301
|
Abstract
Plant hormones control most aspects of the plant life cycle by regulating genome expression. Expression of auxin-responsive genes involves interactions among auxin-responsive DNA sequence elements, transcription factors and trans-acting transcriptional repressors. Transcriptional output from these auxin signaling complexes is regulated by proteasome-mediated degradation that is triggered by interaction with auxin receptor-E3 ubiquitin ligases such SCF(TIR1). Auxin signaling components are conserved throughout land plant evolution and have proliferated and specialized to control specific developmental processes.
Collapse
Affiliation(s)
- Elisabeth J Chapman
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | |
Collapse
|
302
|
Lee HW, Kim NY, Lee DJ, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1377-89. [PMID: 19717544 PMCID: PMC2773067 DOI: 10.1104/pp.109.143685] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes encode proteins harboring a conserved amino acid domain, referred to as the LOB (for lateral organ boundaries) domain. While recent studies have revealed developmental functions of some LBD genes in Arabidopsis (Arabidopsis thaliana) and in crop plants, the biological functions of many other LBD genes remain to be determined. In this study, we have demonstrated that the lbd18 mutant evidenced a reduced number of lateral roots and that lbd16 lbd18 double mutants exhibited a dramatic reduction in the number of lateral roots compared with lbd16 or lbd18. Consistent with this observation, significant beta-glucuronidase (GUS) expression in Pro(LBD18):GUS seedlings was detected in lateral root primordia as well as in the emerged lateral roots. Whereas the numbers of primordia of lbd16, lbd18, and lbd16 lbd18 mutants were similar to those observed in the wild type, the numbers of emerged lateral roots of lbd16 and lbd18 single mutants were reduced significantly. lbd16 lbd18 double mutants exhibited additively reduced numbers of emerged lateral roots compared with single mutants. This finding indicates that LBD16 and LBD18 may function in the initiation and emergence of lateral root formation via a different pathway. LBD18 was shown to be localized into the nucleus. We determined whether LBD18 functions in the nucleus using a steroid regulator-inducible system in which the nuclear translocation of LBD18 can be regulated by dexamethasone in the wild-type, lbd18, and lbd16 lbd18 backgrounds. Whereas LBD18 overexpression in the wild-type background induced lateral root formation to some degree, other lines manifested the growth-inhibition phenotype. However, LBD18 overexpression rescued lateral root formation in lbd18 and lbd16 lbd18 mutants without inducing any other phenotypes. Furthermore, we demonstrated that LBD18 overexpression can stimulate lateral root formation in auxin response factor7/19 (arf7 arf19) mutants with blocked lateral root formation. Taken together, our results suggest that LBD18 functions in the initiation and emergence of lateral roots, in conjunction with LBD16, downstream of ARF7 and ARF19.
Collapse
|
303
|
Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. THE PLANT CELL 2009; 21:3119-32. [PMID: 19820192 PMCID: PMC2782293 DOI: 10.1105/tpc.108.064758] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 05/18/2023]
Abstract
The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. Moreover, microRNA activity appears to be required for fine-tuning of this process. Thus, ARF17, a target of miR160, is a negative regulator, and ARF6 and ARF8, targets of miR167, are positive regulators of adventitious rooting. The three ARFs display overlapping expression domains, interact genetically, and regulate each other's expression at both transcriptional and posttranscriptional levels by modulating miR160 and miR167 availability. This complex regulatory network includes an unexpected feedback regulation of microRNA homeostasis by direct and nondirect target transcription factors. These results provide evidence of microRNA control of phenotypic variability and are a significant step forward in understanding the molecular mechanisms regulating adventitious rooting.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - John D. Bussell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Daniel I. Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Josèli Schwambach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Monica Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Institut Jean-Pierre Bourgin, Unité de Recherche 501, Institut National de la Recherche Agronomique Centre de Versailles, 78026 Versailles Cedex, France
- Address correspondence to
| |
Collapse
|
304
|
Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. PLANTA 2009; 230:883-98. [PMID: 19655164 DOI: 10.1007/s00425-009-0994-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/10/2009] [Indexed: 05/02/2023]
Abstract
Auxin is one of the central hormones in plants, and auxin response factor (ARF) is a key regulator in the early auxin response. MicroRNAs (miRNAs) play an essential role in auxin signal transduction, but knowledge remains limited about the regulatory network between miRNAs and protein-coding genes (e.g. ARFs) involved in auxin signalling. In this study, we used a novel auxin-resistant rice mutant with plethoric root defects to investigate the miRNA expression patterns using microarray analysis. A number of miRNAs showed reduced auxin sensitivity in the mutant compared with the wild type, consistent with the auxin-resistant phenotype of the mutant. Four miRNAs with significantly altered expression patterns in the mutant were further confirmed by Northern blot, which supported our microarray data. Clustering analysis revealed some novel auxin-sensitive miRNAs in roots. Analysis of miRNA duplication and expression patterns suggested the evolutionary conservation between miRNAs and protein-coding genes. MiRNA promoter analysis suggested the possibility that most plant miRNAs might share the similar transcriptional mechanisms with other non-plant eukaryotic genes transcribed by RNA polymerase II. Auxin response elements were proved to be more frequently present in auxin-related miRNA promoters. Comparative analysis of miRNA and protein-coding gene expression datasets uncovered many reciprocally expressed miRNA-target pairs, which could provide some hints for miRNA downstream analysis. Based on these findings, we also proposed a feedback circuit between miRNA(s) and ARF(s). The results presented here could serve as the basis for further in-depth studies of plant miRNAs involved in auxin signalling.
