301
|
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:205-27. [PMID: 16078883 DOI: 10.1146/annurev.phyto.43.040204.135923] [Citation(s) in RCA: 2398] [Impact Index Per Article: 119.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
Collapse
Affiliation(s)
- Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
302
|
Bostock RM. Signal crosstalk and induced resistance: straddling the line between cost and benefit. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:545-80. [PMID: 16078895 DOI: 10.1146/annurev.phyto.41.052002.095505] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review discusses recent progress in our understanding of signaling in induced plant resistance and susceptibility to pathogens and insect herbivores, with a focus on the connections and crosstalk among phytohormone signaling networks that regulate responses to these and other stresses. Multiple stresses, often simultaneous, reduce growth and yield in plants. However, prior challenge by a pathogen or insect herbivore also can induce resistance to subsequent challenge. This resistance, or failure of susceptibility, must be orchestrated within a larger physiological context that is strongly influenced by other biotic agents and by abiotic stresses such as inadequate light, temperature extremes, drought, nutrient limitation, and soil salinity. Continued research in this area is predicated on the notion that effective utilization of induced resistance in crop protection will require a functional understanding of the physiological consequences of the "induced" state of the plant, coupled with the knowledge of the specificity and compatibility of the signaling systems leading to this state. This information may guide related strategies to improve crop performance in suboptimal environments, and define the limits of induced resistance in certain agricultural contexts.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, California 95616, USA.
| |
Collapse
|
303
|
Murray SL, Adams N, Kliebenstein DJ, Loake GJ, Denby KJ. A constitutive PR-1::luciferase expression screen identifies Arabidopsis mutants with differential disease resistance to both biotrophic and necrotrophic pathogens. MOLECULAR PLANT PATHOLOGY 2005; 6:31-41. [PMID: 20565636 DOI: 10.1111/j.1364-3703.2004.00261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.
Collapse
Affiliation(s)
- Shane L Murray
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | | | | | | | | |
Collapse
|
304
|
Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:304-18. [PMID: 15634206 DOI: 10.1111/j.1365-313x.2004.02296.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains six NPR1-related genes. Given the pivotal role played by NPR1 in controlling salicylic acid (SA)-mediated gene expression and disease resistance, functional characterization of other family members appears to be justified. Reverse genetics was used to analyze the role of one NPR1-like gene, which we called NPR4. The NPR4 protein shares 36% identity with NPR1 and interacts with the same spectrum of TGA transcription factors in yeast two-hybrid assays. Plants with T-DNA insertions in NPR4 are more susceptible to the virulent bacterial pathogen Pseudomonas syringe pv. tomato DC3000. This phenotype is complemented by expression of the wild type NPR4 coding region. As determined by the parasite reproduction, the npr4-1 mutant is more susceptible to the fungal pathogen Erysiphe cichoracearum, but does not differ markedly from wild type in its interaction with virulent and avirulent strains of the oomycete Peronospora parasitica. In leaves of wild-type plants, NPR4 mRNA levels increase following pathogen challenge or SA treatment, and decrease rapidly following methyl jasmonic acid (MeJA) treatment. Transcripts of the pathogenesis-related (PR) genes PR-1, PR-2, and PR-5 are only marginally reduced in the npr4-1 mutant following pathogen challenge or SA treatment. This reduction of PR gene expression is more pronounced when leaves are challenged with the bacterial pathogen following SA treatment. Expression of the jasmonic acid-dependent pathway marker gene PDF1.2 is compromised in npr4-1 leaves following application of MeJA or a combination of SA and MeJA. These results indicate that NPR4 is required for basal defense against pathogens, and that it may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways.
Collapse
Affiliation(s)
- Guosheng Liu
- National Research Council, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
305
|
Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:633-46. [PMID: 15546348 DOI: 10.1111/j.1365-313x.2004.02236.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.
Collapse
Affiliation(s)
- Laurent Zimmerli
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
306
|
Song JT, Lu H, McDowell JM, Greenberg JT. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:200-12. [PMID: 15447647 DOI: 10.1111/j.1365-313x.2004.02200.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana agd2-like defense response protein1 (ald1) mutant was previously found to be hypersusceptible to the virulent bacterial pathogen Pseudomonas syringae and had reduced accumulation of the defense signal salicylic acid (SA). ALD1 was shown to possess aminotransferase activity in vitro, suggesting it generates an amino acid-derived defense signal. We now find ALD1 to be a key defense component that acts in multiple contexts and partially requires the PHYTOALEXIN DEFICIENT4 (PAD4) defense regulatory gene for its expression in response to infection. ald1 plants have increased susceptibility to avirulent P. syringae strains, are unable to activate systemic acquired resistance and are compromised for resistance to the oomycete pathogen Peronospora parasitica in mutants with constitutively active defenses. ALD1 and PAD4 can act additively to control SA, PATHOGENESIS RELATED GENE1 (PR1) transcript and camalexin (an antimicrobial metabolite) accumulation as well as disease resistance. Finally, ALD1 and PAD4 can mutually affect each other's expression in a constitutive defense mutant, suggesting that these two genes can act in a signal amplification loop.
Collapse
Affiliation(s)
- Jong Tae Song
- Department of Molecular Genetics and Cell Biology, Erman Biology Center, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
307
|
Laird J, Armengaud P, Giuntini P, Laval V, Milner JJ. Inappropriate annotation of a key defence marker in Arabidopsis: will the real PR-1 please stand up? PLANTA 2004; 219:1089-1092. [PMID: 15293050 DOI: 10.1007/s00425-004-1355-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/02/2004] [Indexed: 05/24/2023]
Abstract
PR-1 has been extensively used as a marker for salicylic acid (SA)-mediated defence and systemic and local acquired resistance. The Arabidopsis Genome Project annotates At2g19990 as PR-1. This gene is also identified as PR-1 in two "full genome" Arabidopsis microarrays, and TAIR cites approximately 60 articles to describe its patterns of expression. However, most of these citations are incorrect; the probes used were not At2g19990, but a homologous gene At2g14610, which is annotated as "PR-1-like". Because of the potential for confusion, we analyzed the expression of both genes in Arabidopsis thaliana (L.) Heynh. At2g14610 (PR-1-like) showed the archetypal patterns of SA-responsive expression: mRNA levels increased following SA-treatment, inoculation with an avirulent (but not a virulent) strain of Pseudomonas syringae, and in wild-type (but not NahG) Arabidopsis infected with cauliflower mosaic virus (CaMV). In cpr5 mutants it was expressed constitutively. In contrast, expression of At2g19990 (annotated as PR-1) was detectable in neither SA-treated Col-0 nor in cpr5. Infection by virulent and avirulent isolates of P. syringae up-regulated expression, but to a similar level, and infection by CaMV induced a modest increase in expression in both the wild type and NahG. At2g19990, although pathogen responsive, does not show the SA-dependent patterns of expression expected from a member of the PR-1 regulon, and its annotation as " PR-1" is inappropriate. The annotations should identify At2g14610 as the authentic PR-1.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
308
|
Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. PHYTOPATHOLOGY 2004; 94:1048-55. [PMID: 18943792 DOI: 10.1094/phyto.2004.94.10.1048] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT Harpin(Xoo), encoded by the hpaG(Xoo) gene of Xanthomonas oryzae pv. oryzae, is a member of the harpin group of proteins that induce pathogen resistance and hypersensitive cell death (HCD) in plants. We elaborated whether both processes are correlated in hpaG(Xoo)-expressing tobacco (HARTOB) plants, which produced harpin(Xoo) intracellularly. Resistance to fungal, bacterial, and viral pathogens increased in HARTOB, in correlation with the expression of hpaG(Xoo), the gene NPR1 that regulates several resistance pathways, and defense genes GST1, Chia5, PR-1a, and PR-1b that are mediated by different signals. However, reactive oxygen intermediate burst, the expression of HCD marker genes hsr203 and hin1, and cell death did not occur spontaneously in HARTOB, though they did in untransformed and HARTOB plants treated exogenously with harpin(Xoo). Thus, the transgenic expression of harpin(Xoo) confers nonspecific pathogen defense in the absence of HCD.
