301
|
Wolfers S, Kamerewerd J, Nowrousian M, Sigl C, Zadra I, Kürnsteiner H, Kück U, Bloemendal S. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA. J Basic Microbiol 2015; 55:480-9. [PMID: 25557366 DOI: 10.1002/jobm.201400588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/18/2014] [Indexed: 11/12/2022]
Abstract
The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.
Collapse
Affiliation(s)
- Simon Wolfers
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
302
|
|
303
|
|
304
|
Alkhayyat F, Chang Kim S, Yu JH. Genetic control of asexual development in aspergillus fumigatus. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:93-107. [PMID: 25596030 DOI: 10.1016/bs.aambs.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aspergillus fumigatus is one of the most common fungi found in the environment. It is an opportunistic human pathogen causing invasive pulmonary aspergillosis with a high mortality rate in immunocompromised patients. Conidia, the asexual spores, serve as the main dispersal and infection agent allowing entrance of the fungus into the host through the respiratory tract. Therefore, understanding the asexual developmental process that gives rise to the conidia is of great interest to the scientific community and is currently the focus of an immense load of research being conducted. We have been studying the genetic basis that controls asexual development and gliotoxin biosynthesis in A. fumigatus. In this review, we discuss the genetic regulatory system that dictates conidiation in this important fungus by covering the roles of crucial genetic factors from the upstream heterotrimeric G-protein signaling components to the more specific downstream central activators of the conidiation pathway. In addition, other key asexual regulators including the velvet regulators, the Flb proteins and their associated regulatory factors are discussed.
Collapse
Affiliation(s)
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Dae-Jon, Republic of Korea
| | - Jae-Hyuk Yu
- University of Wisconsin-Madison, MSB, Madison, WI, USA
| |
Collapse
|
305
|
Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
306
|
Sueiro-Olivares M, Fernandez-Molina JV, Abad-Diaz-de-Cerio A, Gorospe E, Pascual E, Guruceaga X, Ramirez-Garcia A, Garaizar J, Hernando FL, Margareto J, Rementeria A. Aspergillus fumigatus transcriptome response to a higher temperature during the earliest steps of germination monitored using a new customized expression microarray. MICROBIOLOGY-SGM 2014; 161:490-502. [PMID: 25536999 DOI: 10.1099/mic.0.000021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is considered to be the most prevalent airborne pathogenic fungus and can cause invasive diseases in immunocompromised patients. It is known that its virulence is multifactorial, although the mechanisms of pathogenicity remain unclear. With the aim of improving our understanding of these mechanisms, we designed a new expression microarray covering the entire genome of A. fumigatus. In this first study, we analysed the transcriptomes of this fungus at the first steps of germination after being grown at 24 and 37 °C. The microarray data revealed that 1249 genes were differentially expressed during growth at these two temperatures. According to our results, A. fumigatus modified significantly the expression of genes related to metabolism to adapt to new conditions. The high percentages of genes that encoded hypothetical or unclassified proteins differentially expressed implied that many as yet unknown genes were involved in the establishment of A. fumigatus infection. Furthermore, amongst the genes implicated in virulence upregulated at 37 °C on the microarray, we found those that encoded proteins mainly related to allergens (Asp F1, Asp F2 and MnSOD), gliotoxin biosynthesis (GliP and GliZ), nitrogen (NiiA and NiaD) or iron (HapX, SreA, SidD and SidC) metabolism. However, gene expression in iron and nitrogen metabolism might be influenced not only by heat shock, but also by the availability of nutrients in the medium, as shown by the addition of fresh medium.
Collapse
Affiliation(s)
- Mónica Sueiro-Olivares
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Jimena V Fernandez-Molina
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Ana Abad-Diaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Eva Gorospe
- Tecnalia Research & Innovation, 48160 Derio, Spain
| | | | - Xabier Guruceaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Javier Garaizar
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Spain
| | - Fernando L Hernando
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | | | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
307
|
Zhang F, Guo Z, Zhong H, Wang S, Yang W, Liu Y, Wang S. RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins (Basel) 2014; 6:3187-207. [PMID: 25421810 PMCID: PMC4247253 DOI: 10.3390/toxins6113187] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/27/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023] Open
Abstract
Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (aw) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 aw exhibited decreased conidiation and aflatoxin biosynthesis compared to that under 0.99 aw. When RNA-Seq was used to delineate gene expression profile under different water activities, 23,320 non-redundant unigenes, with an average length of 1297 bp, were yielded. By database comparisons, 19,838 unigenes were matched well (e-value < 10−5) with known gene sequences, and another 6767 novel unigenes were obtained by comparison to the current genome annotation of A. flavus. Based on the RPKM equation, 5362 differentially expressed unigenes (with |log2Ratio| ≥ 1) were identified between 0.99 aw and 0.93 aw treatments, including 3156 up-regulated and 2206 down-regulated unigenes, suggesting that A. flavus underwent an extensive transcriptome response during water activity variation. Furthermore, we found that the expression of 16 aflatoxin producing-related genes decreased obviously when water activity decreased, and the expression of 11 development-related genes increased after 0.99 aw treatment. Our data corroborate a model where water activity affects aflatoxin biosynthesis through increasing the expression of aflatoxin producing-related genes and regulating development-related genes.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenni Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sen Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weiqiang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yongfeng Liu
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen 518083, China.