Collapse
Affiliation(s)
- Yijun Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Xiong J, Tao L, Zhu C. Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots? PLANT SIGNALING & BEHAVIOR 2009; 4:999-1001. [PMID: 19826236 PMCID: PMC2801373 DOI: 10.4161/psb.4.10.9715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
Increasing instances prove that nitric oxide (NO) plays a significant role in mediating root growth and development, and it is reported that NO acts as a messenger and mediates the auxin-induced adventitious roots (AR) developing process in cucumber explants. Compared with the current understanding of AR development in dicots, knowledge of the molecular and physiological mechanisms of crown root (CR) development in monocots is limited, and the roles of NO in CR initiation and development are still far from clear. Our recent studies demonstrate that a critical concentration of endogenous NO is indispensable for CR primordia initiation, the reduction of endogenous NO content blocks CR primordia initiation and decreases CR number in rice seedlings. In this addendum, Base on the results of our studies and previous reports, we supposed that CR formtion in monocots and AR formtion in dicots possible take part in the same NO signaling pathway, althoug in dicots, AR are formed under unusual circumstances and belong to the abnormal developmental program, and in monocot cereals, CR are genetically determined roots and belong to the normal developmental program of cereals. At last, we advanced a proposed schematic model showing the NO signaling pathway of CR emergence in monocots.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Rice Biology; China National Rice Research Institute; Hangzhou, China
| | - Longxing Tao
- State Key Laboratory of Rice Biology; China National Rice Research Institute; Hangzhou, China
| | - Cheng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, China
| |
Collapse
|
306
|
Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 2009; 136:3235-46. [DOI: 10.1242/dev.037028] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8preprocambial cell state are unknown, but intertwined pathways of auxin transport and signal transduction have been implicated in defining paths of vascular strand differentiation. Here we show that ATHB8 is required to stabilize preprocambial cell specification against auxin transport perturbations, to restrict preprocambial cell state acquisition to narrow fields and to coordinate procambium formation within and between veins. We further show that ATHB8 expression at preprocambial stages is directly and positively controlled by the auxin-response transcription factor MONOPTEROS (MP) through an auxin-response element in the ATHB8promoter. We finally show that the consequences of loss of ATHB8function for vein formation are masked by MP activity. Our observations define, at the molecular level, patterning inputs of auxin signaling in vein formation.
Collapse
Affiliation(s)
- Tyler J. Donner
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Ira Sherr
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| |
Collapse
|
307
|
Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C. Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. PLANTA 2009; 230:599-610. [PMID: 19557429 DOI: 10.1007/s00425-009-0970-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is toxic to crown roots (CR), which are essential for maintaining normal growth and development in rice seedlings. Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in plant root organogenesis. Here, the effects of Cd on endogenous NO content and root growth conditions were studied in rice seedlings. Results showed that similar to the NO scavenger, cPTIO, Cd significantly decreased endogenous NO content and CR number in rice seedlings, and these decreases were recoverable with the application of sodium nitroprusside (SNP, a NO donor). Microscopic analysis of root collars revealed that treatment with Cd and cPTIO inhibited CR primordia initiation. In contrast, although SNP partially recovered Cd-caused inhibition of CR elongation, treatment with cPTIO had no effect on CR elongation. L: -NMMA, a widely used nitric oxide synthase (NOS) inhibitor, decreased endogenous NO content and CR number significantly, while tungstate, a nitrate reductase (NR) inhibitor, had no effect on endogenous NO content and CR number. Moreover, enzyme activity assays indicated that treatment with SNP inhibited NOS activity significantly, but had no effect on NR activity. All these results support the conclusions that a critical endogenous NO concentration is indispensable for rice CR primordia initiation rather than elongation, NOS is the main source for endogenous NO generation, and Cd decreases CR number by inhibiting NOS activity and thus decreasing endogenous NO content in rice seedlings.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
308
|
Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 2009; 19:1110-9. [PMID: 19546891 DOI: 10.1038/cr.2009.70] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP-ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.
Collapse
|
309
|
Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:525-37. [PMID: 19154202 PMCID: PMC2721968 DOI: 10.1111/j.1365-313x.2009.03797.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/20/2008] [Accepted: 01/06/2009] [Indexed: 05/19/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene is required for the generation of the flat and symmetrical shape of the leaf lamina in Arabidopsis. AS2 encodes a plant-specific protein with an AS2/LATERAL ORGAN BOUNDARIES (AS2/LOB) domain that includes a cysteine repeat, a conserved single glycine residue and a leucine-zipper-like sequence in its amino-terminal half. The Arabidopsis genome contains 42 genes, including AS2, that encode proteins with an AS2/LOB domain in their amino-terminal halves, and these genes constitute the AS2/LOB gene family. In the present study, we cloned and characterized cDNAs that covered the putative coding regions of all members of this family, and investigated patterns of transcription systematically in Arabidopsis plants. Comparisons among amino acid sequences that had been deduced from the cloned cDNAs revealed eight groups of genes, with two or three members each, and high degrees of identity among entire amino acid sequences, suggesting that some members of the AS2/LOB family might have redundant function(s). Moreover, no member of the family exhibited significant similarity, in terms of the deduced amino acid sequence of the carboxy-terminal half, to AS2. Results of domain swapping between AS2 and other members of the family showed that the AS2/LOB domain of AS2 cannot be functionally replaced by those of other members of the family, and that only a few dissimilarities among respective amino acid residues of the AS2/LOB domain of AS2 and those of other members are important for the specific functions of AS2.
