301
|
Guo X, Hou X, Fang J, Wei P, Xu B, Chen M, Feng Y, Chu C. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:403-16. [PMID: 23581288 PMCID: PMC3813988 DOI: 10.1111/tpj.12209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 05/19/2023]
Abstract
It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a large-scale screen was performed using our T-DNA mutant population, and a mutant germination-defective1 (gd1) was identified. In addition to the severe germination defect, the gd1 mutant also shows a dwarf phenotype and abnormal flower development. Molecular and biochemical analyses revealed that GD1 encodes a B3 domain-containing transcription factor with repression activity. Consistent with the dwarf phenotype of gd1, expression of the gibberelic acid (GA) inactivation gene OsGA2ox3 is increased dramatically, accompanied by reduced expression of GA biosynthetic genes including OsGA20ox1, OsGA20ox2 and OsGA3ox2 in gd1, resulting in a decreased endogenous GA₄ level. Exogenous application of GA not only induced GD1 expression, but also partially rescued the dwarf phenotype of gd1. Furthermore, GD1 binds to the promoter of OsLFL1, a LEC2/FUS3-like gene of rice, via an RY element, leading to significant up-regulation of OsLFL1 and a large subset of seed maturation genes in the gd1 mutant. Plants over-expressing OsLFL1 partly mimic the gd1 mutant. In addition, expression of GD1 was induced under sugar treatment, and the contents of starch and soluble sugar are altered in the gd1 mutant. These data indicate that GD1 participates directly or indirectly in regulating GA and carbohydrate homeostasis, and further regulates rice seed germination and seedling development.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Xiaomei Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Jun Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| | - Piwei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Bo Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| |
Collapse
|
302
|
Chen ML, Su X, Xiong W, Liu JF, Wu Y, Feng YQ, Yuan BF. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry. PLoS One 2013; 8:e69629. [PMID: 23922762 PMCID: PMC3724942 DOI: 10.1371/journal.pone.0069629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023] Open
Abstract
Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.
Collapse
Affiliation(s)
- Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xin Su
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Wei Xiong
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiu-Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| |
Collapse
|
303
|
Wang C, Bao Y, Wang Q, Zhang H. Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2847-57. [PMID: 23667043 PMCID: PMC3697953 DOI: 10.1093/jxb/ert127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rice (Oryza sativa) OsCYP714D1 gene (also known as EUI) encodes a cytochrome P450 monooxygenase which functions as a gibberellin (GA)-deactivating enzyme, catalysing 16α, 17-epoxidation of non-13-hydroxylated GAs. To understand whether it would also reduce the production of active GAs and depress the growth rate in transgenic trees, we constitutively expressed OsCYP714D1 in the aspen hybrid clone Populus alba×P. berolinensis. Unexpectedly, ectopic expression of OsCYP714D1 in aspen positively regulated the biosynthesis of GAs, including the active GA1 and GA4, leading to promotion of the growth rate and biomass production in transgenic plants. Transgenic lines which showed significant expression of the introduced OsCYP714D1 gene accumulated a higher GA level and produced more numerous and longer xylem fibres than did the wild-type plants. Quantitative real-time PCR indicated that transcription of most homologous PtCYP714 genes was suppressed in these transgenic lines. Therefore, the promoted GA and biomass production in transgenic trees constitutively expressing OsCYP714D1 is probably attributed to the down-regulated expression of the native PtCYP714 homologues involved in the GA biosynthesis pathway, although their precise functions are yet to be further elucidated.
Collapse
Affiliation(s)
| | | | - Qiuqing Wang
- Present address: Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
304
|
Hou X, Ding L, Yu H. Crosstalk between GA and JA signaling mediates plant growth and defense. PLANT CELL REPORTS 2013; 32:1067-74. [PMID: 23525761 DOI: 10.1007/s00299-013-1423-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) and jasmonates (JAs) are two types of essential phytohormones that control many aspects of plant growth and development in response to environmental and endogenous signals. GA regulates many essential plant developmental processes, while JA plays a dominant role in mediating plant response to stress. Recent studies have revealed that intensive crosstalk between GA and JA signaling is involved in both plant development and defense to biotic or abiotic stress. In particular, interaction between DELLAs and JA ZIM-domain (JAZ) proteins, which are key repressors in GA- and JA-signaling pathways, respectively, plays a key role in mediating the balance between plant growth and defense through modulating the activity of their interacting transcriptional factors in response to GA and JA signals. Here, we briefly review the recent progress in understanding the antagonistic and synergistic crosstalk between GA and JA signaling with a focus on the central role of DELLA-JAZ interaction in addressing the plant dilemma between "to grow" and "to defend" in response to various stimuli.
Collapse
Affiliation(s)
- Xingliang Hou
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, Guangdong Province, China.
| | | | | |
Collapse
|
305
|
Chang CK, Teng KH, Lin SW, Chang TH, Liang PH. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction. Biochemistry 2013; 52:2783-92. [PMID: 23534508 DOI: 10.1021/bi4001276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.
Collapse
Affiliation(s)
- Chih-Kang Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
306
|
Pan S, Rasul F, Li W, Tian H, Mo Z, Duan M, Tang X. Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2013; 6:9. [PMID: 24280625 PMCID: PMC4883720 DOI: 10.1186/1939-8433-6-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/11/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant growth regulators play important roles in plant growth and development, but little is known about roles of plant growth regulators in yield, grain qualities and antioxidant enzyme activities in super hybrid rice. In this study, gibberellic acid(GA3), paclobutrazol (PBZ), 6-Benzylaminopurine(6-BA) treatments and distilled water (control) were sprayed to two hybrid rice cultivars (Peizataifeng and Huayou 86) at the heading stage in the field experiments in both early and late season in 2007. Treatments were arranged in a split-plot design with four replications. Cultivars treatments with two newly developed super hybrid rice Peizataifeng and Huayou86 were the main plots and plant growth regulators treatments were the subplots. Subplot treatments included (1) plots sprayed with distilled water(CK), (2) plots sprayed with 20 mg L-1 GA3 prepared using 95% ethanol as surfactant(GA3), (3) plots sprayed with 50 mg L-1 PBZ(PBZ), (4) plots sprayed with 30 mg L-1 6-BA(6-BA). RESULTS Spraying PBZ with 50 mg L-1 or 6-BA with 30 mg L-1 at the heading stage could increase the number of spikelets per panicle, seed setting rate and grain yields in Peizataifeng and Huayou86 in both seasons. PBZ treatment also significantly improved head rice rate and amylose content in Peizataifeng and Huayou86 in early season. Furthermore, it was observed that spraying PBZ or 6-BA could increase super oxide dismutase (SOD) and peroxidase (POD) activities, decrease accumulation of malendialdehyde (MDA) in flag leaves at the late growth stage. CONCLUSIONS Application of PBZ or 6-BA partially alleviated the detrimental effects of rice senescence by modulating the activity of enzymatic antioxidants, and improving antioxidant system, which helped in sustaining plant growth. Therefore, spraying PBZ with 50 mg L-1 or 6-BA with 30 mg L-1 at the heading stage could increase grain yields and improve grain qualities in the two super hybrid rice.
