301
|
Trujillo DI, Silverstein KAT, Young ND. Nodule-specific PLAT domain proteins are expanded in the Medicago lineage and required for nodulation. THE NEW PHYTOLOGIST 2019; 222:1538-1550. [PMID: 30664233 DOI: 10.1111/nph.15697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage-specific expansions (LSEs) of nodulation-associated genes can be a strategy to discover candidate gene families. Using bioinformatic tools, we identified 13 LSEs of nodulation-related secreted protein families, each unique to either Glycine, Arachis or Medicago lineages. In the Medicago lineage, nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examined NPD function using CRISPR/Cas9 multiplex genome editing to create Medicago truncatula NPD knockout lines, targeting one to five NPD genes. Mutant lines with differing combinations of NPD gene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild-type control. Double- and triple-knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of a DHHC-type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function. By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule-specific PLAT domain proteins and confirmed that they play a role in successful nodule formation.
Collapse
Affiliation(s)
- Diana I Trujillo
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin A T Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
302
|
Chen E, Huang X, Tian Z, Wing RA, Han B. The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:639-665. [PMID: 31035826 DOI: 10.1146/annurev-arplant-050718-100320] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we review recent progress in genetic and genomic studies of the diversity of Oryza species. In recent years, unlocking the genetic diversity of Oryza species has provided insights into the genomics of rice domestication, heterosis, and complex traits. Genome sequencing and analysis of numerous wild rice (Oryza rufipogon) and Asian cultivated rice (Oryza sativa) accessions have enabled the identification of genome-wide signatures of rice domestication and the unlocking of the origin of Asian cultivated rice. Moreover, similar studies on genome variations of African rice (Oryza glaberrima) cultivars and their closely related wild progenitor Oryza barthii accessions have provided strong evidence to support a theory of independent domestication in African rice. Integrated genomic approaches have efficiently investigated many heterotic loci in hybrid rice underlying yield heterosis advantages and revealed the genomic architecture of rice heterosis. We conclude that in-depth unlocking of genetic variations among Oryza species will further enhance rice breeding.
Collapse
Affiliation(s)
- Erwang Chen
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA;
| | - Bin Han
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
| |
Collapse
|
303
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 687] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
304
|
Pandey PK, Quilichini TD, Vaid N, Gao P, Xiang D, Datla R. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Semin Cell Dev Biol 2019; 96:107-114. [PMID: 31022459 DOI: 10.1016/j.semcdb.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
The ability to create desirable gene variants through targeted changes offers tremendous opportunities for the advancement of basic and applied plant research. Gene editing technologies have opened new avenues to perform such precise gene modifications in diverse biological systems. These technologies use sequence-specific nucleases, such as homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR/Cas) complexes to enable targeted genetic manipulations. Among these, the CRISPR/Cas system has emerged as a broadly applicable and valued gene editing system for its ease of use and versatility. The adaptability of the CRISPR/Cas system has facilitated rapid and continuous innovative developments to the precision and applications of this technology, since its introduction less than a decade ago. Although developed in animal systems, the simple and elegant CRISPR/Cas gene editing technology has quickly been embraced by plant researchers. From early demonstration in model plants, the CRISPR/Cas system has been successfully adapted for various crop species and enabled targeting of agronomically important traits. Although the approach faces several efficiency and delivery related challenges, especially in recalcitrant crop species, continuous advances in the CRISPR/Cas system to address these limitations are being made. In this review, we discuss the CRISPR/Cas technology, its myriad applications and their prospects for crop improvement.
Collapse
Affiliation(s)
- Prashant K Pandey
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Neha Vaid
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark, Potsdam-Golm, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Peng Gao
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| |
Collapse
|
305
|
CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol Biol Rep 2019; 46:3557-3569. [PMID: 30941642 DOI: 10.1007/s11033-019-04761-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/14/2019] [Indexed: 01/26/2023]
Abstract
CRISPR technology has vividly increased its applications in last five years for genome editing in a wide range of organisms from bacteria to plants. It is mostly applied in the field of mammalian research. This emerging versatile tool can be utilized in crop improvement by targeting various traits to increase economic value and adaptability of the crop species under changing climate. In plants, Arabidopsis and rice are the most studied plant species in genome editing through CRISPR technology. Wheat is lagging behind in the utilization of CRISPR based genome modifications. The hexaploid, large genome size and the recalcitrant nature in terms of tissue culture are the major obstacles for CRISPR utilization in wheat. Recently, the IWGSC released the high quality of reference genome for wheat which will greatly accelerate the application of CRISPR-based genome engineering in wheat and helps to resolve the global issue of food security in coming decades. The exogenous DNA-free improved mutants with CRISPR technology having desired traits will increase the productivity under biotic and abiotic stress conditions. To address complex traits involving multigene, recently developed multiplex genome editing toolkits can be used. This is a first review of its kind in which the practical utilization and updates on CRISPR validation in wheat along with its future prospects for use of this technology in wheat improvement are comprehensively discussed. Thus, the compiled information will immensely benefit the researchers for utilization of CRISPR system in wheat improvement across the globe.
