301
|
Xie C, Zhou X, Deng X, Guo Y. PKS5, a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62. J Genet Genomics 2010; 37:359-69. [DOI: 10.1016/s1673-8527(09)60054-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
302
|
Bobik K, Boutry M, Duby G. Activation of the plasma membrane H (+) -ATPase by acid stress: antibodies as a tool to follow the phosphorylation status of the penultimate activating Thr. PLANT SIGNALING & BEHAVIOR 2010; 5:681-3. [PMID: 20404493 PMCID: PMC3001558 DOI: 10.4161/psb.5.6.11572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tight regulation of the plasma membrane proton pump ATPase (H (+) -ATPase) is necessary for controlling the membrane potential that energizes secondary transporters. This regulation relies on the phosphorylation of the H (+) -ATPase penultimate residue, a theonine, and the subsequent binding of regulatory 14-3-3 proteins, which results in enzyme activation. Using phospho-specific antibodies directed against the phosphorylable Thr of either PMA2 (Plasma membrane H (+) -ATPase from N. plumbaginifolia) or PMA4, we showed that the kinetics and extent of phosphorylation differ between both isoforms according to the growth or environmental conditions like cold stress. (1) Here, we used phospho-specific antibodies to follow PMA2 Thr phosphorylation upon acidification of the cytosol by incubating N. tabacum BY2 cells with four different weak organic acids. Increased PMA2 phosphorylation was observed for three of them, thus highlighting the role of the H (+) -ATPase in cell pH homeostasis.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
303
|
Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. PLANT, CELL & ENVIRONMENT 2010; 33:943-58. [PMID: 20082667 DOI: 10.1111/j.1365-3040.2010.02118.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Bose J, Babourina O, Shabala S, Rengel Z. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3163-75. [PMID: 20497972 PMCID: PMC2892157 DOI: 10.1093/jxb/erq143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 05/18/2023]
Abstract
Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H(+) and K(+) fluxes, rhizosphere pH, and plasma membrane potential, E(m)). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H(+) influx at the distal elongation zone (DEZ) and Al-induced H(+) efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around -60 mV became hyperpolarization at -110 mV after 20 min. At the DEZ, the E(m) changes corresponded to the changes in K(+) flux: K(+) efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with E(m) depolarization, higher K(+) efflux, and higher H(+) influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H(+) uptake under low-pH stress, which was abolished by Al exposure.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| | - Olga Babourina
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| | - Sergey Shabala
- School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart TAS 7001, Australia
| | - Zed Rengel
- School of Earth and Environment, the University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
305
|
Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. THE PLANT CELL 2010; 22:1313-32. [PMID: 20418496 PMCID: PMC2879748 DOI: 10.1105/tpc.109.069609] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 05/17/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yunxia Qin
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Changgen Xie
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feiyi Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dafa Liu
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Anja T. Fuglsang
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Michael G. Palmgren
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xing Wang Deng
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| |
Collapse
|
306
|
Bobik K, Duby G, Nizet Y, Vandermeeren C, Stiernet P, Kanczewska J, Boutry M. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:291-301. [PMID: 20128881 DOI: 10.1111/j.1365-313x.2010.04147.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
307
|
Haruta M, Burch HL, Nelson RB, Barrett-Wilt G, Kline KG, Mohsin SB, Young JC, Otegui MS, Sussman MR. Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. J Biol Chem 2010; 285:17918-29. [PMID: 20348108 DOI: 10.1074/jbc.m110.101733] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis mutants containing gene disruptions in AHA1 and AHA2, the two most highly expressed isoforms of the Arabidopsis plasma membrane H(+)-ATPase family, have been isolated and characterized. Plants containing homozygous loss-of-function mutations in either gene grew normally under laboratory conditions. Transcriptome and mass spectrometric measurements demonstrate that lack of lethality in the single gene mutations is not associated with compensation by increases in RNA or protein levels. Selected reaction monitoring using synthetic heavy isotope-labeled C-terminal tryptic peptides as spiked standards with a triple quadrupole mass spectrometer revealed