Collapse
|
309
|
Nickstadt A, Thomma BPHJ, Feussner I, Kangasjärvi J, Zeier J, Loeffler C, Scheel D, Berger S. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. MOLECULAR PLANT PATHOLOGY 2004; 5:425-34. [PMID: 20565618 DOI: 10.1111/j.1364-3703.2004.00242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SUMMARY Jasmonic acid and related oxylipin compounds are plant signalling molecules that are involved in the response to pathogens, insects, wounding and ozone. To explore further the role of jasmonates in stress signal transduction, the response of two jasmonate-signalling mutants, jin1 and jin4, to pathogens and ozone was analysed in this study. Upon treatment with the biotrophic bacterial pathogen Pseudomonas syringae, endogenous jasmonate levels increased in jin1 and jin4 similar to wild-type, demonstrating that these mutants are not defective in jasmonate biosynthesis. Jin1 but not jin4 is more resistant to P. syringae and this higher resistance is accompanied by higher levels of salicylic acid. Jin1 is also more resistant to the necrotrophic fungal pathogen Botrytis cinerea and shows wild-type sensitivity to ozone whereas jin4 is more susceptible to B. cinerea and ozone. These results indicate that the mutations in jin1 and jin4 affect different branches of the jasmonate signalling pathway. Additionally, in this combination of phenotypes, jin1 is unique among all other jasmonate-related mutants described thus far. These data also provide support for a crosstalk between the jasmonate and salicylate pathways.
Collapse
Affiliation(s)
- Anja Nickstadt
- Institut für Pflanzenbiochemie, Weinberg 3, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Lorrain S, Lin B, Auriac MC, Kroj T, Saindrenan P, Nicole M, Balagué C, Roby D. Vascular associated death1, a novel GRAM domain-containing protein, is a regulator of cell death and defense responses in vascular tissues. THE PLANT CELL 2004; 16:2217-32. [PMID: 15269331 PMCID: PMC519209 DOI: 10.1105/tpc.104.022038] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/11/2004] [Indexed: 05/18/2023]
Abstract
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.
Collapse
Affiliation(s)
- Séverine Lorrain
- Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594, Boîte Postale 27, 31326 Castanet-Tolosan, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Sekine KT, Nandi A, Ishihara T, Hase S, Ikegami M, Shah J, Takahashi H. Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:623-32. [PMID: 15195945 DOI: 10.1094/mpmi.2004.17.6.623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis thaliana SSI2 gene encodes a plastid-localized stearoyl-ACP desaturase. The recessive ssi2 mutant allele confers constitutive accumulation of the pathogenesis-related-1 (PR-1) gene transcript and salicylic acid (SA), and enhanced resistance to bacterial and oomycete pathogens. In addition, the ssi2 mutant is a dwarf and spontaneously develops lesions containing dead cells. Here, we show that the ssi2 mutant also confers enhanced resistance to Cucumber mosaic virus (CMV). Compared with the wild-type plant, viral multiplication and systemic spread were diminished in the ssi2 mutant plant. However, unlike the ssi2-conferred resistance to bacterial and oomycete pathogens, the ssi2-conferred enhanced resistance to CMV was retained in the SA-deficient ssi2 nahG plant. In addition, SA application was not effective in limiting CMV multiplication and systemic spread in the CMV-susceptible wild-type plant. The acd1, acd2, and cpr5 mutants which, like the ssi2 mutant, accumulate elevated SA levels, constitutively express the PR-1 gene, spontaneously develop lesions containing dead cells, and are dwarfs, are, however, fully susceptible to CMV. Our results suggest that dwarfing, cell death, and constitutive activation of SA signaling are not important for the ssi2-conferred enhanced resistance to CMV. However, the sfd1 and sfd4 mutations, which affect lipid metabolism, suppress the ssi2-conferred enhanced resistance to CMV, thus implicating a lipid or lipids in the ssi2-conferred resistance to CMV. Interestingly, the ssi2-conferred resistance to CMV was compromised in the ssi2 eds5 plant, suggesting the involvement of an SA-independent, EDS5-dependent mechanism in the ssi2-conferred resistance to CMV.
Collapse
Affiliation(s)
- Ken-Taro Sekine
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
312
|
Scott IM, Clarke SM, Wood JE, Mur LAJ. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1040-9. [PMID: 15173571 PMCID: PMC514138 DOI: 10.1104/pp.104.041293] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/09/2004] [Accepted: 03/09/2004] [Indexed: 05/17/2023]
Abstract
The growth of Arabidopsis plants in chilling conditions could be related to their levels of salicylic acid (SA). Plants with the SA hydroxylase NahG transgene grew at similar rates to Col-0 wild types at 23 degrees C, and growth of both genotypes was slowed by transfer to 5 degrees C. However, at 5 degrees C, NahG plants displayed relative growth rates about one-third greater than Col-0, so that by 2 months NahG plants were typically 2.7-fold larger. This resulted primarily from greater cell expansion in NahG rosette leaves. Specific leaf areas and leaf area ratios remained similar in both genotypes. Net assimilation rates were similar in both genotypes at 23 degrees C, but higher in NahG at 5 degrees C. Chlorophyll fluorescence measurements revealed no PSII photodamage in chilled leaves of either genotype. Col-0 shoots at 5 degrees C accumulated SA, particularly in glucosylated form. SA in NahG shoots showed similar tendencies at 5 degrees C, but at greatly depleted levels. Catechol was not detected as a metabolite of the NahG transgene product. We also examined growth and SA levels in SA signaling and metabolism mutants at 5 degrees C. The partially SA-insensitive npr1 mutant displayed growth intermediate between NahG and Col-0, while the SA-deficient eds5 mutant behaved like NahG. In contrast, the cpr1 mutant at 5 degrees C accumulated very high levels of SA and its growth was much more inhibited than wild type. At both temperatures, cpr1 was the only SA-responsive genotype in which oxidative damage (measured as thiobarbituric acid-reactive substances) was significantly different from wild type.
