show reduced NADPH levels and impaired ROS production. However, FIN4 and other genes involved in NAD- and NADPH-generating pathways are not highly upregulated upon elicitor treatment, raising a possibility that a cytosolic NADP-linked dehydrogenase might be post-transcriptionally activated to maintain the NADPH supply close to RBOHD. To verify this possibility, we isolated the proteins associated with RPM1-INDUCED PROTEIN KINASE (RIPK), a receptor-like cytoplasmic kinase that regulates broad-spectrum ROS signaling in plant immunity, and identified NADP-malic enzyme 2 (NADP-ME2), an NADPH-generating enzyme. Compared with wild-type plants, nadp-me2 mutants display decreased NADP-ME activity, lower NADPH levels, and reduced ROS production in response to immune elicitors. Furthermore, we found that RIPK can directly phosphorylate NADP-ME2 and enhance its activity in vitro. The phosphorylation of the NADP-ME2 S371 residue contributes to ROS production upon immune elicitor treatment and susceptibility to the necrotrophic bacterium Pectobacterium carotovorum. Collectively, our study suggests that RIPK phosphorylates and activates NADP-ME2 to rapidly increase cytosolic NADPH, thus fueling RBOHD to sustain ROS production in plant immunity.
Collapse
Affiliation(s)
- Binyan Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiufang Hong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cuihong Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ran Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
302
|
Raghuvanshi R, Raut VV, Pandey M, Jeyakumar S, Verulkar S, Suprasanna P, Srivastava AK. Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118923. [PMID: 35104559 DOI: 10.1016/j.envpol.2022.118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH4+ as As-associated key macronutrient; while, NH4+/NO3- and K+ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Collapse
Affiliation(s)
- Rishiraj Raghuvanshi
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Subbiah Jeyakumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Satish Verulkar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
303
|
Gomes JDLC, do Amaral AMB, Storck TR, Moraes BS, Loro VL, Clasen B. Can Vitamin C Supplementation Improve the Antioxidant Capacity of Rhamdia quelen Fish Exposed to Atrazine? ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:551-557. [PMID: 35394169 DOI: 10.1007/s00244-022-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is one of the pesticides mostly widely used in Brazil; several studies have shown the toxic effects of this herbicide on aquatic organisms such as fish. Thus, it is absolutely necessary finding alternatives to protect the health of fish, mainly of species commercially important for aquaculture, which may be exposed to atrazine deriving from agricultural runoff. The aim of the current study was to investigate interactions between dietary supplementation with vitamin C (Vit C) antioxidant and exposure to ATZ in Rhamdia quelen fish exposed to this herbicide. R. quelen specimens were divided into four groups: (1) CTRL, (2) VitC, (3) ATZ, (4) ATZ + VitC. Groups 3 and 4 were exposed to ATZ (10 µg L-1) for 96 h, after 30 days of VitC supplementation (1 g kg-1). Liver samples were collected for biomarker assays. Group 4 was the only group presenting decreased protein carbonyl content. Non-protein thiol (NPSH) levels were significantly higher in groups VitC, ATZ and ATZ + VitC than in CTRL. Group ATZ + VitC presented significant increase in glutatione-peroxidase (GPx) activity in comparison to the other investigated groups. Ascorbic acid (AA) levels were significantly higher in group VitC and lower in group ATZ. Therefore, interactions between herbicide ATZ and dietary supplementation with Vit C have shown biochemical changes in R. quelen fish. Thus, dietary supplements with adequate amounts of Vit C can be added as antioxidants to the diet of fish bred in aquaculture systems in order to protect them from exposure to ATZ.
Collapse
Affiliation(s)
- Jeane de Lima Costa Gomes
- Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Biological Sciences-Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Tamiris Rosso Storck
- Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bibiana Silveira Moraes
- Biological Sciences-Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vania Lucia Loro
- Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Biological Sciences-Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Barbara Clasen
- Environmental Engineering, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Environmental Sciences, State University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
304
|
Karimzadeh Soureshjani H, Nezami A, Nabati J, Oskoueian E, Ahmadi-Lahijani MJ. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:1109-1124. [PMID: 0 DOI: 10.1007/s00344-021-10369-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
|
305
|
Phytochemical analysis reveals an antioxidant defense response in Lonicera japonica to cadmium-induced oxidative stress. Sci Rep 2022; 12:6840. [PMID: 35477983 PMCID: PMC9046209 DOI: 10.1038/s41598-022-10912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Cadmium (Cd), though potentially beneficial at lower levels to some plant species, at higher levels is a toxic metal that is detrimental to plant growth and development. Cd is also a carcinogen to humans and other contaminated plant consumers, affecting the kidneys and reducing bone strength. In this study we investigated responses of growth, chlorophyll content, reactive oxygen species levels, and antioxidant responses to Cd in honeysuckle leaves (Lonicera japonica Thunb.), a potential Cd hyperaccumulator. Results indicated that plant height, dry weight, leaf area, and chlorophyll content increased when honeysuckle was exposed to 10 mg kg-1 or 30 mg kg-1 Cd (low concentration). However, in response to 150 mg kg-1 or 200 mg kg-1 Cd (high concentration) these growth parameters and chlorophyll content significantly decreased relative to untreated control plant groups. Higher levels of superoxide radical (O2·-) and hydrogen peroxide (H2O2) were observed in high concentration Cd groups. The activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase were enhanced with exposure to increasing levels of Cd. Additionally, the Ascorbate-Glutathione (AsA-GSH) cycle was activated for the removal of H2O2 in honeysuckle in response to elevated Cd. The Pearson correlation analysis, a redundancy analysis, and a permutation test indicated that proline and APX were dominant antioxidants for removing O2·- and H2O2. The antioxidants GSH and non-protein thiols (NPTs) also increased as the concentration of Cd increased.
Collapse
|
306
|
Zhou Z, Li J, Zhu C, Jing B, Shi K, Yu J, Hu Z. Exogenous Rosmarinic Acid Application Enhances Thermotolerance in Tomatoes. PLANTS 2022; 11:plants11091172. [PMID: 35567173 PMCID: PMC9099758 DOI: 10.3390/plants11091172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Due to global warming, high-temperature stress has become a major threat to plant growth and development, which causes a severe challenge to food security worldwide. Therefore, it is necessary to explore the plant bioactive molecules, which could be a promising approach to strengthening plant thermotolerance. Rosmarinic acid (RA) serves as a plant-derived phenolic compound and has beneficial and health-promoting effects for human beings. However, the involvement of RA in plant stress response and the underlying molecular mechanism was largely unknown. In this study, we found that exogenous RA application conferred improved thermotolerance in tomatoes. The transcript abundance and the enzyme activity of enzymatic antioxidants, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and dehydroascorbate reductase (DHAR), were further promoted by RA treatment in tomato plants subjected to high-temperature stress. Moreover, RA activated the antioxidant system and modulated the cellular redox homeostasis also associated with the redox status of nonenzymatic glutathione and ascorbic acid. The results of RNA-seq data showed that transcriptional regulation was involved in RA-mediated thermotolerance. Consistently, the gene expression of several high temperature-responsive transcription factors like HsfA2, and WRKY family genes were substantially induced by RA treatment, which potentially contributed to the induction of heat shock proteins (HSPs). Overall, these findings not only gave a direct link between RA and plant thermotolerance but also provided an attractive approach to protecting crop plants from high-temperature damage in a global warming future.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
| | - Jiajia Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Key Laboratory of Horticultural Plants Growth and Development, Ministry of Agriculture and Rural Affairs of P. R. China, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.L.); (C.Z.); (B.J.); (K.S.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
307
|
Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane Electron Transport System in Maize Roots. Antioxidants (Basel) 2022; 11:antiox11050836. [PMID: 35624700 PMCID: PMC9137787 DOI: 10.3390/antiox11050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
In plants, flooding-induced oxygen deficiency causes severe stress, leading to growth reduction and yield loss. It is therefore important to understand the molecular mechanisms for adaptation to hypoxia. Aquaporins at the plasma membrane play a crucial role in water uptake. However, their role during hypoxia and membrane redox changes is still not fully understood. The influence of 24 h hypoxia induction on hydroponically grown maize (Zea mays L.) was investigated using an oil-based setup. Analyses of physiological parameters revealed typical flooding symptoms such as increased ethylene and H2O2 levels, an increased alcohol dehydrogenase activity, and an increased redox activity at the plasma membrane along with decreased oxygen of the medium. Transcriptomic analysis and shotgun proteomics of plasma membranes and soluble fractions were performed to determine alterations in maize roots. RNA-sequencing data confirmed the upregulation of genes involved in anaerobic metabolism, biosynthesis of the phytohormone ethylene, and its receptors. Transcripts of several antioxidative systems and other oxidoreductases were regulated. Mass spectrometry analysis of the plasma membrane proteome revealed alterations in redox systems and an increased abundance of aquaporins. Here, we discuss the importance of plasma membrane aquaporins and redox systems in hypoxia stress response, including the regulation of plant growth and redox homeostasis.