increased levels of phosphorylation of a regulatory threonine residue in both isoforms in the mutants. Using an extracellular pH assay as a measure of in vivo ATPase activity in roots, less proton secreting activity was found in the aha2 mutant. Among 100 different growth conditions, those that decrease the membrane potential (high external potassium) or pH gradient (high external pH) caused a reduction in growth of the aha2 mutant compared with wild type. Despite the normal appearance of single mutants under ideal laboratory growth conditions, embryos containing homozygous double mutations are lethal, demonstrating that, as expected, this protein is absolutely essential for plant cell function. In conclusion, our results demonstrate that the two genes together perform an essential function and that the effects of their single mutations are mostly masked by overlapping patterns of expression and redundant function as well as by compensation at the post-translational level.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 2010; 285:7119-26. [PMID: 20026608 PMCID: PMC2844161 DOI: 10.1074/jbc.m109.035659] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/22/2009] [Indexed: 12/20/2022] Open
Abstract
Cold is a limiting environmental factor that adversely affects plant growth and productivity. Calcium/calmodulin-mediated signaling is believed to play a pivotal role in plant response to cold stress, but its exact role is not clearly understood. Here, we report that CRLK1, a novel calcium/calmodulin-regulated receptor-like kinase, is crucial for cold tolerance in plants. CRLK1 has two calmodulin-binding sites with different affinities as follows: one located at residues 369-390 with a K(d) of 25 nm, and the other located at residues 28-112 with a K(d) of 160 nm. Calcium/calmodulin stimulated the kinase activity, but the addition of chlorpromazine, a calmodulin antagonist, blocked its stimulation. CRLK1 is mainly localized in the plasma membrane, and its expression is stimulated by cold and hydrogen peroxide treatments. Under normal growth conditions, there is no noticeable phenotypic difference between wild-type and crlk1 knock-out mutant plants. However, as compared with wild-type plants, the crlk1 knock-out mutants exhibited an increased sensitivity to chilling and freezing temperatures. Northern analysis showed that the induction of cold-responsive genes, including CBF1, RD29A, COR15a, and KIN1 in crlk1 mutants, is delayed as compared with wild-type plants. These results indicate that CRLK1 is a positive regulator of cold tolerance in plants. Furthermore, our results suggest that CRLK1 plays a role in bridging calcium/calmodulin signaling and cold signaling.
Collapse
Affiliation(s)
- Tianbao Yang
- From the Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414
| | - Shubho Chaudhuri
- From the Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414
| | - Lihua Yang
- From the Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414
| | - Liqun Du
- From the Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414
| | - B. W. Poovaiah
- From the Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414
| |
Collapse
|
309
|
Das R, Pandey GK. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 2010; 11:2-13. [PMID: 20808518 PMCID: PMC2851112 DOI: 10.2174/138920210790217981] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of stimuli and activation of a signaling cascade is an intrinsic characteristic feature of all living organisms. Till date, several signaling pathways have been elucidated that are involved in multiple facets of growth and development of an organism. Exposure to unfavorable stimuli or stress condition activates different signaling cascades in both plants and animal. Being sessile, plants cannot move away from an unfavorable condition, and hence activate the molecular machinery to cope up or adjust against that particular stress condition. In plants, role of calcium as second messenger has been studied in detail in both abiotic and biotic stress signaling. Several calcium sensor proteins such as calmodulin (CaM), calcium dependent protein kinases (CDPK) and calcinuerin B-like (CBL) were discovered to play a crucial role in abiotic stress signaling in plants. Unlike CDPK, CBL and CaM are calcium-binding proteins, which do not have any protein kinase enzyme activity and interact with a target protein kinase termed as CBL-interacting protein kinase (CIPK) and CaM kinases respectively. Genome sequence analysis of Arabidopsis and rice has led to the identification of multigene familes of these calcium signaling protein kinases. Individual and global gene expression analysis of these protein kinase family members has been analyzed under several developmental and different abiotic stress conditions. In this review, we are trying to overview and emphasize the expressional analysis of calcium signaling protein kinases under different abiotic stress and developmental stages, and linking the expression to possible function for these kinases.