Collapse
Affiliation(s)
- Ian M Scott
- Institute of Biological Sciences, University of Wales, Aberystwyth, SY23 3DA, United Kingdom.
| | | | | | | |
Collapse
|
313
|
Clarke SM, Mur LAJ, Wood JE, Scott IM. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:432-47. [PMID: 15086804 DOI: 10.1111/j.1365-313x.2004.02054.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.
Collapse
Affiliation(s)
- Shannon M Clarke
- Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA, UK
| | | | | | | |
Collapse
|
314
|
Kachroo A, Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:5152-7. [PMID: 15044700 PMCID: PMC387389 DOI: 10.1073/pnas.0401315101] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stearoyl-acyl-carrier-protein-desaturase-mediated conversion of stearic acid (18:0) to oleic acid (18:1) is a key step, which regulates levels of unsaturated fatty acids in cells. We previously showed that stearoyl-acyl-carrier-protein-desaturase mutants ssi2/fab2 carrying a loss-of-function mutation in the plastidial glycerol-3-phosphate (G3P) acyltransferase (act1) have elevated 18:1 levels and are restored in their altered defense signaling. Because G3P is required for the acylation of 18:1 by G3P acyltransferase, it was predicted that reduction of G3P levels should increase 18:1 levels and thereby revert ssi2-triggered phenotypes. Here we show that a mutation in G3P dehydrogenase restores both salicylic acid- and jasmonic acid-mediated phenotypes of ssi2 plants. The G3P dehydrogenase gene was identified by map-based cloning of the ssi2 suppressor mutant rdc8 (gly1-3) and confirmed by epistatic analysis of ssi2 with gly1-1. Restoration of ssi2-triggered phenotypes by the gly1-3 mutation was age-dependent and correlated with the levels of 18:1. Regeneration of G3P pools by glycerol application in ssi2 and ssi2 gly1-3 plants caused a marked reduction in the 18:1 levels, which rendered these plants hypersensitive to glycerol. This hypersensitivity in ssi2 was rescued by the act1 mutation. Furthermore, overexpression of the ACT1 gene resulted in enhanced sensitivity to glycerol. Glycerol application also lowered the 18:1 content in SSI2 plants and converted these into ssi2-mimics. Our results show that 18:1 levels in plastids are regulated by means of acylation with G3P, and a balance between G3P and 18:1 is critical for the regulation of salicylic acid- and jasmonic acid-mediated signaling pathways.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
315
|
He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:589-602. [PMID: 14756769 DOI: 10.1111/j.1365-313x.2003.01986.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gram-negative bacteria use a variety of virulence factors including phytotoxins, exopolysaccharides, effectors secreted by the type III secretion system, and cell-wall-degrading enzymes to promote parasitism in plants. However, little is known about how these virulence factors alter plant cellular responses to promote disease. In this study, we show that virulent Pseudomonas syringae strains activate the transcription of an Arabidopsis ethylene response factor (ERF) gene, RAP2.6, in a coronatine insensitive 1 (COI1)-dependent manner. A highly sensitive RAP2.6 promoter-firefly luciferase (RAP2.6-LUC) reporter line was developed to monitor activities of various bacterial virulence genes. Analyses of P. syringae pv. tomato DC3000 mutants indicated that both type III secretion system and the phytotoxin coronatine are required for RAP2.6 induction. We show that at least five individual type III effectors, avirulence B (AvrB), AvrRpt2, AvrPphB, HopPtoK, and AvrPphEPto, contributed to RAP2.6 induction. Gene-for-gene recognition was not involved in RAP2.6 induction because plants lacking RPM1 and RPS2 responded normally to AvrB and AvrRpt2 in RAP2.6 expression. Interestingly, the role of coronatine in RAP2.6 induction can be partially substituted by the addition of avrB in DC3000, suggesting that AvrB may mimic coronatine. These results suggest that P. syringae type III effectors and coronatine act by augmenting a COI1-dependent pathway to promote parasitism.
Collapse
Affiliation(s)
- Ping He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Chen Z, Kloek AP, Cuzick A, Moeder W, Tang D, Innes RW, Klessig DF, McDowell JM, Kunkel BN. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:494-504. [PMID: 14756766 DOI: 10.1111/j.1365-313x.2003.01984.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Kuhn E, Schaller A. DNA microarrays: methodology, data evaluation and application in the analysis of plant defense signaling. GENETIC ENGINEERING 2004; 26:49-84. [PMID: 15387293 DOI: 10.1007/978-0-306-48573-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- E Kuhn
- University of Hohenheim, Institute of Plant Physiology and Biotechnology (260), D-70593 Stuttgart, Germany
| | | |
Collapse
|
318
|
Métraux JP, Durner J. The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
319
|
Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P. Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. THE PLANT CELL 2003; 15:2952-65. [PMID: 14615603 PMCID: PMC282837 DOI: 10.1105/tpc.017301] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 10/06/2003] [Indexed: 05/18/2023]
Abstract
A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl-acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)-responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES-derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum-localized omega6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane-localized omega6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit microscopic cell death and express the PR-1 gene constitutively. In addition, these plants are unable to induce the expression of PDF1.2 in response to the exogenous application of JA. Because the act1 mutation rescues all of these phenotypes in ssi2 fad6 act1 triple-mutant plants, act1-mediated reversion may be mediated largely by an increase in the free 18:1 content within the chloroplasts. The reversion of JA responsiveness in ssi2 act1 plants is abolished in the ssi2 act1 coi1 triple-mutant background, suggesting that both JA- and act1-generated signals are required for the expression of the JA-inducible PDF1.2 gene. Our conclusion that FA signaling in plastids plays an essential role in the regulation of SSI2-mediated defense signaling is further substantiated by the fact that overexpression of the N-terminal-deleted SSI2, which lacks the putative plastid-localizing transit peptide, is unable to rescue ssi2-triggered phenotypes, as opposed to overexpression of the full-length protein.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | |
Collapse
|
320
|
Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. PLANT PHYSIOLOGY 2003. [PMID: 14551332 DOI: 10.1104/pp.103.027086.in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.