Collapse
|
308
|
Liu Y, Yuan Y, Jiang Z, Jin S. Nitric Oxide Improves Salt Tolerance of Cyclocarya paliurus by Regulating Endogenous Glutathione Level and Antioxidant Capacity. PLANTS (BASEL, SWITZERLAND) 2022; 11:1157. [PMID: 35567158 PMCID: PMC9104720 DOI: 10.3390/plants11091157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Cyclocarya paliurus is commonly used to treat diabetes in China. However, the natural habitats of C. paliurus are typically affected by salt stress. Previous studies showed that nitric oxide (NO) level was related to salt tolerance of C. paliurus, and its synthesis was induced by exogenous hydrogen sulfide. However, the effects of different NO donors in alleviating the negative effect of salt stress are still unclear. In the present study, C. paliurus seedlings pretreated with three NO donors (S-nitroso-N-acetylpenicillamine, SNAP and S-nitrosoglutathione, GSNO and sodium nitroprusside, SNP) were exposed to salt stress, and then, the total biomass, chlorophyll fluorescence parameters, NO and glutathione levels, oxidative damage, and antioxidant enzyme activities were investigated. The results showed that pretreatment of NO donors maintained chlorophyll fluorescence and attenuated the loss of plant biomass under salt stress, and the best performance was observed in C. paliurus under SNP treatment. We also found that pretreatment of NO donors further increased the endogenous NO content and nitrate reductase (NR) activity compared with salt treatment. Moreover, pretreatment with NO donors, especially SNP, alleviated salt-induced oxidative damage, as indicated by lowered lipid peroxidation, through an enhanced antioxidant system including glutathione accumulation and increased antioxidant enzyme activities. The supply of NO donors is an interesting strategy for alleviating the negative effect of salt on C. paliurus. Our data provide new evidence contributing to the current understanding of NO-induced salt stress tolerance.
Collapse
Affiliation(s)
- Yang Liu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.Y.); (Z.J.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichao Yuan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.Y.); (Z.J.)
| | - Zhuoke Jiang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.Y.); (Z.J.)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.Y.); (Z.J.)
| |
Collapse
|
309
|
Kang J, Voothuluru P, Hoyos-Miernyk E, Alexander D, Oliver MJ, Sharp RE. Antioxidant Metabolism Underlies Different Metabolic Strategies for Primary Root Growth Maintenance under Water Stress in Cotton and Maize. Antioxidants (Basel) 2022; 11:antiox11050820. [PMID: 35624684 PMCID: PMC9137980 DOI: 10.3390/antiox11050820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/24/2023] Open
Abstract
The divergence of metabolic responses to water stress in the elongation zone of cotton and maize primary roots was investigated by establishing water-deficit conditions that generated steady root elongation at equivalent tissue water potentials. In water-stressed cotton roots, cell elongation was maintained in the apical 3 mm but was progressively inhibited with further displacement from the apex. These responses are similar to previous findings in maize, providing the foundation for comparisons of metabolic responses in regions of growth maintenance and inhibition between the species. Metabolomics analyses showed region-specific and species-specific changes in metabolite abundance in response to water stress, revealing both conserved responses including osmolyte accumulation, and key differences in antioxidative and sulfur metabolism. Quantitative assessment showed contrasting glutathione responses in the root elongation zone between the species, with glutathione levels declining in cotton as stress duration progressed, whereas in maize, glutathione levels remained elevated. Despite the lesser glutathione response in cotton, hydrogen peroxide levels were low in water-stressed cotton compared with maize roots and were associated with higher catalase, ascorbate peroxidase, and superoxide dismutase activities in cotton. The results indicate alternative metabolic strategies underlying the responses of primary root growth to water stress between cotton and maize.
Collapse
Affiliation(s)
- Jian Kang
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (J.K.); (E.H.-M.); (M.J.O.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Priyamvada Voothuluru
- Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - Elizabeth Hoyos-Miernyk
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (J.K.); (E.H.-M.); (M.J.O.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | | | - Melvin J. Oliver
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (J.K.); (E.H.-M.); (M.J.O.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Robert E. Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (J.K.); (E.H.-M.); (M.J.O.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-573-882-1841
| |
Collapse
|
310
|
Torun H, Aydın H. Ecophysiological responses of endemic Cephalaria duzceënsis to drought and salt stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
311
|
Do JH, Park SY, Park SH, Kim HM, Ma SH, Mai TD, Shim JS, Joung YH. Development of a Genome-Edited Tomato With High Ascorbate Content During Later Stage of Fruit Ripening Through Mutation of SlAPX4. FRONTIERS IN PLANT SCIENCE 2022; 13:836916. [PMID: 35498670 PMCID: PMC9039661 DOI: 10.3389/fpls.2022.836916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/12/2023]
Abstract
Ascorbate is an essential antioxidant substance for humans. Due to the lack of ascorbate biosynthetic enzyme, a human must intake ascorbate from the food source. Tomato is one of the most widely consumed fruits, thus elevation of ascorbate content in tomato fruits will improve their nutritional value. Here we characterized Solanum lycopersicum ASCORBATE PEROXIDASE 4 (SlAPX4) as a gene specifically induced during fruit ripening. In tomatoes, ascorbate accumulates in the yellow stage of fruits, then decreases during later stages of fruit ripening. To investigate whether SlAPX is involved in the decrease of ascorbate, the expression of SlAPXs was analyzed during fruit maturation. Among nine SlAPXs, SlAPX4 is the only gene whose expression was induced during fruit ripening. Mutation of SlAPX4 by the CRISPR/Cas9 system increased ascorbate content in ripened tomato fruits, while ascorbate content in leaves was not significantly changed by mutation of SlAPX4. Phenotype analysis revealed that mutation of SlAPX4 did not induce an adverse effect on the growth of tomato plants. Collectively, we suggest that SlAPX4 mediates a decrease of ascorbate content during the later stage of fruit ripening, and mutation of SlAPX4 can be used for the development of genome-edited tomatoes with elevated ascorbate content in fruits.
Collapse
|
312
|
Wang Y, Tan P, Chang L, Yue Z, Zeng C, Li M, Liu Z, Dong X, Yan M. Exogenous proline mitigates toxic effects of cadmium via the decrease of cadmium accumulation and reestablishment of redox homeostasis in Brassica juncea. BMC PLANT BIOLOGY 2022; 22:182. [PMID: 35395715 PMCID: PMC8991812 DOI: 10.1186/s12870-022-03538-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND As a vital osmoticum, proline has an important role in enhancing the tolerance of plants to environmental stress. It is unclear whether the application of exogenous proline can improve the tolerance of Brassica juncea to cadmium (Cd). RESULTS This study investigated the effects of different concentrations of proline (20, 40, 60, 80, and 100 mg/L) under Cd stress at different times (0 d, 2 d, and 7 d) on the growth and physiology of B. juncea. Treatment with exogenous proline not only increased the content of proline in B. juncea but also alleviated Cd-induced seedling growth inhibition via the maintenance of higher photosynthetic pigment content and cell viability and a decrease in the content of Cd. Moreover, it increased the activities of antioxidant enzymes and the glutathione/glutathione disulfide ratio to reduce the accumulation of reactive oxygen species. Compared with other concentrations, 60 mg/L of exogenous proline was the most effective at mitigating Cd toxicity in B. juncea. CONCLUSIONS Exogenous proline treatment enhanced the tolerance to Cd via a decrease in Cd accumulation and reestablishment of the redox homeostasis in B. juncea.
Collapse
Affiliation(s)
- Yuanduo Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Piaopiao Tan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Liang Chang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Zheming Yue
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China.