Collapse
|
306
|
Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA, Cai G, Qi Y, Zhang Y. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. PLANT CELL REPORTS 2019; 38:475-485. [PMID: 30159598 DOI: 10.1007/s00299-00018-02340-00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/24/2018] [Indexed: 05/19/2023]
Abstract
Significant yield increase has been achieved by simultaneous introduction of three trait-related QTLs in three rice varieties with multiplex editing by CRISPR-Cas9. Using traditional breeding approaches to develop new elite rice varieties with high yield and superior quality is challenging. It usually requires introduction of multiple trait-related quantitative trait loci (QTLs) into an elite background through multiple rounds of crossing and selection. CRISPR-Cas9-based multiplex editing of QTLs represents a new breeding strategy that is straightforward and cost effective. To test this approach, we simultaneously targeted three yield-related QTLs for editing in three elite rice varieties, namely J809, L237 and CNXJ. The chosen yield-related QTL genes are OsGS3, OsGW2 and OsGn1a, which have been identified to negatively regulate the grain size, width and weight, and number, respectively. Our approach rapidly generated all seven combinations of single, double and triple mutants for the target genes in elite backgrounds. Detailed analysis of these mutants revealed differential contributions of QTL mutations to yield performance such as grain length, width, number and 1000-grain weight. Overall, the contributions are additive, resulting in 68 and 30% yield per panicle increase in triple mutants of J809 and L237, respectively. Our data hence demonstrates a promising genome editing approach for rapid breeding of QTLs in elite crop varieties.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xuhui Xin
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yao He
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Hongqiao Chen
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qian Li
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xu Tang
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Zhaohui Zhong
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Kejun Deng
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xuelian Zheng
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Sayed Abdul Akher
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Guangze Cai
- Xichang University, Xichang, 615013, Sichuan, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| | - Yong Zhang
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
307
|
Huang TK, Puchta H. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. PLANT CELL REPORTS 2019; 38:443-453. [PMID: 30673818 DOI: 10.1007/s00299-019-02379-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/09/2019] [Indexed: 05/22/2023]
Abstract
We summarize recent progress of CRISPR/Cas9-mediated gene targeting in plants, provide recommendations for designing gene-targeting vectors and highlight the potential of new technologies applicable to plants. Gene targeting (GT) is a tool of urgent need for plant biotechnology and breeding. It is based on homologous recombination that is able to precisely introduce desired modifications within a target locus. However, its low efficiency in higher plants is a major barrier for its application. Using site-specific nucleases, such as the recent CRISPR/Cas system, GT has become applicable in plants, via the induction of double-strand breaks, although still at a too low efficiency for most practical applications in crops. Recently, a variety of promising new improvements regarding the efficiency of GT has been reported by several groups. It turns out that GT can be enhanced by cell-type-specific expression of Cas nucleases, by the use of self-amplified GT-vector DNA or by manipulation of DNA repair pathways. Here, we highlight the most recent progress of GT in plants. Moreover, we provide suggestions on how to use the technology efficiently, based on the mechanisms of DNA repair, and highlight several of the newest GT strategies in yeast or mammals that are potentially applicable to plants. Using the full potential of GT technology will definitely help us pave the way in enhancing crop yields and food safety for an ecologically friendly agriculture.
Collapse
Affiliation(s)
- Teng-Kuei Huang
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany.
| |
Collapse
|
308
|
Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA, Cai G, Qi Y, Zhang Y. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. PLANT CELL REPORTS 2019; 38:475-485. [PMID: 30159598 DOI: 10.1007/s00299-018-2340-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Significant yield increase has been achieved by simultaneous introduction of three trait-related QTLs in three rice varieties with multiplex editing by CRISPR-Cas9. Using traditional breeding approaches to develop new elite rice varieties with high yield and superior quality is challenging. It usually requires introduction of multiple trait-related quantitative trait loci (QTLs) into an elite background through multiple rounds of crossing and selection. CRISPR-Cas9-based multiplex editing of QTLs represents a new breeding strategy that is straightforward and cost effective. To test this approach, we simultaneously targeted three yield-related QTLs for editing in three elite rice varieties, namely J809, L237 and CNXJ. The chosen yield-related QTL genes are OsGS3, OsGW2 and OsGn1a, which have been identified to negatively regulate the grain size, width and weight, and number, respectively. Our approach rapidly generated all seven combinations of single, double and triple mutants for the target genes in elite backgrounds. Detailed analysis of these mutants revealed differential contributions of QTL mutations to yield performance such as grain length, width, number and 1000-grain weight. Overall, the contributions are additive, resulting in 68 and 30% yield per panicle increase in triple mutants of J809 and L237, respectively. Our data hence demonstrates a promising genome editing approach for rapid breeding of QTLs in elite crop varieties.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xuhui Xin
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yao He
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Hongqiao Chen
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qian Li
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xu Tang
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Zhaohui Zhong
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Kejun Deng
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xuelian Zheng
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Sayed Abdul Akher
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Guangze Cai
- Xichang University, Xichang, 615013, Sichuan, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| | - Yong Zhang
- Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
309
|
Khan MZ, Zaidi SSEA, Amin I, Mansoor S. A CRISPR Way for Fast-Forward Crop Domestication. TRENDS IN PLANT SCIENCE 2019; 24:293-296. [PMID: 30738789 DOI: 10.1016/j.tplants.2019.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Precision crop breeding, using genome editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR) systems to improve useful traits in crop plants, holds great potential for the future of agriculture. Using CRISPR-Cas9, recent studies have engineered domestication traits in wild-relative species of tomato crop for higher nutritive value and better adaptation to diverse stresses.