Collapse
Affiliation(s)
- Shenggang Pan
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Beijing City, China
| | - Fahd Rasul
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wu Li
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou City, Guangdong Province China
| | - Hua Tian
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Beijing City, China
| | - Zhaowen Mo
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Beijing City, China
| | - Meiyang Duan
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Beijing City, China
| | - Xiangru Tang
- />College of Agriculture, South China Agricultural University, Guangzhou City, Guangdong Province China
- />Scientific Observing and Experimental Station of Crop cultivation in South China, Ministry of Agriculture, Beijing City, China
| |
Collapse
|
307
|
Comparative proteomic analysis reveals differentially expressed proteins correlated with fuzz fiber initiation in diploid cotton (Gossypium arboreum L.). J Proteomics 2013; 82:113-29. [PMID: 23474080 DOI: 10.1016/j.jprot.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED In this study, a comparative proteomic analysis was employed to identify fuzz fiber initiation-related proteins in wild-type diploid cotton (Gossypium arboreum L.) and its fuzzless mutant. Temporal changes in global proteomes were examined using 2-DE at five developmental time points for fuzz fiber initiation, and 71 differentially expressed protein species were identified by MS, 45 of which were preferentially accumulated in the wild-type. These proteins were assigned to several functional categories, mainly in cell response/signal transduction, redox homeostasis, protein metabolism and energy/carbohydrate metabolism. It was remarkable that more than ten key proteins with high-abundance were involved in gibberellic acid (GA) signaling and ROS scavenging, and increasing concentrations of active GAs and H2O2 were also detected approximately 5dpa in wild type ovules. Furthermore, in vivo GA and H2O2 treatments of ovules inside young bolls showed that these compounds can synergistically promote fuzz fiber initiation. Our findings not only described a dynamic protein network supporting fuzz initiation in diploid cotton fiber ovules, but also deepened our understanding of the molecular basis of cotton fiber initiation. BIOLOGICAL SIGNIFICANCE Our study reported the identification of differentially expressed proteins in wild-type diploid cotton (G. arboreum L.) and its fuzzless mutant by comparative proteomic approach. In total, 71 protein species related to fuzz initiation were identified by MS. These proteins were assigned to several functional categories, mainly in energy/carbohydrate metabolism, protein metabolism, signal transduction, redox homeostasis etc. Importantly, a number of key proteins were found to be associated with GA signaling and ROS scavenging. In consistence with these findings, we detected the increase of GAs and H2O2 concentrations during fiber initiation, and our in vivo ovule experiments with GA and H2O2 injection and following microscopy observation of fuzz fiber initiation supported promoting effects of GA and H2O2 on cotton fiber initiation. These findings depicted a dynamic protein network supporting cotton fiber initiation in diploid cotton ovules. Our study is of major significance for understanding the molecular mechanisms controlling fuzz initiation and also provides a solid basis for further functional research of single nodes of this network in relation to cotton fiber initiation.
Collapse
|
308
|
Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM. Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. PLANT MOLECULAR BIOLOGY 2013; 81:347-61. [PMID: 23329372 DOI: 10.1007/s11103-012-0006-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/26/2012] [Indexed: 05/18/2023]
Abstract
Germination followed by seedling growth constitutes two essential steps in the initiation of a new life cycle in plants, and in cereals, completion of these steps is regulated by sugar starvation and the hormone gibberellin. A calcium-dependent protein kinase 1 gene (OsCDPK1) was identified by differential screening of a cDNA library derived from sucrose-starved rice suspension cells. The expression of OsCDPK1 was found to be specifically activated by sucrose starvation among several stress conditions tested as well as activated transiently during post-germination seedling growth. In gain- and loss-of-function studies performed with transgenic rice overexpressing a constitutively active or RNA interference gene knockdown construct, respectively, OsCDPK1 was found to negatively regulate the expression of enzymes essential for GA biosynthesis. In contrast, OsCDPK1 activated the expression of a 14-3-3 protein, GF14c. Overexpression of either constitutively active OsCDPK1 or GF14c enhanced drought tolerance in transgenic rice seedlings. Hence, our studies demonstrated that OsCDPK1 transduces the post-germination Ca(2+) signal derived from sugar starvation and GA, refines the endogenous GA concentration and prevents drought stress injury, all essential functions to seedling development at the beginning of the life cycle in rice.
Collapse
Affiliation(s)
- Shin-Lon Ho
- Department of Agronomy, National Chiayi University, Chiayi, 600, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Li A, Yang W, Li S, Liu D, Guo X, Sun J, Zhang A. Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:432-443. [PMID: 23261263 DOI: 10.1016/j.jplph.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
GIBBERELLIN-INSENSITIVE DWARF1 (GID1) functions as a gibberellin (GA) receptor and is a key component in the GA signaling pathway. In this paper, three TaGID1 genes, orthologous to rice OsGID1 (the first identified GA receptor GID1 gene), were isolated from hexaploid wheat using homology cloning. Like OsGID1, the three homologous TaGID1 genes consisted of two exons and one intron. Physical location analyses using nullisomic-tetrasomic and deletion lines derived from the wheat cultivar Chinese Spring revealed that the three homologous TaGID1 genes reside in the chromosome bins 1AL3-0.61-1, 1BL1-0.47-0.69, and 1DL2-0.41-1. Accordingly, they were named TaGID1-A1, TaGID1-B1, and TaGID1-D1, respectively. The expression patterns of the three TaGID1 genes were determined by real-time PCR in various wheat tissues at the heading stage, including flag leaves, young spikes, peduncles, and the third and fourth internodes. The three TaGID1 genes had similar transcript patterns, and all exhibited greater expression in flag leaves than in the other tissues. Moreover, they were all down-regulated after treatment with exogenous gibberellic acid (GA(3)) in young seedlings, suggesting a feedback regulation of TaGID1 in wheat. Yeast two-hybrid assays demonstrated strong interactions between each putative TaGID1 and the wheat DELLA proteins RHT-A1, RHT-B1, and RHT-D1 in the presence of GA(3), and weak interactions in the absence of GA(3) in yeast cells. Furthermore, over-expression of each TaGID1 gene in the Arabidopsis double mutant gid1a/1c partially rescued the dwarf phenotype. These results suggest that the three TaGID1 homologous genes are all functional GA receptor genes in wheat.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
310
|
Li ZY, Xu ZS, Chen Y, He GY, Yang GX, Chen M, Li LC, Ma YZ. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One 2013; 8:e56412. [PMID: 23437128 PMCID: PMC3577912 DOI: 10.1371/journal.pone.0056412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 01/28/2023] Open
Abstract
Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Yang Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lian-Cheng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| |
Collapse
|
311
|
Liu A, Gao F, Kanno Y, Jordan MC, Kamiya Y, Seo M, Ayele BT. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One 2013; 8:e56570. [PMID: 23437172 PMCID: PMC3577873 DOI: 10.1371/journal.pone.0056570] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/14/2023] Open
Abstract
Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuri Kanno
- RIKEN Plant Science Center, Tsurumi, Yokohama, Japan
| | - Mark C. Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Plant Science Center, Tsurumi, Yokohama, Japan
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
312
|
Gai S, Zhang Y, Liu C, Zhang Y, Zheng G. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism. PLoS One 2013; 8:e55297. [PMID: 23405132 PMCID: PMC3566188 DOI: 10.1371/journal.pone.0055297] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022] Open
Abstract
Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.