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Xujie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, 410004, Changsha, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, 411201, Xiangtan, China.
| |
Collapse
|
313
|
Zulfiqar F, Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127891. [PMID: 34848065 DOI: 10.1016/j.jhazmat.2021.127891] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment. Although both inorganic and organic types of arsenic exist in the environment, the most common inorganic forms of As that adversely affect plants are arsenite (As III) and arsenate (As V). Despite no evidence for As being essential for plant growth, exposure of roots to this element can cause its uptake primarily via transporters responsible for the transport of essential mineral nutrients. Arsenic exposure even at low concentrations disturbs the plant normal functioning via excessive generation of reactive oxygen species, a condition known as oxidative stress leading to an imbalance in the redox system of the plant. This is associated with considerable damage to the cell components thereby impairing normal cellular functions and activation of several cell survival and cell death pathways. To counteract this oxidative disorder, plants possess natural defense mechanisms such as chemical species and enzymatic antioxidants. This review considers how different types of antioxidants participate in the oxidative defense mechanism to alleviate As stress in plants. Since the underlying phenomena of oxidative stress tolerance are not yet fully elucidated, the potential for "Omics" technologies to uncover molecular mechanisms are discussed. Various strategies to improve As-induced oxidative tolerance in plants such as exogenous supplementation of effective growth regulators, protectant chemicals, transgenic approaches, and genome editing are also discussed thoroughly in this review.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
314
|
Wen K, Li X, Huang R, Nian H. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113405. [PMID: 35298965 DOI: 10.1016/j.ecoenv.2022.113405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chromium is considered one of the most severe toxic elements affecting agriculture. Soybean seedlings under chromium stress were treated with glutathione and buthionine sulfoximine. The effects of exogenous glutathione on the physiological effects of two different chromium-resistant soybean seedlings and the expression levels of expression levels related genes were studied. This study tested the seedling weight and SPAD values, detected enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, catalase, catalase, ascorbate peroxidase), and non-enzymatic antioxidants (i.e., glutathione, proline, soluble sugars, and soluble phenols) that attenuate chromium-induced reactive oxygen species, and quantified several genes associated with glutathione-mediated chromium stress. The results showed that exogenous glutathione could improve the physiological adaptability of soybean seedlings by regulating photosynthesis, antioxidant, and related enzyme activities, osmotic system, the compartmentalization of ion chelation, and regulating the transcription level of related genes, thereby increasing the chromium accumulation of soybean seedlings, enhancing the tolerance of chromium stress, and reducing the toxicity of chromium. Overall, the application of glutathione alleviates chromium toxicity in soybeans, and this strategy may be a potential farming option for soybean bioremediation in chromium-contaminated soils.
Collapse
Affiliation(s)
- Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Rong Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
315
|
Xu H, Li Z, Jiang PF, Zhao L, Qu C, Van de Peer Y, Liu YJ, Zeng QY. Divergence of active site motifs among different classes of Populus glutaredoxins results in substrate switches. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:129-146. [PMID: 34981873 DOI: 10.1111/tpj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Enzymes are essential components of all biological systems. The key characteristics of proteins functioning as enzymes are their substrate specificities and catalytic efficiencies. In plants, most genes encoding enzymes are members of large gene families. Within such families, the contributions of active site motifs to the functional divergence of duplicate genes have not been well elucidated. In this study, we identified 41 glutaredoxin (GRX) genes in the Populus trichocarpa genome. GRXs are ubiquitous enzymes in plants that play important roles in developmental and stress tolerance processes. In poplar, GRX genes were divided into four classes based on clear differences in gene structure and expression pattern, subcellular localization, enzymatic activity, and substrate specificity of the encoded proteins. Using site-directed mutagenesis, this study revealed that the divergence of the active site motif among different classes of GRX proteins resulted in substrate switches and thus provided new insights into the molecular evolution of these important plant enzymes.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Peng-Fei Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Zhao
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-90187, Sweden
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
316
|
Marchica A, Cotrozzi L, Lorenzini G, Nali C, Pellegrini E. Antioxidants and Phytohormones Act in Coordination to Regulate Sage Response to Long Term Ozone Exposure. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070904. [PMID: 35406884 PMCID: PMC9002621 DOI: 10.3390/plants11070904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 05/14/2023]
Abstract
Antioxidants and phytohormones are hallmarks of abiotic stress responses in plants. Although it is known that they can offer cell protection or accelerate programmed cell death (PCD) depending on the level of stress, the involvement of these metabolites in stress acclimation is still not fully elucidated. Here, we showed the role of antioxidants and phytohormones in Salvia officinalis tolerance to long-term ozone (O3) exposure (120 ppb for 36 days, 5 h day-1). Salicylic acid (SA) content was increased under O3 throughout the whole experiment (+150%, as average compared with control), being required to maintain the cellular redox state and potentiate defense responses. This accumulation was induced before the production of ethylene (ET), suggesting that ET was controlled by SA during O3 exposure to modulate the magnitude of chlorosis formation and the cell redox balance (by regulating ascorbate and glutathione levels). The synthesis and/or regeneration of these antioxidants did not protect membranes from lipid peroxidation, as demonstrated by the accumulation of malondialdehyde (+23% as average). However, these processes of lipid oxidation did not include the synthesis of the membrane breakdown products, as confirmed by the unchanged values of jasmonic acid, thus indicating that this compound was not involved in the regulation of PCD strategies.
Collapse
Affiliation(s)
- Alessandra Marchica
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2210563
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| |
Collapse
|
317
|
Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 2022; 35:451-478. [PMID: 35344114 DOI: 10.1007/s10534-022-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)-glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic-phytochelatin (As-PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.
Collapse
|
318
|
Chloroplast Thylakoidal Ascorbate Peroxidase, PtotAPX, Has Enhanced Resistance to Oxidative Stress in Populus tomentosa. Int J Mol Sci 2022; 23:ijms23063340. [PMID: 35328760 PMCID: PMC8953715 DOI: 10.3390/ijms23063340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chloroplasts are the most major producers of reactive oxygen species (ROS) during photosynthesis. However, the function of thylakoid ascorbate peroxidase (tAPX) in response to oxidative stress in wood trees is largely unknown. Our results showed that PtotAPX of Populus tomentosa could effectively utilize ascorbic acid (AsA) to hydrolyze hydrogen peroxide (H2O2) in vitro. The overexpression or antisense of PtotAPX (OX-PtotAPX or anti-PtotAPX, respectively) in Populus tomentosa plants did not significantly affect plant morphology during plant growth. When treated with methyl viologen (MV), the OX-PtotAPX plants exhibited less morphological damage under stress conditions compared to WT plants. OX-PtotAPX plants maintained lower H2O2 levels and malondialdehyde (MDA) contents, but more reduced AsA levels, a higher photosynthetic rate (Pn), and the maximal photochemical efficiency of PSII (Fv/Fm), whereas anti-PtotAPX plants showed the opposite phenotype. Furthermore, the activity of APX was slightly higher in OX-PtotAPX under normal growth conditions, and this activity significantly decreased after stress treatment, which was the lowest in anti-P. Based on these results, we propose that PtotAPX is important for protecting the photosynthetic machinery under severe oxidative stress conditions in P. tomentosa, and is a potential genetic resource for regulating the stress tolerance of woody plants.