Collapse
Affiliation(s)
- Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; These authors contributed equally to this work
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Gembloux Agro-Bio Tech, TERRA Teaching and Research Center, University of Liège, Gembloux 5030, Belgium; These authors contributed equally to this work. https://twitter.com/Zaidi
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
310
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
311
|
Kotov DI, Mitchell JS, Pengo T, Ruedl C, Way SS, Langlois RA, Fife BT, Jenkins MK. TCR Affinity Biases Th Cell Differentiation by Regulating CD25, Eef1e1, and Gbp2. THE JOURNAL OF IMMUNOLOGY 2019; 202:2535-2545. [PMID: 30858199 DOI: 10.4049/jimmunol.1801609] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Naive CD4+ T lymphocytes differentiate into various Th cell subsets following TCR binding to microbial peptide:MHC class II (p:MHCII) complexes on dendritic cells (DCs). The affinity of the TCR interaction with p:MHCII plays a role in Th differentiation by mechanisms that are not completely understood. We found that low-affinity TCRs biased mouse naive T cells to become T follicular helper (Tfh) cells, whereas higher-affinity TCRs promoted the formation of Th1 or Th17 cells. We explored the basis for this phenomenon by focusing on IL-2R signaling, which is known to promote Th1 and suppress Tfh cell differentiation. SIRP⍺+ DCs produce abundant p:MHCII complexes and consume IL-2, whereas XCR1+ DCs weakly produce p:MHCII but do not consume IL-2. We found no evidence, however, of preferential interactions between Th1 cell-prone, high-affinity T cells and XCR1+ DCs or Tfh cell-prone, low-affinity T cells and SIRP⍺+ DCs postinfection with bacteria expressing the peptide of interest. Rather, high-affinity T cells sustained IL-2R expression longer and expressed two novel Th cell differentiation regulators, Eef1e1 and Gbp2, to a higher level than low-affinity T cells. These results suggest that TCR affinity does not influence Th cell differentiation by biasing T cell interactions with IL-2-consuming DCs, but instead, directly regulates genes in naive T cells that control the differentiation process.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,University Imaging Centers, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marc K Jenkins
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
312
|
Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6216304. [PMID: 30956982 PMCID: PMC6431451 DOI: 10.1155/2019/6216304] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
To feed the growing human population, global wheat yields should increase to approximately 5 tonnes per ha from the current 3.3 tonnes by 2050. To reach this goal, existing breeding practices must be complemented with new techniques built upon recent gains from wheat genome sequencing, and the accumulated knowledge of genetic determinants underlying the agricultural traits responsible for crop yield and quality. In this review we primarily focus on the tools and techniques available for accessing gene functions which lead to clear phenotypes in wheat. We provide a view of the development of wheat transformation techniques from a historical perspective, and summarize how techniques have been adapted to obtain gain-of-function phenotypes by gene overexpression, loss-of-function phenotypes by expressing antisense RNAs (RNA interference or RNAi), and most recently the manipulation of gene structure and expression using site-specific nucleases, such as CRISPR/Cas9, for genome editing. The review summarizes recent successes in the application of wheat genetic manipulation to increase yield, improve nutritional and health-promoting qualities in wheat, and enhance the crop's resistance to various biotic and abiotic stresses.
Collapse
|
313
|
Wright RC, Nemhauser J. Plant Synthetic Biology: Quantifying the "Known Unknowns" and Discovering the "Unknown Unknowns". PLANT PHYSIOLOGY 2019; 179:885-893. [PMID: 30630870 PMCID: PMC6393784 DOI: 10.1104/pp.18.01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 05/03/2023]
Abstract
Biosensors, advanced microscopy, and single- cell transcriptomics are advancing plant synthetic biology.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
314
|
Raitskin O, Schudoma C, West A, Patron NJ. Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: An expanded toolkit for precision genome engineering. PLoS One 2019; 14:e0211598. [PMID: 30811422 PMCID: PMC6392405 DOI: 10.1371/journal.pone.0211598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Molecular tools adapted from bacterial CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) systems for adaptive immunity have become widely used for plant genome engineering, both to investigate gene functions and to engineer desirable traits. A number of different Cas (CRISPR-associated) nucleases are now used but, as most studies performed to date have engineered different targets using a variety of plant species and molecular tools, it has been difficult to draw conclusions about the comparative performance of different nucleases. Due to the time and effort required to regenerate engineered plants, efficiency is critical. In addition, there have been several reports of mutations at sequences with less than perfect identity to the target. While in some plant species it is possible to remove these so-called 'off-targets' by backcrossing to a parental line, the specificity of genome engineering tools is important when targeting specific members of closely-related gene families, especially when recent paralogues are co-located in the genome and unlikely to segregate. Specificity is also important for species that take years to reach sexual maturity or that are clonally propagated. Here, we directly compare the efficiency and specificity of Cas nucleases from different bacterial species together with engineered variants of Cas9. We find that the nucleotide content of the target correlates with efficiency and that Cas9 from Staphylococcus aureus (SaCas9) is comparatively most efficient at inducing mutations. We also demonstrate that 'high-fidelity' variants of Cas9 can reduce off-target mutations in plants. We present these molecular tools as standardised DNA parts to facilitate their re-use.
Collapse
Affiliation(s)
- Oleg Raitskin
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Christian Schudoma
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Anthony West
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Nicola J. Patron
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| |
Collapse
|
315
|
Ordon J, Bressan M, Kretschmer C, Dall'Osto L, Marillonnet S, Bassi R, Stuttmann J. Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Funct Integr Genomics 2019; 20:151-162. [PMID: 30796544 DOI: 10.1007/s10142-019-00665-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~ 1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.
Collapse
Affiliation(s)
- Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Mauro Bressan
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany.
| |
Collapse
|
316
|
Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:110. [PMID: 30800139 PMCID: PMC6376315 DOI: 10.3389/fpls.2019.00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Dae Kwan Ko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
317
|
Zhu Z, Kang X, Lor VS, Weiss D, Olszewski N. Characterization of a semidominant dwarfing PROCERA allele identified in a screen for CRISPR/Cas9-induced suppressors of loss-of-function alleles. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:319-321. [PMID: 30338631 PMCID: PMC6335063 DOI: 10.1111/pbi.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/21/2018] [Accepted: 10/07/2018] [Indexed: 05/05/2023]
Affiliation(s)
- Zhiguo Zhu
- Department of Plant and Microbial Biology and the Microbial and Plant Genomics InstituteUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Laboratory of Molecular Biology of TomatoBioengineering CollegeChongqing UniversityChongqingChina
| | - Xiaojun Kang
- Department of Plant and Microbial Biology and the Microbial and Plant Genomics InstituteUniversity of MinnesotaSt. PaulMNUSA
| | - Vai S. Lor
- Department of Plant and Microbial Biology and the Microbial and Plant Genomics InstituteUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of AgronomyUniversity of Wisconsin1575 Linden DriveMadisonWI53706USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in AgricultureThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Neil Olszewski
- Department of Plant and Microbial Biology and the Microbial and Plant Genomics InstituteUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
318
|
Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG. Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One 2019; 14:e0204778. [PMID: 30625150 PMCID: PMC6326418 DOI: 10.1371/journal.pone.0204778] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial CRISPR systems have been widely adopted to create operator-specified site-specific nucleases. Such nuclease action commonly results in loss-of-function alleles, facilitating functional analysis of genes and gene families We conducted a systematic comparison of components and T-DNA architectures for CRISPR-mediated gene editing in Arabidopsis, testing multiple promoters, terminators, sgRNA backbones and Cas9 alleles. We identified a T-DNA architecture that usually results in stable (i.e. homozygous) mutations in the first generation after transformation. Notably, the transcription of sgRNA and Cas9 in head-to-head divergent orientation usually resulted in highly active lines. Our Arabidopsis data may prove useful for optimization of CRISPR methods in other plants.