Collapse
Affiliation(s)
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| |
Collapse
|
310
|
Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. THE PLANT CELL 2010; 22:541-63. [PMID: 20354197 PMCID: PMC2861448 DOI: 10.1105/tpc.109.072686] [Citation(s) in RCA: 655] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ca(2+) signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca(2+) signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca(2+) elevations. Cellular Ca(2+) signals are decoded and transmitted by a toolkit of Ca(2+) binding proteins that relay this information into downstream responses. Major transduction routes of Ca(2+) signaling involve Ca(2+)-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca(2+)-regulated transcription factors and Ca(2+)-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca(2+) signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca(2+) signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca(2+) currency into defined changes in protein-protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Botanik, Universität Münster, 48149 Münster, Germany.
| | | | | |
Collapse
|
311
|
Bertucci A, Tambutté É, Tambutté S, Allemand D, Zoccola D. Symbiosis-dependent gene expression in coral-dinoflagellate association: cloning and characterization of a P-type H+-ATPase gene. Proc Biol Sci 2010; 277:87-95. [PMID: 19793745 PMCID: PMC2842621 DOI: 10.1098/rspb.2009.1266] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/07/2009] [Indexed: 11/12/2022] Open
Abstract
We report the molecular cloning of a H(+)-ATPase in the symbiotic dinoflagellate, Symbiodinium sp. previously suggested by pharmacological studies to be involved in carbon-concentrating mechanism used by zooxanthellae when they are in symbiosis with corals. This gene encodes a protein of 975 amino acids with a calculated mass of about 105 kDa. The structure of the protein shows a typical P-type H(+)-ATPase structure (type IIIa plasma membrane H(+)-ATPases) and phylogenetic analyses show that this new proton pump groups with diatoms in the Chromoalveolates group. This Symbiodinium H(+)-ATPase is specifically expressed when zooxanthellae are engaged in a symbiotic relationship with the coral partner but not in free-living dinoflagellates. This proton pump, therefore, could be involved in the acidification of the perisymbiotic space leading to bicarbonate dehydration by carbonic anhydrase activity in order to supply inorganic carbon for photosynthesis as suggested by earlier studies. To our knowledge, this work provides the first example of a symbiosis-dependent gene in zooxanthellae and confirms the importance of H(+)-ATPase in coral-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | | | | | | | - Didier Zoccola
- Centre Scientifique de Monaco, Avenue Saint Martin 98000, Monaco
| |
Collapse
|
312
|
|
313
|
Speth C, Jaspert N, Marcon C, Oecking C. Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure? Eur J Cell Biol 2009; 89:145-51. [PMID: 20034701 DOI: 10.1016/j.ejcb.2009.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The plant plasma membrane H(+)-ATPase is kept at a low activity level by its C-terminal domain, the inhibitory function of which is thought to be mediated by two regions (region I and II) interacting with cytoplasmic domains essential for the catalytic cycle. The activity of the enzyme is well known to be regulated by 14-3-3 proteins, the association of which requires phosphorylation of the penultimate H(+)-ATPase residue, but can be abolished by phosphorylation of residues close-by. The current knowledge about H(+)-ATPase regulation is briefly summed up here, combined with data that query some of the above statements. Expression of various C-terminal deletion constructs of PMA2, a H(+)-ATPase isoform from Nicotiana plumbaginifolia, in yeast indicates that three regions, which do not correspond to regions I or II, contribute to autoinhibition. Their individual and combined action can be abolished by (mimicking) phosphorylation of three threonine residues located within or close to these regions. With respect to the wild-type PMA2, mimicking phosphorylation of two of these residues increases enzyme activity. However, constitutive activation of wild-type PMA2 requires 14-3-3 association. Altogether, the data suggest that regulation of the plant H(+)-ATPase occurs in progressive steps, mediated by several protein kinases and phosphatases, thus allowing gradual as well as fine-tuned adjustment of its activity. Moreover, mating-based split ubiquitin assays indicate a complex interplay between the C-terminal domain and the rest of the enzyme. Notably, their tight contact does not seem to be the cause of the inactive state of the enzyme.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology - Plant Physiology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
314
|
Liu J, Elmore JM, Coaker G. Investigating the functions of the RIN4 protein complex during plant innate immune responses. PLANT SIGNALING & BEHAVIOR 2009; 4:1107-10. [PMID: 20514222 PMCID: PMC2819432 DOI: 10.4161/psb.4.12.9944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/07/2023]