Collapse
Affiliation(s)
- Yoko Matsumura
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- Division of Biological Science, Graduate School of Science, Nagoya UniversityFuro-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hidekazu Iwakawa
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya UniversityFuro-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chiyoko Machida
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- College of Bioscience and Biotechnology, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- *For correspondence (fax +81 568 51 6276; e-mail )
| |
Collapse
|
310
|
Zhao Y, Hu Y, Dai M, Huang L, Zhou DX. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. THE PLANT CELL 2009; 21:736-48. [PMID: 19258439 PMCID: PMC2671696 DOI: 10.1105/tpc.108.061655] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 01/16/2009] [Accepted: 02/17/2009] [Indexed: 05/17/2023]
Abstract
In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be expressed in emerging crown roots and later in cell division regions of the root meristem. The expression could be induced by exogenous auxin or cytokinin. Loss-of-function mutation or downregulation of the gene reduced the number and the growth rate of crown roots, whereas overexpression of the gene induced precocious crown root growth and dramatically increased the root biomass by producing crown roots at the upper stem nodes and the base of florets. The expressions of auxin- and cytokinin-responsive genes were affected in WOX11 overexpression and RNA interference transgenic plants. Further analysis showed that WOX11 directly repressed RR2, a type-A cytokinin-responsive regulator gene that was found to be expressed in crown root primordia. The results suggest that WOX11 may be an integrator of auxin and cytokinin signaling that feeds into RR2 to regulate cell proliferation during crown root development.
Collapse
Affiliation(s)
- Yu Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | |
Collapse
|
311
|
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. PLANT MOLECULAR BIOLOGY 2009; 69:437-49. [PMID: 18982413 DOI: 10.1007/s11103-008-9417-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/13/2008] [Indexed: 05/18/2023]
Abstract
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1, Rokkodai, Kobe 657-8501, Japan.
| | | |
Collapse
|
312
|
Soyano T, Thitamadee S, Machida Y, Chua NH. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. THE PLANT CELL 2008; 20:3359-73. [PMID: 19088331 PMCID: PMC2630433 DOI: 10.1105/tpc.108.061796] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 11/20/2008] [Accepted: 12/02/2008] [Indexed: 05/17/2023]
Abstract
ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family proteins are plant-specific nuclear proteins, and genes encoding several family members have been implicated in plant development. We investigated the function of two members of the Arabidopsis thaliana AS2/LBD family, AS2-LIKE19 (ASL19)/LBD30 and ASL20/LBD18, which encode homologous proteins. Both ASL19 and ASL20 were expressed in immature tracheary elements (TEs), and the expression was dependent on VASCULAR-RELATED NAC-DOMAIN PROTEIN6 (VND6) and VND7, which are transcription factors required for TE differentiation. Overexpression of ASL19 and ASL20 induced transdifferentiation of cells from nonvascular tissues into TE-like cells, similar to those induced upon VND6/7 overexpression. By contrast, aberrant TEs were formed when a cDNA encoding a fusion protein of ASL20 with an artificial repressor domain (ASL20-SRDX) was expressed from its native promoter. These results provide evidence that ASL proteins positively regulate TE differentiation. In transgenic plants overexpressing both ASL19 and ASL20, the xylem-deficient phenotype caused by the expression of dominant-negative versions of VND6/7 proteins was not rescued. However, ectopic expression of VND7 was detected in plants overexpressing ASL20. Moreover, VND genes and their downstream targets were downregulated in ASL20-SRDX plants. Therefore, ASL20 appears to be involved in a positive feedback loop for VND7 expression that regulates TE differentiation-related genes.
Collapse
Affiliation(s)
- Takashi Soyano
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
313
|
Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. THE PLANT CELL 2008; 20:2603-18. [PMID: 18952778 PMCID: PMC2590730 DOI: 10.1105/tpc.108.060913] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/19/2008] [Accepted: 09/30/2008] [Indexed: 05/18/2023]
Abstract
Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Institute of Molecular Biology, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
314
|
The meristem-to-organ boundary: more than an extremity of anything. Curr Opin Genet Dev 2008; 18:287-94. [PMID: 18590819 DOI: 10.1016/j.gde.2008.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 12/31/2022]
Abstract
In plant shoot meristems, cells with indeterminate fate are separated from determinate organ founder cells by morphological boundaries. Organ founder cells are selected at sites of auxin accumulation. Auxin is channeled between cells via efflux carrier proteins, but influx carriers are needed to concentrate auxin in the outer meristem layer. The genetic programmes executed by organs and meristems are established by mutual repression of transcription factors, involving the sequestration of enhancer elements into DNA loops. Boundary cells play a dual role in separating and maintaining meristem and organ domains, and express unique genes that reduce cell division and auxin efflux carrier activity, but activate meristematic gene expression. Boundary positions depend on signals emitted from indeterminate cells at the meristem center.