Collapse
Affiliation(s)
- Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yang Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Guosheng Zheng
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| |
Collapse
|
313
|
Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:227-39. [PMID: 22992000 DOI: 10.1094/mpmi-05-12-0138-r] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.
Collapse
Affiliation(s)
- Xue Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Yuanmingyan West Road 2, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
314
|
Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:405-16. [PMID: 23020630 DOI: 10.1111/tpj.12038] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 05/20/2023]
Abstract
Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A(3) removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F(2) populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 β-hydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RT-PCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA(1) accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1-6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding.
Collapse
Affiliation(s)
- Feng Teng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Ramos ML, Altieri E, Bulos M, Sala CA. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:251-263. [PMID: 22972203 DOI: 10.1007/s00122-012-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Collapse
Affiliation(s)
- María Laura Ramos
- Biotechnology Department, NIDERA S.A, Ruta 8 km 376, Casilla de Correo 6, 2600 Venado Tuerto, Santa Fe, Argentina
| | | | | | | |
Collapse
|
316
|
Tian J, Du Q, Chang M, Zhang D. Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS One 2012; 7:e53116. [PMID: 23300875 PMCID: PMC3534044 DOI: 10.1371/journal.pone.0053116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022] Open
Abstract
Populus tomentosa is an economically important tree crop that produces wood for lumber, pulp, paper, and biofuels. Wood quality traits are likely to be strongly affected by the plant hormone gibberellic acid (GA), which regulates growth. GA20Ox encodes one of the major regulatory enzymes of GA biosynthesis and may therefore play a large role in growth and wood quality. Here, linkage disequilibrium (LD) studies were used to identify significant associations between single nucleotide polymorphisms (SNPs) within PtGA20Ox and growth and wood-quality traits of P. tomentosa. We isolated a full-length GA20Ox cDNA from Populus tomentosa by reverse transcription (RT)-PCR; this 1401 bp cDNA clone had an open reading frame of 1158 bp and encoded a protein of 385 amino acids. PtGA20Ox transcripts were maximally expressed in the mature xylem of vascular tissues, suggesting that PtGA20Ox is highly expressed and specifically associated with secondary xylem formation. Resequencing the PtGA20Ox locus of 36 individuals identified 55 SNPs, and the frequency of SNPs was 1/31 bp. The 29 most common SNPs (frequency>0.1) were genotyped in an association population (426 individuals) that was also phenotyped for key growth and wood quality traits. LD did not extend over the entire gene (r(2)<0.1, within 500 bp), demonstrating that a candidate-gene-based LD approach may the best way to understand the molecular basis underlying quantitative variation in this species. SNP- and haplotype-based association analyses indicated that four SNPs (false discovery rate Q<0.05) and 14 haplotypes (P<0.05) were significantly associated with growth and wood properties. The phenotypic variance explained by each SNP ranged from 3.44% to 14.47%. The SNP markers identified in this study can be applied to breeding programs for the improvement of growth and wood-property traits by marker-assisted selection.
Collapse
Affiliation(s)
- Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengqi Chang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
317
|
Ribeiro DM, Araújo WL, Fernie AR, Schippers JH, Mueller-Roeber B. Action of gibberellins on growth and metabolism of Arabidopsis plants associated with high concentration of carbon dioxide. PLANT PHYSIOLOGY 2012; 160:1781-94. [PMID: 23090585 PMCID: PMC3510110 DOI: 10.1104/pp.112.204842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Although the positive effect of elevated CO(2) concentration [CO(2)] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO(2)]. Here, we studied the impact of elevated [CO(2)] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO(2)] (350 µmol CO(2) mol(-1)) was reverted by elevated [CO(2)] (750 µmol CO(2) mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO(2)]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO(2)], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO(2)], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO(2)]. These results suggest that only under ambient [CO(2)] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions.
Collapse
|
318
|
Soós V, Sebestyén E, Posta M, Kohout L, Light ME, Van Staden J, Balázs E. Molecular aspects of the antagonistic interaction of smoke-derived butenolides on the germination process of Grand Rapids lettuce (Lactuca sativa) achenes. THE NEW PHYTOLOGIST 2012; 196:1060-1073. [PMID: 23046112 DOI: 10.1111/j.1469-8137.2012.04358.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
Smoke-derived compounds provide a strong chemical signal to seeds in the soil seed bank, allowing them to take advantage of the germination niche created by the occurrence of fire. The germination stimulatory activity of smoke can largely be attributed to karrikinolide (KAR(1) ), while a related compound, trimethylbutenolide (TMB), has been shown to have an inhibitory effect on germination. The aim of this study was to characterize the interaction of these potent fire-generated compounds. Dose-response analysis, leaching tests and a detailed transcriptome study were performed using highly KAR(1) -sensitive lettuce (Lactuca sativa cv 'Grand Rapids') achenes. Dose-response analysis demonstrated that the compounds are not competitors and TMB modulates germination in a concentration-dependent manner. The transcriptome analysis revealed a contrasting expression pattern induced by the compounds. KAR(1) suppressed, while TMB up-regulated ABA, seed maturation and dormancy-related transcripts. The effect of TMB was reversed by leaching the compound, while the KAR(1) effect was only reversible by leaching within the first 2 h of KAR(1) treatment. Our findings suggest that the compounds may act in concert for germination-related signaling. After the occurrence of fire, sufficient rainfall would contribute to post-germination seedling recruitment by reducing the concentration of the inhibitory compound.
