301
|
Jonathan SV, Grissom WA. Volumetric MRI thermometry using a three-dimensional stack-of-stars echo-planar imaging pulse sequence. Magn Reson Med 2018; 79:2003-2013. [PMID: 28782129 PMCID: PMC5803468 DOI: 10.1002/mrm.26862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To measure temperature over a large brain volume with fine spatiotemporal resolution. METHODS A three-dimensional stack-of-stars echo-planar imaging sequence combining echo-planar imaging and radial sampling with golden angle spacing was implemented at 3T for proton resonance frequency-shift temperature imaging. The sequence acquires a 188x188x43 image matrix with 1.5x1.5x2.75 mm3 spatial resolution. Temperature maps were reconstructed using sensitivity encoding (SENSE) image reconstruction followed by the image domain hybrid method, and using the k-space hybrid method. In vivo temperature maps were acquired without heating to measure temperature precision in the brain, and in a phantom during high-intensity focused ultrasound sonication. RESULTS In vivo temperature standard deviation was less than 1°C at dynamic scan times down to 0.75 s. For a given frame rate, scanning at a minimum repetition time (TR) with minimum acceleration yielded the lowest standard deviation. With frame rates around 3 s, the scan was tolerant to a small number of receive coils, and temperature standard deviation was 48% higher than a standard two-dimensional Fourier transform temperature mapping scan, but provided whole-brain coverage. Phantom temperature maps with no visible aliasing were produced for dynamic scan times as short as 0.38 s. k-Space hybrid reconstructions were more tolerant to acceleration. CONCLUSION Three-dimensional stack-of-stars echo-planar imaging temperature mapping provides volumetric brain coverage and fine spatiotemporal resolution. Magn Reson Med 79:2003-2013, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sumeeth V. Jonathan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - William A. Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
302
|
Okanovic M, Völker M, Trampel R, Breuer F, Jakob P, Blaimer M. Increasing robustness of radial GRASE acquisition for SAR-reduced brain imaging. Z Med Phys 2018; 28:236-246. [PMID: 29580616 DOI: 10.1016/j.zemedi.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE To improve a radial multi-slice 2D gradient- and spin-echo (GRASE) sequence and provide an appropriate image reconstruction technique for SAR-reduced high-resolution neuroimaging. METHODS Additional readout gradients per radio-frequency (RF) refocusing allow for a reduced number of RF pulses. In this way, a specific absorption rate (SAR) reduction is achieved and the application at high-field systems becomes more feasible. A phase insensitive image reconstruction is proposed to reduce signal dropout artifacts originating from opposite readout polarities. In addition, the image reconstruction allows for the calculation of images with varying contrast from one measurement. RESULTS Results obtained at 3T and 7T demonstrate a SAR-reduction of at least 66% for a single-slice experiment with radial GRASE. The reduced SAR is used for an increased spatial coverage without increasing the measurement time. Experiments at 3T and 7T showed that the visual image quality is comparable to standard TSE and GRASE sequences with the same measurement parameters. Using higher EPI factors and the presented image reconstruction, artifact-free images with a significant SAR-reduction can be achieved. CONCLUSION Radial GRASE enables SAR-reduced acquisitions of high-resolution brain images with different contrasts from one measurement and is a promising sequence for high-field neuroimaging.
Collapse
|
303
|
Fyrdahl A, Vargas Paris R, Nyrén S, Holst K, Ugander M, Lindholm P, Sigfridsson A. Pulmonary artery imaging under free-breathing using golden-angle radial bSSFP MRI: a proof of concept. Magn Reson Med 2018. [PMID: 29542200 DOI: 10.1002/mrm.27177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. METHODS Healthy volunteers (n = 10, age 46 ± 11 years, 50% female) and patients (n = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. RESULTS Quantitative measurements showed higher vessel sharpness for golden-angle radial (n = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p < .05). Blood-to-blood clot contrast was found to be 23% higher in golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p < .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p < .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. CONCLUSION In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight.
Collapse
Affiliation(s)
- Alexander Fyrdahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Roberto Vargas Paris
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Thoracic Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Holst
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Ugander
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Thoracic Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Sigfridsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
304
|
Okanovic M, Hillig B, Breuer F, Jakob P, Blaimer M. Time-of-flight MR-angiography with a helical trajectory and slice-super-resolution reconstruction. Magn Reson Med 2018. [PMID: 29527736 DOI: 10.1002/mrm.27167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To improve 2D noncontrast-enhanced MRA by using a helical time-of-flight (TOF) acquisition technique and a slice-super-resolution reconstruction. METHODS The TOF technique is combined with a helical trajectory with golden-angle-based radial projection reordering. A continuous spatial shift in slice direction is realized by adjusting the frequency of the excitation pulse between the individual projections. The limited resolution along the shift direction is improved by a deconvolution with simulated slice profile. The helical TOF (hTOF) was compared in vivo with a conventional 2D and 3D TOF. RESULTS Results from in vivo experiments on the carotid show that the visual resolution in slice direction can be improved by using hTOF and the slice-super-resolution reconstruction. The vessels appear up to 1.5 times sharper and can be better separated from each other. Compared to 2D TOF images, the stair step artifacts are strongly reduced in reformatted hTOF images, whereas measurement time is decreased by at least 35%. Compared to 3D TOF, the hTOF offers a higher blood-to-background contrast, better visualization of smaller vessels, and reduced measurement time. CONCLUSION The hTOF benefits from a 2D acquisition and a 3D reconstruction, which makes it a promising technique for the noncontrast-enhanced imaging of the carotid.
Collapse
Affiliation(s)
- Melisa Okanovic
- Department of Experimental Physics 5, University of Wuerzburg, Wuerzburg, Germany
| | - Burghard Hillig
- Institute of Automation Technology, Chair of Measurement and Information Technology, Helmut-Schmidt-University, Hamburg, Germany
| | - Felix Breuer
- Fraunhofer Institute for Integrated Circuits (IIS), Development Center for X-ray Technology (EZRT), Wuerzburg, Germany
| | - Peter Jakob
- Department of Experimental Physics 5, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Blaimer
- Fraunhofer Institute for Integrated Circuits (IIS), Development Center for X-ray Technology (EZRT), Wuerzburg, Germany
| |
Collapse
|
305
|
Kajita K, Goshima S, Noda Y, Kawada H, Kawai N, Okuaki T, Honda M, Matsuo M. Thin-slice Free-breathing Pseudo-golden-angle Radial Stack-of-stars with Gating and Tracking T 1-weighted Acquisition: An Efficient Gadoxetic Acid-enhanced Hepatobiliary-phase Imaging Alternative for Patients with Unstable Breath Holding. Magn Reson Med Sci 2018. [PMID: 29526882 PMCID: PMC6326769 DOI: 10.2463/mrms.mp.2017-0173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: To compare four free-breathing scan techniques for gadoxetic acid-enhanced hepatobiliary phase imaging with conventional breath-hold scans. Materials and Methods: Gadoxetic acid-enhanced hepatobiliary phase imaging with six image acquisition sets performed in 50 patients. Image acquisition sets included fat-suppressed 3D T1-weighted turbo field echo with free-breathing pseudo-golden-angle radial stack-of-stars (FBRS) acquisition, FBRS with track (FBRST), FBRS with gate and track (FBRSG&T), thin-slice FBRS with gate and track (thin-slice FBRSG&T), free-breathing Cartesian acquisition (CartesianFB), and breath-hold Cartesian acquisition (CartesianBH). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality compared to the six-image acquisition sets. Results: Signal-to-noise ratio and CNR were significantly higher in FBRS, FBRST, FBRSG&T, and thin-slice FBRSG&T than in CartesianFB and CartesianBH (P < 0.001). Based on sharpness, motion artifacts, visibility of intrahepatic vessels, and overall image quality, thin-slice FBRSG&T had the highest image quality followed by CartesianBH and FBRSG&T (P < 0.001). Severe motion artifacts were observed in 25 patients in CartesianFB and three patients in CartesianBH, whereas image quality remained above the acceptable range in FBRSG&T, FBRST, FBRS, and thin-slice FBRSG&T in all cases. Conclusion: Thin-slice FBRSG&T demonstrated excellent image quality compared with conventional CartesianBH in gadoxetic acid-enhanced hepatobiliary phase imaging. It can be apply to supplemental sequences of patients with unstable breath holding.