Collapse
|
319
|
Gui JY, Rao S, Gou Y, Xu F, Cheng S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1707-1718. [PMID: 34460116 DOI: 10.1002/jsfa.11511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Approximately 0.5-1 billion people worldwide face the risk of selenium (Se) deficiency because of the low Se concentration in their diets. Broccoli can accumulate Se and comprises a source of daily Se supplement for humans. Se biofortification is an effective strategy for enhancing Se content in crops. In the present study, the effects of Se yeast and selenite application on the Se content and nutrient quality of broccoli were investigated. RESULTS Broccoli growth was promoted by Se yeast but inhibited by selenite. The total Se content of broccoli florets remarkably increased with increasing exogenous Se fertilizer concentrations. The main Se species in broccoli florets were methyl-selenocysteine and selenomethionine, and their contents were significantly higher under Se yeast treatments than under selenite treatments. Se(VI) was detected only under selenite treatments. Se yeast and selenite had different influences on soluble sugar, soluble protein, vitamin C and free amino acid contents in broccoli florets. The total phenolic acid and glucosinolate contents were substantially increased by Se yeast and selenite, although the total flavonoid content was reduced by Se yeast. Tests on antioxidant enzyme activities revealed that several antioxidant enzymes (catalase, peroxidase, superoxide dismutase and glutathione peroxidase) responded to Se yeast and selenite treatments. CONCLUSION Se yeast is preferred over selenite for maximizing Se uptake and nutrient accumulation in Se-rich broccoli cultivation. However, an extremely high Se content in broccoli florets cannot be directly consumed by humans, although they can be processed into Se supplements. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
320
|
Li N, Wang K, Lv Y, Zhang Z, Cao B, Chen Z, Xu K. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:44-57. [PMID: 35180528 DOI: 10.1016/j.plaphy.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/22/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The negative impact of the misuse of antibiotics on agriculture and human health has become a popular research topic with the increasing usage of antibiotics; however, little information is available about the mechanisms of OFL (ofloxacin) and Si (silicon). In this experiment, we applied 7 OFL concentrations to two Chinese cabbage cultivars (Qinghua and Biyu) to screen proper OFL concentrations. OFL concentrations of 0, 1, 2.5 and 5 mg L-1 were selected for the subsequent test and 1.2 mmol L-1 Si was used as mitigation. The results showed that Biyu suffered more damage than Qinghua and the injury degree increased in a concentration-dependent manner. With increasing OFL concentrations, the photosynthetic fluorescence was weakened significantly; under 1, 2.5 and 5 mg L-1 OFL, the Pn reduced by 5.35%, 35.92% and 43.62% in Qinghua and 33.98%, 41.94% and 64.66% in Biyu, respectively. The production rate of O2-, H2O2 and the MDA content were increased and Biyu appeared higher increase rates. In addition, the antioxidant enzymes contents first increased and then decreased and that of Qinghua increased more than Biyu. Si ensured the growth under OFL and protected its photosynthetic ability. Under the OFL1+Si, OFL2.5 + Si and OFL5+Si treatments, Pn increased by 3.91%, 15.95 and 15.69% in Qinghua and 28.82%, 20.40% and 39.01% in Biyu. Si also maintained the structural integrity of leaf organelles and improved the scavenging ability of ROS by increasing the activity and relative gene expression of antioxidant enzymes. Moreover, varietal differences may play a more important role than Si.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | | | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
321
|
Ernst L, Steinfeld B, Barayeu U, Klintzsch T, Kurth M, Grimm D, Dick TP, Rebelein JG, Bischofs IB, Keppler F. Methane formation driven by reactive oxygen species across all living organisms. Nature 2022; 603:482-487. [PMID: 35264795 DOI: 10.1038/s41586-022-04511-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
Methane (CH4), the most abundant hydrocarbon in the atmosphere, originates largely from biogenic sources1 linked to an increasing number of organisms occurring in oxic and anoxic environments. Traditionally, biogenic CH4 has been regarded as the final product of anoxic decomposition of organic matter by methanogenic archaea. However, plants2,3, fungi4, algae5 and cyanobacteria6 can produce CH4 in the presence of oxygen. Although methanogens are known to produce CH4 enzymatically during anaerobic energy metabolism7, the requirements and pathways for CH4 production by non-methanogenic cells are poorly understood. Here, we demonstrate that CH4 formation by Bacillus subtilis and Escherichia coli is triggered by free iron and reactive oxygen species (ROS), which are generated by metabolic activity and enhanced by oxidative stress. ROS-induced methyl radicals, which are derived from organic compounds containing sulfur- or nitrogen-bonded methyl groups, are key intermediates that ultimately lead to CH4 production. We further show CH4 production by many other model organisms from the Bacteria, Archaea and Eukarya domains, including in several human cell lines. All these organisms respond to inducers of oxidative stress by enhanced CH4 formation. Our results imply that all living cells probably possess a common mechanism of CH4 formation that is based on interactions among ROS, iron and methyl donors, opening new perspectives for understanding biochemical CH4 formation and cycling.
Collapse
Affiliation(s)
- Leonard Ernst
- BioQuant Center, Heidelberg University, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany. .,Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center, Heidelberg University, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany.,Zentrum für Molekulare Biologie Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Thomas Klintzsch
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany.,Department for Plant Nutrition, Gießen University, Gießen, Germany
| | - Markus Kurth
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Dirk Grimm
- BioQuant Center, Heidelberg University, Heidelberg, Germany.,Department of Infectious Diseases/Virology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Ilka B Bischofs
- BioQuant Center, Heidelberg University, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany. .,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany. .,Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
322
|
Gashu K, Song C, Dubey AK, Acuña T, Sagi M, Agam N, Bustan A, Fait A. The Effect of Topo-Climate Variation on the Secondary Metabolism of Berries in White Grapevine Varieties ( Vitis vinifera). FRONTIERS IN PLANT SCIENCE 2022; 13:847268. [PMID: 35350300 PMCID: PMC8958008 DOI: 10.3389/fpls.2022.847268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Exploiting consistent differences in radiation and average air temperature between two experimental vineyards (Ramat Negev, RN and Mitzpe Ramon, MR), we examined the impact of climate variations on total carotenoids, redox status, and phenylpropanoid metabolism in the berries of 10 white wine grapevine (Vitis vinifera) cultivars across three consecutive seasons (2017-2019). The differences in carotenoid and phenylpropanoid contents between sites were seasonal and varietal dependent. However, the warmer RN site was generally associated with higher H2O2 levels and carotenoid degradation, and lower flavonol contents than the cooler MR site. Enhanced carotenoid degradation was positively correlated with radiation and daily degree days, leading to a greater drop in content from véraison to harvest in Colombard, Sauvignon Blanc, and Semillon berries. Analyses of berry H2O2 and phenylpropanoids suggested differences between cultivars in the links between H2O2 and flavonol contents. Generally, however, grapes with higher H2O2 content seem to have lower flavonol contents. Correlative network analyses revealed that phenylpropanoids at the warmer RN site are tightly linked to the radiation and temperature regimes during fruit ripening, indicating potentially harmful effect of warmer climates on berry quality. Specifically, flavan-3-ols were negatively correlated with radiation at RN. Principal component analysis showed that Muscat Blanc, Riesling, Semillon, and Sauvignon Blanc were the most site sensitive cultivars. Our results suggest that grapevine biodiversity is likely the key to withstand global warming hazards.
Collapse
Affiliation(s)
- Kelem Gashu
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Chao Song
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Nurit Agam
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Amnon Bustan
- Ramat Negev Desert Agro-Research Center, Ramat Negev Works Ltd., Halutza, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
323
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
324
|
ElSayed AI, Mohamed AH, Rafudeen MS, Omar AA, Awad MF, Mansour E. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus L.). Saudi J Biol Sci 2022; 29:3675-3686. [PMID: 35844395 PMCID: PMC9280241 DOI: 10.1016/j.sjbs.2022.02.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Abdelaleim I. ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Mohammed Suhail Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Corresponding author.
| |
Collapse
|
325
|
Siddiqui MH, Khan MN, Singh VP. Hot and dry: how plants can thrive in future climates. PLANT CELL REPORTS 2022; 41:497-499. [PMID: 35175359 DOI: 10.1007/s00299-022-02843-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
326
|
Camilo Dos Santos JC, Ribeiro Silva DM, Jardim Amorim D, do Rosário Rosa V, Farias Dos Santos AL, Domingues Velini E, Carbonari CA, de Almeida Silva M. Glyphosate hormesis attenuates water deficit stress in safflower (Carthamus tinctorius L.) by modulating physiological and biochemical mediators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152204. [PMID: 34902413 DOI: 10.1016/j.scitotenv.2021.152204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Changes in photosynthetic machinery can induce physiological and biochemical damage in plants. Low doses of glyphosate have been shown to exert a positive effect in mitigating the deleterious effects of water deficit in plants. Here, the physiological and biochemical mechanisms of safflower plants (Carthamus tinctorius L.) were studied under conditions of water deficit mediated by the attenuating effect of low-dose glyphosate. The plants were divided into two groups of water regimes in soil, without water deficit (-10 kPa) and with water deficit (-70 kPa), and were exposed to different concentrations of glyphosate (0, 1.8, 3.6, 7.2, 18, 36, 72, 180, 360, and 720 g a.e. ha-1). Evident protective responses at the physiological and biochemical levels were obtained after applying low doses of glyphosate to plants under water deficit, with a limiting dose for the occurrence of hormesis (LDS) = 72 g a.e. ha-1. The water deficit in plants resulted in hydrogen peroxide (H2O2) accumulation and consequently lipid peroxidation (LPO) associated with the accumulation of shikimic acid and glyphosate in plants, which triggered an increase in the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) that act by dismuting the levels of reactive oxygen species (ROS), maintaining, and/or increasing the maximum quantum efficiency of photosystem II (Fv/Fm), effective quantum yield of photosystem II (ΦPSII), electron transport rate (ETR), photochemical extinction coefficient (qP), and non-photochemical extinction coefficient (NPQ). APX appears to be the main enzyme involved in eliminating H2O2. Low doses of glyphosate act as water deficit ameliorators, allowing the plant to maintain/increase metabolism at physiological and biochemical levels by activating antioxidant enzymes in the dismutation of ROS in safflower plants.