Abstract
Pathogen recognition by the plant innate immune system invokes a sophisticated signal transduction network that culminates in disease resistance. The Arabidopsis protein RIN4 is a well-known regulator of plant immunity. However, the molecular mechanisms by which RIN4 controls multiple immune responses have remained elusive. in our recently published study, we purified components of the RIN4 protein complex from A. thaliana and identified several novel RIN4-associated proteins.1 we found that one class of RIN4-associated proteins, the plasma membrane H(+)-ATPases AHA1 and AHA2, play a crucial role in resisting pathogen invasion. Plants use RIN4 to regulate H(+)-ATPase activity during immune responses, thereby controlling stomatal apertures during pathogen attack. Stomata were previously identified as active regulators of plant immune responses during pathogen invasion, but how the plant innate immune system coordinates this response was unknown.2,3 Our investigations have revealed a novel function of rin4 during pathogenesis. Here, we discuss the rin4-AHA1/2 interaction and highlight additional RIN4-associated proteins (RAPs) as well as speculate on their potential roles in plant innate immunity.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology; University of California, Davis, Davis, CA, USA
| | | | | |
Collapse
|
315
|
Weinl S, Kudla J. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. THE NEW PHYTOLOGIST 2009; 184:517-528. [PMID: 19860013 DOI: 10.1111/j.1469-8137.2009.02938.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Cellular calcium signals are detected and transmitted by calcium-binding proteins functioning as sensor molecules. The family of calcineurin B-like (CBL) proteins represents a unique group of calcium sensors and contributes to the decoding of calcium transients by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). In higher plants, CBL proteins and CIPKs form a complex signaling network that allows for flexible but specific signal-response coupling during environmental adaptation reactions. This review presents novel findings concerning the evolution of this signaling network and key insights into the physiological function of CBL-CIPK complexes. These aspects will be presented and discussed in the context of emerging functional principles governing efficient and specific information processing in this signaling system.
Collapse
Affiliation(s)
- Stefan Weinl
- Universität Münster, Institut für Botanik und Botanischer Garten, Schlossplatz 4, 48149 Münster, Germany
| | - Jörg Kudla
- Universität Münster, Institut für Botanik und Botanischer Garten, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
316
|
Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. THE PLANT CELL 2009; 21:3610-22. [PMID: 19948793 PMCID: PMC2798313 DOI: 10.1105/tpc.109.068593] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/23/2009] [Accepted: 11/06/2009] [Indexed: 05/18/2023]
Abstract
The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine-induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor).
Collapse
Affiliation(s)
- Viviane Lanquar
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Dominique Loqué
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Friederike Hörmann
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Lixing Yuan
- Key Lab of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Anne Bohner
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | | | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
317
|
Xie CG, Lin H, Deng XW, Guo Y. Roles of SCaBP8 in salt stress response. PLANT SIGNALING & BEHAVIOR 2009; 4:956-958. [PMID: 19826238 PMCID: PMC2801360 DOI: 10.4161/psb.4.10.9641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 05/28/2023]
Abstract
The tissue-preferential distributed calcium sensors, SOS3 and SCaBP8, play important roles in SOS pathway to cope with saline conditions. Both SOS3 and SCaBP8 interact with and activate SOS2. However the regulatory mechanism for SOS2 activation and membrane recruitment by SCaBP8 differs from SOS3. SCaBP8 is phosphorylated by SOS2 at plasma membrane (PM) under salt stress. This phosphorylation anchors the SCaBP8-SOS2 complex on plasma membrane and activates PM Na(+)/H(+) antiporter, such as SOS1. Here, we describe that SOS2 has high binding affinity and catalytic efficiency to SCaBP8, suggesting that phosphorylation of SCaBP8 by SOS2 perhaps occurs rapidly in salt condition. SCaBP8 is also phosphorylated by PKS5 (SOS2-like Protein Kinase5) which negatively regulates PM H(+)-ATPase activity and functions in plant alkaline tolerance, providing a clue to roles of SCaBP8 in both salt and alkaline tolerance. SOS2 interacts with SOS3 and SCaBP8 with its FISL motif at C-terminus. However, luciferase activity complement assay indicates that SOS2 N-terminal is also essential for interacting with these proteins in plant.