Collapse
|
306
|
Li M, Weber E, Jin J, Hugger T, Tesiram Y, Ullmann P, Stark S, Fuentes M, Junge S, Liu F, Crozier S. Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T. NMR IN BIOMEDICINE 2018; 31:e3860. [PMID: 29280211 DOI: 10.1002/nbm.3860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/20/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method.
Collapse
Affiliation(s)
- Mingyan Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Jin Jin
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Thimo Hugger
- Bruker BioSpin MRI GmbH, Ettlingen, BadenWürttemberg, Germany
| | - Yasvir Tesiram
- Center for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
- Bruker Pty Ltd., Preston, Victoria, Australia
| | - Peter Ullmann
- Bruker BioSpin MRI GmbH, Ettlingen, BadenWürttemberg, Germany
| | - Simon Stark
- Bruker BioSpin MRI GmbH, Ettlingen, BadenWürttemberg, Germany
| | - Miguel Fuentes
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Sven Junge
- Bruker BioSpin MRI GmbH, Ettlingen, BadenWürttemberg, Germany
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
307
|
Zimmermann M, Abbas Z, Dzieciol K, Shah NJ. Accelerated Parameter Mapping of Multiple-Echo Gradient-Echo Data Using Model-Based Iterative Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:626-637. [PMID: 29408790 DOI: 10.1109/tmi.2017.2771504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A new reconstruction method, coined MIRAGE, is presented for accurate, fast, and robust parameter mapping of multiple-echo gradient-echo (MEGE) imaging, the basis sequence of novel quantitative magnetic resonance imaging techniques such as water content and susceptibility mapping. Assuming that the temporal signal can be modeled as a sum of damped complex exponentials, MIRAGE performs model-based reconstruction of undersampled data by minimizing the rank of local Hankel matrices. It further incorporates multi-channel information and spatial prior knowledge. Finally, the parameter maps are estimated using nonlinear regression. Simulations and retrospective undersampling of phantom and in vivo data affirm robustness, e.g., to strong inhomogeneity of the static magnetic field and partial volume effects. MIRAGE is compared with a state-of-the-art compressed sensing method, -ESPIRiT. Parameter maps estimated from reconstructed data using MIRAGE are shown to be accurate, with the mean absolute error reduced by up to 50% for in vivo results. The proposed method has the potential to improve the diagnostic utility of quantitative imaging techniques that rely on MEGE data.
Collapse
|
308
|
Dynamic magnetic resonance imaging method based on golden-ratio cartesian sampling and compressed sensing. PLoS One 2018; 13:e0191569. [PMID: 29381709 PMCID: PMC5790254 DOI: 10.1371/journal.pone.0191569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
Collapse
|
309
|
Jang J, Bang K, Jang H, Hwang D. Quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn Reson Med 2018; 80:914-924. [PMID: 29383737 DOI: 10.1002/mrm.27084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Jinseong Jang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Kihun Bang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Hanbyol Jang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | | |
Collapse
|
310
|
Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo-Garcia D, Pedemonte S, Catana C. Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 2018; 59:1474-1479. [PMID: 29371404 DOI: 10.2967/jnumed.117.203943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of 18F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC6-min) and only the last 1 min (MC1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC6-min and MC1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUVmax and SUVmean, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Results: Motion-corrected MC6-min PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUVmax, SUVmean, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC1-min protocol: 19%, 10%, 15%, and 9% increases in average SUVmax, SUVmean, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.
Collapse
Affiliation(s)
- Niccolo Fuin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Michele Scipioni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Information Engineering, University of Pisa, Pisa, Italy; and
| | - Lisanne P W Canjels
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Stefano Pedemonte
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
311
|
Bastkowski R, Weiss K, Maintz D, Giese D. Self-gated golden-angle spiral 4D flow MRI. Magn Reson Med 2018; 80:904-913. [PMID: 29344990 DOI: 10.1002/mrm.27085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rene Bastkowski
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Kilian Weiss
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Philips Healthcare Germany, Hamburg, Germany
| | - David Maintz
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
312
|
Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018; 79:83-96. [PMID: 28261851 PMCID: PMC5585028 DOI: 10.1002/mrm.26639] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. METHODS Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. RESULTS The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. CONCLUSION The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jakob Assländer
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- Dept. of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martijn A Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Florian Knoll
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jürgen Hennig
- Dept. of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
313
|
Li HH, Zhu H, Yue L, Fu Y, Grimm R, Stemmer A, Fu CX, Peng WJ. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence. Eur Radiol 2017; 28:1891-1899. [PMID: 29260366 DOI: 10.1007/s00330-017-5193-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. METHODS Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. RESULTS For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. CONCLUSIONS The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. KEY POINTS • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.
Collapse
Affiliation(s)
- Huan-Huan Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Radiology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Hui Zhu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lei Yue
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Fu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Robert Grimm
- MR Applications Development, Siemens Healthcare, Erlangen, Germany
| | - Alto Stemmer
- MR Applications Development, Siemens Healthcare, Erlangen, Germany
| | - Cai-Xia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Wei-Jun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
314
|
Harris W, Yin FF, Wang C, Zhang Y, Cai J, Ren L. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study. Phys Med Biol 2017; 63:01NT01. [PMID: 29087963 PMCID: PMC5756137 DOI: 10.1088/1361-6560/aa9746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. METHODS 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. RESULTS For XCAT, VPD/COMS were 11.93 ± 2.37%/0.90 ± 0.27 mm and 11.53 ± 1.47%/0.85 ± 0.20 mm among all scenarios with Cartesian sampling (SP = 10%) and radial sampling (21 spokes, SP = 5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR = 20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46 ± 0.20 mm, 0.56 ± 0.17 mm and 0.23 ± 0.16 mm, respectively, for Cartesian-based sampling with SP = 20% and 0.60 ± 0.19 mm, 0.56 ± 0.22 mm and 0.42 ± 0.15 mm, respectively, for radial-based sampling with SP = 8% (32 spokes). CONCLUSIONS It is feasible to estimate VC-MRI from a single undersampled on-board 2D cine MRI. Phantom and patient studies showed that the temporal resolution of VC-MRI can potentially be improved by 5-10 times using a 2D cine image acquired with 10-20% k-space sampling.
Collapse
Affiliation(s)
- Wendy Harris
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
- Medical Physics Graduate Program, Duke Kunshan University, 8 Duke Avenue, Kunshan, Jiangsu, 215316, China
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - You Zhang
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Jing Cai
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Lei Ren
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| |
Collapse
|
315
|
Correia T, Cruz G, Schneider T, Botnar RM, Prieto C. Technical note: Accelerated nonrigid motion-compensated isotropic 3D coronary MR angiography. Med Phys 2017; 45:214-222. [PMID: 29131353 PMCID: PMC5814733 DOI: 10.1002/mp.12663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. METHODS Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled acquisition was performed using a variable-density Cartesian trajectory with radial order (VD-CAPR). Motion correction was performed in two steps: beat-to-beat 2D translational correction with motion estimated from interleaved image navigators, and bin-to-bin 3D nonrigid correction with motion estimated from respiratory-resolved images reconstructed from undersampled 3D CMRA data using CS. Nonrigid motion fields were incorporated into an undersampled motion-compensated reconstruction, which combines CS with the general matrix description formalism. The proposed approach was tested on 10 healthy subjects and compared against a conventional twofold accelerated 5-mm navigator-gated and tracked acquisition. RESULTS The proposed method achieves isotropic 1.2-mm Cartesian whole-heart CMRA in 5 min ± 1 min (~8× acceleration). The proposed approach provides good-quality images of the left and right coronary arteries, comparable to those of a twofold accelerated navigator-gated and tracked acquisition, but scan time was up to about four times faster. For both coronaries, no significant differences (P > 0.05) in vessel sharpness and length were found between the proposed method and reference scan. CONCLUSION The feasibility of a highly efficient motion-compensated reconstruction framework for accelerated 3D CMRA has been demonstrated in healthy subjects. Further investigation is required to assess the clinical value of the method.