Collapse
Affiliation(s)
- Jania Claudia Camilo Dos Santos
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Dayane Mércia Ribeiro Silva
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Deoclecio Jardim Amorim
- University of São Paulo (USP), College of Agriculture "Luiz de Queiroz" (ESALQ), Department of Exact Sciences, 13418-900 Piracicaba, SP, Brazil
| | - Vanessa do Rosário Rosa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Anna Luiza Farias Dos Santos
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Edivaldo Domingues Velini
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Protection, Center for Advanced Research on Weeds, 18610-034 Botucatu, SP, Brazil
| | - Caio Antonio Carbonari
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Protection, Center for Advanced Research on Weeds, 18610-034 Botucatu, SP, Brazil
| | - Marcelo de Almeida Silva
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil.
| |
Collapse
|
327
|
Ullah Qadir S, Raja V, Siddiqui WA, Shah T, Alansi S, El-Sheikh MA. Ascorbate glutathione antioxidant system alleviates fly ash stress by modulating growth physiology and biochemical responses in Solanum lycopersicum. Saudi J Biol Sci 2022; 29:1322-1336. [PMID: 35280552 PMCID: PMC8913553 DOI: 10.1016/j.sjbs.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Tomato plants (Solanum lycopersicum L.) were developed in soils with different fly ash (FA) amendments (25, 50, 75, 100% FA) to measure the effects of FA on metal accumulation, chlorophyll pigments, chlorophyll fluorescence, growth, biomass, gas exchange parameters, and the ascorbate glutathione pathway (AsA-GSH). The metal concentration was much higher in FA compared to the garden soil/(control). The observed metal translocation was higher in roots than shoots. Plants raised in soils treated with 50% or more FA showed significant decreases in growth, biomass, gas exchange parameters, protein, chlorophyll pigments, and fluorescence parameters. Additionally, a significant increase in antioxidants under higher FA-amended soils were observed. Our results showed that the ability of Solanum lycopersicum plants to effectively synchronize the actions of antioxidant enzymes associated in reactive oxygen species (ROS) scavenging - notably superoxidase dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) - with good maintenance of the AsA/DHA ratio, that could be connected to FA stress tolerance. The toxic metals present in FA caused oxidative stress in Solanum lycopersicum, as evident from the increase in electrolyte leakage (EL), lipid peroxidation (MDA), and ROS levels. Furthermore, the AsA-GSH cycle plays a key role in alleviating oxidative damage caused by FA application.
Collapse
Affiliation(s)
- Sami Ullah Qadir
- Department of Environmental Sciences, Govt. Degree College for Women, Pulwama, Kashmir 192301, India
- Corresponding author.
| | - Vaseem Raja
- Department of Botany, Govt. Degree College Shopian, Kashmir 192303, India
| | - Weqar A. Siddiqui
- Analytical Research Lab Faculty of Engineering and Technology Jamia Millia Islamia, New Delhi 110025, India
| | - Tariq Shah
- Department of Agroecology, Universite de Bourgogne, 21000 Dijon, France
| | - Saleh Alansi
- Botany and Microbiology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
328
|
Li N, Cao B, Chen Z, Xu K. Root morphology ion absorption and antioxidative defense system of two Chinese cabbage cultivars (Brassica rapa L.) reveal the different adaptation mechanisms to salt and alkali stress. PROTOPLASMA 2022; 259:385-398. [PMID: 34145471 DOI: 10.1007/s00709-021-01675-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Salt stress and alkali stress are major factors that affect the growth and production of Chinese cabbage. To explore their tolerant mechanism to salt and alkali stress, three salinity levels (0, 50, 100 mmol/L NaCl) and three different pH levels (pH6.5, pH7.5, pH8.5) were interactively applied on Qinghua (salt-tolerant-alkali-sensitive) and Biyu (salt-sensitive-alkali-tolerant) cultivars; the root morphology, ion content and antioxidant enzymes were determined. The results showed that the root morphology and root water content of Qinghua under S0pH7.5 and S0pH8.5 were seriously affected, and the content of H2O2 and MDA increased by 143%, 190% and 234%, 294%, respectively, compared with S0pH6.5; when Biyu was under S50pH6.5 and S100pH6.5 stress, the content of H2O2 and MDA increase to 152%, 208% and to 240%, 263%, respectively, but the activities and genes expression of SOD, POD, CAT, AAO, APX, DHAR and MDHAR did not change. The root and the contents of H2O2 and MDA were not affected when Qinghua was treated with salt and Biyu was treated with alkali, but the activities of the antioxidant enzymes increased to 150-200%, and their relative expression was overexpressed and 2.5-3.5-fold of the S0pH6.5. The increase of Na+ in Qinghua was limited under salt stress, Mg2+ in Biyu increased significantly under alkali stress. These all indicated that the adaptability of roots could reflect the degree of tolerance; Chinese cabbage with high salt and alkali tolerance enhanced the regulation of their absorption of ions and increased the relative expression and activities of related antioxidant enzymes.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an , 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an , 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an , 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China.
- State Key Laboratory of Crop Biology, Tai'an , 271018, China.
| |
Collapse
|
329
|
He M, Li X, Mang M, Li Z, Ludewig U, Schulze WX. A systems-biology approach identifies co-expression modules in response to low phosphate supply in maize lines of different breeding history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1249-1270. [PMID: 34897849 DOI: 10.1111/tpj.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic and proteomic adaptations. We hypothesize that selected genotypes with distinct phosphorous (P) use efficiency covering the breeding history of European Flint heterotic pool provide a tool to reveal general and genotype-specific molecular responses to P limitation. We reconstructed protein and gene co-expression networks by weighted correlation network analysis and related these to phosphate deficiency-induced traits. In roots, low phosphate supply resulted in a decreasing abundance of proteins in the oxidative pentose phosphate pathway and a negative correlation with root and shoot phosphate content. We observed an increase in abundance and positive correlation with root and shoot phosphate content for proteins in sucrose biosynthesis, lipid metabolism, respiration and RNA processing. Purple acid phosphatases, superoxide dismutase and phenylalanine ammonia lyase were identified as being upregulated under low phosphate in all genotypes. Overall, correlations between protein and mRNA abundance changes were limited, with ribosomal proteins and the ubiquitin protein degradation pathway exclusively responding with protein abundance changes. Carbohydrate, phospho- and sulfo-lipid metabolism showed abundance changes at the protein and mRNA levels. These partially non-overlapping proteomic and transcriptomic adjustments to low phosphate suggest sugar and lipid metabolism as metabolic processes associated with improved P use efficiency specifically in Founder Flint lines. We identified a mitogen-activated protein kinase-kinase as a potential genotype-specific regulator of sucrose metabolism at low phosphate in Founder Flint line EP1. We conclude that, during breedingt of Elite Flint lines, regulation of primary metabolism has changed to result in a distinct low phosphate response in Founder lines.
Collapse
Affiliation(s)
- Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuelian Li
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Melissa Mang
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| |
Collapse
|
330
|
Wu B, Li J, Peng D, Wang Z, Xu H. Cadmium Exposure Alters Rhizospheric Microbial Community and Transcriptional Expression of Vetiver Grass. FRONTIERS IN PLANT SCIENCE 2022; 13:808844. [PMID: 35283903 PMCID: PMC8914199 DOI: 10.3389/fpls.2022.808844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Vetiver grass (Chrysopogon zizanioides L.) has been used to remediate cadmium (Cd)-contaminated soil, while there have been few studies on the influence of Cd exposure on the rhizospheric microbial community and transcriptional expression of C. zizanioides. In this study, we investigated the response of the rhizospheric microbial community and transcriptional expression of C. zizanioides in 20 mg/kg Cd-contaminated soil. The results showed that Cd levels in the roots and shoots of C. zizanioides reached 250.80 and 73.40 mg/kg, respectively. The Cd exposure changed the rhizospheric bacterial community, resulting in the significant enrichment of Sphingomonas, Lysobacter, and Gemmatimonadetes in Cd-contaminated soil. In addition, 880 and 3,419 differentially expressed genes were identified in the plant roots and shoots, respectively, in response to Cd stress. Among these, the overexpressed genes associated with redox homeostasis, glutathione (GSH) metabolism, cell wall biosynthesis, and transmembrane transport pathways were found to participate in Cd detoxification in C. zizanioides. These findings could be useful for understanding the selective variation of the rhizospheric microbial community and the detoxification mechanisms of C. zizanioides in Cd phytoremediation.
Collapse
Affiliation(s)
- Bin Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Jia Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
331
|
Potassium (K+) Starvation-Induced Oxidative Stress Triggers a General Boost of Antioxidant and NADPH-Generating Systems in the Halophyte Cakile maritima. Antioxidants (Basel) 2022; 11:antiox11020401. [PMID: 35204284 PMCID: PMC8869740 DOI: 10.3390/antiox11020401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Potassium (K+) is an essential macro-element for plant growth and development given its implication in major processes such as photosynthesis, osmoregulation, protein synthesis, and enzyme function. Using 30-day-old Cakile maritima plants as halophyte model grown under K+ deprivation for 15 days, it was analyzed at the biochemical level to determine the metabolism of reactive oxygen species (ROS), key photorespiratory enzymes, and the main NADPH-generating systems. K+ starvation-induced oxidative stress was noticed by high malondialdehyde (MDA) content associated with an increase of superoxide radical (O2•−) in leaves from K+-deficient plants. K+ shortage led to an overall increase in the activity of hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX), as well as of antioxidant enzymes catalase (CAT), those of the ascorbate-glutathione cycle, peroxidase (POX), and superoxide dismutase (SOD), and the main enzymes involved in the NADPH generation in both leaves and roots. Especially remarkable was the induction of up to seven CuZn-SOD isozymes in leaves due to K+ deficiency. As a whole, data show that the K+ starvation has associated oxidative stress that boosts a biochemical response leading to a general increase of the antioxidant and NADPH-generating systems that allow the survival of the halophyte Cakile maritima.