Collapse
|
315
|
Lau S, Jürgens G, De Smet I. The evolving complexity of the auxin pathway. THE PLANT CELL 2008; 20:1738-46. [PMID: 18647826 PMCID: PMC2518236 DOI: 10.1105/tpc.108.060418] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Steffen Lau
- Center for Plant Molecular Biology, Developmental Genetics, Tübingen University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
316
|
Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 2008; 33:185-93. [DOI: 10.1007/s12038-008-0036-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
317
|
Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 2008; 18:508-21. [PMID: 18071364 DOI: 10.1038/cr.2007.104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
WRKY transcription factors have many regulatory roles in response to biotic and abiotic stresses. In this study, we isolated a rice WRKY gene (OsWRKY31) that is induced by the rice blast fungus Magnaporthe grisea and auxin. This gene encodes a polypeptide of 211 amino-acid residues and belongs to a subgroup of the rice WRKY gene family that probably originated after the divergence of monocot and dicot plants. OsWRKY31 was found to be localized to the nucleus of onion epidermis cells to transiently express OsWRKY31-eGFP fusion protein. Analysis of OsWRKY31 and its mutants fused with a Gal4 DNA-binding domain indicated that OsWRKY31 has transactivation activity in yeast. Overexpression of the OsWRKY31 gene was found to enhance resistance against infection with M. grisea, and the transgenic lines exhibited reduced lateral root formation and elongation compared with wild-type and RNAi plants. The lines with overexpression showed constitutive expression of many defense-related genes, such as PBZ1 and OsSci2, as well as early auxin-response genes, such as OsIAA4 and OsCrl1 genes. Furthermore, the plants with overexpression were less sensitive to exogenously supplied IBA, NAA and 2,4-D at high concentrations, suggesting that overexpression of the OsWRKY31 gene might alter the auxin response or transport. These results also suggest that OsWRKY31 might be a common component in the signal transduction pathways of the auxin response and the defense response in rice.
Collapse
|
318
|
Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X. DH1, a LOB domain-like protein required for glume formation in rice. PLANT MOLECULAR BIOLOGY 2008; 66:491-502. [PMID: 18180880 DOI: 10.1007/s11103-007-9283-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 12/22/2007] [Indexed: 05/14/2023]
Abstract
T-DNA tagging is a high throughput strategy for identifying and cloning functional genes in plants. In this study, we screened 4416 lab-created T(1) rice T-DNA tagged lines and identified a mutant, designated dh1 (degenerated hull1), with phenotype of degenerated hull and naked pistils and stamens. Approximately 60% florets on the dh1 panicle defected in forming normal palea and lemma. Instead, they formed degenerative velum-like or filamentous organs accompanying with the lack of lodicules, stamens and pistils at different degree. A 361 bp of genomic sequence flanking the T-DNA isolated using TAIL-PCR (Thermal asymmetric interlaced PCR) co-segregated with the mutation phenotype. Results of blastn and gene prediction revealed the T-DNA inserted into the promoter region of a function-predicted gene at 283 bp upstream of its transcription start site (TSS). The predicted gene encoded a LOB (Lateral Organ Boundaries) domain-like protein. RT-PCR analyses indicated the transcription level of target candidate gene, DH1, decreased significantly in dh1 mutant. RNAi aimed at DH1 in wild type plants could partially result in the mutation phenotype of dh1. DH1 could also rescue the mutation phenotype in the complement experiment. The result of transformation by a fused expression vector, pDH1::GFP, revealed that DH1 had the keen spatial and temporal characteristics of expressing at axillary bud, young panicle and floral organs but not at root, leaf, node and culm, and strongly expressing at young tissues but weakly at mature organs. The dh1 presented severer mutation phenotype under relatively longer daylight than under shorter daylight implied that shorter daylight induced the expression of gene(s) redundant to DH1 in function and partially compensated for the loss-of-function. It is the first time to report the LOB-domain gene participating in the development of floral organs in rice.
Collapse
Affiliation(s)
- A Li
- Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Shi F, Takasaki H, Komatsu S. Quantitative analysis of auxin-regulated proteins from basal part of leaf sheaths in rice by two-dimensional difference gel electrophoresis. PHYTOCHEMISTRY 2008; 69:637-646. [PMID: 18022655 DOI: 10.1016/j.phytochem.2007.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 06/17/2007] [Accepted: 08/18/2007] [Indexed: 05/25/2023]
Abstract
To identify the effects of auxin on rice root formation, proteins induced by exogenous addition of auxin to rice seedlings were analyzed by a proteomic approach. Root formation by rice seedlings was promoted by 0.45microM 2,4-dichlorophenoxyacetic acid (2,4-D) and repressed by 60microM p-chlorophenoxyisobutyric acid (PCIB). Proteins extracted from the basal part of leaf sheaths of rice seedlings treated with 2,4-D or PCIB for 48h were labeled with Cy3 and Cy5, and separated by two-dimensional polyacrylamide gel electrophoresis. Out of nine proteins up-regulated by 2,4-D and down-regulated by PCIB, five proteins showing significant difference in abundance were used for expression analysis at the transcript abundance level. Transcript abundance of the mitochondrial complex I subunit slightly increased with 2,4-D treatment and were repressed by PCIB. The transcript abundance of EF-1beta', myosin heavy chain and mitochondrial [Mn]SOD increased with 2,4-D treatment but did not decrease with PCIB. The transcript abundance of aldehyde dehydrogenase was not effected by 2,4-D or PCIB. These results indicate that mitochondrial complex I subunit is part of the downstream signal cascade of PCIB, whereas myosin heavy chain, mitochondrial [Mn]SOD and EF-1beta' are involved in the 2,4-D signal cascade but are probably upstream of PCIB.