Collapse
Affiliation(s)
- Vilmos Soós
- Department of Applied Genomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Endre Sebestyén
- Department of Applied Genomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Martin Posta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Ladislav Kohout
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Marnie E Light
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Ervin Balázs
- Department of Applied Genomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
319
|
Hamama L, Naouar A, Gala R, Voisine L, Pierre S, Jeauffre J, Cesbron D, Leplat F, Foucher F, Dorion N, Hibrand-Saint Oyant L. Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants. PLANT CELL REPORTS 2012; 31:2015-29. [PMID: 22898902 DOI: 10.1007/s00299-012-1313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : We reported the cloning of a rose DELLA gene. We obtained transgenic Pelargonium lines overexpressing this gene which presented several phenotypes in plant growth, root growth, flowering time and number of inflorescences. Control of development is an important issue for production of ornamental plant. The plant growth regulator, gibberellins (GAs), plays a pivotal role in regulating plant growth and development. DELLA proteins are nuclear negative regulator of GA signalling. Our objective was to study the role of GA in the plant architecture and in the blooming of ornamentals. We cloned a rose DELLA homologous gene, RoDELLA, and studied its function by genetic transformation of pelargonium. Several transgenic pelargonium (Pelargonium × domesticum 'Autum Haze') lines were produced that ectopically expressed RoDELLA under the control of the 35S promoter. These transgenic plants exhibited a range of phenotypes which could be related to the reduction in GA response. Most of transgenic plants showed reduced growth associated to an increase of the node and branch number. Moreover, overexpression of RoDELLA blocked or delayed flowering in transgenic pelargonium and exhibited defects in the root formation. We demonstrated that pelargonium could be used to validate ornamental gene as the rose DELLA gene. RoDELLA overexpression modified many aspects of plant developmental pathways, as the plant growth, the transition of vegetative to floral stage and the ability of rooting.
Collapse
Affiliation(s)
- L Hamama
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, PRES UNAM, 49045, Angers, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Stamm P, Ravindran P, Mohanty B, Tan EL, Yu H, Kumar PP. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:179. [PMID: 23035751 PMCID: PMC3732085 DOI: 10.1186/1471-2229-12-179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. RESULTS Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP), we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. CONCLUSIONS Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that gibberellins, acting via RGL2, control several aspects of seed germination.
Collapse
Affiliation(s)
- Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ee Ling Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| |
Collapse
|
321
|
Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. THE PLANT CELL 2012; 24:3982-96. [PMID: 23064323 PMCID: PMC3517231 DOI: 10.1105/tpc.112.103192] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 05/18/2023]
Abstract
Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1-mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction.
Collapse
Affiliation(s)
- Sara Fuentes
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, S-901 83 Umea, Sweden
| | - Karim Sorefan
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Elizabeth Alvey
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| |
Collapse
|
322
|
García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5803-13. [PMID: 22945942 DOI: 10.1093/jxb/ers229] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in tomato (Solanum lycopersicum L.) cv Micro-Tom. The transformed plants were taller, had non-serrated leaves, and some flowers displayed a protruding stigma due to a longer style, thus preventing self-pollination, similar to GA(3)-treated plants. Flowering was delayed compared with wild-type (WT) plants. Both yield and number of fruits per plant, some of them seedless, were higher in the transgenic plants. The Brix index value of fruit juice was also higher due to elevated citric acid content, but not glucose or fructose content. When emasculated, 14-30% of ovaries from transgenic flowers developed parthenocarpically, whereas no parthenocarpy was found in emasculated WT flowers. The presence of early-13-hydroxylation and non-13-hydroxylation GA pathways was demonstrated in the shoot and fruit of Micro-Tom, as well as in two tall tomato cultivars (Ailsa Craig and UC-82). The transgenic plants had altered GA profiles containing higher concentrations of GA(4), from the non-13-hydroxylation pathway, which is generally a minor active GA in tomato. The effect of GA(4) application in enhancing stem growth and parthenocarpic fruit development was proportional to dose, with the same activity as GA(1). The results support the contention that GA20ox overexpression diverts GA metabolism from the early-13-hydroxylation pathway to the non-13-hydroxylation pathway. This led to enhanced GA(4) synthesis and higher yield, although the increase in GA(4) content in the ovary was not sufficient to induce full parthenocarpy.
Collapse
Affiliation(s)
- Noemí García-Hurtado
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elío s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
323
|
Galvão VC, Horrer D, Küttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 2012; 139:4072-82. [PMID: 22992955 DOI: 10.1242/dev.080879] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from vegetative to reproductive development is a central event in the plant life cycle. To time the induction of flowering correctly, plants integrate environmental and endogenous signals such as photoperiod, temperature and hormonal status. The hormone gibberellic acid (GA) has long been known to regulate flowering. However, the spatial contribution of GA signaling in flowering time control is poorly understood. Here we have analyzed the effect of tissue-specific misexpression of wild-type and GA-insensitive (dellaΔ17) DELLA proteins on the floral transition in Arabidopsis thaliana. We demonstrate that under long days, GA affects the floral transition by promoting the expression of flowering time integrator genes such as FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in leaves independently of CONSTANS (CO) and GIGANTEA (GI). In addition, GA signaling promotes flowering independently of photoperiod through the regulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in both the leaves and at the shoot meristem. Our data suggest that GA regulates flowering by controlling the spatial expression of floral regulatory genes throughout the plant in a day-length-specific manner.
Collapse
Affiliation(s)
- Vinicius C Galvão
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
324
|
You YH, Yoon H, Kang SM, Woo JR, Choo YS, Lee IJ, Shin JH, Kim JG. Cadophora malorumCs-8-1 as a new fungal strain producing gibberellins isolated fromCalystegia soldanella. J Basic Microbiol 2012; 53:630-4. [DOI: 10.1002/jobm.201200002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Young-Hyun You
- Department of Life Sciences and Biotechnology; Kyungpook National University; Daegu; Republic of Korea
| | - Hyeokjun Yoon
- Department of Life Sciences and Biotechnology; Kyungpook National University; Daegu; Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences; Kyungpook National University; Daegu; Republic of Korea
| | - Ju-Ri Woo
- Department of Life Sciences and Biotechnology; Kyungpook National University; Daegu; Republic of Korea
| | - Yeon-Sik Choo
- Department of Biology; College of National Sciences; Kyungpook National University; Daegu; Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences; Kyungpook National University; Daegu; Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences; Kyungpook National University; Daegu; Republic of Korea
| | - Jong-Guk Kim
- Department of Life Sciences and Biotechnology; Kyungpook National University; Daegu; Republic of Korea
| |
Collapse
|
325
|
Hirose F, Inagaki N, Hanada A, Yamaguchi S, Kamiya Y, Miyao A, Hirochika H, Takano M. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation. PLANT & CELL PHYSIOLOGY 2012; 53:1570-82. [PMID: 22764280 PMCID: PMC3439870 DOI: 10.1093/pcp/pcs097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.