Collapse
Affiliation(s)
- Chang Gen Xie
- College of Life Sciences; Peking University; Beijing, China
| | - Huixin Lin
- National Institute of Biological Sciences; Beijing, China
| | - Xing Wang Deng
- College of Life Sciences; Peking University; Beijing, China
| | - Yan Guo
- National Institute of Biological Sciences; Beijing, China
| |
Collapse
|
318
|
Jia F, Gampala SS, Mittal A, Luo Q, Rock CD. Cre-lox univector acceptor vectors for functional screening in protoplasts: analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-like protein phosphatases. PLANT MOLECULAR BIOLOGY 2009; 70:693-708. [PMID: 19499346 PMCID: PMC2755202 DOI: 10.1007/s11103-009-9502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/15/2009] [Indexed: 05/27/2023]
Abstract
The 14,200 available full length Arabidopsis thaliana cDNAs in the universal plasmid system (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a "functional map-space" of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities.
Collapse
Affiliation(s)
- Fan Jia
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | | | - Amandeep Mittal
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | - Qingjun Luo
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University. Lubbock TX, U. S. A. 79409-3131
| |
Collapse
|
319
|
Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 2009; 7:e1000139. [PMID: 19564897 PMCID: PMC2694982 DOI: 10.1371/journal.pbio.1000139] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/18/2009] [Indexed: 02/05/2023] Open
Abstract
Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Anja T. Fuglsang
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
320
|
Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:778-90. [PMID: 19187042 DOI: 10.1111/j.1365-313x.2009.03812.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK) mediate plant responses to a variety of external stresses. Here we report that Arabidopsis CIPK6 is also required for the growth and development of plants. Phenotype of tobacco plants ectopically expressing a homologous gene (CaCIPK6) from the leguminous plant chickpea (Cicer arietinum) indicated its functional conservation. A lesion inAtCIPK6 significantly reduced shoot-to-root and root basipetal auxin transport, and the plants exhibited developmental defects such as fused cotyledons, swollen hypocotyls and compromised lateral root formation, in conjunction with reduced expression of a number of genes involved in auxin transport and abiotic stress response. The Arabidopsis mutant was more sensitive to salt stress compared to wild-type, while overexpression of a constitutively active mutant of CaCIPK6 promoted salt tolerance in transgenic tobacco. Furthermore, tobacco seedlings expressing the constitutively active mutant of CaCIPK6 showed a developed root system, increased basipetal auxin transport and hypersensitivity to auxin. Our results provide evidence for involvement of a CIPK in auxin transport and consequently in root development, as well as in the salt-stress response, by regulating the expression of genes.
Collapse
Affiliation(s)
- Vineeta Tripathi
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
321
|
Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. THE PLANT CELL 2009; 21:1607-19. [PMID: 19448033 PMCID: PMC2700523 DOI: 10.1105/tpc.109.066217] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/05/2009] [Accepted: 05/01/2009] [Indexed: 05/17/2023]
Abstract
The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+ exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala, SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue, the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a critical component of SOS pathway regulation of salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Huixin Lin
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park, Beijing 102206, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song WY. A rice kinase-protein interaction map. PLANT PHYSIOLOGY 2009; 149:1478-92. [PMID: 19109415 PMCID: PMC2649385 DOI: 10.1104/pp.108.128298] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/18/2008] [Indexed: 05/19/2023]
Abstract
Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.
Collapse
Affiliation(s)
- Xiaodong Ding
- Department of Plant Pathology , University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem 2009; 284:4213-21. [PMID: 19088078 DOI: 10.1074/jbc.m807311200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton pump ATPase (H(+)-ATPase) of the plant plasma membrane is regulated by an autoinhibitory C-terminal domain, which can be displaced by phosphorylation of the penultimate Thr residue and the subsequent binding of 14-3-3 proteins. We performed a mass spectrometric analysis of PMA2 (plasma membrane H(+)-ATPase isoform 2) isolated from Nicotiana tabacum suspension cells and identified two new phosphorylated residues in the enzyme 14-3-3 protein binding site: Thr(931) and Ser(938). When PMA2 was expressed in Saccharomyces cerevisiae, mutagenesis of each of these two residues into Asp prevented growth of a yeast strain devoid of its own H(+)-ATPases. When the Asp mutations were individually introduced in a constitutively activated mutant of PMA2 (E14D), they still allowed yeast growth but at a reduced rate. Purification of His-tagged PMA2 showed that the T931D or S938D mutation prevented 14-3-3 protein binding, although the penultimate Thr(955) was still phosphorylated, indicating that Thr(955) phosphorylation is not sufficient for full enzyme activation. Expression of PMA2 in an N. tabacum cell line also showed an absence of 14-3-3 protein binding resulting from the T931D or S938D mutation. Together, the data show that activation of H(+)-ATPase by the binding of 14-3-3 proteins is negatively controlled by phosphorylation of two residues in the H(+)-ATPase 14-3-3 protein binding site. The data also show that phosphorylation of the penultimate Thr and 14-3-3 binding each contribute in part to H(+)-ATPase activation.