Collapse
Affiliation(s)
- Fang Shi
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba 305-8518, Japan
| | | | | |
Collapse
|
320
|
Hochholdinger F, Zimmermann R. Conserved and diverse mechanisms in root development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:70-4. [PMID: 18006363 DOI: 10.1016/j.pbi.2007.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/28/2007] [Accepted: 10/02/2007] [Indexed: 05/19/2023]
Abstract
The molecular basis of root formation and growth is being analyzed in more and more detail in the dicot model organism Arabidopsis. However, considerable progress has also been made in the molecular and genetic dissection of root system development in the monocot species rice and maize. This review will highlight some recent molecular data that allow for the comparison of cereal and Arabidopsis root development. Members of the COBRA, GRAS, and LOB domain gene families and a gene encoding a subunit of the exocyst complex are associated with root development. Analyses of these genes revealed some common and distinct molecular principles and functions in cereal versus Arabidopsis root formation.
Collapse
Affiliation(s)
- Frank Hochholdinger
- University of Tuebingen, Center for Plant Molecular Biology (ZMBP), Department of General Genetics, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | |
Collapse
|
321
|
Husbands A, Bell EM, Shuai B, Smith HM, Springer PS. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 2007; 35:6663-71. [PMID: 17913740 PMCID: PMC2095788 DOI: 10.1093/nar/gkm775] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conserved in a variety of evolutionarily divergent plant species, LOB DOMAIN (LBD) genes define a large, plant-specific family of largely unknown function. LBD genes have been implicated in a variety of developmental processes in plants, although to date, relatively few members have been assigned functions. LBD proteins have previously been predicted to be transcription factors, however supporting evidence has only been circumstantial. To address the biochemical function of LBD proteins, we identified a 6-bp consensus motif recognized by a wide cross-section of LBD proteins, and showed that LATERAL ORGAN BOUNDARIES (LOB), the founding member of the family, is a transcriptional activator in yeast. Thus, the LBD genes encode a novel class of DNA-binding transcription factors. Post-translational regulation of transcription factors is often crucial for control of gene expression. In our study, we demonstrate that members of the basic helix–loop–helix (bHLH) family of transcription factors are capable of interacting with LOB. The expression patterns of bHLH048 and LOB overlap at lateral organ boundaries. Interestingly, the interaction of bHLH048 with LOB results in reduced affinity of LOB for the consensus DNA motif. Thus, our studies suggest that bHLH048 post-translationally regulates the function of LOB at lateral organ boundaries.
Collapse
|
322
|
Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ, Back K, Park YM, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. PLANT MOLECULAR BIOLOGY 2007; 65:125-36. [PMID: 17619151 DOI: 10.1007/s11103-007-9203-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 06/13/2007] [Indexed: 05/05/2023]
Abstract
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member's function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7-10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.
Collapse
Affiliation(s)
- Young-Min Woo
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
323
|
De Smet I, Jürgens G. Patterning the axis in plants – auxin in control. Curr Opin Genet Dev 2007; 17:337-43. [PMID: 17627808 DOI: 10.1016/j.gde.2007.04.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 04/26/2007] [Accepted: 04/29/2007] [Indexed: 01/23/2023]
Abstract
Axis formation and patterning are fundamental processes establishing the body organization of multicellular organisms. In plants, patterning is not confined to embryogenesis but continues to produce new structures--lateral organs--along the growing primary body axis and also initiates secondary body axes. The signalling molecule auxin has been identified as a key player in plant axial patterning. The shoot and root sections of the axis seem to produce lateral organs in different ways. However, very recent findings suggest a general mechanism of branching triggered by local accumulation of auxin in a 'zone of competence' at the margin of stem-cell systems. How the general auxin signal is converted into organ-specific developmental programs remains a major challenge for the future.
Collapse
Affiliation(s)
- Ive De Smet
- Centre for Plant Molecular Biology (ZMBP), Developmental Genetics, Tübingen University, Auf der Morgenstelle 3, D-72076 Tübingen, Germany.
| | | |
Collapse
|
324
|
Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y. RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:92-104. [PMID: 17559513 DOI: 10.1111/j.1365-313x.2007.03120.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rice EL5 is an ATL family gene characterized by a transmembrane domain at the N-terminal and a RING-H2 finger domain (RFD), which exhibits ubiquitin ligase (E3) activity. To elucidate the physiological roles of EL5, we analyzed transgenic rice plants overexpressing mutant EL5 proteins that are impaired in E3 activity to various degrees. Plants expressing EL5C153A and EL5W165A, which encode an inactive E3, showed a rootless phenotype accompanied by cell death in root primordia, and those expressing EL5V162A, with moderately impaired E3 activity, formed short crown roots with necrotic lateral roots. The dominant-negative phenotype was specifically observed in root meristems where EL5 is expressed, and not recovered by exogenous auxin. When wild-type EL5 was transcriptionally overexpressed, the EL5 protein was barely detected by Western blotting. Neither treatment with a proteasome inhibitor nor mutation of the sole lysine residue, a potential target of ubiquitination, resulted in increased EL5 accumulation, whereas mutations in the RFD led to increased EL5 accumulation. The stabilized EL5 without the RFD was localized in the plasma membrane. Deletion of the transmembrane domain prevented the EL5 from localizing in the membrane and from exerting an inhibitory effect on root formation. Deletion of the C-terminal region also neutralized the negative effect. We concluded that EL5 plays a major role as a membrane-anchored E3 for the maintenance of cell viability after the initiation of root primordial formation. In addition, we propose that EL5 is an unstable protein, of which degradation is regulated by the RFD in a proteasome-independent manner.