Collapse
Affiliation(s)
- Fumiaki Hirose
- Photobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One 2012; 7:e43530. [PMID: 22937061 PMCID: PMC3427375 DOI: 10.1371/journal.pone.0043530] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Qing Miao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
327
|
Guo XP, Li XL, Duan XW, Shen YY, Xing Y, Cao QQ, Qin L. Characterization of sck1, a novel Castanea mollissima mutant with the extreme short catkins and decreased gibberellin. PLoS One 2012; 7:e43181. [PMID: 22905227 PMCID: PMC3419647 DOI: 10.1371/journal.pone.0043181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023] Open
Abstract
A novel Chinese chestnut (Castanea mollissima Bl.) mutant with extreme short catkins, here was named sck1 and has been characterized in the present study. This sck1 caused 6-fold shorter than wild-type catkins. Endogenous gibberellic acids markedly decreased in the mutant, and application of exogenous GA(3) could partially restore the sck1 phenotype to the wild-type phenotype. Paclobutrazol (PP(333)), an antagonist of GAs biosynthesis, could significantly inhibit the wild-type catkins growth, and lead to a short catkins phenotype similar to the sck1. In addition, compared to the wild-type catkins, the mRNA expression level of ent-kaurenoic acid oxidase (KAO), a gibberellin biosynthesis key gene, was significantly down-regulated (P<0.01) in the sck1. Importantly, transient over-expression of a normal CmKAO gene in short catkins also could partially restore the wild-type phenotype. Real-time PCR and semi-quantitative analysis showed that the mRNA expression level of KAO was significantly up-regulated. In addition, transient RNA interference of CmKAO in wild-type catkins led the mRNA expression level of KAO decrease significantly and inhibited the wild-type catkins elongation strongly. Taken together, our results suggest that the lower gibberellic acids content that is due to decreased CmKAO expression level may contribute to the generation of the extreme short male catkins, sck1.
Collapse
Affiliation(s)
- Xian-Ping Guo
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Xing-Liang Li
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xu-Wei Duan
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuan-Yue Shen
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Qin Cao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Key Laboratory of New Technology in Agriculture Application of Beijing, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
328
|
Abe A, Takagi H, Fujibe T, Aya K, Kojima M, Sakakibara H, Uemura A, Matsuoka M, Terauchi R. OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:647-57. [PMID: 22481119 DOI: 10.1007/s00122-012-1857-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/21/2012] [Indexed: 05/07/2023]
Abstract
Seedling vigor is among the major determinants of stable stand establishment in direct-seeded rice (Oryza sativa L.) in temperate regions. Quantitative trait loci (QTL) for seedling vigor were identified using 250 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars Kakehashi and Dunghan Shali. Seedling heights measured at 14 days after sowing were 20.3 and 29.4 cm for Kakehashi and Dunghan Shali, respectively. For the RILs, the height ranged from 14.1 to 31.7 cm. Four putative QTLs associated with seedling height were detected. qPHS3-2, the major QTL that was located on the long arm of chromosome 3, accounted for 26.2 % of the phenotypic variance. Using progeny of the near isogenic lines (NILs) produced by the backcross introduction of a chromosome segment carrying this major QTL into an elite cultivar Iwatekko, we fine-mapped qPHS3-2 to a 81-kb interval between two markers, ID_CAPS_01 and RM16227. Within this mapped region, we identified the gene OsGA20ox1, which is related to gibberellin (GA) biosynthesis. The relative expression levels of GA20ox1 in seedlings of Dunghan Shali and NILs were higher than that of Iwatekko. Concomitantly, the amount of endogenous active GA was higher in Dunghan Shali and the NILs compared to the level detected in Iwatekko. These results indicate that OsGA20ox1 is a strong candidate gene for major QTL controlling seedling vigor in rice.
Collapse
Affiliation(s)
- Akira Abe
- Iwate Agricultural Research Center, 20-1, Narita, Kitakami, Iwate 024-0003, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Overexpression of Brassica rapa SHI-RELATED SEQUENCE genes suppresses growth and development in Arabidopsis thaliana. Biotechnol Lett 2012; 34:1561-9. [PMID: 22798043 DOI: 10.1007/s10529-012-0929-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.
Collapse
|
330
|
Tanimoto E. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. ANNALS OF BOTANY 2012; 110:373-81. [PMID: 22437663 PMCID: PMC3394641 DOI: 10.1093/aob/mcs049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/07/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. SCOPE This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. CONCLUSIONS This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender or thick axial organs.
Collapse
Affiliation(s)
- Eiichi Tanimoto
- Nagoya City University, Graduate School of Natural Sciences, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
331
|
Brock MT, Kover PX, Weinig C. Natural variation in GA1 associates with floral morphology in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 195:58-70. [PMID: 22510148 DOI: 10.1111/j.1469-8137.2012.04145.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• The genetic architecture of floral traits is evolutionarily important due to the fitness consequences of quantitative variation in floral morphology. Yet, little is known about the genes underlying these traits in natural populations. Using Arabidopsis thaliana, we examine molecular variation at GIBBERELLIC ACID REQUIRING 1 (GA1) and test for associations with floral morphology. • We examined full-length sequence in 32 accessions and describe two haplotypes (comprising four nonsynonymous polymorphisms) in GA1 that segregate at intermediate frequencies. In 133 A. thaliana accessions, we test for genotype-phenotype associations and corroborate these findings in segregating progenies. • The two common GA1 haplotypes were associated with the length of petals, stamens, and to a lesser extent style-stigma length. Associations were confirmed in a segregating progeny developed from 19 accessions. We find analogous results in recombinant inbred lines of the Bayreuth × Shahdara cross, which differ only at one of 4 SNPs, suggesting that this SNP may contribute to the observed association. • Assuming GA1 causally affects floral organ size, it is interesting that adjacent petal and stamen whorls are most strongly affected. This pattern suggests that GA1 could contribute to the greater strength of petal-stamen correlations relative to other floral-length correlations observed in some Brassicaceous species.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
332
|
Barros PM, Gonçalves N, Saibo NJM, Oliveira MM. Cold acclimation and floral development in almond bud break: insights into the regulatory pathways. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4585-96. [PMID: 22685307 DOI: 10.1093/jxb/ers144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In temperate fruit trees, seasonal dormancy and cold acclimation have a major impact on blooming time and, consequently, fruit production. To gain insight into the still unclear molecular processes underlying blooming, expression of genes putatively involved in the cold response was studied in almond (Prunus dulcis Mill.), which is the earliest fruit tree in the family Rosaceae to bloom. The transcript levels of two C-repeat binding factor (PdCBF) genes and one of their putative targets, PdDehydrin1 (PdDHN1), were analysed in flower buds and shoot internodes during seasonal dormancy up to bud break. In parallel, expression of candidate genes related to flower development was also followed. In a 2-year study, PdCBF2 showed a progressive increase in transcript abundance during the autumn in close correlation with cold acclimation, while high transcript levels of PdCBF1 and PdDHN1 were already found by summer. After bud break, with temperatures still within the chilling range, both PdCBF genes and PdDHN1 were found to sharply reduce transcription in flower buds and internodes, suggesting damping of CBF-mediated cold signalling during growth resumption, in correlation with cold hardiness decline. Flower bud break was also followed by a decrease in the expression of PdGA20OX, a candidate gene involved in gibberellin biosynthesis, and an increase in the expression of two homeotic genes related to floral organ development, PdMADS1 and -3. These genes may also be relevant players in the regulation of anthesis in this model Rosaceae species.