Collapse
Affiliation(s)
- Teresa Correia
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Gastão Cruz
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - René M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
316
|
Weizman L, Miller KL, Eldar YC, Chiew M. PEAR: PEriodic And fixed Rank separation for fast fMRI. Med Phys 2017; 44:6166-6182. [PMID: 28945924 PMCID: PMC5836861 DOI: 10.1002/mp.12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/16/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
PURPOSE In functional MRI (fMRI), faster acquisition via undersampling of data can improve the spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-freedom. High-quality reconstruction of fMRI data from undersampled measurements requires proper modeling of the data. We present an fMRI reconstruction approach based on modeling the fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from undersampled measurements. METHODS The proposed approach decomposes the fMRI signal into a component which has a fixed rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed, moderate rank on one of the components, and a limited number of temporal frequencies on the other. Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI. RESULTS Experimental results include purely synthetic simulation, a simulation with real timecourses and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantitatively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI reconstruction from undersampled measurements. Results demonstrate PEAR's improvement in estimating the timecourses and activation maps versus the methods compared against at acceleration ratios of R = 8,10.66 (for simulated data) and R = 6.66,10 (for real data). CONCLUSIONS This paper presents PEAR, an undersampled fMRI reconstruction approach based on decomposing the fMRI signal to periodic and fixed rank components. PEAR results in reconstruction with higher fidelity than when using a fixed-rank based model or a conventional Low-rank + Sparse algorithm. We have shown that splitting the functional information between the components leads to better modeling of fMRI, over state-of-the-art methods.
Collapse
Affiliation(s)
- Lior Weizman
- Department of Electrical EngineeringTechnion ‐ Israel Institue of TechnologyHaifaIsrael
- FMRIB CentreUniversity of OxfordOxfordUK
| | | | - Yonina C. Eldar
- Department of Electrical EngineeringTechnion ‐ Israel Institue of TechnologyHaifaIsrael
| | - Mark Chiew
- FMRIB CentreUniversity of OxfordOxfordUK
| |
Collapse
|
317
|
Feng L, Huang C, Shanbhogue K, Sodickson DK, Chandarana H, Otazo R. RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI. Magn Reson Med 2017; 80:77-89. [PMID: 29193260 DOI: 10.1002/mrm.27002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate a novel dynamic contrast-enhanced imaging technique called RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-unstReaking Golden-angle RAdial Sparse Parallel) MRI that extends GRASP to include automatic contrast bolus timing, respiratory motion compensation, and coil-weighted unstreaking for improved imaging performance in liver MRI. METHODS In RACER-GRASP, aortic contrast enhancement (ACE) guided k-space sorting and respiratory-weighted sparse reconstruction are performed using aortic contrast enhancement and respiratory motion signals extracted directly from the acquired data. Coil unstreaking aims to weight multicoil k-space according to streaking artifact level calculated for each individual coil during image reconstruction, so that coil elements containing a high level of streaking artifacts contribute less to the final results. Self-calibrating GRAPPA operator gridding was applied as a pre-reconstruction step to reduce computational burden in the subsequent iterative reconstruction. The RACER-GRASP technique was compared with standard GRASP reconstruction in a group of healthy volunteers and patients referred for clinical liver MR examination. RESULTS Compared with standard GRASP, RACER-GRASP significantly improved overall image quality (average score: 3.25 versus 3.85) and hepatic vessel sharpness/clarity (average score: 3.58 versus 4.0), and reduced residual streaking artifact level (average score: 3.23 versus 3.94) in different contrast phases. RACER-GRASP also enabled automatic timing of the arterial phases. CONCLUSIONS The aortic contrast enhancement-guided sorting, respiratory motion suppression and coil unstreaking introduced by RACER-GRASP improve upon the imaging performance of standard GRASP for free-breathing dynamic contrast-enhanced MRI of the liver. Magn Reson Med 80:77-89, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
318
|
Benkert T, Tian Y, Huang C, DiBella EVR, Chandarana H, Feng L. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med 2017; 80:286-293. [PMID: 29193380 DOI: 10.1002/mrm.27030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. METHODS GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. RESULTS GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. CONCLUSION The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ye Tian
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
319
|
Chen Z, Kang L, Xia L, Wang Q, Li Y, Hu X, Liu F, Huang F. Technical Note: Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free-breathing golden-angle radial dynamic MRI: K-T ARTS-GROWL. Med Phys 2017; 45:202-213. [DOI: 10.1002/mp.12639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zhifeng Chen
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Liyi Kang
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Ling Xia
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
- State Key Lab of CAD&CG; Zhejiang University; Hangzhou China
| | - Qiuliang Wang
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yi Li
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Xinning Hu
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Feng Liu
- School of Information Technology and Electrical Engineering; The University of Queensland; Brisbane QLD Australia
| | | |
Collapse
|
320
|
Abstract
Fast magnetic resonance imaging (MRI) led to the emergence of 'cine MRI' techniques, which enable the visualization of the beating heart and the assessment of cardiac morphology and dynamics. However, established cine MRI methods are not suitable for fetal heart imaging in utero, where anatomical structures are considerably smaller and recording an electrocardiogram signal for synchronizing MRI data acquisition is difficult. Here we present a framework to overcome these challenges. We use methods for image acquisition and reconstruction that robustly produce images with sufficient spatial and temporal resolution to detect the heart contractions of the fetus, enabling a retrospective gating of the images and thus the generation of images of the beating heart. To underline the potential of our approach, we acquired in utero images in six pregnant patients and compared these with their echocardiograms. We found good agreement in terms of diameter and area measurements, and low inter- and intra- observer variability. These results establish MRI as a reliable modality for fetal cardiac imaging, with a substantial potential for prenatal evaluation of congenital heart defects.
Collapse
|
321
|
"One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling. Invest Radiol 2017; 51:714-719. [PMID: 27299581 DOI: 10.1097/rli.0000000000000299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS AND OBJECTIVES The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. MATERIALS AND METHODS In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. RESULTS Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. CONCLUSIONS Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.
Collapse
|
322
|
Chen F, Zhang T, Cheng JY, Shi X, Pauly JM, Vasanawala SS. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI. Magn Reson Med 2017; 78:1757-1766. [PMID: 27943402 PMCID: PMC5466545 DOI: 10.1002/mrm.26567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. METHODS A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. RESULTS For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). CONCLUSION The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Joseph Y. Cheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John M. Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
323
|
Stemkens B, Benkert T, Chandarana H, Bittman ME, Van den Berg CA, Lagendijk JJ, Sodickson DK, Tijssen RH, Block KT. Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging. NMR IN BIOMEDICINE 2017; 30:e3830. [PMID: 28885742 PMCID: PMC5643254 DOI: 10.1002/nbm.3830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 05/09/2023]
Abstract
Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the body). This work describes a data-consistency-driven image stabilization technique that detects and excludes bulk movements during data acquisition. Bulk motion is identified from changes in the signal intensity distribution across different elements of a multi-channel receive coil array. A short free induction decay signal is acquired after excitation and used as a measure to determine alterations in the load distribution. The technique has been implemented on a clinical MR scanner and evaluated in the abdomen. Six volunteers were scanned and two radiologists scored the reconstructions. To show the applicability to other body areas, additional neck and knee images were acquired. Data corrupted by bulk motion were successfully detected and excluded from image reconstruction. An overall increase in image sharpness and reduction of streaking and shine-through artifacts were seen in the volunteer study, as well as in the neck and knee scans. The proposed technique enables automatic real-time detection and exclusion of bulk motion during MR examinations without user interaction. It may help to improve the reliability of pediatric MRI examinations without the use of sedation.