Collapse
Affiliation(s)
- Baptiste Castel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Laurence Tomlinson
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Federica Locci
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ying Yang
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Center for Plant Science Innovation, Beadle Center, University of Lincoln-Nebraska, Lincoln, Nebraska, United States of America
| | | |
Collapse
|
319
|
Abstract
The CRISPR-Cas9 system has become a powerful and popular tool for genome editing due to its efficiency and simplicity. Multiplex genome editing is an important feature of the CRISPR-Cas9 system and requires simultaneous expression of multiple guide RNAs (gRNAs). Here we describe a general method to efficiently produce many gRNAs from a single gene transcript based on the endogenous tRNA-processing system. A step-by-step protocol is provided for the design and construction of the polycistronic tRNA-gRNA (PTG) gene. The PTG method has been demonstrated to be highly efficient for multiplex genome editing in various plant, animal, and microbial species.
Collapse
Affiliation(s)
- Kabin Xie
- National Key Laboratory for Crop Genetic Improvement and Plant Gene Research Center (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, Pennsylvania, PA, USA.
| |
Collapse
|
320
|
Xu J, Hua K, Lang Z. Genome editing for horticultural crop improvement. HORTICULTURE RESEARCH 2019; 6:113. [PMID: 31645967 PMCID: PMC6804600 DOI: 10.1038/s41438-019-0196-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
Horticultural crops provide humans with many valuable products. The improvement of the yield and quality of horticultural crops has been receiving increasing research attention. Given the development and advantages of genome-editing technologies, research that uses genome editing to improve horticultural crops has substantially increased in recent years. Here, we briefly review the different genome-editing systems used in horticultural research with a focus on clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome editing. We also summarize recent progress in the application of genome editing for horticultural crop improvement. The combination of rapidly advancing genome-editing technology with breeding will greatly increase horticultural crop production and quality.
Collapse
Affiliation(s)
- Jiemeng Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Kai Hua
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
321
|
Nadakuduti SS, Starker CG, Voytas DF, Buell CR, Douches DS. Genome Editing in Potato with CRISPR/Cas9. Methods Mol Biol 2019; 1917:183-201. [PMID: 30610637 DOI: 10.1007/978-1-4939-8991-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cultivated potato, Solanum tuberosum Group Tuberosum L. (2n = 4x = 48) is a heterozygous tetraploid crop that is clonally propagated, thereby resulting in identical genotypes. Due to the lack of sexual reproduction and its concomitant segregation of alleles, genetic engineering is an efficient way of introducing crop improvement traits in potato. In recent years, genome-editing via the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system for targeted genome modifications has emerged as the most powerful method due to the ease in designing and construction of gene-specific single guide RNA (sgRNA) vectors. These sgRNA vectors are easily reprogrammable to direct Streptococcus pyogenes Cas9 (SpCas9) to generate double stranded breaks (DSBs) in the target genomes that are then repaired by the cell via the error-prone non-homologous end-joining (NHEJ) pathway or by precise homologous recombination (HR) pathway. CRISPR/Cas9 technology has been successfully implemented in potato for targeted mutagenesis to generate knockout mutations (by means of NHEJ) as well as gene targeting to edit an endogenous gene (by HR). In this chapter, we describe procedures for designing sgRNAs, protocols to clone sgRNAs for CRISPR/Cas9 constructs to generate knockouts, design of donor repair templates and use geminivirus replicons (GVRs) to facilitate gene-editing by HR in potato. We also describe tissue culture procedures in potato for Agrobacterium-mediated transformation to generate gene-edited events along with their molecular characterization.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - David S Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
322
|
Hu N, Xian Z, Li N, Liu Y, Huang W, Yan F, Su D, Chen J, Li Z. Rapid and user-friendly open-source CRISPR/Cas9 system for single- or multi-site editing of tomato genome. HORTICULTURE RESEARCH 2019; 6:7. [PMID: 30603093 PMCID: PMC6312546 DOI: 10.1038/s41438-018-0082-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
CRISPR/Cas9-induced genome editing is a powerful tool for studying gene function in a variety of organisms, including plants. Using multi-sgRNAs to target one or more genes is helpful to improve the efficacy of gene editing and facilitate multi-gene editing. Here, we describe a CRISPR/Cas9 system which can be conveniently developed as a CRISPR kit. SgRNA expression cassettes can be rapidly generated by one-step PCR using our CRISPR kit. In our kit, there are two binary vectors pHNCas9 and pHNCas9HT. The binary vector pHNCas9 was constructed to allow to assemble up to eight sgRNA expression cassettes by one-step Golden Gate cloning. Another binary vector pHNCas9HT can be used to generate a large number of single target constructs by directly transforming ligation reactions products into A. tumefaciens without several procedures, such as PCR and plasmid extraction. The two binary vectors are designed according to the principles of standard BioBrick assembly to be used as an open-source tool. For example, we used BioBrick as a visual T-DNA tag. We also developed a primer design aid to complement the system. With this primer design aid, researchers can rapidly obtain primers and GC content, and sgRNA sequence of target site. Our CRISPR/Cas9 system can perform single- and multi-site editing and multiple gene editing to produce various types of mutations in tomato. This rapid and user-friendly CRISPR/Cas9 system for tomato can be potentially used for mutagenesis of important crop species for genetic improvement and is suitable for research into the function of genes.