Collapse
Affiliation(s)
- M Brian Traw
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
321
|
Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1022-9. [PMID: 14601670 DOI: 10.1094/mpmi.2003.16.11.1022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | | | |
Collapse
|
322
|
Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1272-84. [PMID: 14526118 PMCID: PMC281622 DOI: 10.1104/pp.103.024182] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.
Collapse
Affiliation(s)
- Emma J Campbell
- Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1367-75. [PMID: 14551332 PMCID: PMC281631 DOI: 10.1104/pp.103.027086] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/10/2003] [Accepted: 08/14/2003] [Indexed: 05/17/2023]
Abstract
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.
Collapse
Affiliation(s)
- M Brian Traw
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
324
|
Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. THE PLANT CELL 2003; 15:2408-20. [PMID: 14507999 PMCID: PMC197305 DOI: 10.1105/tpc.015412] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 05/18/2023]
Abstract
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
325
|
Chen K, Du L, Chen Z. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. PLANT MOLECULAR BIOLOGY 2003; 53:61-74. [PMID: 14756307 DOI: 10.1023/b:plan.0000009265.72567.58] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the search for potential target genes of WRKY DNA-binding transcription factors, we have previously identified four pathogen-induced Arabidopsis genes (CRK5, CRK6, CRK10 and CRK11) encoding receptor-like protein kinases (RLKs) containing novel cysteine-rich repeats in their extracellular domains. In the present study, we transformed Arabidopsis plants with the RLK genes under control of the constitutive CaMV 35S promoter or a steroid-inducible Ga14 promoter. Expression of CRK5, but not the three other RLK genes, resulted in significant alterations in defense responses and leaf growth in transgenic plants. In transgenic plants harboring the 35S::CRK5 construct, significantly elevated and constitutive expression of CRK5 correlated with enhanced leaf growth and increased resistance to the bacterial pathogen Pseudomonas syringae. The enhanced disease resistance in the transgenic plants was associated with more rapidly induced expression of the PR1 gene after pathogen infection. In transgenic plants transformed with CRK5 under control of the steroid-inducible promoter, expression of the transgene was induced at relatively high levels after the steroid application and this induced expression of CRK5 triggered hypersensitive response-like cell death. Induced CRK5 expression also activated cell death in the npr1, ndr1 and eds1 mutants and in the transgenic nahG plants that fail to accumulate salicylic acid. Thus, the novel RLK is capable of activating multiple distinct defense responses depending on the manner and/or the levels of its over-expression in transgenic plants.
Collapse
Affiliation(s)
- Kegui Chen
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
326
|
Grant JJ, Chini A, Basu D, Loake GJ. Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:669-80. [PMID: 12906111 DOI: 10.1094/mpmi.2003.16.8.669] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A transgenic Arabidopsis line containing a chimeric PR-1::luciferase (LUC) reporter gene was subjected to mutagenesis with activation tags. Screening of lines via high-throughput LUC imaging identified a number of dominant Arabidopsis mutants that exhibited enhanced PR-1 gene expression. Here, we report the characterization of one of these mutants, designated activated disease resistance (adr) 1. This line showed constitutive expression of a number of key defense marker genes and accumulated salicylic acid but not ethylene or jasmonic acid. Furthermore, adr1 plants exhibited resistance against the biotrophic pathogens Peronospora parasitica and Erysiphe cichoracearum but not the necrotrophic fungus Botrytis cinerea. Analysis of a series of adr1 double mutants suggested that adr1-mediated resistance against P. parasitica was salicylic acid (SA)-dependent, while resistance against E. cichoracearum was both SA-dependent and partially NPR1-dependent. The ADR1 gene encoded a protein possessing a number of key features, including homology to subdomains of protein kinases, a nucleotide binding domain, and leucine-rich repeats. The controlled, transient expression of ADR1 conveyed striking disease resistance in the absence of yield penalty, highlighting the potential utility of this gene in crop protection.
Collapse
Affiliation(s)
- John J Grant
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
327
|
Kang HG, Foley RC, Oñate-Sánchez L, Lin C, Singh KB. Target genes for OBP3, a Dof transcription factor, include novel basic helix-loop-helix domain proteins inducible by salicylic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:362-72. [PMID: 12887587 DOI: 10.1046/j.1365-313x.2003.01812.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Overexpression of a salicylic-acid (SA)-inducible Arabidopsis DNA binding with one finger (Dof) transcription factor, called OBF-binding protein 3 (OBP3; AtDof3.6), has previously been shown to result in growth defects. In this study, suppressive subtraction hybridization (SSH) was used to isolate genes induced in an OBP3-overexpression line and several putative clones, called OBP3-responsive genes (ORGs), were isolated. The link with the induced expression levels of these genes and OBP3 overexpression was confirmed by analysing additional OBP3-overexpression lines. ORG1 through ORG4 are novel genes, while ORG5 is an extensin gene, AtExt1. While ORG4 has no similarity with other proteins in the database, ORG1 has weak similarity in different regions of the predicted protein with CDC2 and fibrillin. ORG2 and ORG3 share 80% overall identity in their deduced amino acid sequences and contain a basic helix-loop-helix DNA-binding domain, suggesting that ORG2 and ORG3 may be transcription factors. The expression of the ORG1, ORG2 and ORG3 genes was co-regulated under all conditions examined including upregulation by SA and downregulation by jasmonic acid (JA). Fifteen OBP3-silenced lines were generated to further explore the function of OBP3. Although there were no visible phenotypic changes in any of these lines, the expression of ORG1, ORG2 and ORG3 was reduced. Among the ORG genes, ORG1, ORG2 and ORG3 contained the highest number of potential Dof-binding sites in the promoter region, and their expression was significantly increased within 3 h after induction of OBP3 expression using an inducible promoter system, and closely reflected the expression levels of the exogenous OBP3 protein. The results from the gain-of-function and loss-of-function experiments suggest that the ORG1, ORG2 and ORG3 genes are direct target genes of OBP3.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
328
|
Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:588-599. [PMID: 12848424 DOI: 10.1094/mpmi.2003.16.7.588] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | | | |
Collapse
|
329
|
Jambunathan N, McNellis TW. Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. PLANT PHYSIOLOGY 2003; 132:1370-81. [PMID: 12857819 PMCID: PMC167077 DOI: 10.1104/pp.103.022970] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 03/19/2003] [Accepted: 04/03/2003] [Indexed: 05/18/2023]
Abstract
The copines are a widely distributed class of calcium-dependent, phospholipid-binding proteins of undetermined biological function. Mutation of the Arabidopsis CPN1 (COPINE 1) gene causes a humidity-sensitive lesion mimic phenotype with increased resistance to a bacterial and an oomyceteous pathogen, constitutive pathogenesis-related gene expression, and an accelerated hypersensitive cell death defense response. Here, we show that the disease resistance phenotype of the cpn1-1 mutant was also temperature sensitive, demonstrate increased CPN1 gene transcript accumulation in wild-type plants under low-humidity conditions, and present a detailed analysis of CPN1 gene transcript accumulation in response to bacterial pathogens. In wild-type plants, CPN1 transcript accumulation was rapidly, locally, and transiently induced by both avirulent and virulent strains of Pseudomonas syringae pv tomato bacteria. However, induction of CPN1 transcript accumulation by avirulent bacteria was much faster and stronger than that induced by virulent bacteria. Bacterial induction of CPN1 transcript accumulation was dependent on a functional type III bacterial protein secretion system. In planta expression of the avrRpt2 avirulence gene was sufficient to trigger rapid CPN1 transcript accumulation. CPN1 transcript accumulation was induced by salicylic acid treatment but was not observed during lesion formation in the lesion mimic mutants lsd1 and lsd5. These results are consistent with CPN1 playing a role in plant disease resistance responses, possibly as a suppressor of defense responses including the hypersensitive cell death defense response. The results also suggest that CPN1 may represent a link between plant disease resistance and plant acclimation to low-humidity and low-temperature conditions.