Collapse
Affiliation(s)
- Bjorn Stemkens
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Mark E. Bittman
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | | | - Jan J.W. Lagendijk
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| | - Rob H.N. Tijssen
- Department of RadiotherapyUniversity Medical Center Utrechtthe Netherlands
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAIR), Department of RadiologyNew York University School of MedicineNew YorkNYUSA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
324
|
Mazzoli V, Schoormans J, Froeling M, Sprengers AM, Coolen BF, Verdonschot N, Strijkers GJ, Nederveen AJ. Accelerated 4D self-gated MRI of tibiofemoral kinematics. NMR IN BIOMEDICINE 2017; 30:e3791. [PMID: 28873255 DOI: 10.1002/nbm.3791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Anatomical (static) magnetic resonance imaging (MRI) is the most useful imaging technique for the evaluation and assessment of internal derangement of the knee, but does not provide dynamic information and does not allow the study of the interaction of the different tissues during motion. As knee pain is often only experienced during dynamic tasks, the ability to obtain four-dimensional (4D) images of the knee during motion could improve the diagnosis and provide a deeper understanding of the knee joint. In this work, we present a novel approach for dynamic, high-resolution, 4D imaging of the freely moving knee without the need for external triggering. The dominant knee of five healthy volunteers was scanned during a flexion/extension task. To evaluate the effects of non-uniform motion and poor coordination skills on the quality of the reconstructed images, we performed a comparison between fully free movement and movement instructed by a visual cue. The trigger signal for self-gating was extracted using principal component analysis (PCA), and the images were reconstructed using a parallel imaging and compressed sensing reconstruction pipeline. The reconstructed 4D movies were scored for image quality and used to derive bone kinematics through image registration. Using our method, we were able to obtain 4D high-resolution movies of the knee without the need for external triggering hardware. The movies obtained with and without instruction did not differ significantly in terms of image scoring and quantitative values for tibiofemoral kinematics. Our method showed to be robust for the extraction of the self-gating signal even for uninstructed motion. This can make the technique suitable for patients who, as a result of pain, may find it difficult to comply exactly with instructions. Furthermore, bone kinematics can be derived from accelerated MRI without the need for additional hardware for triggering.
Collapse
Affiliation(s)
- Valentina Mazzoli
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jasper Schoormans
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Andre M Sprengers
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory for Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Nico Verdonschot
- Orthopedic Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory for Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
325
|
Martin T, Hoffman J, Alger JR, McNitt-Gray M, Wang DJ. Low-dose CT perfusion with projection view sharing. Med Phys 2017; 45:101-113. [PMID: 29080274 DOI: 10.1002/mp.12640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE CT Perfusion (CTP) is a widely used clinical imaging modality. However, CTP typically involves the use of substantial radiation dose (CTDIvol ≥~200 mGy). The purpose of this study is to present a low-dose CTP technique using a projection view-sharing reconstruction algorithm originally developed for dynamic MRI - "K-space Weighted Image Contrast" (KWIC). METHODS The KWIC reconstruction is based on an angle-bisection scheme. In KWIC, a Fourier transform was performed along each projection to form a "k-space"-like CT data space, based on the central-slice theorem. As a projection view-sharing technique, KWIC preserves the spatiotemporal resolution of undersampled CTP data by progressively increasing the number of projection views shared for more distant regions of "k-space". KWIC reconstruction was evaluated on a digital FORBILD head phantom with numerically simulated time-varying objects. The numerically simulated scans were undersampled using the angle-bisection scheme to achieve 50%, 25%, and 12.5% of the original dose (288, 144, and 72 projections, respectively). The area-under-the-curve (AUC), time-to-peak (TTP), and full width half maximum (FWHM) were measured in KWIC recons and compared to fully sampled filtered back projection (FBP) reconstructions. KWIC reconstruction and dose reduction was also implemented for three clinical CTP cases (45 s, 1156 projections per turn, 1 s/turn, CTDIvol 217 mGy). Quantitative perfusion metrics were computed and compared between KWIC reconstructed CTP data and those of standard FBP reconstruction. RESULTS The AUC, TTP, and FWHM in the numerical simzulations were unaffected by the undersampling/dose reduction (down to 12.5% dose) with KWIC reconstruction compared to the fully sampled FBP reconstruction. The normalized root-mean-square-error (NRMSE) of the AUC in the FORBILD head phantom is 0.04, 0.05, and 0.07 for 50%, 25%, and 12.5% KWIC, respectively, as compared to FBP reconstruction. The cerebral blood flow (CBF) and cerebral blood volume had no significant difference between FBP and 50%, 25%, and 12.5% KWIC reconstructions (P > 0.05). CONCLUSIONS This study demonstrates that KWIC preserves perfusion metrics for CTP with substantially reduced dose. Clinical implementation will require further investigation into methods of rapid switching of a CT x-ray source.
Collapse
Affiliation(s)
- Thomas Martin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - John Hoffman
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeff R Alger
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael McNitt-Gray
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Danny Jj Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA.,Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
326
|
Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys 2017; 44:e430-e445. [DOI: 10.1002/mp.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ashley Gillman
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
- Faculty of Medicine; University of Queensland; Brisbane Australia
| | - Jye Smith
- Department of Radiation Oncology; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Paul Thomas
- Faculty of Medicine; University of Queensland; Brisbane Australia
- Herston Imaging Research Facility and Specialised PET Services Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Stephen Rose
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| | - Nicholas Dowson
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| |
Collapse
|
327
|
Freedman JN, Collins DJ, Bainbridge H, Rank CM, Nill S, Kachelrieß M, Oelfke U, Leach MO, Wetscherek A. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning. Invest Radiol 2017; 52:563-573. [PMID: 28459800 PMCID: PMC5581953 DOI: 10.1097/rli.0000000000000381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. MATERIALS AND METHODS Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. RESULTS High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between corresponding respiratory phases of 4D-T1w and 4D-T2w MRI and the tie-phase of 4D-T1w and 3-dimensional T2w MRI, were consistent to 0.41% ± 0.37%. Four-dimensional T2w MRI displayed tumor extent, structure, and position more clearly than corresponding 4D-T1w MRI, especially when mobile tumor sites were adjacent to organs at risk. CONCLUSIONS A methodology to obtain 4D-T2w MRI that retrospectively applies the motion information from 4D-T1w MRI to 3-dimensional T2w MRI was developed and verified. Four-dimensional T2w MRI can assist clinicians in delineating mobile lesions that are difficult to define on 4D-T1w MRI, because of poor tumor-tissue contrast.
Collapse
Affiliation(s)
- Joshua N. Freedman
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J. Collins
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Bainbridge
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M. Rank
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simeon Nill
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Oelfke
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin O. Leach
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
328
|
Panic M, Aelterman J, Crnojevic V, Pizurica A. Sparse Recovery in Magnetic Resonance Imaging With a Markov Random Field Prior. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2104-2115. [PMID: 28858789 DOI: 10.1109/tmi.2017.2743819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent research in compressed sensing of magnetic resonance imaging (CS-MRI) emphasizes the importance of modeling structured sparsity, either in the acquisition or in the reconstruction stages. Subband coefficients of typical images show certain structural patterns, which can be viewed in terms of fixed groups (like wavelet trees) or statistically (certain configurations are more likely than others). Wavelet tree models have already demonstrated excellent performance in MRI recovery from partial data. However, much less attention has been given in CS-MRI to modeling statistically spatial clustering of subband data, although the potentials of such models have been indicated. In this paper, we propose a practical CS-MRI reconstruction algorithm making use of a Markov random field prior model for spatial clustering of subband coefficients and an efficient optimization approach based on proximal splitting. The results demonstrate an improved reconstruction performance compared with both the standard CS-MRI methods and the recent related methods.