Collapse
Affiliation(s)
- Geoffrey Duby
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud, 5-15, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | |
Collapse
|
324
|
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1439-63. [PMID: 19181866 DOI: 10.1093/jxb/ern340] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stomatal guard cells are functionally specialized epidermal cells usually arranged in pairs surrounding a pore. Changes in ion fluxes, and more specifically osmolytes, within the guard cells drive opening/closing of the pore, allowing gas exchange while limiting water loss through evapo-transpiration. Adjustments of the pore aperture to optimize these conflicting needs are thus centrally important for land plants to survive, especially with the rise in CO(2) associated with global warming and increasing water scarcity this century. The basic biophysical events in modulating membrane transport have been gradually delineated over two decades. Genetics and molecular approaches in recent years have complemented and extended these earlier studies to identify major regulatory nodes. In Arabidopsis, the reference for guard cell genetics, stomatal opening driven by K(+) entry is mainly through KAT1 and KAT2, two voltage-gated K(+) inward-rectifying channels that are activated on hyperpolarization of the plasma membrane principally by the OST2 H(+)-ATPase (proton pump coupled to ATP hydrolysis). By contrast, stomatal closing is caused by K(+) efflux mainly through GORK, the outward-rectifying channel activated by membrane depolarization. The depolarization is most likely initiated by SLAC1, an anion channel distantly related to the dicarboxylate/malic acid transport protein found in fungi and bacteria. Beyond this established framework, there is also burgeoning evidence for the involvement of additional transporters, such as homologues to the multi-drug resistance proteins (or ABC transporters) as intimated by several pharmacological and reverse genetics studies. General inhibitors of protein kinases and protein phosphatases have been shown to profoundly affect guard cell membrane transport properties. Indeed, the first regulatory enzymes underpinning these transport processes revealed genetically were several protein phosphatases of the 2C class and the OST1 kinase, a member of the SnRK2 family. Taken together, these results are providing the first glimpses of an emerging signalling complex critical for modulating the stomatal aperture in response to environmental stimuli.
Collapse
Affiliation(s)
- Caroline Sirichandra
- Institut des Sciences du Végetal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
325
|
Chevalier D, Morris ER, Walker JC. 14-3-3 and FHA domains mediate phosphoprotein interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:67-91. [PMID: 19575580 DOI: 10.1146/annurev.arplant.59.032607.092844] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many aspects of plant growth and development require specific protein interactions to carry out biochemical and cellular functions. Several proteins mediate these interactions, two of which specifically recognize phosphoproteins: 14-3-3 proteins and proteins with FHA domains. These are the only phosphobinding domains identified in plants. Both domains are present in animals and plants, and are used by plant proteins to regulate metabolic, developmental, and signaling pathways. 14-3-3s regulate sugar metabolism, proton gradients, and control transcription factor localization. FHA domains are modular domains often found in multidomain proteins that are involved in signal transduction and plant development.