Collapse
Affiliation(s)
- Niranjani Jambunathan
- Department of Plant Pathology and Intercollege Graduate Program in Plant Physiology, 212 Buckhout Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
330
|
Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ. Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. PLANT PHYSIOLOGY 2003; 132:999-1010. [PMID: 12805628 PMCID: PMC167038 DOI: 10.1104/pp.103.021683] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/26/2003] [Accepted: 03/13/2003] [Indexed: 05/17/2023]
Abstract
Pathogen challenge can trigger an integrated set of signal transduction pathways, which ultimately leads to a state of "high alert," otherwise known as systemic or induced resistance in tissue remote to the initial infection. Although large-scale gene expression during systemic acquired resistance, which is induced by salicylic acid or necrotizing pathogens has been previously reported using a bacterial pathogen, the nature of systemic defense responses triggered by an incompatible necrotrophic fungal pathogen is not known. We examined transcriptional changes that occur during systemic defense responses in Arabidopsis plants inoculated with the incompatible fungal pathogen Alternaria brassicicola. Substantial changes (2.00-fold and statistically significant) were demonstrated in distal tissue of inoculated plants for 35 genes (25 up-regulated and 10 down-regulated), and expression of a selected subset of systemically expressed genes was confirmed using real-time quantitative polymerase chain reaction. Genes with altered expression in distal tissue included those with putative functions in cellular housekeeping, indicating that plants modify these vital processes to facilitate a coordinated response to pathogen attack. Transcriptional up-regulation of genes encoding enzymes functioning in the beta-oxidation pathway of fatty acids was particularly interesting. Transcriptional up-regulation was also observed for genes involved in cell wall synthesis and modification and genes putatively involved in signal transduction. The results of this study, therefore, confirm the notion that distal tissue of a pathogen-challenged plant has a heightened preparedness for subsequent pathogen attacks.
Collapse
Affiliation(s)
- Peer M Schenk
- Cooperative Research Centre for Tropical Plant Protection, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1020-32. [PMID: 12805630 PMCID: PMC167040 DOI: 10.1104/pp.102.017814] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 01/04/2003] [Accepted: 03/05/2003] [Indexed: 05/18/2023]
Abstract
The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the beta-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box.
Collapse
Affiliation(s)
- Rebecca L Brown
- Cooperative Research Centre for Tropical Plant Protection, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
332
|
Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. THE PLANT CELL 2003; 15:365-79. [PMID: 12566578 PMCID: PMC141207 DOI: 10.1105/tpc.006999] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 11/14/2002] [Indexed: 05/17/2023]
Abstract
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.
Collapse
Affiliation(s)
- Claudine Balagué
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 215, BP 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
Leaf senescence is a process of programmed cell death, which is induced in an age-dependent manner and by various environmental cues. The mechanisms that regulate the induction and progression of leaf senescence remain unclear because of their complexity. However, recent genetic and reverse-genetic approaches have identified key components of the regulation of leaf senescence and have revealed glimpses of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Satoko Yoshida
- Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, UK.
| |
Collapse
|
334
|
Mino M, Maekawa K, Ogawa K, Yamagishi H, Inoue M. Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei Domin and Nicotiana tabacum. PLANT PHYSIOLOGY 2002; 130:1776-87. [PMID: 12481061 PMCID: PMC166689 DOI: 10.1104/pp.006023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Revised: 04/23/2002] [Accepted: 07/03/2002] [Indexed: 05/24/2023]
Abstract
Hybrid lethality, a type of reproductive isolation, is a genetically controlled event appearing at the seedling stage in interspecific hybrids. We characterized the lethality of F(1) hybrid seedlings from Nicotiana gossei Domin and Nicotiana tabacum cv Bright-Yellow 4 using a number of traits including growth rate, microscopic features of tissues and cells, ion leakage, DNA degradation, reactive oxygen intermediates including superoxide radical (O(2)(-)) and hydrogen peroxide (H(2)O(2)), and expression of stress response marker genes. Lethal symptoms appeared at 4 d after germination in the basal hypocotyl and extended toward both the hypocotyl and root of the plants grown at 26 degrees C. Microscopic analysis revealed a prompt lysis of cell components during cell death. Membrane disruption and DNA degradation were found in the advanced stage of the lethality. The death of mesophyll cells in the cotyledon was initiated by the vascular bundle, suggesting that a putative factor inducing cell death diffused into surrounding cells from the vascular tissue. In contrast, these symptoms were not observed in the plants grown at 37 degrees C. Seedlings grown at 26 degrees C generated larger amounts of reactive oxygen intermediate in the hypocotyl than those grown at 37 degrees C. A number of stress response marker genes were expressed at 26 degrees C but not at 37 degrees C. We proposed that a putative death factor moving systemically through the vascular system induced a prompt and successive lysis of the cytoplasm of cells and that massive cell death eventually led to the loss of the hybrid plant.