Collapse
|
329
|
Holst K, Ugander M, Sigfridsson A. Respiratory variation in left ventricular cardiac function with 3
D
double golden‐angle whole‐heart cine imaging. Magn Reson Med 2017; 79:2693-2701. [DOI: 10.1002/mrm.26942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Karen Holst
- Department of Clinical PhysiologyKarolinska Institutet, and Karolinska University HospitalStockholmSweden
| | - Martin Ugander
- Department of Clinical PhysiologyKarolinska Institutet, and Karolinska University HospitalStockholmSweden
| | - Andreas Sigfridsson
- Department of Clinical PhysiologyKarolinska Institutet, and Karolinska University HospitalStockholmSweden
| |
Collapse
|
330
|
Haji-Valizadeh H, Rahsepar AA, Collins JD, Bassett E, Isakova T, Block T, Adluru G, DiBella EVR, Lee DC, Carr JC, Kim D. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T. Magn Reson Med 2017; 79:2745-2751. [PMID: 28921631 DOI: 10.1002/mrm.26918] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. METHODS We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. RESULTS Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction <4%). CONCLUSION This study demonstrates that an optimal 12-fold, accelerated, real-time cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Amir A Rahsepar
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Elwin Bassett
- Physics Department, University of Utah, Salt Lake City, Utah, USA
| | - Tamara Isakova
- Division of Nephrology, Internal Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tobias Block
- Department of Radiology, New York University, New York, New York, USA
| | - Ganesh Adluru
- Department of Radiology and Imaging Science, University of Utah, Salt Lake City, Utah, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Science, University of Utah, Salt Lake City, Utah, USA
| | - Daniel C Lee
- Department of Radiology, Northwestern University, Chicago, Illinois, USA.,Division of Cardiology, Internal Medicine, Northwestern University, Chicago, Illinois, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
331
|
Ning J, Sun Y, Xie S, Zhang B, Huang F, Koken P, Smink J, Yuan C, Chen H. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver. Magn Reson Med 2017; 79:2629-2641. [PMID: 28905413 DOI: 10.1002/mrm.26915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. METHODS The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. RESULTS Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. CONCLUSIONS The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jia Ning
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yongliang Sun
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | - Chun Yuan
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Huijun Chen
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
332
|
Stemkens B, Glitzner M, Kontaxis C, de Senneville BD, Prins FM, Crijns SPM, Kerkmeijer LGW, Lagendijk JJW, van den Berg CAT, Tijssen RHN. Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. ACTA ACUST UNITED AC 2017; 62:7407-7424. [DOI: 10.1088/1361-6560/aa83f7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
333
|
Sengupta S, Smith DS, Smith AK, Welch EB, Smith SA. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI. Invest Ophthalmol Vis Sci 2017; 58:4390–4398. [PMID: 28813574 PMCID: PMC5559179 DOI: 10.1167/iovs.17-21861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David S Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alex K Smith
- The Centre for Functional MRI of the Brain, The University of Oxford, Oxford, United Kingdom
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
334
|
Comprehensive Multi-Dimensional MRI for the Simultaneous Assessment of Cardiopulmonary Anatomy and Physiology. Sci Rep 2017; 7:5330. [PMID: 28706270 PMCID: PMC5509743 DOI: 10.1038/s41598-017-04676-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/18/2017] [Indexed: 01/22/2023] Open
Abstract
Diagnostic testing often assesses the cardiovascular or respiratory systems in isolation, ignoring the major pathophysiologic interactions between the systems in many diseases. When both systems are assessed currently, multiple modalities are utilized in costly fashion with burdensome logistics and decreased accessibility. Thus, we have developed a new acquisition and reconstruction paradigm using the flexibility of MRI to enable a comprehensive exam from a single 5-15 min scan. We constructed a compressive-sensing approach to pseudo-randomly acquire highly subsampled, multi-dimensionally-encoded and time-stamped data from which we reconstruct volumetric cardiac and respiratory motion phases, contrast-agent dynamics, and blood flow velocity fields. The proposed method, named XD flow, is demonstrated for (a) evaluating congenital heart disease, where the impact of bulk motion is reduced in a non-sedated neonatal patient and (b) where the observation of the impact of respiration on flow is necessary for diagnostics; (c) cardiopulmonary imaging, where cardiovascular flow, function, and anatomy information is needed along with pulmonary perfusion quantification; and in (d) renal function imaging, where blood velocities and glomerular filtration rates are simultaneously measured, which highlights the generality of the technique. XD flow has the ability to improve quantification and to provide additional data for patient diagnosis for comprehensive evaluations.
Collapse
|
335
|
Holst K, Ugander M, Sigfridsson A. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility. Magn Reson Imaging 2017; 43:48-55. [PMID: 28687216 DOI: 10.1016/j.mri.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. METHODS A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. RESULTS No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (P<0.05 for all). The test-retest differences did not differ between 3D free breathing cine and 2D breath-held cine (P<0.05 for all). CONCLUSION 3D free breathing cine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition.
Collapse
Affiliation(s)
- Karen Holst
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
336
|
Svedin BT, Payne A, Bolster BD, Parker DL. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast. Magn Reson Med 2017. [PMID: 28643383 DOI: 10.1002/mrm.26797] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Implement and evaluate a 3D MRI method to measure temperature changes with high spatial and temporal resolution and large field of view. METHODS A multiecho pseudo-golden angle stack-of-stars (SOS) sequence with k-space weighted image contrast (KWIC) reconstruction was implemented to simultaneously measure multiple quantities, including temperature, initial signal magnitude M(0), transverse relaxation time ( T2*), and water/fat images. Respiration artifacts were corrected using self-navigation. KWIC artifacts were removed using a multi-baseline library. The phases of the multiple echo images were combined to improve proton resonance frequency precision. Temperature precision was tested through in vivo breast imaging (N = 5 healthy volunteers) using both coronal and sagittal orientations and with focused ultrasound (FUS) heating in a pork phantom using a breast specific MR-guided FUS system. RESULTS Temperature measurement precision was significantly improved after echo combination when compared with the no echo combination case (spatial average of the standard deviation through time of 0.3-1.0 and 0.7-1.9°C, respectively). Temperature measurement accuracy during heating was comparable to a 3D seg-EPI sequence. M(0) and T2* values showed temperature dependence during heating in pork adipose tissue. CONCLUSION A self-navigated 3D multiecho SOS sequence with dynamic KWIC reconstruction is a promising thermometry method that provides multiple temperature sensitive quantitative values. Magn Reson Med 79:1407-1419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Allison Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | | | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
337
|
Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J. Model-based T 1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med 2017; 79:730-740. [PMID: 28603934 DOI: 10.1002/mrm.26726] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop a model-based reconstruction technique for single-shot T1 mapping with high spatial resolution, accuracy, and precision using an inversion-recovery (IR) fast low-angle shot (FLASH) acquisition with radial encoding. METHODS The proposed model-based reconstruction jointly estimates all model parameters, that is, the equilibrium magnetization, steady-state magnetization, 1/ T1*, and all coil sensitivities from the data of a single-shot IR FLASH acquisition with a small golden-angle radial trajectory. Joint sparsity constraints on the parameter maps are exploited to improve the performance of the iteratively regularized Gauss-Newton method chosen for solving the nonlinear inverse problem. Validations include both a numerical and experimental T1 phantom, as well as in vivo studies of the human brain and liver at 3 T. RESULTS In comparison to previous reconstruction methods for single-shot T1 mapping, which are based on real-time MRI with pixel-wise fitting and a model-based approach with a predetermination of coil sensitivities, the proposed method presents with improved robustness against phase errors and numerical precision in both phantom and in vivo studies. CONCLUSION The comprehensive model-based reconstruction with L1 regularization offers rapid and robust T1 mapping with high accuracy and precision. The method warrants accelerated computing and online implementation for extended clinical trials. Magn Reson Med 79:730-740, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Volkert Roeloffs