Collapse
Affiliation(s)
- Pedro M Barros
- Genomics of Plant Stress Laboratory (GPlantS), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal and IBET, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
333
|
Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica). Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0048-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
334
|
Phillips SM, Dubery IA, van Heerden H. Molecular characterization of an elicitor-responsive Armadillo repeat gene (GhARM) from cotton (Gossypium hirsutum). Mol Biol Rep 2012; 39:8513-23. [PMID: 22714909 DOI: 10.1007/s11033-012-1706-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/06/2012] [Indexed: 11/28/2022]
Abstract
Only a few Armadillo (ARM) repeat proteins have been characterized in plants where they appear to have diverse functions, including the regulation of defence responses. In this study, the identification, cloning and characterization of a gene, encoding an ARM repeat protein (GhARM), is described. GhARM exists as multiple copies in cotton, with an 1713 bp ORF encoding 570 amino acids. The predicted protein contains three consecutive ARM repeats within an Armadillo-type fold, with no other distinguishing domains. Sequence alignments and phylogenetic analysis revealed that GhARM has a high homology with other ARM proteins in plants. The predicted three dimensional model of GhARM displayed a characteristic right-handed superhelical twist. In silico analysis of the promoter sequence revealed that it contains several defence- and hormone-responsive cis-regulatory elements. Expression of GhARM was significantly down-regulated in response to treatment with a V. dahliae elicitor suggesting that GhARM may function as a negative-regulator of cotton defence signalling against V. dahliae. To date, GhARM is the only ARM repeat gene that has been completely sequenced and characterized in cotton.
Collapse
Affiliation(s)
- Sonia M Phillips
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park, 2006, P.O. Box 524, Johannesburg, South Africa.
| | | | | |
Collapse
|
335
|
Xin M, Wang X, Peng H, Yao Y, Xie C, Han Y, Ni Z, Sun Q. Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:94-106. [PMID: 22768983 PMCID: PMC5054165 DOI: 10.1016/j.gpb.2012.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Powdery mildew (Pm) caused by the infection of Blumeria graminis f. sp. tritici (Bgt) is a worldwide crop disease resulting in significant loss of wheat yield. To profile the genes and pathways responding to the Bgt infection, here, using Affymetrix wheat microarrays, we compared the leaf transcriptomes before and after Bgt inoculation in two wheat genotypes, a Pm-susceptible cultivar Jingdong 8 (S) and its near-isogenic line (R) carrying a single Pm resistant gene Pm30. Our analysis showed that the original gene expression status in the S and R genotypes of wheat was almost identical before Bgt inoculation, since only 60 genes exhibited differential expression by P = 0.01 cutoff. However, 12 h after Bgt inoculation, 3014 and 2800 genes in the S and R genotype, respectively, responded to infection. A wide range of pathways were involved, including cell wall fortification, flavonoid biosynthesis and metabolic processes. Furthermore, for the first time, we show that sense-antisense pair genes might be participants in wheat-powdery mildew interaction. In addition, the results of qRT-PCR analysis on several candidate genes were consistent with the microarray data in their expression patterns. In summary, this study reveals leaf transcriptome changes before and after powdery mildew infection in wheat near-isogenic lines, suggesting that powdery mildew resistance is a highly complex systematic response involving a large amount of gene regulation.
Collapse
Affiliation(s)
- Mingming Xin
- State Key Laboratory for Agrobiotechnology and MOE Key Laboratory of Crop Heterosis and Utilization and MOA Key Laboratory of Crop Genomics and Genetic Improvement, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
336
|
Band LR, Úbeda-Tomás S, Dyson RJ, Middleton AM, Hodgman TC, Owen MR, Jensen OE, Bennett MJ, King JR. Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc Natl Acad Sci U S A 2012; 109:7577-82. [PMID: 22523244 PMCID: PMC3358831 DOI: 10.1073/pnas.1113632109] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the elongation zone of the Arabidopsis thaliana plant root, cells undergo rapid elongation, increasing their length by ∼10-fold over 5 h while maintaining a constant radius. Although progress is being made in understanding how this growth is regulated, little consideration has been given as to how cell elongation affects the distribution of the key regulating hormones. Using a multiscale mathematical model and measurements of growth dynamics, we investigate the distribution of the hormone gibberellin in the root elongation zone. The model quantifies how rapid cell expansion causes gibberellin to dilute, creating a significant gradient in gibberellin levels. By incorporating the gibberellin signaling network, we simulate how gibberellin dilution affects the downstream components, including the growth-repressing DELLA proteins. We predict a gradient in DELLA that provides an explanation of the reduction in growth exhibited as cells move toward the end of the elongation zone. These results are validated at the molecular level by comparing predicted mRNA levels with transcriptomic data. To explore the dynamics further, we simulate perturbed systems in which gibberellin levels are reduced, considering both genetically modified and chemically treated roots. By modeling these cases, we predict how these perturbations affect gibberellin and DELLA levels and thereby provide insight into their altered growth dynamics.
Collapse
Affiliation(s)
- Leah R Band
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR. Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci U S A 2012; 109:7571-6. [PMID: 22523240 PMCID: PMC3358864 DOI: 10.1073/pnas.1113666109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.