Collapse
Affiliation(s)
- Masanobu Mino
- Faculty of Agriculture, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8255 Japan.
| | | | | | | | | |
Collapse
|
335
|
Shirano Y, Kachroo P, Shah J, Klessig DF. A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. THE PLANT CELL 2002; 14:3149-62. [PMID: 12468733 PMCID: PMC151208 DOI: 10.1105/tpc.005348] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 09/18/2002] [Indexed: 05/18/2023]
Abstract
In a screen for suppressors of npr1-5-based salicylic acid (SA) insensitivity, we isolated a semidominant gain-of-function mutation, designated ssi4, that confers constitutive expression of several PR (pathogenesis-related) genes, induces SA accumulation, triggers programmed cell death, and enhances resistance to bacterial and oomycete pathogens. Through map-based cloning, ssi4 was identified and found to encode a putative protein belonging to the TIR-NBS-LRR (Toll Interleukin1 Receptor-Nucleotide Binding Site-Leu-Rich Repeat) class of R (resistance) proteins. Comparison between ssi4 and the corresponding wild-type sequence revealed a single amino acid substitution in the NBS. Epistasis analysis indicated that SA and EDS1 are required for ssi4-induced PR-1 expression and enhanced disease resistance; they also are required for the increased accumulation of SSI4 and EDS1 transcripts detected in the ssi4 mutant. Although high levels of ssi4 transcripts correlate with the appearance of the mutant phenotype, overexpression of the wild-type SSI4 gene failed to induce stunting, spontaneous lesion formation, or increased PR-1 expression associated with the ssi4 mutation. Thus, the ssi4 phenotype does not appear to be caused by overexpression of this R gene; rather, we propose that the NBS substitution generates a constitutively activated R protein. Furthermore, because SA treatment induced the expression of SSI4 and the closely related TIR-NBS-LRR genes RPP1 and RPS4 but had little effect on the expression of the coiled-coil NBS-LRR genes RPM1 and RPS2, we suggest that SA not only functions as a critical signal for downstream resistance events but also upregulates the expression of certain R genes.
Collapse
Affiliation(s)
- Yumiko Shirano
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
336
|
Abstract
As the world population continues to increase, food supplies must also grow to meet nutritional requirements. One means of ensuring the stability and plentitude of the food supply is to mitigate crop loss caused by plant pathogens. Strategies for combating disease include traditional technologies such as plant breeding and chemical applications; current technologies such as generating transgenic plants that express components of known defense signaling pathways; and the adaptation of newer technologies such as RNA silencing of pathogen and plant transcripts. Breeding has been used to pyramid resistance (R) genes into many different plants including rice. Chemical strategies include application of salicylic acid (SA) analogs to stimulate systemic acquired resistance (SAR) responses. Genetic screens in Arabidopsis have identified genes controlling SAR and these genes have been manipulated and used to engineer crop plants. The diseases caused by plant viruses are being thwarted through the initiation of endogenous RNA silencing mechanisms. Many of these strategies show great promise, some limitations, and exciting opportunities to develop many new tools for combating plant pests.
Collapse
Affiliation(s)
- Matthew A Campbell
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
337
|
Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. PHYTOPATHOLOGY 2002; 92:1329-33. [PMID: 18943888 DOI: 10.1094/phyto.2002.92.12.1329] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT Two strains of plant growth-promoting rhizobacteria (PGPR), Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, elicited systemic protection against late blight on tomato and reduced disease severity by a level equivalent to systemic acquired resistance induced by Phytophthora infestans or induced local resistance by chemical inducer beta-amino butyric acid (BABA) in greenhouse assays. Germination of sporangia and zoospores of P. infestans on leaf surfaces of tomato plants treated with the two PGPR strains, pathogen, and chemical BABA was significantly reduced compared with the noninduced control. Induced protection elicited by PGPR, pathogen, and BABA were examined to determine the signal transduction pathways in three tomato lines: salicylic acid (SA)-hydroxylase transgenic tomato (nahG), ethylene insensitive mutants (Nr/Nr), and jasmonic acid insensitive mutants (def1). Results suggest that induced protection elicited by both bacilli and pseudomonad PGPR strains was SA-independent but ethylene- and jasmonic acid-dependent, whereas systemic acquired resistance elicited by the pathogen and induced local resistance by BABA were SA-dependent. The lack of colonization of tomato leaves by strain 89B61 suggests that the observed induced systemic resistance (ISR) was due to systemic protection by strain 89B61 and not attributable to a direct interaction between pathogen and biological control agent. Although strain SE34 was detected on tomato leaves, ISR mainly accounted for the systemic protection with this strain.
Collapse
|
338
|
Hirsch J, Deslandes L, Feng DX, Balagué C, Marco Y. Delayed Symptom Development in ein2-1, an Arabidopsis Ethylene-Insensitive Mutant, in Response to Bacterial Wilt Caused by Ralstonia solanacearum. PHYTOPATHOLOGY 2002; 92:1142-1148. [PMID: 18944225 DOI: 10.1094/phyto.2002.92.10.1142] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Wilt disease caused by the phytopathogenic bacterium Ralstonia solanacearum is poorly understood at the molecular level. The possible roles of salicylic acid, jasmonic acid, and ethylene, compounds commonly associated with the plant response to pathogens, in wilt symptom development were investigated using various Arabidopsis thaliana mutants in a Col-0 background, an ecotype that develops wilt symptoms in response to the virulent GMI1000 strain. Following root inoculation, wilt symptoms were delayed in ein2-1, an ethylene-insensitive mutant, in response to several virulent strains of the pathogen. In ein2-1, bacteria invade the plant and multiply, reaching concentrations slightly lower than those detected in susceptible plants but 1 to 2 logs higher than in Nd-1, an A. thaliana ecotype resistant to strain GMI1000. This delay in disease symptom development of ein2-1 plants suggests that ethylene signaling plays a critical role in wilt disease development. Furthermore, a strong accumulation of transcripts corresponding to PR-3 and PR-4, two ethylene-responsive genes, was observed in susceptible Col-0 plants, but not in ein2-1 and Nd-1 plants, providing additional evidence for a role of ethylene in wilt symptom production. However, this hormone is probably not involved in the establishment of resistance to R. solanacearum, because homozygous ein2-1 plants in a resistant background remain fully resistant to strain GMI1000.
Collapse
|
339
|
Ellis C, Karafyllidis I, Turner JG. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1025-30. [PMID: 12437300 DOI: 10.1094/mpmi.2002.15.10.1025] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.