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jakob Klosowski
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Zhengguo Tan
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Martin Uecker
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| |
Collapse
|
338
|
Kim D, Seo H, Cho J, Kwon K, Han Y, Park H. Non-contrast-enhanced peripheral MR angiography using velocity-selective excitation. Magn Reson Med 2017; 79:779-788. [PMID: 28580695 DOI: 10.1002/mrm.26732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/01/2017] [Accepted: 04/02/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To develop a new non-contrast-enhanced peripheral MR angiography that provides a high contrast angiogram without using electrocardiography triggering and saturation radiofrequency pulses. METHODS A velocity-selective excitation technique is used in conjunction with the golden-angle radial sampling scheme. The signal amplitude varies according to the velocity of the flow by the velocity-selective excitation technique. Because the arterial blood velocity varies depending on the cardiac phase, the acquired data can be classified into systolic and diastolic phase based on the signal amplitude of the artery. Two images are then reconstructed from the systolic and diastolic phase data, respectively, and an image reflecting the differences between the two images is obtained to eliminate background and vein signals. The performance of the proposed method was compared with the quiescent-interval single shot (QISS) in eight healthy subjects and an elderly subject. RESULTS The proposed method generated fewer residual venous and background signals than the QISS. Furthermore, the maximum intensity projection images, the relative contrast, and the apparent contrast-to-noise ratio results showed that the proposed method produced a better contrast than the QISS. CONCLUSIONS The proposed non-contrast-enhanced peripheral MR angiography technique can provide a high contrast angiogram without the use of electrocardiography triggering and saturation radiofrequency pulses. Magn Reson Med 79:779-788, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dongchan Kim
- College of Medicine, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, Republic of Korea
| | - Hyunseok Seo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Jaejin Cho
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Kinam Kwon
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Yeji Han
- Department of Biomedical Engineering, College of Health Sciences, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
339
|
A Feasibility Study of Geometric-Decomposition Coil Compression in MRI Radial Acquisitions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:7685208. [PMID: 28659993 PMCID: PMC5474278 DOI: 10.1155/2017/7685208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022]
Abstract
Receiver arrays with a large number of coil elements are becoming progressively available because of their increased signal-to-noise ratio (SNR) and enhanced parallel imaging performance. However, longer reconstruction time and intensive computational cost have become significant concerns as the number of channels increases, especially in some iterative reconstructions. Coil compression can effectively solve this problem by linearly combining the raw data from multiple coils into fewer virtual coils. In this work, geometric-decomposition coil compression (GCC) is applied to radial sampling (both linear-angle and golden-angle patterns are discussed) for better compression. GCC, which is different from directly compressing in k-space, is performed separately in each spatial location along the fully sampled directions, then followed by an additional alignment step to guarantee the smoothness of the virtual coil sensitivities. Both numerical simulation data and in vivo data were tested. Experimental results demonstrated that the GCC algorithm can achieve higher SNR and lower normalized root mean squared error values than the conventional principal component analysis approach in radial acquisitions.
Collapse
|
340
|
Zucker EJ, Cheng JY, Haldipur A, Carl M, Vasanawala SS. Free-breathing pediatric chest MRI: Performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition. J Magn Reson Imaging 2017; 47:200-209. [PMID: 28570032 DOI: 10.1002/jmri.25776] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To assess the feasibility and performance of conical k-space trajectory free-breathing ultrashort echo time (UTE) chest magnetic resonance imaging (MRI) versus four-dimensional (4D) flow and effects of 50% data subsampling and soft-gated motion correction. MATERIALS AND METHODS Thirty-two consecutive children who underwent both 4D flow and UTE ferumoxytol-enhanced chest MR (mean age: 5.4 years, range: 6 days to 15.7 years) in one 3T exam were recruited. From UTE k-space data, three image sets were reconstructed: 1) one with all data, 2) one using the first 50% of data, and 3) a final set with soft-gating motion correction, leveraging the signal magnitude immediately after each excitation. Two radiologists in blinded fashion independently scored image quality of anatomical landmarks on a 5-point scale. Ratings were compared using Wilcoxon rank-sum, Wilcoxon signed-ranks, and Kruskal-Wallis tests. Interobserver agreement was assessed with the intraclass correlation coefficient (ICC). RESULTS For fully sampled UTE, mean scores for all structures were ≥4 (good-excellent). Full UTE surpassed 4D flow for lungs and airways (P < 0.001), with similar pulmonary artery (PA) quality (P = 0.62). 50% subsampling only slightly degraded all landmarks (P < 0.001), as did motion correction. Subsegmental PA visualization was possible in >93% scans for all techniques (P = 0.27). Interobserver agreement was excellent for combined scores (ICC = 0.83). CONCLUSION High-quality free-breathing conical UTE chest MR is feasible, surpassing 4D flow for lungs and airways, with equivalent PA visualization. Data subsampling only mildly degraded images, favoring lesser scan times. Soft-gating motion correction overall did not improve image quality. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:200-209.
Collapse
Affiliation(s)
- Evan J Zucker
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Joseph Y Cheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Anshul Haldipur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael Carl
- Applied Science Laboratory, GE Healthcare, San Diego, California, USA
| | | |
Collapse
|
341
|
Rapid rest/stress regadenoson ungated perfusion CMR for detection of coronary artery disease in patients with atrial fibrillation. Int J Cardiovasc Imaging 2017; 33:1781-1788. [PMID: 28528431 DOI: 10.1007/s10554-017-1168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular magnetic resonance (CMR) perfusion has been established as a useful imaging modality for the detection of coronary artery disease (CAD). However, there are several limitations when applying standard, ECG-gated stress/rest perfusion CMR to patients with atrial fibrillation (AF). In this study we investigate an approach with no ECG gating and a rapid rest/stress perfusion protocol to determine its accuracy for detection of CAD in patients with AF. 26 patients with AF underwent a rapid rest/regadenoson stress CMR perfusion imaging protocol, and all patients had X-ray coronary angiography. An ungated radial myocardial perfusion sequence was used. Imaging protocol included: rest perfusion image acquisition, followed nearly immediately by administration of regadenoson to induce hyperemia, 60 s wait, and stress image acquisition. CMR perfusion images were interpreted by three blinded readers as normal or abnormal. Diagnostic accuracy was evaluated by comparison to X-ray angiography. 21 of the CMR rest/stress perfusion scans were negative, and 5 were positive by angiography criteria. Majority results of the ungated datasets from all of the readers showed a sensitivity, specificity and accuracy of 80, 100 and 96%, respectively, for detection of CAD. An ungated, rapid rest/stress regadenoson perfusion CMR protocol appears to be useful for the diagnosis of obstructive CAD in patients with AF.