Collapse
Affiliation(s)
- Nan Hu
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Zhiqiang Xian
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Ning Li
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Yudong Liu
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Wei Huang
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Fang Yan
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Deding Su
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Jingxuan Chen
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| |
Collapse
|
323
|
Ren Q, Zhong Z, Wang Y, You Q, Li Q, Yuan M, He Y, Qi C, Tang X, Zheng X, Zhang T, Qi Y, Zhang Y. Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. FRONTIERS IN PLANT SCIENCE 2019; 10:1173. [PMID: 31616455 PMCID: PMC6764340 DOI: 10.3389/fpls.2019.01173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
CRISPR-Cas systems can be expressed in multiple ways, with different capabilities regarding tissue-specific expression, efficiency, and expression levels. Thus far, three expression strategies have been demonstrated in plants: mixed dual promoter systems, dual Pol II promoter systems, and single transcript unit (STU) systems. We explored a fourth strategy to express CRISPR-Cas9 in the model and crop plant, rice, where a bidirectional promoter (BiP) is used to express Cas9 and single guide RNA (sgRNA) in opposite directions. We first tested an engineered BiP system based on double-mini 35S promoter and an Arabidopsis enhancer, which resulted in 20.7% and 52.9% genome editing efficiencies at two target sites in T0 stable transgenic rice plants. We further improved the BiP system drastically by using a rice endogenous BiP, OsBiP1. The endogenous BiP expression system had higher expression strength and led to 75.9-93.3% genome editing efficiencies in rice T0 generation, when the sgRNAs were processed by either tRNA or Csy4. We provided a proof-of-concept study of applying BiP systems for expressing two-component CRISPR-Cas9 genome editing reagents in rice. Our work could promote future research and adoption of BiP systems for CRISPR-Cas-based genome engineering in plants.
Collapse
Affiliation(s)
- Qiurong Ren
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qian Li
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingzhu Yuan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiyan Qi
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| |
Collapse
|
324
|
Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, Perkins S, Smith J, MacLean D, Olszewski NE, Jones JDG. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:132-140. [PMID: 29797460 PMCID: PMC6330640 DOI: 10.1111/pbi.12952] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 05/05/2023]
Abstract
The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes.
Collapse
Affiliation(s)
| | - Ying Yang
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Ryan Emenecker
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMNUSA
| | | | - Jodie Taylor
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Sara Perkins
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Justine Smith
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Dan MacLean
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Neil E. Olszewski
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
325
|
Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM. Genome Editing in Soybean with CRISPR/Cas9. Methods Mol Biol 2019; 1917:217-234. [PMID: 30610639 DOI: 10.1007/978-1-4939-8991-1_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CRISPR/Cas9 mediated genome editing technology has experienced rapid advances in recent years and has been applied to a wide variety of plant species, including soybean. Several platforms have been developed for designing and cloning of single CRISPR targets or multiple targets in a single destination vector. This chapter provides an updated working protocol for applying CRISPR/Cas9 technology to target a single gene or multiple genes simultaneously in soybean. We describe two platforms for cloning single CRISPR targets and multiplexing targets, respectively, and reagent delivery methodologies. The protocols address crucial limiting steps that can limit CRISPR editing in soybean hairy roots, composite plants, and tissue culture-based regenerated whole plants. To date, transgenic soybean plants with mutagenesis in up to three target genes have been obtained with this procedure.
Collapse
Affiliation(s)
- Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Nicole T Mihelich
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Jean-Michel Michno
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
326
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
327
|
Park S, Gilmour SJ, Grumet R, Thomashow MF. CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS One 2018; 13:e0207723. [PMID: 30517145 PMCID: PMC6281195 DOI: 10.1371/journal.pone.0207723] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 02/01/2023] Open
Abstract
Arabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes—CBF1, CBF2 and CBF3—encoding closely-related transcription factors that regulate the expression of more than 100 genes—the CBF regulon—that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT). Previous studies showed that the SW ecotype was more freezing tolerant than the IT ecotype and that the IT ecotype had a nonfunctional CBF2 gene. Here we present results establishing that the difference in CBF2 alleles contributes to the difference in freezing tolerance between the two ecotypes. However, other differences in the CBF pathway as well as CBF-independent pathways contribute the large majority of the difference in freezing tolerance between the two ecotypes. The results also provided evidence that most cold-induced CBF regulon genes in both the SW and IT ecotypes are coregulated by CBF-independent pathways. Additional analysis comparing our results with those published by others examining the Col-0 accession resulted in the identification of 44 CBF regulon genes that were conserved among the three accessions suggesting that they likely have important functions in life at low temperature. The comparison further supported the conclusion that the CBF pathway can account for a large portion of the increase in freezing tolerance that occurs with cold acclimation in a given accession, but that CBF-independent pathways can also make a major contribution.
Collapse
Affiliation(s)
- Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah J. Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael F. Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- MSU Plant Resilience Institute, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
328
|
Sonnewald U. Plant synthetic biology: One answer to global challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1124-1126. [PMID: 30468297 DOI: 10.1111/jipb.12750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Uwe Sonnewald
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| |
Collapse
|
329
|
Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1127-1153. [PMID: 30387552 DOI: 10.1111/jipb.12734] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 05/18/2023]
Abstract
Since the discovery that nucleases of the bacterial CRISPR (clustered regularly interspaced palindromic repeat)-associated (Cas) system can be used as easily programmable tools for genome engineering, their application massively transformed different areas of plant biology. In this review, we assess the current state of their use for crop breeding to incorporate attractive new agronomical traits into specific cultivars of various crop plants. This can be achieved by the use of Cas9/12 nucleases for double-strand break induction, resulting in mutations by non-homologous recombination. Strategies for performing such experiments - from the design of guide RNA to the use of different transformation technologies - are evaluated. Furthermore, we sum up recent developments regarding the use of nuclease-deficient Cas9/12 proteins, as DNA-binding moieties for targeting different kinds of enzyme activities to specific sites within the genome. Progress in base deamination, transcriptional induction and transcriptional repression, as well as in imaging in plants, is also discussed. As different Cas9/12 enzymes are at hand, the simultaneous application of various enzyme activities, to multiple genomic sites, is now in reach to redirect plant metabolism in a multifunctional manner and pave the way for a new level of plant synthetic biology.