Collapse
Affiliation(s)
- Christine Ellis
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
340
|
Tiryaki I, Staswick PE. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. PLANT PHYSIOLOGY 2002; 130:887-94. [PMID: 12376653 PMCID: PMC166615 DOI: 10.1104/pp.005272] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Revised: 04/03/2002] [Accepted: 06/05/2002] [Indexed: 05/19/2023]
Abstract
A screen for Arabidopsis mutants that were insensitive to methyl jasmonate (MeJA) in an assay for seedling root growth yielded only alleles of previously isolated mutants jar1 and coi1, with one exception. Mapping of the locus and morphological characterization of the new mutant suggested it might be allelic to axr1, which had not previously been reported to show resistance to MeJA. The F(1) from a cross of the new mutant with axr1-3 did not show complementation, confirming that these are the same genes. The new allele is called axr1-24. In addition to MeJA and indole-3-acetic acid (IAA), axr1-24 had decreased sensitivity to 1-aminocyclopropane-1-carboxylic acid, 6-benzylamino-purine, epi-brassinolide, and abscisic acid. Both axr1-24 and the previously characterized axr1-3 allele were shown to be susceptible to the opportunistic pathogen Pythium irregulare, a trait found in other jasmonate response mutants, including jar1-1. The double mutant jar1-1/axr1-3 was more resistant to inhibition of root growth by MeJA and was more susceptible to P. irregulare infection than either single mutant, suggesting these genes might act in independent response pathways. In contrast, resistance to IAA in the double mutant was not different from axr1-3. Northern-blot analysis showed that IAA induced the jasmonate-responsive lipoxygenase 2, AOS, and AtVSP gene transcripts and induction was strongly impaired in axr1-3. However, transcript induction by MeJA was only minimally affected in axr1-3. This study demonstrates that in addition to auxin signaling, the AXR1 locus is involved in MeJA response, providing a mechanistic link between jasmonate and auxin-signaling pathways.
Collapse
Affiliation(s)
- Iskender Tiryaki
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915, USA
| | | |
Collapse
|
341
|
Vogel JP, Raab TK, Schiff C, Somerville SC. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. THE PLANT CELL 2002; 14:2095-106. [PMID: 12215508 PMCID: PMC150758 DOI: 10.1105/tpc.003509] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Accepted: 06/19/2002] [Indexed: 05/18/2023]
Abstract
The plant genes required for the growth and reproduction of plant pathogens are largely unknown. In an effort to identify these genes, we isolated Arabidopsis mutants that do not support the normal growth of the powdery mildew pathogen Erysiphe cichoracearum. Here, we report on the cloning and characterization of one of these genes, PMR6. PMR6 encodes a pectate lyase-like protein with a novel C-terminal domain. Consistent with its predicted gene function, mutations in PMR6 alter the composition of the plant cell wall, as shown by Fourier transform infrared spectroscopy. pmr6-mediated resistance requires neither salicylic acid nor the ability to perceive jasmonic acid or ethylene, indicating that the resistance mechanism does not require the activation of well-described defense pathways. Thus, pmr6 resistance represents a novel form of disease resistance based on the loss of a gene required during a compatible interaction rather than the activation of known host defense pathways.
Collapse
Affiliation(s)
- John P Vogel
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
342
|
|
343
|
Li J, Shan L, Zhou JM, Tang X. Overexpression of Pto induces a salicylate-independent cell death but inhibits necrotic lesions caused by salicylate-deficiency in tomato plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:654-661. [PMID: 12118881 DOI: 10.1094/mpmi.2002.15.7.654] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tomato plants overexpressing the disease resistance gene Pto (35S::Pto) exhibit spontaneous cell death, accumulation of salicylic acid (SA), elevated expression of pathogenesis-related genes, and enhanced resistance to a broad range of pathogens. Because salicylate plays an important role in the cell death and defense activation in many lesion mimic mutants, we investigated the interaction of SA-mediated processes and the 35S::Pto-mediated defense pathway by introducing the nahG transgene that encodes salicylate hydroxylase. Here, we show that SA is not required for the 35S::Pto-activated microscopic cell death and plays a minor role in defense gene activation and general disease resistance in 35S::Pto plants. In contrast, temperature greatly affects the spontaneous cell death and general resistance in 35S::Pto plants, and high temperature inhibits the cell death. The NahG tomato plants develop spontaneous, unconstrained necrotic lesions on leaves. These lesions also are initiated by the inoculation of a virulent strain of Pseudomonas syringae pv. tomato. However, the NahG-dependent necrotic lesions are inhibited in the NahG/35S::Pto plants. This inhibition is most pronounced under conditions favoring the 35S::Pto-mediated spontaneous cell death development. These results indicate that the signaling pathways activated by Pto overexpression suppress the cellular damage that is caused by SA depletion. We also found that ethylene is dispensable for the 35S::Pto-mediated general defense.
Collapse
Affiliation(s)
- Jianxiong Li
- Department of Plant Pathology, Kansas State University, Manhattan 66506-5502, USA
| | | | | | | |
Collapse
|
344
|
Kim HS, Delaney TP. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. THE PLANT CELL 2002; 14:1469-82. [PMID: 12119368 PMCID: PMC150700 DOI: 10.1105/tpc.001867] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Accepted: 03/20/2002] [Indexed: 05/18/2023]
Abstract
One of several induced defense responses in plants is systemic acquired resistance (SAR), which is regulated by salicylic acid and in Arabidopsis by the NIM1/NPR1 protein. To identify additional components of the SAR pathway or other genes that regulate SAR-independent resistance, we performed genetic suppressor screens of mutagenized nim1-1 seedlings, which are highly susceptible to infection by Peronospora parasitica. We isolated the son1 (suppressor of nim1-1) mutant, which shows full restoration of pathogen resistance without the induction of SAR-associated genes and expresses resistance when combined with a salicylate hydroxylase (nahG) transgene. These features indicate that son1-mediated resistance is distinct from SAR. Resistance is effective against both the virulent oomycete Peronospora and the bacterial pathogen Pseudomonas syringae pv tomato strain DC3000. We cloned SON1 and found it to encode a novel protein containing an F-box motif, an element found within the specificity determinant in the E3 ubiquitin-ligase complex. We propose the existence of a novel defense response that is independent of SAR and negatively regulated in Arabidopsis by SON1 through the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- Han Suk Kim
- Cornell University, Department of Plant Pathology, 360 Plant Science Building, Ithaca, New York 14853, USA
| | | |
Collapse
|
345
|
Cui J, Jander G, Racki LR, Kim PD, Pierce NE, Ausubel FM. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. PLANT PHYSIOLOGY 2002; 129:551-64. [PMID: 12068100 PMCID: PMC161673 DOI: 10.1104/pp.010815] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants have evolved different but interconnected strategies to defend themselves against herbivorous insects and microbial pathogens. We used an Arabidopsis/Pseudomonas syringae pathosystem to investigate the impact of pathogen-induced defense responses on cabbage looper (Trichoplusia ni) larval feeding. Arabidopsis mutants [npr1, pad4, eds5, and sid2(eds16)] or transgenic plants (nahG) that are more susceptible to microbial pathogens and are compromised in salicylic acid (SA)-dependent defense responses exhibited reduced levels of feeding by T. ni compared with wild-type plants. Consistent with these results, Arabidopsis mutants that are more resistant to microbial pathogens and have elevated levels of SA (cpr1 and cpr6) exhibited enhanced levels of T. ni feeding. These experiments suggested an inverse relationship between an active SA defense pathway and insect feeding. In contrast to these results, there was increased resistance to T. ni in wild-type Arabidopsis ecotype Columbia plants that were infected with P. syringae pv. maculicola strain ES4326 (Psm ES4326) expressing the avirulence genes avrRpt2 or avrB, which elicit a hypersensitive response, high levels of SA accumulation, and systemic acquired resistance to bacterial infection. Similar results were obtained with other ecotypes, including Landsberg erecta, Cape Verdi Islands, and Shakdara. When infected with Psm ES4326(avrRpt2) or Psm ES4326(avrB), nahG transgenic and npr1 mutant plants (which are more susceptible to virulent and avirulent P. syringae strains) failed to show the increased insect resistance exhibited by wild-type plants. It was surprising that wild-type plants, as well as nahG and npr1 plants, infected with Psm ES4326 not expressing avrRpt2 or avrB, which elicits disease, became more susceptible to T. ni. Our results suggest two potentially novel systemic signaling pathways: a systemic response elicited by HR that leads to enhanced T. ni resistance and overrides the SA-mediated increase in T. ni susceptibility, and a SA-independent systemic response induced by virulent pathogens that leads to enhanced susceptibility to T. ni.