Collapse
Affiliation(s)
- David Chevalier
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
326
|
Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. THE NEW PHYTOLOGIST 2009; 183:1072-1084. [PMID: 19549134 DOI: 10.1111/j.1469-8137.2009.02908.x] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we have analysed the H(+)-ATPase-mediated extrusion of protons across the plasma membrane (PM) of rhizodermic cells, a process that is inducible by iron (Fe) deficiency and thought to serve in the mobilization of sparingly soluble Fe sources. The induction and function of Fe-responsive PM H(+)-ATPases in Arabidopsis roots was investigated by gene expression analysis and by using mutants defective in the expression or function of one of the isogenes. In addition, the expression of the most responsive isogenes was investigated in natural Arabidopsis accessions that have been selected for their in vivo proton extrusion activity. Our data suggest that the rhizosphere acidification in response to Fe deficiency is chiefly mediated by AHA2, while AHA1 functions as a housekeeping isoform. The aha7 knock-out mutant plants showed a reduced frequency of root hairs, suggesting an involvement of AHA7 in the differentiation of rhizodermic cells. Acidification capacity varied among Arabidopsis accessions and was associated with a high induction of AHA2 and IRT1, a high relative growth rate and a shoot-root ratio that was unaffected by the external Fe supply. An effective regulation of the Fe-responsive genes and a stable shoot-root ratio may represent important characteristics for the Fe uptake efficiency.
Collapse
Affiliation(s)
- Simonetta Santi
- Dipartimento di Scienze Agrarie e Ambientali, Universitá degli studi di Udine, Via delle Scienze 208, I-33100 Udine, Italy
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| |
Collapse
|
327
|
Oh SI, Park J, Yoon S, Kim Y, Park S, Ryu M, Nam MJ, Ok SH, Kim JK, Shin JS, Kim KN. The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5'-methylthioadenosine nucleosidase in a calcium-dependent manner. PLANT PHYSIOLOGY 2008; 148:1883-96. [PMID: 18945934 PMCID: PMC2593668 DOI: 10.1104/pp.108.130419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 10/16/2008] [Indexed: 05/17/2023]
Abstract
Calcineurin B-like (CBL) proteins represent a unique family of calcium sensors in plant cells. Sensing the calcium signals elicited by a variety of abiotic stresses, CBLs transmit the information to a group of serine/threonine protein kinases (CBL-interacting protein kinases [CIPKs]), which are currently known as the sole targets of the CBL family. Here, we report that the CBL3 member of this family has a novel interaction partner in addition to the CIPK proteins. Extensive yeast two-hybrid screenings with CBL3 as bait identified an interesting Arabidopsis (Arabidopsis thaliana) cDNA clone (named AtMTAN, for 5'-methylthioadenosine nucleosidase), which encodes a polypeptide similar to EcMTAN from Escherichia coli. Deletion analyses showed that CBL3 utilizes the different structural modules to interact with its distinct target proteins, CIPKs and AtMTAN. In vitro and in vivo analyses verified that CBL3 and AtMTAN physically associate only in the presence of Ca(2+). In addition, we empirically demonstrated that the AtMTAN protein indeed possesses the MTAN activity, which can be inhibited specifically by Ca(2+)-bound CBL3. Overall, these findings suggest that the CBL family members can relay the calcium signals in more diverse ways than previously thought. We also discuss a possible mechanism by which the CBL3-mediated calcium signaling regulates the biosynthesis of ethylene and polyamines, which are involved in plant growth and development as well as various stress responses.
Collapse
Affiliation(s)
- Seung-Ick Oh
- Department of Molecular Biology, Sejong University, Seoul 143-747, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Stulemeijer IJE, Joosten MHAJ. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2008; 9:545-60. [PMID: 18705867 PMCID: PMC6640405 DOI: 10.1111/j.1364-3703.2008.00468.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
329
|
Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. THE PLANT CELL 2008; 20:1346-62. [PMID: 18502848 PMCID: PMC2438452 DOI: 10.1105/tpc.108.058123] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/07/2008] [Accepted: 05/03/2008] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana calcineurin B-like proteins (CBLs) interact specifically with a group of CBL-interacting protein kinases (CIPKs). CBL/CIPK complexes phosphorylate target proteins at the plasma membrane. Here, we report that dual lipid modification is required for CBL1 function and for localization of this calcium sensor at the plasma membrane. First, myristoylation targets CBL1 to the endoplasmic reticulum. Second, S-acylation is crucial for endoplasmic reticulum-to-plasma membrane trafficking via a novel cellular targeting pathway that is insensitive to brefeldin A. We found that a 12-amino acid peptide of CBL1 is sufficient to mediate dual lipid modification and to confer plasma membrane targeting. Moreover, the lipid modification status of the calcium sensor moiety determines the cellular localization of preassembled CBL/CIPK complexes. Our findings demonstrate the importance of S-acylation for regulating the spatial accuracy of Ca2+-decoding proteins and suggest a novel mechanism that enables the functional specificity of calcium sensor/kinase complexes.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Botanik, Universität Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
330
|
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. An update on abscisic acid signaling in plants and more... MOLECULAR PLANT 2008; 1:198-217. [PMID: 19825533 DOI: 10.1093/mp/ssm022] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.