Collapse
Affiliation(s)
- Hanae Koiwai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
325
|
Taramino G, Sauer M, Stauffer JL, Multani D, Niu X, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:649-59. [PMID: 17425722 DOI: 10.1111/j.1365-313x.2007.03075.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Maize has a complex root system composed of different root types formed during different stages of development. The rtcs (rootless concerning crown and seminal roots) mutant is impaired in the initiation of the embryonic seminal roots and the post-embryonic shoot-borne root system. The primary root of the mutant shows a reduced gravitropic response, while its elongation, lateral root density and reaction to exogenously applied auxin is not affected. We report here the map-based cloning of the RTCS gene which encodes a 25.5 kDa LOB domain protein located on chromosome 1S. The RTCS gene has been duplicated during evolution. The RTCS-LIKE (RTCL) gene displays 72% sequence identity on the protein level. Both genes are preferentially expressed in roots. Expression of RTCS in coleoptilar nodes is confined to emerging shoot-borne root primordia. Sequence analyses of the RTCS and RTCL upstream genomic regions identified auxin response elements. Reverse transcriptase-PCR revealed that both genes are auxin induced. Microsynteny analyses between maize and rice genomes revealed co-linearity of 14 genes in the RTCS region. We conclude from our data that RTCS and RTCL are auxin-responsive genes involved in the early events that lead to the initiation and maintenance of seminal and shoot-borne root primordia formation.
Collapse
Affiliation(s)
- Graziana Taramino
- DuPont Crop Genetics Research, Experimental Station, PO Box 80353, Wilmington, DE 19880-0353, USA.
| | | | | | | | | | | | | |
Collapse
|
326
|
Morita Y, Kyozuka J. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. PLANT & CELL PHYSIOLOGY 2007; 48:540-9. [PMID: 17303594 DOI: 10.1093/pcp/pcm024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PINOID, a serine threonine protein kinase in Arabidopsis, controls auxin distribution through a positive control of subcellular localization of PIN auxin efflux carriers. Compared with the rapid progress in understanding mechanisms of auxin action in dicot species, little is known about auxin action in monocot species. Here, we describe the identification and characterization of OsPID, the PINOID ortholog of rice. Phylogenetic analysis showed that the rice genome contains a single PID ortholog, OsPID. Constitutive overexpression of OsPID caused a variety of abnormalities, such as delay of adventitious root development, curled growth of shoots and agravitropism. Abnormalities observed in the plants that overexpress OsPID could be phenocopied by treatment with an inhibitor of active polar transport of auxin, indicating that OsPID could be involved in the control of polar auxin transport in rice. Analysis of OsPID mRNA distribution showed a complex pattern in shoot meristems, indicating that it probably plays a role in the pattern formation and organogenesis in the rice shoot.
Collapse
Affiliation(s)
- Yutaka Morita
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | | |
Collapse
|
327
|
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. THE PLANT CELL 2007; 19:118-30. [PMID: 17259263 PMCID: PMC1820965 DOI: 10.1105/tpc.106.047761] [Citation(s) in RCA: 707] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lateral root formation in Arabidopsis thaliana is regulated by two related AUXIN RESPONSE FACTORs, ARF7 and ARF19, which are transcriptional activators of early auxin response genes. The arf7 arf19 double knockout mutant is severely impaired in lateral root formation. Target-gene analysis in arf7 arf19 transgenic plants harboring inducible forms of ARF7 and ARF19 revealed that ARF7 and ARF19 directly regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots. Overexpression of LBD16/ASL18 and LBD29/ASL16 induces lateral root formation in the absence of ARF7 and ARF19. These LBD/ASL proteins are localized in the nucleus, and dominant repression of LBD16/ASL18 activity inhibits lateral root formation and auxin-mediated gene expression, strongly suggesting that these LBD/ASLs function downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Our results reveal that ARFs regulate lateral root formation via direct activation of LBD/ASLs in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
328
|
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. THE PLANT CELL 2007. [PMID: 17259263 DOI: 10.1105/tpc.106.0477611105/tpc.106.047761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral root formation in Arabidopsis thaliana is regulated by two related AUXIN RESPONSE FACTORs, ARF7 and ARF19, which are transcriptional activators of early auxin response genes. The arf7 arf19 double knockout mutant is severely impaired in lateral root formation. Target-gene analysis in arf7 arf19 transgenic plants harboring inducible forms of ARF7 and ARF19 revealed that ARF7 and ARF19 directly regulate the auxin-mediated transcription of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and/or LBD29/ASL16 in roots. Overexpression of LBD16/ASL18 and LBD29/ASL16 induces lateral root formation in the absence of ARF7 and ARF19. These LBD/ASL proteins are localized in the nucleus, and dominant repression of LBD16/ASL18 activity inhibits lateral root formation and auxin-mediated gene expression, strongly suggesting that these LBD/ASLs function downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Our results reveal that ARFs regulate lateral root formation via direct activation of LBD/ASLs in Arabidopsis.