Collapse
Affiliation(s)
- Jianping Cui
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
346
|
Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. THE PLANT CELL 2002; 14:1405-15. [PMID: 12084835 PMCID: PMC150788 DOI: 10.1105/tpc.000885] [Citation(s) in RCA: 474] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2001] [Accepted: 02/19/2002] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) and related cyclopentanones are critical plant signaling molecules, but their mode of action at the molecular level is unclear. A map-based approach was used to identify the defective gene in the Arabidopsis JA response mutant jar1-1. JAR1 is 1 of 19 closely related Arabidopsis genes that are similar to the auxin-induced soybean GH3 gene. Analysis of fold predictions for this protein family suggested that JAR1 might belong to the acyl adenylate-forming firefly luciferase superfamily. These enzymes activate the carboxyl groups of a variety of substrates for their subsequent biochemical modification. An ATP-PPi isotope exchange assay was used to demonstrate adenylation activity in a glutathione S-transferase-JAR1 fusion protein. Activity was specific for JA, suggesting that covalent modification of JA is important for its function. Six other Arabidopsis genes were specifically active on indole-3-acetic acid (IAA), and one was active on both IAA and salicylic acid. These findings suggest that the JAR1 gene family is involved in multiple important plant signaling pathways.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | | | | |
Collapse
|
347
|
Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. THE PLANT CELL 2002; 14:1377-89. [PMID: 12084833 PMCID: PMC150786 DOI: 10.1105/tpc.001628] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Accepted: 03/09/2002] [Indexed: 05/18/2023]
Abstract
The Arabidopsis NPR1 protein is a key regulator of salicylic acid (SA)-mediated gene expression in systemic acquired resistance. Based on yeast two-hybrid analysis, NPR1 has been suggested to interact with members of the TGA family of transcription factors, including TGA2 (AHBP-1b). However, genetic evidence demonstrating that the NPR1-TGA interaction occurs in planta is still lacking, and the role of this interaction in SA-mediated gene activation has yet to be determined. In this study, we expressed a truncated form of TGA2 in Arabidopsis and found that the resulting transgenic lines displayed phenotypes similar to those of npr1 mutants. This dominant-negative effect of the TGA2 mutant shows that TGA2 and NPR1 interact in planta. We also present biochemical evidence indicating that this interaction is specific and enhanced by SA treatment. Moreover, using a chimera reporter system, we found that a chimeric TGA2GAL4 transcription factor activated a UAS(GAL)::GUS reporter gene in response to SA and that this activation was abolished in the npr1 mutant. NPR1 is required for the DNA binding activity of the transcription factor. These genetic data clearly demonstrate that TGA2 is a SA-responsive and NPR1-dependent transcription activator.
Collapse
Affiliation(s)
- Weihua Fan
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Durham, NC 27708-1000, USA
| | | |
Collapse
|
348
|
Murray SL, Thomson C, Chini A, Read ND, Loake GJ. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:557-66. [PMID: 12059104 DOI: 10.1094/mpmi.2002.15.6.557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In order to identify components of the defense signaling network engaged following attempted pathogen invasion, we generated a novel PR-1::luciferase (LUC) transgenic line that was deployed in an imaging-based screen to uncover defense-related mutants. The recessive mutant designated cir1 exhibited constitutive expression of salicylic acid (SA), jasmonic acid (JA)/ethylene, and reactive oxygen intermediate-dependent genes. Moreover, this mutation conferred resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and a virulent oomycete pathogen Peronospora parasitica Noco2. Epistasis analyses were undertaken between cir1 and mutants that disrupt the SA (nprl, nahG), JA (jar1), and ethylene (ET) (ein2) signaling pathways. While resistance against both P. syringae pv. tomato DC3000 and Peronospora parasitica Noco2 was partially reduced by npr1, resistance against both of these pathogens was lost in an nahG genetic background. Hence, cirl-mediated resistance is established via NPR1-dependent and -independent signaling pathways and SA accumulation is essential for the function of both pathways. While jar1 and ein2 reduced resistance against P. syringae pv. tomato DC3000, these mutations appeared not to impact cir1-mediated resistance against Peronospora parasitica Noco2. Thus, JA and ET sensitivity are required for cir1-mediated resistance against P. syringae pv. tomato DC3000 but not Peronospora parasitica Noco2. Therefore, the cir1 mutation may define a negative regulator of disease resistance that operates upstream of SA, JA, and ET accumulation.
Collapse
Affiliation(s)
- Shane L Murray
- Institute of Cell & Molecular Biology, University of Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
349
|
Devadas SK, Enyedi A, Raina R. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:467-80. [PMID: 12028576 DOI: 10.1046/j.1365-313x.2002.01300.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.
Collapse
Affiliation(s)
- Sendil K Devadas
- Biology Department, Biotechnology Institute, and Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
350
|
Abstract
Plants can acquire enhanced resistance to pathogens after treatment with necrotizing attackers, nonpathogenic root-colonizing pseudomonads, salicylic acid, beta-aminobutyric acid and many other natural or synthetic compounds. The induced resistance is often associated with an enhanced capacity to mobilize infection-induced cellular defence responses - a process called 'priming'. Although the phenomenon has been known for years, most progress in our understanding of priming has been made only recently. These studies show that priming often depends on the induced disease resistance key regulator NPR1 (also known as NIM1 or SAI1) and that priming has a major effect on the regulation of cellular plant defence responses.
Collapse
Affiliation(s)
- Uwe Conrath
- Plant Physiology, Dept Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | | | | |
Collapse
|