Collapse
Affiliation(s)
- Aleksandra Wasilewska
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, 1 Avenue de la Terrasse, Bât. 23, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
331
|
The Crystal Structure of Plant-Specific Calcium-Binding Protein AtCBL2 in Complex with the Regulatory Domain of AtCIPK14. J Mol Biol 2008; 377:246-57. [DOI: 10.1016/j.jmb.2008.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/30/2007] [Accepted: 01/02/2008] [Indexed: 11/23/2022]
|
332
|
Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. PLANTA 2008; 227:659-69. [PMID: 17968588 DOI: 10.1007/s00425-007-0648-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/08/2007] [Indexed: 05/12/2023]
Abstract
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.
Collapse
Affiliation(s)
- Jian Zhao
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
333
|
Duby G, Boutry M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch 2008; 457:645-55. [PMID: 18228034 DOI: 10.1007/s00424-008-0457-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/01/2022]
Abstract
Around 40 P-type ATPases have been identified in Arabidopsis and rice, for which the genomes are known. None seems to exchange sodium and potassium, as does the animal Na(+)/K(+)-ATPase. Instead, plants, together with fungi, possess a proton pumping ATPase (H(+)-ATPase), which couples ATP hydrolysis to proton transport out of the cell, and so establishes an electrochemical gradient across the plasma membrane, which is dissipated by secondary transporters using protons in symport or antiport, as sodium is used in animal cells. Additional functions, such as stomata opening, cell growth, and intracellular pH homeostasis, have been proposed. Crystallographic data and homology modeling suggest that the H(+)-ATPase has a broadly similar structure to the other P-type ATPases but has an extended C-terminal region, which is involved in enzyme regulation. Phosphorylation of the penultimate residue, a Thr, and the subsequent binding of regulatory 14-3-3 proteins result in the formation of a dodecamer (six H(+)-ATPase and six 14-3-3 molecules) and enzyme activation. This type of regulation is unique to the P-type ATPase family. However, the recent identification of additional phosphorylated residues suggests further regulatory features.
Collapse
Affiliation(s)
- Geoffrey Duby
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | | |
Collapse
|
334
|
Gévaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. PLANT PHYSIOLOGY 2007; 144:1763-76. [PMID: 17600134 PMCID: PMC1949876 DOI: 10.1104/pp.107.103762] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
The plasma membrane proton pump ATPase (H(+)-ATPase) plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cell expansion and salt tolerance. Its activity is regulated by a C-terminal autoinhibitory domain that can be displaced by phosphorylation and the binding of regulatory 14-3-3 proteins, resulting in an activated enzyme. To better understand the physiological consequence of this activation, we have analyzed transgenic tobacco (Nicotiana tabacum) plants expressing either wild-type plasma membrane H(+)-ATPase4 (wtPMA4) or a PMA4 mutant lacking the autoinhibitory domain (DeltaPMA4), generating a constitutively activated enzyme. Plants showing 4-fold higher expression of wtPMA4 than untransformed plants did not display any unusual phenotype and their leaf and root external acidification rates were not modified, while their in vitro H(+)-ATPase activity was markedly increased. This indicates that, in vivo, H(+)-ATPase overexpression is compensated by down-regulation of H(+)-ATPase activity. In contrast, plants that expressed DeltaPMA4 were characterized by a lower apoplastic and external root pH, abnormal leaf inclination, and twisted stems, suggesting alterations in cell expansion. This was confirmed by in vitro leaf extension and curling assays. These data therefore strongly support a direct role of H(+)-ATPase in plant development. The DeltaPMA4 plants also displayed increased salt tolerance during germination and seedling growth, supporting the hypothesis that H(+)-ATPase is involved in salt tolerance.
Collapse
Affiliation(s)
- Frédéric Gévaudant
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|