Collapse
|
332
|
Yildiztugay E, Ozfidan-Konakci C, Cavusoglu H, Arikan B, Alp FN, Elbasan F, Kucukoduk M, Turkan I. Nanomaterial sulfonated graphene oxide advances the tolerance against nitrate and ammonium toxicity by regulating chloroplastic redox balance, photochemistry of photosystems and antioxidant capacity in Triticum aestivum. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127310. [PMID: 34879548 DOI: 10.1016/j.jhazmat.2021.127310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The current study was designed to assess nanomaterial sulfonated graphene oxide (SGO) potential in improving tolerance of wheat chloroplasts against nitrate (NS) and ammonium (AS) toxicity. Triticum aestivum cv. Ekiz was grown under SGOs (50-250-500 mg L-1) with/without 140 mM NS and 5 mM AS stress. SGOs were eliminated the adverse effects produced by stress on chlorophyll fluorescence, potential photochemical efficiency and physiological state of the photosynthetic apparatus. SGO reversed the negative effects on these parameters. Upon SGOs exposure, the induced expression levels of photosystems-related reaction center proteins were observed. SGOs reverted radical accumulation triggered by NS by enabling the increased superoxide dismutase (SOD) activity and ascorbate (AsA) regeneration. Under AS, the turnover of both AsA and glutathione (GSH) was maintained by 50-250 mg L-1 SGO by increasing the enzymes and non-enzymes related to AsA-GSH cycle. 500 mg L-1 SGO prevented the radical over-accumulation produced by AS via the regeneration of AsA and peroxidase (POX) activity rather than GSH regeneration. 50-250 mg L-1 SGO protected from the NS+AS-induced disruptions through the defense pathways connected with AsA-GSH cycle represented the high rates of AsA/DHA and, GSH/GSSG and GSH redox state. Our findings specified that SGO to NS and AS-stressed wheat provides a new potential tool to advance the tolerance mechanism.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090 Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Mustafa Kucukoduk
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey.
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey.
| |
Collapse
|
333
|
Inuloxin A Inhibits Seedling Growth and Affects Redox System of Lycopersicon esculentum Mill. and Lepidium sativum L. Biomolecules 2022; 12:biom12020302. [PMID: 35204800 PMCID: PMC8869190 DOI: 10.3390/biom12020302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Allelochemicals are considered an environment-friendly and promising alternative for weed management, although much effort is still needed for understanding their mode of action and then promoting their use in plant allelopathy management practices. Here, we report that Inuloxin A (InA), an allelochemical isolated from Dittrichia viscosa, inhibited root elongation and growth of seedlings of Lycopersicon esculentum and Lepidium sativum at the highest concentrations tested. InA-induced antioxidant responses in the seedlings were investigated by analysing the contents of glutathione (GSH) and ascorbate (ASC), and their oxidized forms, dehydroascorbate (DHA), and glutathione disulphide (GSSG), as well as the redox state of thiol-containing proteins. An increase in ASC, DHA, and GSH levels at high concentrations of InA, after 3 and 6 days, were observed. Moreover, the ASC/DHA + ASC and GSH/GSSG + GSH ratios showed a shift towards the oxidized form. Our study provides the first insight into how the cell redox system responds and adapts to InA phytotoxicity, providing a framework for further molecular studies.
Collapse
|
334
|
Aguilera A, Berdun F, Bartoli C, Steelheart C, Alegre M, Bayir H, Tyurina YY, Kagan VE, Salerno G, Pagnussat G, Martin MV. C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria. J Cell Biol 2022; 221:212878. [PMID: 34817556 PMCID: PMC8624678 DOI: 10.1083/jcb.201911005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.
Collapse
Affiliation(s)
- Anabella Aguilera
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Federico Berdun
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Charlotte Steelheart
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Matías Alegre
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Hülya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA.,Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E Kagan
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA.,Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Graciela Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Gabriela Pagnussat
- Instituto de investigaciones Biológicas IIB-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| |
Collapse
|
335
|
Luan H, Niu C, Nie X, Li Y, Wei M. Transcriptome and Physiological Analysis of Rootstock Types and Silicon Affecting Cold Tolerance of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030445. [PMID: 35161426 PMCID: PMC8838756 DOI: 10.3390/plants11030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Cucumbers grafted on rootstocks with different de-blooming capacity show varying levels of cold tolerance. The content of fruit bloom correlates with its silicon-metabolizing capacity, and rootstock grafting can alter not only the cold tolerance but also the silicon-metabolizing capacity of the scion. The molecular mechanisms responsible for resistance due to rootstocks and silicon and the pathway that affects cold tolerance, however, remain poorly understood. Therefore, we performed physiological and transcriptome analysis to clarify how rootstock types and silicon affect cold tolerance in cucumber seedlings. Then, we randomly selected eight differentially expressed genes (DEGs) for quantitative real time PCR (qRT-PCR) analysis to proof the reliability of the transcriptome data. The results showed that silicon can enhance the cold tolerance of cucumbers by boosting the phenylpropanoid metabolism, and rootstock grafting can boost the active oxygen scavenging ability and synthesis level of hormones in cucumbers and maintain the stability of the membrane structure to enhance cold tolerance. The difference in cold tolerance between the two rootstocks is because the cold-tolerant one has stronger metabolic and sharp signal transduction ability and can maintain the stability of photosynthesis, thereby contributing to the stability of the cellular system and enhancing tolerance to cold.
Collapse
Affiliation(s)
- Heng Luan
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Xinmiao Nie
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
- Correspondence: ; Tel.: +86-0538-824-6296
| |
Collapse
|
336
|
Kaushik S, Sharma P, Kaur G, Singh AK, Al-Misned FA, Shafik HM, Sirhindi G. Seed priming with methyl jasmonate mitigates copper and cadmium toxicity by modifying biochemical attributes and antioxidants in Cajanus cajan. Saudi J Biol Sci 2022; 29:721-729. [PMID: 35197737 PMCID: PMC8847966 DOI: 10.1016/j.sjbs.2021.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants' tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants' physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Poonam Sharma
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hesham M Shafik
- Hungarian Academy of Sciences, Limnoecology Research Group, University of Pannonia, Gyetem u. 10, H-8200 Veszprem, Hungary
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
337
|
Arab L, Hoshika Y, Müller H, Cotrozzi L, Nali C, Tonelli M, Ache P, Paoletti E, Alfarraj S, Albasher G, Hedrich R, Rennenberg H. Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150563. [PMID: 34601178 DOI: 10.1016/j.scitotenv.2021.150563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency.
Collapse
Affiliation(s)
- L Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany.
| | - Y Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - H Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - L Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Tonelli
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - P Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - E Paoletti
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - S Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - G Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - R Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
338
|
Nerva L, Guaschino M, Pagliarani C, De Rosso M, Lovisolo C, Chitarra W. Spray-induced gene silencing targeting a glutathione S-transferase gene improves resilience to drought in grapevine. PLANT, CELL & ENVIRONMENT 2022; 45:347-361. [PMID: 34799858 DOI: 10.1111/pce.14228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Along with the ongoing climate change, drought events are predicted to become more severe. In this context, the spray-induced gene silencing (SIGS) technique could represent a useful strategy to improve crop stress resilience. A previous study demonstrated that the Arabidopsis mutants for a glutathione S-transferase (GST) gene had increased abscisic acid (ABA) levels and a more activated antioxidant system, both features that improved drought resilience. Here, we used SIGS to target a putative grape GST gene (VvGST40). Then, ecophysiological, biochemical and molecular responses of 'Chardonnay' cuttings were analysed during a drought and recovery time-course. Gas exchange, ABA and t-resveratrol concentration as well as expression of stress-related genes were monitored in not treated controls, dsRNA-VvGST40- and dsRNA-GFP- (negative control of the technique) treated plants, either submitted or not to drought. VvGST40-treated plants revealed increased resilience to severe drought as attested by the ecophysiological data. Analysis of target metabolites and antioxidant- and ABA-related transcripts confirmed that VvGST40-treated plants were in a priming status compared with controls. SIGS targeting an endogenous gene was successfully applied in grapevine, confirming the ability of this technique to be exploited not only for plant protection issues but also for functional genomic studies.