Collapse
|
342
|
Sen R, Sen C, Pack J, Block KT, Golfinos JG, Prabhu V, Boada F, Gonen O, Kondziolka D, Fatterpekar G. Role of High-Resolution Dynamic Contrast-Enhanced MRI with Golden-Angle Radial Sparse Parallel Reconstruction to Identify the Normal Pituitary Gland in Patients with Macroadenomas. AJNR Am J Neuroradiol 2017; 38:1117-1121. [PMID: 28495945 DOI: 10.3174/ajnr.a5244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Preoperative localization of the pituitary gland with imaging in patients with macroadenomas has been inadequately explored. The pituitary gland enhancing more avidly than a macroadenoma has been described in the literature. Taking advantage of this differential enhancement pattern, our aim was to evaluate the role of high-resolution dynamic MR imaging with golden-angle radial sparse parallel reconstruction in localizing the pituitary gland in patients undergoing trans-sphenoidal resection of a macroadenoma. MATERIALS AND METHODS A retrospective study was performed in 17 patients who underwent trans-sphenoidal surgery for pituitary macroadenoma. Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were obtained. Using an ROI-based method to obtain signal-time curves and permeability measures, 3 separate readers identified the normal pituitary gland distinct from the macroadenoma. The readers' localizations were then compared with the intraoperative location of the gland. Statistical analyses were performed to assess the interobserver agreement and correlation with operative findings. RESULTS The normal pituitary gland was found to have steeper enhancement-time curves as well as higher peak enhancement values compared with the macroadenoma (P < .001). Interobserver agreement was almost perfect in all 3 planes (κ = 0.89). In the 14 cases in which the gland was clearly identified intraoperatively, the correlation between the readers' localization and the true location derived from surgery was also nearly perfect (κ = 0.95). CONCLUSIONS This study confirms our ability to consistently and accurately identify the normal pituitary gland in patients with macroadenomas with the golden-angle radial sparse parallel technique with quantitative permeability measurements and enhancement-time curves.
Collapse
Affiliation(s)
- R Sen
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - C Sen
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - J Pack
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - K T Block
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - J G Golfinos
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - V Prabhu
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - F Boada
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - O Gonen
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - D Kondziolka
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York
| | - G Fatterpekar
- From the New York University School of Medicine, NYU Langone Medical Center, New York, New York.
| |
Collapse
|
343
|
Zhou Z, Han F, Yu S, Yu D, Rapacchi S, Song HK, Wang DJJ, Hu P, Yan L. Accelerated noncontrast-enhanced 4-dimensional intracranial MR angiography using golden-angle stack-of-stars trajectory and compressed sensing with magnitude subtraction. Magn Reson Med 2017; 79:867-878. [PMID: 28480537 DOI: 10.1002/mrm.26747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate the feasibility and performance of compressed sensing (CS) with magnitude subtraction regularization in accelerating non-contrast-enhanced dynamic intracranial MR angiography (NCE-dMRA). METHODS A CS algorithm was introduced in NCE-dMRA by exploiting the sparsity of the magnitude difference of the control and label images. The NCE-dMRA data were acquired using golden-angle stack-of-stars trajectory on six healthy volunteers and one patient with arteriovenous fistula. Images were reconstructed using (i) the proposed magnitude-subtraction CS (MS-CS); (ii) complex-subtraction CS; (iii) independent CS; and (iv) view-sharing with k-space weighted image contrast (KWIC). The dMRA image quality was compared across the four reconstruction strategies. The proposed MS-CS method was further compared with KWIC for temporal fidelity of depicting dynamic flow. RESULTS The proposed MS-CS method was able to reconstruct NCE-dMRA images with detailed vascular structures and clean background. It provided better subjective image quality than the other two CS strategies (P < 0.05). Compared with KWIC, MS-CS showed similar image quality, but reduced temporal blurring in delineating the fine distal arteries. CONCLUSIONS The MS-CS method is a promising CS technique for accelerating NCE-dMRA acquisition without compromising image quality and temporal fidelity. Magn Reson Med 79:867-878, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Songlin Yu
- Department of Neurology, University of California, Los Angeles, California, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dandan Yu
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Stanislas Rapacchi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Danny J J Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
344
|
Assländer J, Glaser SJ, Hennig J. Application of spin echoes in the regime of weak dephasing to T 1 -mapping of the lung. Magn Reson Med 2017; 79:960-967. [PMID: 28419591 DOI: 10.1002/mrm.26719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/09/2022]
Abstract
PURPOSE This work presents an approach to mapping the entire lung's proton density and T1 within a single breath-hold and analyzes the apparent T1 when exciting with a spin echo generating pulse in comparison to a standard gradient echo acquisition. METHODS An inversion-recovery SNAPSHOT-FLASH sequence with a stack-of-stars k-space readout with a golden angle increment was modified to use a spin echo generating radiofrequency-pulse for excitation. Data of five volunteers were acquired on a 3T scanner and image reconstruction was performed by an iterative algorithm adopted from MR-Fingerprinting. RESULTS The feasibility of acquiring quantitative maps of the entire lung with a resolution of 5 × 5 × 10 mm within 7.5 s is demonstrated. It is shown that the proposed spin echo forming radiofrequency-pulse increases the apparent proton density compared to a rectangular pulse. Further, the apparent T1 is reduced in the spin echo case compared to the gradient echo sequence. CONCLUSION The proposed spin echo based method results in T1 maps that are comparable to the ones that were acquired with ultra-short echo time sequences elsewhere. The T1 shortening is believed to originate from increased signal contributions of the extra vascular compartment, which has a short T2∗ and T1 . Magn Reson Med 79:960-967, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jakob Assländer
- Faculty of Medicine, Department of Radiology, Medical Physics, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Steffen J Glaser
- Department of Chemistry, Technische Universität München, Munich, Germany
| | - Jürgen Hennig
- Faculty of Medicine, Department of Radiology, Medical Physics, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
345
|
Armstrong T, Dregely I, Stemmer A, Han F, Natsuaki Y, Sung K, Wu HH. Free-breathing liver fat quantification using a multiecho 3D stack-of-radial technique. Magn Reson Med 2017; 79:370-382. [PMID: 28419582 DOI: 10.1002/mrm.26693] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE The diagnostic gold standard for nonalcoholic fatty liver disease is an invasive biopsy. Noninvasive Cartesian MRI fat quantification remains limited to a breath-hold (BH). In this work, a novel free-breathing 3D stack-of-radial (FB radial) liver fat quantification technique is developed and evaluated in a preliminary study. METHODS Phantoms and healthy subjects (n = 11) were imaged at 3 Tesla. The proton-density fat fraction (PDFF) determined using FB radial (with and without scan acceleration) was compared to BH single-voxel MR spectroscopy (SVS) and BH 3D Cartesian MRI using linear regression (correlation coefficient ρ and concordance coefficient ρc ) and Bland-Altman analysis. RESULTS In phantoms, PDFF showed significant correlation (ρ > 0.998, ρc > 0.995) and absolute mean differences < 2.2% between FB radial and BH SVS, as well as significant correlation (ρ > 0.999, ρc > 0.998) and absolute mean differences < 0.6% between FB radial and BH Cartesian. In the liver and abdomen, PDFF showed significant correlation (ρ > 0.986, ρc > 0.985) and absolute mean differences < 1% between FB radial and BH SVS, as well as significant correlation (ρ > 0.996, ρc > 0.995) and absolute mean differences < 0.9% between FB radial and BH Cartesian. CONCLUSION Accurate 3D liver fat quantification can be performed in 1 to 2 min using a novel FB radial technique. Magn Reson Med 79:370-382, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Isabel Dregely
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Biomedical Engineering, King's College London, London, United Kingdom
| | | | - Fei Han
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | | | - Kyunghyun Sung
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
346
|
Buonincontri G, Schulte RF, Cosottini M, Tosetti M. Spiral MR fingerprinting at 7T with simultaneous B1 estimation. Magn Reson Imaging 2017; 41:1-6. [PMID: 28414052 DOI: 10.1016/j.mri.2017.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Magnetic resonance fingerprinting is an efficient, new approach for quantitative imaging with MR. We aimed to extend this technique to cases with B1+ inhomogeneities within the imaging volume. Previous approaches have used abrupt changes in flip angles to estimate the B1+ field simultaneously with T1 and T2, using a Cartesian approach in a small-animal scanner at 4.7T. Here, we evaluated whether a similar approach would be suitable for imaging human brains using spiral readouts with a 7T scanner. We found that our modified scheme could significantly reduce the adverse effects of B1+ inhomogeneities even in extreme cases, reducing both the bias and the variance in T2 estimations by an order of magnitude when compared to literature methods. Acquisitions used less than 1.5W/kg SAR and could be performed in 12s per slice. In conclusion, our approach can be used to perform quantitative imaging of the brain at 7T in a short time, simultaneously estimating the B1+ profile.