Collapse
Affiliation(s)
- Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Janine Pietralla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
330
|
Parry G, Jose S. Separate product from process: framing the debate that surrounds the potential uptake of new breeding technologies. PHYSIOLOGIA PLANTARUM 2018; 164:372-377. [PMID: 29220093 DOI: 10.1111/ppl.12680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 05/17/2023]
Affiliation(s)
- Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sarah Jose
- Global Plant Council, London EC4M 9EE, UK
| |
Collapse
|
331
|
Pandiarajan R, Grover A. In vivo promoter engineering in plants: Are we ready? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:132-138. [PMID: 30466578 DOI: 10.1016/j.plantsci.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 05/27/2023]
Abstract
Engineering plant promoter sequence for optimal expression of a gene has been a long standing goal for plant scientists. In recent times, Sequence Specific Nucleases (SSNs) like CRISPR/Cas9 are enabling researchers to achieve this goal, in vivo in the genome. It is well known that SSNs have met with unprecedented success in rapid transgene free crop improvement largely by targeting the coding sequence. Here, we discuss the strategies being employed by plant scientists in targeting SSNs to non-coding promoter regions/Cis Regulatory Elements (CRE). We collectively refer all such endeavors as in vivo promoter engineering (IPE). We further classify the IPE efforts into CRE addition, CRE deletion/disruption, promoter swap/insertion and targeted promoter polymorphism. Till date, IPE has proven useful in altering plant architecture in tomato, developing resistance against Xanthomonas sp in rice and citrus, and engineering drought tolerance in maize. However it is quite challenging to achieve predictable changes in gene expression using IPE at this point. In future years, data generated from high throughput techniques to investigate non coding genome may immensely augment the efforts in this direction. As IPE does not involve addition of the transgene for modifying crop traits, it will be relatively more conducive to public acceptance in crop improvement programs.
Collapse
Affiliation(s)
- Ramakrishnan Pandiarajan
- Department of Plant Molecular Biology, South Campus, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, South Campus, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
332
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
333
|
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet‐Loedin I, Čermák T, Voytas DF, Choi I, Chadha‐Mohanty P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1918-1927. [PMID: 29604159 PMCID: PMC6181218 DOI: 10.1111/pbi.12927] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/27/2018] [Accepted: 03/18/2018] [Indexed: 05/03/2023]
Abstract
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Collapse
Affiliation(s)
- Anca Macovei
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Neah R. Sevilla
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Christian Cantos
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - Gilda B. Jonson
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Inez Slamet‐Loedin
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Tomáš Čermák
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Daniel F. Voytas
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Il‐Ryong Choi
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Prabhjit Chadha‐Mohanty
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| |
Collapse
|
334
|
Yamamoto T, Kashojiya S, Kamimura S, Kameyama T, Ariizumi T, Ezura H, Miura K. Application and development of genome editing technologies to the Solanaceae plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:37-46. [PMID: 29523384 DOI: 10.1016/j.plaphy.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 05/22/2023]
Abstract
Genome editing technology using artificial nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas9, can mutagenize the target sites of genes of interest. This technology has been successfully applied in several crops, including the Solanaceae plants, such as tomato, potato, tobacco, and petunia. Among the three nucleases, CRISPR-Cas9 is the best for breeding, crop improvement, and the functional analysis of genes of interest, because of its simplicity and high efficiency. Although the technology is useful for reverse genetics, its use in plants is limited due to a lack of regeneration protocols and sequence information. In this review, the present status of genome editing technology in Solanaceae plants is described, and techniques that may improve genome editing technologies are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Sachiko Kashojiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Saori Kamimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takato Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
335
|
Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol 2018; 36:nbt.4272. [PMID: 30272678 DOI: 10.1038/nbt.4272] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023]
Abstract
Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Tomáš Čermák
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Marcela Morato Notini
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Stefan Weinl
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
336
|
Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 2018; 36:nbt.4273. [PMID: 30272676 DOI: 10.1038/nbt.4273] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
Abstract
Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR-Cas9 editing of coding sequences, cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.
Collapse
Affiliation(s)
- Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinping Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Yu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiawan Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Dong
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cao Xu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
337
|
Poliner E, Farré EM, Benning C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. PLANT CELL REPORTS 2018; 37:1383-1399. [PMID: 29511798 DOI: 10.1007/s00299-018-2270-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 05/16/2023]
Abstract
Nannochloropsis is a genus of fast-growing microalgae that are regularly used for biotechnology applications. Nannochloropsis species have a high triacylglycerol content and their polar lipids are rich in the omega-3 long-chain polyunsaturated fatty acid, eicosapentaenoic acid. Placed in the heterokont lineage, the Nannochloropsis genus has a complex evolutionary history. Genome sequences are available for several species, and a number of transcriptomic datasets have been produced, making this genus a facile model for comparative genomics. There is a growing interest in Nannochloropsis species as models for the study of microalga lipid metabolism and as a chassis for synthetic biology. Recently, techniques for gene stacking, and targeted gene disruption and repression in the Nannochloropsis genus have been developed. These tools enable gene-specific, mechanistic studies and have already allowed the engineering of improved Nannochloropsis strains with superior growth, or greater bioproduction.
Collapse
Affiliation(s)
- Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
338
|
Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 2018. [PMID: 30272676 DOI: 10.1038/nbt4273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR-Cas9 editing of coding sequences, cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.
Collapse
Affiliation(s)
- Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinping Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Yu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiawan Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Dong
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cao Xu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
339
|
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. NATURE PLANTS 2018; 4:766-770. [PMID: 30287957 DOI: 10.1038/s41477-018-0259-x] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 05/21/2023]
Abstract
Genome editing holds great promise for increasing crop productivity, and there is particular interest in advancing breeding in orphan crops, which are often burdened by undesirable characteristics resembling wild relatives. We developed genomic resources and efficient transformation in the orphan Solanaceae crop 'groundcherry' (Physalis pruinosa) and used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) to mutate orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size, thereby improving these major productivity traits. Thus, translating knowledge from model crops enables rapid creation of targeted allelic diversity and novel breeding germplasm in distantly related orphan crops.