Collapse
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| | - Micol Guaschino
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, TO, Italy
| | - Chiara Pagliarani
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| | - Mirko De Rosso
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, TO, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| |
Collapse
|
339
|
Pande A, Mun BG, Khan M, Rahim W, Lee DS, Lee GM, Al Azawi TNI, Hussain A, Yun BW. Nitric Oxide Signaling and Its Association with Ubiquitin-Mediated Proteasomal Degradation in Plants. Int J Mol Sci 2022; 23:ijms23031657. [PMID: 35163578 PMCID: PMC8835921 DOI: 10.3390/ijms23031657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a versatile signaling molecule with diverse roles in plant biology. The NO-mediated signaling mechanism includes post-translational modifications (PTMs) of target proteins. There exists a close link between NO-mediated PTMs and the proteasomal degradation of proteins via ubiquitylation. In some cases, ubiquitin-mediated proteasomal degradation of target proteins is followed by an NO-mediated post-translational modification on them, while in other cases NO-mediated PTMs can regulate the ubiquitylation of the components of ubiquitin-mediated proteasomal machinery for promoting their activity. Another pathway that links NO signaling with the ubiquitin-mediated degradation of proteins is the N-degron pathway. Overall, these mechanisms reflect an important mechanism of NO signal perception and transduction that reflect a close association of NO signaling with proteasomal degradation via ubiquitylation. Therefore, this review provides insight into those pathways that link NO-PTMs with ubiquitylation.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Tiba Nazar Ibrahim Al Azawi
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Adil Hussain
- Laboratory of Cell Biology, Department of Entomology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| |
Collapse
|
340
|
Effectiveness of Ozonated Water for Preserving Quality and Extending Storability of Star Ruby Grapefruit. Processes (Basel) 2022. [DOI: 10.3390/pr10020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to explore the impact of aqueous ozone technology on maintaining grapefruit flavor and freshness by minimizing the occurrence of postharvest deterioration. During the 2018 and 2019 seasons, Star Ruby grapefruit fruits were treated with 0.3 and 0.6 ppm aqueous ozone for 5 and 10 min after harvest at water temperatures of 5 °C and 15 °C, respectively. The fruits were stored for 40 days at 8 ± 1 °C with 85–90% relative humidity. The results revealed that all the ozonated water treatments reduced physiological weight loss, disease infection, and decay, as well as providing long-term protection to the fruits throughout storage. The best treatment for preserving the postharvest quality was 0.6 ppm ozonated water at 5 °C for 5 min, which successfully delayed ripening while concurrently preserving the TSS/acid ratios, total phenolics, and antioxidant activity. Overall, aqueous ozone treatment is a promising example of a treatment that is beginning to be utilized on a commercial scale. In accordance with the findings of this study, it can be deduced that aqueous ozone can be used to maintain fruit quality, reduce postharvest diseases, and extend storage life.
Collapse
|
341
|
A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes. Int J Mol Sci 2022; 23:ijms23031603. [PMID: 35163525 PMCID: PMC8836042 DOI: 10.3390/ijms23031603] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a ubiquitous stressor, depleting osmotic potential and affecting the tomato seedlings’ development and productivity. Considering this critical concern, we explored the salinity response in tomato seedlings by evaluating them under progressive salt stress duration (0, 3, 6, and 12 days). Intriguingly, besides the adverse effect of salt stress on tomato growth the findings exhibited a significant role of tomato antioxidative system, RBOH genes, ABA biosynthesis, and signaling transcription factor for establishing tolerance to salinity stress. For instance, the activities of enzymatic and non-enzymatic antioxidants continued to incline positively with the increased levels of reactive oxygen species (O2•−, H2O2), MDA, and cellular damage, suggesting the scavenging capacity of tomato seedlings against salt stress. Notably, the RBOH transcription factors activated the hydrogen peroxide-mediated signalling pathway that induced the detoxification mechanisms in tomato seedlings. Consequently, the increased gene expression of antioxidant enzymes and the corresponding ratio of non-enzymatic antioxidants AsA-GSH suggested the modulation of antioxidants to survive the salt-induced oxidative stress. In addition, the endogenous ABA level was enhanced under salinity stress, indicating higher ABA biosynthesis and signalling gene expression. Subsequently, the upregulated transcript abundance of ABA biosynthesis and signalling-related genes suggested the ABA-mediated capacity of tomato seedlings to regulate homeostasis under salt stress. The current findings have revealed fascinating responses of the tomato to survive the salt stress periods, in order to improve the abiotic stress tolerance in tomato.
Collapse
|
342
|
Acharya BR, Sandhu D, Dueñas C, Ferreira JFS, Grover KK. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar ( Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030291. [PMID: 35161272 PMCID: PMC8838131 DOI: 10.3390/plants11030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water.
Collapse
Affiliation(s)
- Biswa R. Acharya
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Devinder Sandhu
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- Correspondence: (D.S.); (K.K.G.)
| | - Christian Dueñas
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Jorge F. S. Ferreira
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
| | - Kulbhushan K. Grover
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: (D.S.); (K.K.G.)
| |
Collapse
|
343
|
Miyata H, Toyoda Y, Takada T, Hiragi T, Kubota Y, Shigesawa R, Koyama R, Ikegaya Y, Suzuki H. Identification of an exporter that regulates vitamin C supply from blood to the brain. iScience 2022; 25:103642. [PMID: 35106468 PMCID: PMC8786643 DOI: 10.1016/j.isci.2021.103642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Vitamin C (VC) distribution in our body requires VC transporters. However, mammalian VC exporters are yet to be identified. Herein, to unravel this long-standing mystery, we focused on the pathways whereby VC moves from blood to the brain, which should require a VC entrance and exit system composed of an importer and a latent exporter. Via cell-based transport analyses of VC efflux and using knockout mice generated via the CRISPR-Cas9 system, we identified GLUT12/SLC2A12 as a physiologically important VC efflux protein expressed in the choroid plexus; Glut12/Slc2a12 knockout halved the cerebral VC levels, markedly increased VC accumulation in the choroid plexus, and reduced the cerebrospinal fluid VC levels. These findings facilitate our understanding of VC regulation and the physiological impact of VC in our body. A long-standing mystery in vitamin C handling in mammalians was uncovered GLUT12 was identified as a physiologically important vitamin C efflux protein—VCEP GLUT12 is expressed in the choroid plexus and acts as a vitamin C exporter Glut12 knockout halved the cerebral vitamin C levels in mice
Collapse
Affiliation(s)
- Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yu Kubota
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuichiro Shigesawa
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
344
|
Siddiqui MH, Mukherjee S, Kumar R, Alansi S, Shah AA, Kalaji HM, Javed T, Raza A. Potassium and melatonin-mediated regulation of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:49-65. [PMID: 34971955 DOI: 10.1016/j.plaphy.2021.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The mechanism of the combined action of potassium (K) and melatonin (Mel) in modulating tolerance to cadmium (Cd) stress in plants is not well understood. The present study reveals the synergistic role of K and Mel in enhancing physiological and biochemical mechanisms of Cd stress tolerance in tomato seedlings. The present findings reveal that seedlings subjected to Cd toxicity exhibited disturbed nutrients balance [nitrogen (N) and potassium (K)], chlorophyll (Chl) biosynthesis [reduced δ-aminolevulinic acid (δ-ALA) content and δ-aminolevulinic acid dehydratase (δ-ALAD) activity], pathway of carbon fixation [reduced fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity] and photosynthesis process in tomato seedlings. However, exogenous application of K and Mel alone as well as together improved physiological and biochemical mechanisms in tomato seedlings, but their combined application proved best by efficiently improving nutrient uptake, photosynthetic pigments biosynthesis (increased Chl a and b, and Total Chl), carbon flow in Calvin cycle, activity of Rubisco, carbonic anhydrase activity, and accumulation of total soluble carbohydrates content in seedlings under Cd toxicity. Furthermore, the combined treatment of K and Mel suppressed overproduction of reactive oxygen species (hydrogen peroxide and superoxide), Chl degradation [reduced chlorophyllase (Chlase) activity] and methylglyoxal content in Cd-stressed tomato seedlings by upregulating glyoxalase (increased glyoxalase I and glyoxalase II activity) and antioxidant systems (increased ascorbate-glutathione metabolism). Thus, the present study provides stronger evidence that the co-application of K and Mel exhibited synergistic roles in mitigating the toxic effect of Cd stress by increasing glyoxalase and antioxidant systems and also by improving photosynthetic efficiency in tomato seedlings.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Saleh Alansi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology University of Education, Lahore
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Departemnet of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| |
Collapse
|
345
|
Topcu Y, Nambeesan SU, van der Knaap E. Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. MOLECULAR HORTICULTURE 2022; 2:1. [PMID: 37789437 PMCID: PMC10515260 DOI: 10.1186/s43897-021-00022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 10/05/2023]
Abstract
Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.