Collapse
Affiliation(s)
- Yoko Okushima
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
329
|
Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:93-113. [PMID: 17177637 DOI: 10.1146/annurev.arplant.58.032806.104006] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
Collapse
Affiliation(s)
- Karen S Osmont
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
330
|
Fukaki H, Okushima Y, Tasaka M. Auxin‐Mediated Lateral Root Formation in Higher Plants. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:111-37. [PMID: 17241906 DOI: 10.1016/s0074-7696(07)56004-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lateral root (LR) formation is an important organogenetic process that contributes to the establishment of root architecture in higher plants. In the angiosperms, LRs are initiated from the pericycle, an inner cell layer of the parent roots. Auxin is a key plant hormone that promotes LR formation, but the molecular mechanisms of auxin-mediated LR formation remain unknown. Molecular genetic studies using Arabidopsis mutants have revealed that the auxin transport system with a balance of influx and efflux is important for LR initiation and subsequent LR primordium development. In addition, normal auxin signaling mediated by two families of transcriptional regulators, Aux/IAAs and ARFs, is necessary for LR formation. This article is an update on the mechanisms of auxin-mediated LR formation in higher plants, particularly in Arabidopsis.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
331
|
Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics 2006; 277:115-37. [PMID: 17061125 DOI: 10.1007/s00438-006-0177-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/24/2006] [Indexed: 01/11/2023]
Abstract
The type-A ARRs of cytokinin two-component signaling system act as negative regulators for cytokinin signaling except for ARR4, but the molecular mechanism by which the A-type ARRs regulate cytokinin signaling remain elusive. To get insights into the molecular function of A-type ARR in cytokinin response, we sought to find the components that function downstream of A-type ARR protein by investigating the effects of ARR7 overexpression on cytokinin-regulated gene expression with the Affymetrix full genome array. To examine early cytokinin response, plants were treated with cytokinin for 30 min or 2 h, followed by GeneChip analysis. The hierarchical clustering analysis of our GeneChip data showed that ARR7 overexpression had distinctively repressive impacts on various groups of the cytokinin-regulated genes. In particular, the induction of all A-type ARRs except for ARR22, and AHK(ARABIDOPSIS HISTIDINE KINASE)1 and AHK4 was suppressed by ARR7. Cytokinin-induced expression of most of 12 expansin genes were repressed by ARR7, indicating potential involvement of ARR7 in cell expansion and plant development. Up-regulation of five cytokinin oxidase genes by cytokinins was negatively affected by ARR7. Our GeneChip analysis suggest that ARR7 mainly acts as a transcriptional repressor for a variety of early cytokinin-regulated genes encoding transcription factors, signal transmitters, plant development, and cellular metabolism, which may be responsible for reduced sensitivity of Arabidopsis transgenic plants overexpressing ARR7 to exogenous cytokinins.
Collapse
Affiliation(s)
- Dong Ju Lee
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University, Puk-Gu, Gwangju, 500-757, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:243-59. [PMID: 16623887 DOI: 10.1111/j.1365-313x.2006.02697.x] [Citation(s) in RCA: 484] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNA (miRNA) is one class of newly identified, small, non-coding RNAs that play versatile and important roles in post-transcriptional gene regulation. All miRNAs have similar secondary hairpin structures; many of these are evolutionarily conserved. This suggests a powerful approach to predict the existence of new miRNA orthologs or homologs in other species. We developed a comprehensive strategy to identify new miRNA homologs by mining the repository of available ESTs. A total of 481 miRNAs, belonging to 37 miRNA families in 71 different plant species, were identified from more than 6 million EST sequences in plants. The potential targets of the EST-predicted miRNAs were also elucidated from the EST and protein databases, providing additional evidence for the real existence of these miRNAs in the given plant species. Some plant miRNAs were physically clustered together, suggesting that these miRNAs have similar gene expression patterns and are transcribed together as a polycistron, as observed among animal miRNAs. The uracil nucleotide is dominant in the first position of 5' mature miRNAs. Our results indicate that many miRNA families are evolutionarily conserved across all major lineages of plants, including mosses, gymnosperms, monocots and eudicots. Additionally, the number of miRNAs discovered was directly related to the number of available ESTs and not to evolutionary relatedness to Arabidopsis thaliana, indicating that miRNAs are conserved and little phylogenetic signal exists in the presence or absence of these miRNAs. Regulation of gene expression by miRNAs appears to have existed at the earliest stages of plant evolution and has been tightly constrained (functionally) for more than 425 million years.
Collapse
Affiliation(s)
- Baohong Zhang
- The Institute of Environmental and Human Health (TIEHH), and Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163, USA
| | | | | | | | | |
Collapse
|
333
|
Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:297-306. [PMID: 16623891 DOI: 10.1111/j.1365-313x.2006.02693.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice (Oryza sativa), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring mOsIAA3-GR, which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that, in rice, auxin is important for development and its signaling is mediated by IAA genes.
Collapse
Affiliation(s)
- Ayako Nakamura
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
334
|
Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. THE PLANT CELL 2006; 18:574-85. [PMID: 16399802 PMCID: PMC1383634 DOI: 10.1105/tpc.105.039032] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Genetic control of grass inflorescence architecture is critical given that cereal seeds provide most of the world's food. Seeds are borne on axillary branches, which arise from groups of stem cells in axils of leaves and whose branching patterns dictate most of the variation in plant form. Normal maize (Zea mays) ears are unbranched, and tassels have long branches only at their base. The ramosa2 (ra2) mutant of maize has increased branching with short branches replaced by long, indeterminate ones. ra2 was cloned by chromosome walking and shown to encode a LATERAL ORGAN BOUNDARY domain transcription factor. ra2 is transiently expressed in a group of cells that predicts the position of axillary meristem formation in inflorescences. Expression in different mutant backgrounds places ra2 upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.