Collapse
Affiliation(s)
| | | | | | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
340
|
Shunmugam ASK, Kannan U, Jiang Y, Daba KA, Gorim LY. Physiology Based Approaches for Breeding of Next-Generation Food Legumes. PLANTS (BASEL, SWITZERLAND) 2018; 7:E72. [PMID: 30205575 PMCID: PMC6161296 DOI: 10.3390/plants7030072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023]
Abstract
Plant breeders and agricultural scientists of the 21st century are challenged to increase the yield potentials of crops to feed the growing world population. Climate change, the resultant stresses and increasing nutrient deficiencies are factors that are to be considered in designing modern plant breeding pipelines. Underutilized food legumes have the potential to address these issues and ensure food security in developing nations of the world. Food legumes in the past have drawn limited research funding and technological attention when compared to cereal crops. Physiological breeding strategies that were proven to be successful in cereals are to be adapted to legume crop improvement to realize their potential. The gap between breeders and physiologists should be narrowed by collaborative approaches to understand complex traits in legumes. This review discusses the potential of physiology based approaches in food legume breeding and how they impact yield gains and abiotic stress tolerance in these crops. The influence of roots and root system architectures in food legumes' breeding is also discussed. Molecular breeding to map the relevant physiological traits and the potentials of gene editing those traits are detailed. It is imperative to unlock the potentials of these underutilized crops to attain sustainable environmental and nutritional food security.
Collapse
Affiliation(s)
- Arun S K Shunmugam
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | - Udhaya Kannan
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, 107 Science Place, Saskatoon, SK S7N0X2, Canada.
| | - Yunfei Jiang
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G2W1, Canada.
| | - Ketema A Daba
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | - Linda Y Gorim
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| |
Collapse
|
341
|
Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR. Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:110-119. [PMID: 29907303 DOI: 10.1016/j.plantsci.2018.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
Since the dawn of modern biotechnology public and private enterprise have pursued the development of a new breed of drought tolerant crop products. After more than 20 years of research and investment only a few such products have reached the market. This is due to several technical and market constraints. The technical challenges include the difficulty in defining tractable single-gene trait development strategies, the logistics of moving traits from initial to commercial genetic backgrounds, and the disconnect between conditions in farmer's fields and controlled environments. Market constraints include the significant difficulty, and associated costs, in obtaining access to markets around the world. Advances in the biology of plant water management, including response to water deficit reveal new opportunities to improve crop response to water deficit and new genome-based tools promise to usher in the next era of crop improvement. As biotechnology looks to improve crop productivity under drought conditions, the environmental and food security advantages will influence public perception and shift the debate toward benefits rather than risks.
Collapse
Affiliation(s)
- Michael L Nuccio
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Matthew Paul
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Nicholas J Bate
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Jonathan Cohn
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Sean R Cutler
- Plant Cell Biology and Chemistry, Botany and Plant Sciences Chemistry Genomics Building, University of California Riverside, CA, 92521, USA.
| |
Collapse
|
342
|
Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu JK. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:626-631. [PMID: 29762900 DOI: 10.1111/jipb.12667] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
We developed simplified single transcriptional unit (SSTU) CRISPR systems for multiplex gene editing in rice using FnCpf1, LbCpf1 or Cas9, in which the nuclease and its crRNA array are co-expressed from a single Pol II promoter, without any additional processing machinery. Our SSTU systems are easy to construct and effective in mediating multiplex genome editing.
Collapse
Affiliation(s)
- Mugui Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yanfei Mao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zhidan Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiaoping Tao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
343
|
Soyars CL, Peterson BA, Burr CA, Nimchuk ZL. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes. PLANT & CELL PHYSIOLOGY 2018; 59:1608-1620. [PMID: 29912402 DOI: 10.1093/pcp/pcy079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/11/2018] [Indexed: 05/22/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system is a genome editing technology transforming the field of plant biology by virtue of the system's efficiency and specificity. The system has quickly evolved for many diverse applications including multiplex gene mutation, gene replacement and transcriptional control. As CRISPR/Cas9 is increasingly applied to plants, it is becoming clear that each component of the system can be modified to improve editing results. This review aims to highlight common considerations and options when conducting CRISPR/Cas9 experiments.
Collapse
Affiliation(s)
- Cara L Soyars
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Brenda A Peterson
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Christian A Burr
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Zachary L Nimchuk
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| |
Collapse
|
344
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
345
|
Vazquez-Vilar M, Orzaez D, Patron N. DNA assembly standards: Setting the low-level programming code for plant biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:33-41. [PMID: 29907307 DOI: 10.1016/j.plantsci.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
Synthetic Biology is defined as the application of engineering principles to biology. It aims to increase the speed, ease and predictability with which desirable changes and novel traits can be conferred to living cells. The initial steps in this process aim to simplify the encoding of new instructions in DNA by establishing low-level programming languages for biology. Together with advances in the laboratory that allow multiple DNA molecules to be efficiently assembled together into a desired order in a single step, this approach has simplified the design and assembly of multigene constructs and has even facilitated the automated construction of synthetic chromosomes. These advances and technologies are now being applied to plants, for which there are a growing number of software and wetware tools for the design, construction and delivery of DNA molecules and for the engineering of endogenous genes. Here we review the efforts of the past decade that have established synthetic biology workflows and tools for plants and discuss the constraints and bottlenecks of this emerging field.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain.
| | - Nicola Patron
- Department of Engineering Biology, The Earlham Institute, Norwich Research Park, Norfolk, NR1 7UZ, UK.
| |
Collapse
|
346
|
Pauwels L, De Clercq R, Goossens J, Iñigo S, Williams C, Ron M, Britt A, Goossens A. A Dual sgRNA Approach for Functional Genomics in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2018; 8:2603-2615. [PMID: 29884615 PMCID: PMC6071589 DOI: 10.1534/g3.118.200046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022]
Abstract
Reverse genetics uses loss-of-function alleles to interrogate gene function. The advent of CRISPR/Cas9-based gene editing now allows the generation of knock-out alleles for any gene and entire gene families. Even in the model plant Arabidopsis thaliana, gene editing is welcomed as T-DNA insertion lines do not always generate null alleles. Here, we show efficient generation of heritable mutations in Arabidopsis using CRISPR/Cas9 with a workload similar to generating overexpression lines. We obtain for several different genes Cas9 null-segregants with bi-allelic mutations in the T2 generation. While somatic mutations were predominantly generated by the canonical non-homologous end joining (cNHEJ) pathway, we observed inherited mutations that were the result of synthesis-dependent microhomology-mediated end joining (SD-MMEJ), a repair pathway linked to polymerase θ (PolQ). We also demonstrate that our workflow is compatible with a dual sgRNA approach in which a gene is targeted by two sgRNAs simultaneously. This paired nuclease method results in more reliable loss-of-function alleles that lack a large essential part of the gene. The ease of the CRISPR/Cas9 workflow should help in the eventual generation of true null alleles of every gene in the Arabidopsis genome, which will advance both basic and applied plant research.