Collapse
Affiliation(s)
- Alistair M. Middleton
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Zentrum für Biosystemanalyse, Albert-Ludwigs-Universität, 79104 Freiburg im Breisgau, Germany
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| | - Susana Úbeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jayne Griffiths
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Tara Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Peter Hedden
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Stephen G. Thomas
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Andrew L. Phillips
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Michael J. Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| | - Markus R. Owen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| |
Collapse
|
338
|
Wang B, Jin SH, Hu HQ, Sun YG, Wang YW, Han P, Hou BK. UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C. THE NEW PHYTOLOGIST 2012; 194:666-675. [PMID: 22404750 DOI: 10.1111/j.1469-8137.2012.04107.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases. • Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches. • The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus. • Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.
Collapse
Affiliation(s)
- Bo Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Shang-Hui Jin
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Hong-Qun Hu
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Yan-Guo Sun
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Yan-Wen Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Ping Han
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong 250100, China
| |
Collapse
|
339
|
Mimura M, Nagato Y, Itoh JI. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway. PLANTA 2012; 235:1081-9. [PMID: 22476293 DOI: 10.1007/s00425-012-1639-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 05/08/2023]
Affiliation(s)
- Manaki Mimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
340
|
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. PLANT MOLECULAR BIOLOGY 2012; 78:561-76. [PMID: 22287097 DOI: 10.1007/s11103-012-9883-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/12/2012] [Indexed: 05/04/2023]
Abstract
Auxin response factors (ARFs) are plant transcription factors that activate or repress the expression of auxin-responsive genes and accordingly, play key roles in auxin-mediated developmental processes. Here we identified and characterized the Solanum lycopersicum (tomato) ARF10 homolog (SlARF10), demonstrated that it is posttranscriptionally regulated by Sl-miR160, and investigated the significance of this regulation for tomato development. In wild-type tomato, SlARF10 is primarily expressed in the pericarp of mature and ripened fruit, showing an expression profile complementary to that of Sl-miR160. Constitutive expression of wild-type SlARF10 did not alter tomato development. However, transgenic tomato plants that constitutively expressed the Sl-miR160a-resistant version (mSlARF10) developed narrow leaflet blades, sepals and petals, and abnormally shaped fruit. During compound leaf development, mSlARF10 accumulation specifically inhibited leaflet blade outgrowth without affecting other auxin-driven processes such as leaflet initiation and lobe formation. Moreover, blade size was inversely correlated with mSlARF10 transcript levels, strongly implying that the SlARF10 protein, which was localized to the nucleus, can function as a transcriptional repressor of leaflet lamina outgrowth. Accordingly, known auxin-responsive genes, which promote cell growth, were downregulated in shoot apices that accumulated increased mSlARF10 levels. Taken together, we propose that repression of SlARF10 by Sl-miR160 is essential for auxin-mediated blade outgrowth and early fruit development.
Collapse
Affiliation(s)
- A Hendelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, 50250 Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
341
|
Ribeiro DM, Araújo WL, Fernie AR, Schippers JHM, Mueller-Roeber B. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2769-86. [PMID: 22291129 PMCID: PMC3346235 DOI: 10.1093/jxb/err463] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/17/2011] [Accepted: 12/26/2011] [Indexed: 05/18/2023]
Abstract
Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA(3)) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA(3). However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA(3) alone, or PAC plus GA(3). Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism.
Collapse
Affiliation(s)
- Dimas M. Ribeiro
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24–25, Haus 20, D-14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wagner L. Araújo
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Jos H. M. Schippers
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24–25, Haus 20, D-14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24–25, Haus 20, D-14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
342
|
Phanchaisri B, Samsang N, Yu L, Singkarat S, Anuntalabhochai S. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants. Mutat Res 2012; 734:56-61. [PMID: 22445891 DOI: 10.1016/j.mrfmmm.2012.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.
Collapse
Affiliation(s)
- Boonrak Phanchaisri
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | |
Collapse
|
343
|
Cheng Y, Shi ZP, Jiang LB, Ge LQ, Wu JC, Jahn GC. Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvatalugens Stål (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2012; 102-531:213-219. [PMID: 22544984 PMCID: PMC3334832 DOI: 10.1016/j.pestbp.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/10/2012] [Indexed: 05/18/2023]
Abstract
The chemical pesticide, imidacloprid (IMI) has long-lasting effectiveness against Hemiptera. IMI is commonly used to control the brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae). Some chemical pesticides, however, can induce the susceptibility of rice to BPH, which has indirectly led to the resurgence of BPH. The mechanism of the chemical induction of the susceptibility of rice to BPH was not previously understood. Here, a 44 K Agilent Rice Expression Microarray was used to identify changes in gene expression that accompany IMI-induced rice susceptibility to BPH. The results showed that 225 genes were differentially expressed, of which 117 were upregulated, and 108 were downregulated. Gene ontology annotation and pathway analysis revealed that differentially expressed genes were mainly classified into the eight functional groups: oxidation reduction, regulation of cellular process, response to stress, electron carrier activity, metabolic process, transport, signal transducer, and organismal development. The genes encoding plant lipid transfer protein, lignin peroxidase, and flavonol-3-O-methyltransferenase may be important responses to the IMI-induced susceptibility of rice to BPH. The reliability of the microarray data was verified by performing quantitative real-time PCR and the data provide valuable information for further study of the molecular mechanism of IMI-induced susceptibility of rice.