Collapse
Affiliation(s)
| | | | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; IMAGO7 Foundation, Pisa, Italy
| | - Michela Tosetti
- IRCCS Stella Maris Foundation, Pisa, Italy; IMAGO7 Foundation, Pisa, Italy
| |
Collapse
|
347
|
Chen X, Usman M, Baumgartner CF, Balfour DR, Marsden PK, Reader AJ, Prieto C, King AP. High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:960-971. [PMID: 28113339 DOI: 10.1109/tmi.2016.2636449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel retrospective self-gating method based on manifold alignment (MA), which enables reconstruction of free breathing, high spatial, and temporal resolution abdominal magnetic resonance imaging sequences. Based on a radial golden-angle acquisition trajectory, our method enables a multidimensional self-gating signal to be extracted from the k -space data for more accurate motion representation. The k -space radial profiles are evenly divided into a number of overlapping groups based on their radial angles. MA is then used to simultaneously learn and align the low dimensional manifolds of all groups, and embed them into a common manifold. In the manifold, k -space profiles that represent similar respiratory positions are close to each other. Image reconstruction is performed by combining radial profiles with evenly distributed angles that are close in the manifold. Our method was evaluated on both 2-D and 3-D synthetic and in vivo data sets. On the synthetic data sets, our method achieved high correlation with the ground truth in terms of image intensity and virtual navigator values. Using the in vivo data, compared with a state-of-the-art approach based on the center of k -space gating, our method was able to make use of much richer profile data for self-gating, resulting in statistically significantly better quantitative measurements in terms of organ sharpness and image gradient entropy.
Collapse
|
348
|
Stäb D, Bollmann S, Langkammer C, Bredies K, Barth M. Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength. NMR IN BIOMEDICINE 2017; 30:e3620. [PMID: 27763692 DOI: 10.1002/nbm.3620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 07/04/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
With the advent of ultra-high field MRI scanners in clinical research, susceptibility based MRI has recently gained increasing interest because of its potential to assess subtle tissue changes underlying neurological pathologies/disorders. Conventional, but rather slow, three-dimensional (3D) spoiled gradient-echo (GRE) sequences are typically employed to assess the susceptibility of tissue. 3D echo-planar imaging (EPI) represents a fast alternative but generally comes with echo-time restrictions, geometrical distortions and signal dropouts that can become severe at ultra-high fields. In this work we assess quantitative susceptibility mapping (QSM) at 7 T using non-Cartesian 3D EPI with a planes-on-a-paddlewheel (POP) trajectory, which is created by rotating a standard EPI readout train around its own phase encoding axis. We show that the threefold accelerated non-Cartesian 3D POP EPI sequence enables very fast, whole brain susceptibility mapping at an isotropic resolution of 1 mm and that the high image quality has sufficient signal-to-noise ratio in the phase data for reliable QSM processing. The susceptibility maps obtained were comparable with regard to QSM values and geometric distortions to those calculated from a conventional 4 min 3D GRE scan using the same QSM processing pipeline. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Stäb
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Steffen Bollmann
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Kristian Bredies
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Markus Barth
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
349
|
Krämer M, Motaal AG, Herrmann KH, Löffler B, Reichenbach JR, Strijkers GJ, Hoerr V. Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 2017; 19:39. [PMID: 28359292 PMCID: PMC5374606 DOI: 10.1186/s12968-017-0351-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence. METHODS Cardiac 4D PC CMR images were acquired at 9.4 T in healthy mice using the proposed self-gated radial center-out UTE acquisition scheme (TE/TR of 0.5 ms/3.1 ms) and a standard Cartesian 4D PC imaging sequence (TE/TR of 2.1 ms/5.0 ms) with a four-point Hadamard flow encoding scheme. To validate the proposed UTE flow imaging technique, experiments on a flow phantom with variable pump rates were performed. RESULTS The anatomical images and flow velocity maps of the proposed 4D PC UTE technique showed reduced artifacts and an improved SNR (left ventricular cavity (LV): 8.9 ± 2.5, myocardium (MC): 15.7 ± 1.9) compared to those obtained using a typical Cartesian FLASH sequence (LV: 5.6 ± 1.2, MC: 10.1 ± 1.4) that was used as a reference. With both sequences comparable flow velocities were obtained in the flow phantom as well as in the ascending aorta (UTE: 132.8 ± 18.3 cm/s, FLASH: 134.7 ± 13.4 cm/s) and pulmonary artery (UTE: 78.5 ± 15.4 cm/s, FLASH: 86.6 ± 6.2 cm/s) of the animals. Self-gated navigator signals derived from information of the oversampled k-space center were successfully extracted for all animals with a higher gating efficiency of time spent on acquiring gated data versus total measurement time (UTE: 61.8 ± 11.5%, FLASH: 48.5 ± 4.9%). CONCLUSIONS The proposed self-gated 4D PC UTE sequence enables robust and accurate flow velocity mapping of the mouse heart in vivo at high magnetic fields. At the same time SNR, gating efficiency, flow artifacts and image quality all improved compared to the images obtained using the well-established, ECG-triggered, 4D PC FLASH sequence.
Collapse
Affiliation(s)
- M. Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - A. G. Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - K-H. Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - B. Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - J. R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
- Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands
| | - V. Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
350
|
Cao W, Chang YV, Englund EK, Song HK, Barhoum S, Rodgers ZB, Langham MC, Wehrli FW. High-speed whole-brain oximetry by golden-angle radial MRI. Magn Reson Med 2017; 79:217-223. [PMID: 28342212 DOI: 10.1002/mrm.26666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/18/2017] [Accepted: 02/11/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE To determine whole-brain cerebral metabolic rate of oxygen (CMRO2 ), an improved imaging approach, based on radial encoding, termed radial OxFlow (rOxFlow), was developed to simultaneously quantify draining vein venous oxygen saturation (SvO2 ) and total cerebral blood flow (tCBF). METHODS To evaluate the efficiency and precision of the rOxFlow sequence, 10 subjects were studied during a paradigm of repeated breath-holds with both rOxFlow and Cartesian OxFlow (cOxFlow) sequences. CMRO2 was calculated at baseline from OxFlow-measured data assuming an arterial O2 saturation of 97%, and the SvO2 and tCBF breath-hold responses were quantified. RESULTS Average neurometabolic-vascular parameters across the 10 subjects for cOxFlow and rOxFlow were, respectively: SvO2 (%) baseline: 64.6 ± 8.0 versus 64.2 ± 6.6; SvO2 peak: 70.5 ± 8.5 versus 72.6 ± 5.4; tCBF (mL/min/100 g) baseline: 39.2 ± 3.8 versus 40.6 ± 8.0; tCBF peak: 53.2 ± 5.1 versus 56.1 ± 11.7; CMRO2 (µmol O2 /min/100 g) baseline: 111.5 ± 26.8 versus 120.1 ± 19.6. The above measures were not significantly different between sequences (P > 0.05). CONCLUSION There was good agreement between the two methods in terms of the physiological responses measured. Comparing the two, rOxFlow provided higher temporal resolution and greater flexibility for reconstruction while maintaining high SNR. Magn Reson Med 79:217-223, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wen Cao
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulin V Chang
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hee Kwon Song
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suliman Barhoum
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|