Collapse
Affiliation(s)
- Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Rebecca De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jonas Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mily Ron
- UC Davis, Department of Plant Biology, Davis, CA 95616, US
| | - Anne Britt
- UC Davis, Department of Plant Biology, Davis, CA 95616, US
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
347
|
Lin C, Hsu C, Yang L, Lee L, Fu J, Cheng Q, Wu F, Hsiao HC, Zhang Y, Zhang R, Chang W, Yu C, Wang W, Liao L, Gelvin SB, Shih M. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1295-1310. [PMID: 29230929 PMCID: PMC5999315 DOI: 10.1111/pbi.12870] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 05/18/2023]
Abstract
Plant protoplasts are useful for assessing the efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis. We improved the process of protoplast isolation and transfection of several plant species. We also developed a method to isolate and regenerate single mutagenized Nicotianna tabacum protoplasts into mature plants. Following transfection of protoplasts with constructs encoding Cas9 and sgRNAs, target gene DNA could be amplified for further analysis to determine mutagenesis efficiency. We investigated N. tabacum protoplasts and derived regenerated plants for targeted mutagenesis of the phytoene desaturase (NtPDS) gene. Genotyping of albino regenerants indicated that all four NtPDS alleles were mutated in amphidiploid tobacco, and no Cas9 DNA could be detected in most regenerated plants.
Collapse
Affiliation(s)
- Choun‐Sea Lin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chen‐Tran Hsu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Ling‐Hung Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Lan‐Ying Lee
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Jin‐Yuan Fu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Qiao‐Wei Cheng
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Fu‐Hui Wu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Han C.‐W. Hsiao
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung CityTaiwan
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Ru Zhang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Wan‐Jung Chang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
- Present address:
Department of BiochemistryUniversity of PennsylvaniaPhiladelphiaPA19104‐6030USA
| | - Chen‐Ting Yu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wen Wang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Li‐Jen Liao
- Institute of Life ScienceNational Kaohsiung Normal UniversityKaohsiungTaiwan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Ming‐Che Shih
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
348
|
Collier R, Thomson JG, Thilmony R. A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:573-583. [PMID: 29901840 DOI: 10.1111/tpj.13992] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 05/20/2023]
Abstract
Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site-specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5-kbp T-DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T-DNA left border, and only 8% contained sequence from outside the T-DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high-quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.
Collapse
Affiliation(s)
- Ray Collier
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James G Thomson
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Roger Thilmony
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| |
Collapse
|
349
|
Curtin SJ, Xiong Y, Michno J, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1125-1137. [PMID: 29087011 PMCID: PMC5978873 DOI: 10.1111/pbi.12857] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 05/14/2023]
Abstract
Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.
Collapse
Affiliation(s)
- Shaun J. Curtin
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMNUSA
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Plant Science Research UnitAgricultural Research ServiceUnited States Department of AgricultureSt PaulMNUSA
| | - Yer Xiong
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Jean‐Michel Michno
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Bioinformatics and Computational Biology Graduate ProgramUniversity of MinnesotaMinneapolisMNUSA
| | | | - Adrian O. Stec
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Tomas Čermák
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Agricultural Research ServiceInari Agriculture, Inc.CambridgeMAUSA
| | - Colby Starker
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & DevelopmentCenter for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Andrew L. Eamens
- School of Environmental and Life SciencesThe University of NewcastleCallaghanNew South WalesAustralia
| | - Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
- Bioinformatics and Computational Biology Graduate ProgramUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
350
|
D'Ambrosio C, Stigliani AL, Giorio G. CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Res 2018; 27:367-378. [PMID: 29797189 DOI: 10.1007/s11248-018-0079-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 technology is rapidly spreading as genome editing system in crop breeding. The efficacy of CRISPR/Cas9 in tomato was tested on Psy1 and CrtR-b2, two key genes of carotenoid biosynthesis. Carotenoids are plant secondary metabolites that must be present in the diet of higher animals because they exert irreplaceable functions in important physiological processes. Psy1 and CrtR-b2 were chosen because their impairment is easily detectable as a change of fruit or flower color. Two CRISPR/Cas9 constructs were designed to target neighboring sequences on the first exon of each gene. Thirty-four out of forty-nine (69%) transformed plants showed the expected loss-of-function phenotypes due to the editing of both alleles of a locus. However, by including the seven plants edited only at one of the two homologs and showing a normal phenotype, the editing rate reaches the 84%. Although none chimeric phenotype was observed, the cloning of target region amplified fragments revealed that in the 40% of analyzed DNA samples were present more than two alleles. As concerning the type of mutation, it was possible to identify 34 new different alleles across the four transformation experiments. The sequence characterization of the CRISPR/Cas9-induced mutations showed that the most frequent repair errors were the insertion and the deletion of one base. The results of this study prove that the CRISPRCas9 system can be an efficient and quick method for the generation of useful mutations in tomato to be implemented in breeding programs.
Collapse
Affiliation(s)
- Caterina D'Ambrosio
- Metapontum Agrobios Research Centre, Agenzia Lucana per lo Sviluppo e l'Innovazione in Agricoltura, SS Jonica 106, km 448.2, 75012, Metaponto, Italy.
| | - Adriana Lucia Stigliani
- Metapontum Agrobios Research Centre, Agenzia Lucana per lo Sviluppo e l'Innovazione in Agricoltura, SS Jonica 106, km 448.2, 75012, Metaponto, Italy
| | - Giovanni Giorio
- Metapontum Agrobios Research Centre, Agenzia Lucana per lo Sviluppo e l'Innovazione in Agricoltura, SS Jonica 106, km 448.2, 75012, Metaponto, Italy
| |
Collapse
|