Collapse
Affiliation(s)
- Yasin Topcu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | | | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
346
|
Additional Blue LED during Cultivation Induces Cold Tolerance in Tomato Fruit but Only to an Optimum. BIOLOGY 2022; 11:biology11010101. [PMID: 35053099 PMCID: PMC8773245 DOI: 10.3390/biology11010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
Abstract
Simple Summary LED lighting is increasingly applied to increase yield and quality of greenhouse produced crops, especially tomatoes. Tomatoes cannot be stored at cold temperatures due to chilling injury that manifests as quick quality deterioration during shelf life. The aim of this study is to investigate whether additional blue LED lighting can mitigate the negative effects of cold storage for ‘Foundation’ tomatoes. We applied three treatments, 0, 12 or 24% additional blue light during cultivation, and investigated quality attributes at harvest, after cold storage and subsequent shelf-life. We observed that red harvested tomatoes cultivated with 12% additional blue light acquired cold tolerance. Interestingly, these tomatoes were slightly less red colored at harvest and showed a faster loss of red color during cold storage. The measured red color is closely related to the lycopene concentration. We hypothesize that lycopene, a known antioxidant, present in 12% additional blue cultivated tomatoes mitigates chilling injury. Other antioxidants present in tomatoes were only affected by the ripeness at harvest and were therefore not involved in the acquired cold tolerance. The cultivation of tomatoes using additional blue LED is an attractive way to produce tomatoes that can withstand long transport at cold temperatures at the expense of a slightly less red tomato at the consumer. Abstract Tomato is a chilling-sensitive fruit. The aim of this study is to examine the role of preharvest blue LED lighting (BL) to induce cold tolerance in ‘Foundation’ tomatoes. Blue and red supplemental LED light was applied to achieve either 0, 12 or 24% additional BL (0B, 12B and 24B). Mature green (MG) or red (R) tomatoes were harvested and cold stored at 4 °C for 0, 5, 10, 15 and 20 d, and then stored for 20 d at 20 °C (shelf life). Chilling injury (CI) indices, color and firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterized. At harvest, R tomatoes cultivated at 12B were firmer and showed less coloration compared to fruit of other treatments. These fruits also showed higher loss of red color during cold storage and lower CI symptoms during shelf-life. MG tomatoes cultivated at 12B showed delayed coloring (non-chilled) and decreased weight loss (long cold stored) during shelf life compared to fruit in the other treatments. No effects of light treatments, both for MG and R tomatoes, were observed for the selected antioxidant capacity indicators. Improved cold tolerance for R tomatoes cultivated at 12B points to lycopene having higher scavenging activity at lower concentrations to mitigate chilling injury.
Collapse
|
347
|
Tai F, Wang S, Liang B, Li Y, Wu J, Fan C, Hu X, Wang H, He R, Wang W. Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation. J Nanobiotechnology 2022; 20:15. [PMID: 34983547 PMCID: PMC8725307 DOI: 10.1186/s12951-021-01222-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Various environmental factors are capable of oxidative stress to result in limiting plant development and agricultural production. Fullerene-based carbon nanomaterials can enable radical scavenging and positively regulate plant growth. Even so, to date, our knowledge about the mechanism of fullerene-based carbon nanomaterials on plant growth and response to oxidative stress is still unclear. Results 20 or 50 mg/L quaternary ammonium iminofullerenes (IFQA) rescued the reduction in root lengths and root-hair densities and lengths of Arabidopsis and maize induced by accumulation of endogenous hydrogen peroxide (H2O2) under 3-amino-1,2,4-triazole or exogenous H2O2 treatment, as well as the root active absorption area and root activity under exogenous H2O2 treatment. Meanwhile, the downregulated contents of ascorbate acid (ASA) and glutathione (GSH) and the upregulated contents of dehydroascorbic acid (DHA), oxidized glutathione (GSSG), malondialdehyde (MDA), and H2O2 indicated that the exogenous H2O2 treatment induced oxidative stress of maize. Nonetheless, application of IFQA can increase the ratios of ASA/DHA and GSH/GSSG, as well as the activities of glutathione reductase, and ascorbate peroxidase, and decrease the contents of H2O2 and MDA. Moreover, the root lengths were inhibited by buthionine sulfoximine, a specific inhibitor of GSH biosynthesis, and subsequently rescued after addition of IFQA. The results suggested that IFQA could alleviate exogenous-H2O2-induced oxidative stress on maize by regulating the ASA-GSH cycle. Furthermore, IFQA reduced the excess accumulation of ROS in root hairs, as well as the NADPH oxidase activity under H2O2 treatment. The transcript levels of genes affecting ROS-mediated root-hair development, such as RBOH B, RBOH C, PFT1, and PRX59, were significantly induced by H2O2 treatment and then decreased after addition of IFQA. Conclusion The positive effect of fullerene-based carbon nanomaterials on maize-root-hair growth under the induced oxidative stress was discovered. Application IFQA can ameliorate oxidative stress to promote maize-root growth through decreasing NADPH-oxidase activity, improving the scavenging of ROS by ASA-GSH cycle, and regulating the expressions of genes affecting maize-root-hair development. It will enrich more understanding the actual mechanism of fullerene-based nanoelicitors responsible for plant growth promotion and protection from oxidative stress. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Benshuai Liang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yue Li
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hezhong Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
348
|
Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Anal Bioanal Chem 2022; 414:5087-5103. [DOI: 10.1007/s00216-021-03792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/17/2023]
|
349
|
Foresti AC, Reis LC, Scalon SPQ, Dresch DM, Santos CC, Jesus MV. Salicylic acid mitigating damage to the photosynthetic apparatus and quality of Eugenia myrcianthes seedlings under water deficit. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract This study aimed to evaluate the effect of exogenous application of salicylic acid on the photosynthetic metabolism and quality of Eugenia myrcianthes seedlings under water deficit and their recovery potential after rehydration. Two water regimes were evaluated, as follows: control - plants irrigated daily (I) and water deficit (S), with and without the application of 400 mg L–1 of salicylic acid (SA), totaling four treatments. Seedlings were evaluated at three times: at the beginning of the experiment (T0), that is, when the irrigation was interrupted; when the photosynthetic rate reached values close to zero (P0 - 15 days after irrigation interruption), that is, when irrigation restarted; and when the photosynthetic rate was recovered (REC). Eugenia myrcianthes seedlings were negatively affected when subjected to water restriction; salicylic acid attenuated the damage to the photosynthetic apparatus by acting positively on the relative water content in the leaves, SPAD index, photosynthetic metabolism, superoxide dismutase and peroxidase enzyme activity, and seedling growth in P0. Eugenia myrchiantes presented potential for recovery after resumption irrigation. The application of SA contributed to the maintenance of gas exchanges, photochemical processes and quality of E. myrcianthes seedlings during and after water deficit, suggesting the promotion of plant resistance induction.
Collapse
|
350
|
Kannaujia R, Singh P, Prasad V, Pandey V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. ENVIRONMENTAL RESEARCH 2022; 203:111857. [PMID: 34400164 DOI: 10.1016/j.envres.2021.111857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Tropospheric ozone (O3) is a phytotoxic pollutant that leads to a reduction in crop yield. Nanotechnology offers promising solutions to stem such yield losses against abiotic stresses. Silver nanoparticles are major nanomaterials used in consumer products however, their impact on crops under abiotic stress is limited. In this study, we evaluated the anti-ozonant efficacy of biogenic silver nanoparticles (B-AgNPs) and compared them with a model anti-ozonant ethylenediurea (EDU) against ozone phyto-toxicity. Growth, physiology, antioxidant defense, and yield parameters in two wheat cultivars (HD-2967 & DBW-17), treated with B-AgNPs (25 mg/L and 50 mg/L) and EDU (150 mg/L and 300 mg/L), were studied at both vegetative and reproductive stages. During the experimental period, the average ambient ozone concentration and accumulated dose of ozone over a threshold of 40 ppb (AOT40) (8 h day-1) were found to be 60 ppb and 6 ppm h, respectively, which were sufficient to cause ozone-induced phyto-toxicity in wheat. Growth and yield for B-AgNPs as well as EDU-treated plants were significantly higher in both the tested cultivars over control ones. However, 25 mg/L B-AgNPs treatment showed a more pronounced effect in terms of yield attributes and its lower accumulation in grains for both cultivars. DBW-17 cultivar responded better with B-AgNPs and EDU treatments as compared to HD-2967. Meanwhile, foliar exposure of B-AgNPs (dose; 25 mg/L) significantly enhanced grain weight plant-1, thousand-grain weight, and harvest index by 54.22 %, 29.46 %, and 14.21 %, respectively in DBW-17, when compared to control. B-AgNPs could enhance ozone tolerance in wheat by increasing biochemical and physiological responses. It is concluded that B-AgNPs at optimum concentrations were as effective as EDU, hence could be a promising ozone protectant for wheat.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India; Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Pratiksha Singh
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India.
| |
Collapse
|