Collapse
Affiliation(s)
- Yao Cheng
- School of Plant Protection, Yangzhou University, Yangzhou 220059, PR China
| | - Zhao-Peng Shi
- School of Plant Protection, Yangzhou University, Yangzhou 220059, PR China
| | - Li-Ben Jiang
- School of Plant Protection, Yangzhou University, Yangzhou 220059, PR China
| | - Lin-Quan Ge
- School of Plant Protection, Yangzhou University, Yangzhou 220059, PR China
| | - Jin-Cai Wu
- School of Plant Protection, Yangzhou University, Yangzhou 220059, PR China
| | - Gary C. Jahn
- Microbiology and Immunology Department, Georgetown University, Suite 603, 2115 Wisconsin Ave, NW, Washington, DC 2007, USA
| |
Collapse
|
344
|
Park S, Lee K, Kim YS, Back K. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J Pineal Res 2012; 52:211-6. [PMID: 21884550 DOI: 10.1111/j.1600-079x.2011.00930.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin biosynthesis was examined in Sekiguchi mutant rice lacking functional tryptamine 5-hydroxylase (T5H) activity, which is the terminal enzyme for serotonin biosynthesis in rice. During senescence process, the leaves of Sekiguchi mutant rice produced more tryptamine and N-acetyltryptamine compared with the wild-type Asahi leaves. Even though T5H activity is absent, Sekiguchi leaves produce low levels of serotonin derived from 5-hydroxytryptophan, which was found to be synthesized during senescence process. Accordingly, both rice cultivars exhibited similar levels of N-acetylserotonin until 6 days of senescence induction; however, only Asahi leaves continued to accumulate N-acetylserotonin after 6 days. In contrast, a large amount of N-acetyltryptamine was accumulated in Sekiguchi leaves, indicating that tryptamine was efficiently utilized as substrate by the rice arylalkylamine N-acetyltransferase enzyme. An increase in N-acetyltryptamine in Sekiguchi had an inhibitory effect on synthesis of melatonin because little melatonin was produced in Sekiguchi leaves at 6 days of senescence induction, even in the presence of equivalent levels of N-acetylserotonin in both cultivars. The exogenous treatment of 0.1 mmN-acetyltryptamine during senescence process completely blocked melatonin synthesis.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biotechnology, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | | | | | | |
Collapse
|
345
|
El-Sharkawy I, El Kayal W, Prasath D, Fernández H, Bouzayen M, Svircev AM, Jayasankar S. Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1225-39. [PMID: 22080981 PMCID: PMC3276086 DOI: 10.1093/jxb/err345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/19/2011] [Accepted: 10/05/2011] [Indexed: 05/20/2023]
Abstract
Several dwarf plum genotypes (Prunus salicina L.), due to deficiency of unknown gibberellin (GA) signalling, were identified. A cDNA encoding GA 2-oxidase (PslGA2ox), the major gibberellin catabolic enzyme in plants, was cloned and used to screen the GA-deficient hybrids. This resulted in the identification of a dwarf plum hybrid, designated as DGO24, that exhibits a markedly elevated PslGA2ox signal. Grafting 'Early Golden' (EG), a commercial plum cultivar, on DGO24 (EG/D) enhanced PslGA2ox accumulation in the scion part and generated trees of compact stature. Assessment of active GAs in such trees revealed that DGO24 and EG/D accumulated relatively much lower quantities of main bioactive GAs (GA(1) and GA(4)) than control trees (EG/M). Moreover, the physiological function of PslGA2ox was studied by determining the molecular and developmental consequences due to ectopic expression in Arabidopsis. Among several lines, two groups of homozygous transgenics that exhibited contrasting phenotypes were identified. Group-1 displayed a dwarf growth pattern typical of mutants with a GA deficiency including smaller leaves, shorter stems, and delay in the development of reproductive events. In contrast, Group-2 exhibited a 'GA overdose' phenotype as all the plants showed elongated growth, a typical response to GA application, even under limited GA conditions, potentially due to co-suppression of closely related Arabidopsis homologous. The studies reveal the possibility of utilizing PslGA2ox as a marker for developing size-controlling rootstocks in Prunus.
Collapse
Affiliation(s)
- I. El-Sharkawy
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., PO Box 7000 Vineland Station, ON, L0R 2E0 Canada
| | - W. El Kayal
- University of Alberta, Department of Biological Sciences, Edmonton, AB, T6G 2E9 Canada
| | - D. Prasath
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., PO Box 7000 Vineland Station, ON, L0R 2E0 Canada
| | - H. Fernández
- Laboratorio de Fisiología Vegetal Dpt. BOS, Universidad de Oviedo, c) Catedrático R Uría s/n, Oviedo, E-33071, Spain
| | - M. Bouzayen
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l’Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - A. M. Svircev
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre. 4902 Victoria Av. N., PO Box 6000 Vineland Station, ON L0R 2E0 Canada
| | - S. Jayasankar
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., PO Box 7000 Vineland Station, ON, L0R 2E0 Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
346
|
Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 2012; 12:3. [PMID: 22235902 PMCID: PMC3268082 DOI: 10.1186/1471-2180-12-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. RESULTS We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24) and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20) contents in endophyte-associated cucumber plants evidenced salinity stress modulation. CONCLUSION The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.
Collapse
Affiliation(s)
- Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
347
|
Urbanová T, Tarkowská D, Strnad M, Hedden P. Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1135/cccc2011098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gibberellins (GAs) are a large group of diterpenoid carboxylic acids, some members of which function as plant hormones controlling diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have shown that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In this review, we summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss methods for their qualitative and quantitative analysis. The challenges for their extraction and purification from plant tissues, which form complex matrices containing thousands of interfering substances, are discussed.
Collapse
|
348
|
Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LSP, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. PLANT PHYSIOLOGY 2011; 157:1900-13. [PMID: 22013217 PMCID: PMC3327212 DOI: 10.1104/pp.111.187302] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 05/18/2023]
Abstract
The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk.
Collapse
|
349
|
Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. PHYSIOLOGIA PLANTARUM 2011; 143:329-43. [PMID: 21883250 DOI: 10.1111/j.1399-3054.2011.01508.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endophytic fungi are potential sources of secondary metabolites; however, they are little known for phytohormones secretion and amelioration of plant growth under abiotic stresses. We isolated a novel endophyte from the roots of Cucumis sativus and identified it as a strain of Exophiala sp. by sequencing internal transcribed spacer/large subunit rDNA and phylogenetic analysis. Prior to identification, culture filtrate (CF) of Exophiala sp. has shown significant growth promotion of Waito-C [a gibberellins (GAs)-deficient mutant cultivar] and Dongjin-byeo (normal GAs biosynthesis cultivar) rice seedlings. CF analysis of Exophiala sp. showed the presence of physiologically active GAs (GA₁, GA₃, GA₄ and GA₇) and inactive GAs (GA₅, GA₈, GA₉, GA₁₂ and GA₂₀). Exophiala sp. had higher GAs in its CF than wild-type strain of Gibberella fujikuroi except GA₃. Influence of Exophiala sp. was assessed on cucumber plant's growth and endogenous abscisic acid (ABA), salicylic acid (SA) and bioactive GAs under salinity and drought stresses. Exophiala sp.-treated plants have shown significantly higher growth and rescued the host plants from stress promulgated water deficit, osmotic and cellular damage. The altered levels of stress-responsive ABA showed low level of stress confined to endophyte-applied plants than control. Elevated levels of SA and bioactive GAs (GA₃ and GA₄) in endophyte-associated plants suggest stress-modulating response toward salinity and drought. In conclusion, symbiotic relations between Exophiala and cucumber have reprogrammed the host plant growth under abiotic stresses, thus indicating a possible threshold role of endophytic fungi in stress alleviation. This study could be extended for improving agricultural productivity under extreme environmental conditions.
Collapse
Affiliation(s)
- Abdul L Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
350
|
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. PLANTA 2011; 234:1285-98. [PMID: 21792553 DOI: 10.1007/s00425-011-1485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/07/2011] [Indexed: 05/02/2023]
Abstract
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|