Collapse
Affiliation(s)
- Esteban Bortiri
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
335
|
Hardtke CS. Root development--branching into novel spheres. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:66-71. [PMID: 16324881 DOI: 10.1016/j.pbi.2005.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Recent progress in deciphering the genetics of Arabidopsis root development has been driven by the availability of novel molecular tools. For instance, combining enhancer trap lines and microarray analyses enabled the creation of an expression map for over 22000 genes at cellular resolution. Such expression profiles often suggest redundant action of homologous genes, which has indeed been observed for several pivotal factors that are required for the organization and maintenance of root meristems. Additional regulators of root development are also being identified by analysis of natural genetic variation. Moreover, microRNA control of gene expression has recently been implicated in root development, and progress has been made in understanding the interplay between environmental and genetic factors in root branching.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
336
|
Yang Y, Yu X, Wu P. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Mol Phylogenet Evol 2005; 39:248-62. [PMID: 16290186 DOI: 10.1016/j.ympev.2005.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/27/2022]
Abstract
The plant specific LATERAL ORGAN BOUNDARIES (LOB) domain (LBD) gene family has a potential role in lateral organ development. Thirty-five LBD genes in a japonica rice (Nipponbare) (designated OsJLBD) and in an indica rice (9311) (designated OsILBD) were identified based on the current databases of the two rice subspecies. A new rice LBD gene with two LOB domains and two predicted coiled coil structures in both subspecies was found, which is not found in other plant species based on the current NCBI Genbank database. OsJLBD and OsILBD genes have similar chromosomal distribution pattern. Both OsJLBD and OsILBD genes can be divided into 7 subclasses (classes Ia-e, II and III (see )) and no subclass-specific expression pattern was observed. No introns have been predicted in all class Ie genes in both OsJLBD and OsILBD subfamilies. The genome and tandem duplication has contributed to the neofunctionalization and formation of new rice subclasses, but the mechanism of diploidization and limited tandem duplication have contributed to fewer LBD genes in rice than in Arabidopsis. Functional studies of genes in subclasses may help to determine whether special sequence structure (intron-exon, spacing characters of motifs) has caused special expression pattern of subclasses.
Collapse
Affiliation(s)
- Yi Yang
- The Key State Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Kaixuan Road #268, Huajiachi Cam, Hangzhou, Zhejiang 310029, P.R. China
| | | | | |
Collapse
|
337
|
Woll K, Borsuk LA, Stransky H, Nettleton D, Schnable PS, Hochholdinger F. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. PLANT PHYSIOLOGY 2005; 139:1255-67. [PMID: 16215225 PMCID: PMC1283763 DOI: 10.1104/pp.105.067330] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in the primary root and a delayed gravitropic response. Exogenously applied auxin does not induce lateral roots in the primary root of rum1. Lateral roots are initiated in a specific cell type, the pericycle. Cell-type-specific transcriptome profiling of the primary root pericycle 64 h after germination, thus before lateral root initiation, via a combination of laser capture microdissection and subsequent microarray analyses of 12k maize microarray chips revealed 90 genes preferentially expressed in the wild-type pericycle and 73 genes preferentially expressed in the rum1 pericycle (fold change >2; P-value <0.01; estimated false discovery rate of 13.8%). Among the 51 annotated genes predominately expressed in the wild-type pericycle, 19 genes are involved in signal transduction, transcription, and the cell cycle. This analysis defines an array of genes that is active before lateral root initiation and will contribute to the identification of checkpoints involved in lateral root formation downstream of rum1.
Collapse
Affiliation(s)
- Katrin Woll
- Center for Plant Molecular Biology, Department of General Genetics , Eberhard Karls University, 72076 Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
338
|
Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. PLANT & CELL PHYSIOLOGY 2005; 46:1674-81. [PMID: 16085936 DOI: 10.1093/pcp/pci183] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin transport affects a variety of important growth and developmental processes in plants, including the regulation of shoot and root branching. The asymmetrical localization of auxin influx and efflux carriers within the plasma membrane establishes the auxin gradient and facilitates its transport. REH1, a rice EIR1 (Arabidopsis ethylene insensitive root 1)-like gene, is a putative auxin efflux carrier. Phylogenetic analysis of 32 members of the PIN family, taken from across different species, showed that in terms of evolutionary relationship, OsPIN1 is closer to the PIN1 family than to the PIN2 family. It is, therefore, renamed as OsPIN1 in this study. OsPIN1 was expressed in the vascular tissues and root primordial in a manner similar to AtPIN1. Adventitious root emergence and development were significantly inhibited in the OsPIN1 RNA interference (RNAi) transgenic plants, which was similar to the phenotype of NPA (N-1-naphthylphalamic acid, an auxin-transport inhibitor)-treated wild-type plants. alpha-naphthylacetic acid (alpha-NAA) treatment was able to rescue the mutated phenotypes occurring in the RNAi plants. Overexpression or suppression of the OsPIN1 expression through a transgenic approach resulted in changes of tiller numbers and shoot/root ratio. Taken together, these data suggest that OsPIN1 plays an important role in auxin-dependent adventitious root emergence and tillering.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|