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
308
|
Karimi Aghcheh R, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP. The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 2014; 9:e112799. [PMID: 25386652 PMCID: PMC4227869 DOI: 10.1371/journal.pone.0112799] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022] Open
Abstract
Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Zoltán Németh
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lea Atanasova
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, H-4032 Debrecen, Hungary
| | - Benigno Aquino
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Irina S. Druzhinina
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
- Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Christian P. Kubicek
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
- Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
- * E-mail:
| |
Collapse
|
309
|
Wang F, Dijksterhuis J, Wyatt T, Wösten HAB, Bleichrodt RJ. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Antonie van Leeuwenhoek 2014; 107:187-99. [DOI: 10.1007/s10482-014-0316-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023]
|
310
|
Ugalde U, Rodriguez-Urra AB. The Mycelium Blueprint: insights into the cues that shape the filamentous fungal colony. Appl Microbiol Biotechnol 2014; 98:8809-19. [PMID: 25172134 DOI: 10.1007/s00253-014-6019-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
The mycelium is an organised cellular network that develops according to a functionally coherent plan. As it expands, the mycelium is capable of modulating the relative abundance of different cell types to suit the prevailing environmental conditions. This versatile pattern of multicellular development involves sophisticated environmental sensing and intercellular communication systems that have barely been recognised. This review describes an insight into our current understanding of the signalling molecules and mechanisms that take part in the ordered and timely emergence of various cell types and their biological significance. The prospects that this emerging knowledge may offer for the sustainable control of fungal colonisation or dispersal will also be considered.
Collapse
Affiliation(s)
- Unai Ugalde
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, Manuel Lardizabal Ibilbidea, 3 20018, Donostia-San Sebastian, Spain,
| | | |
Collapse
|
311
|
Gerke J, Braus GH. Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 2014; 98:8443-55. [PMID: 25142695 PMCID: PMC4192562 DOI: 10.1007/s00253-014-5997-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
Abstract
Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.
Collapse
Affiliation(s)
- Jennifer Gerke
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
312
|
Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, Feussner I, Chae KS, Han DM, Han KH, Braus GH. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 2014; 29:406-20. [PMID: 24871947 DOI: 10.1016/j.devcel.2014.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/26/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Epigenetic and transcriptional control of gene expression must be coordinated in response to external signals to promote alternative multicellular developmental programs. The membrane-associated trimeric complex VapA-VipC-VapB controls a signal transduction pathway for fungal differentiation. The VipC-VapB methyltransferases are tethered to the membrane by the FYVE-like zinc finger protein VapA, allowing the nuclear VelB-VeA-LaeA complex to activate transcription for sexual development. Once the release from VapA is triggered, VipC-VapB is transported into the nucleus. VipC-VapB physically interacts with VeA and reduces its nuclear import and protein stability, thereby reducing the nuclear VelB-VeA-LaeA complex. Nuclear VapB methyltransferase diminishes the establishment of facultative heterochromatin by decreasing histone 3 lysine 9 trimethylation (H3K9me3). This favors activation of the regulatory genes brlA and abaA, which promote the asexual program. The VapA-VipC-VapB methyltransferase pathway combines control of nuclear import and stability of transcription factors with histone modification to foster appropriate differentiation responses.
Collapse
Affiliation(s)
- Ozlem Sarikaya-Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Ozgür Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Hee-Seo Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea; Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Alexander Kaever
- Department of Bioinformatics, Georg August University, Goldschmidtstrasse 1, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Keon-Sang Chae
- Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Dong-Min Han
- Division of Life Sciences, Wonkwang University, Iksan 570-749, Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany.
| |
Collapse
|
313
|
Wang W, Wu D, Pan H, Turgeon BG. Vel2 and Vos1 hold essential roles in ascospore and asexual spore development of the heterothallic maize pathogen Cochliobolus heterostrophus. Fungal Genet Biol 2014; 70:113-24. [PMID: 25080135 DOI: 10.1016/j.fgb.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/15/2014] [Accepted: 07/20/2014] [Indexed: 01/09/2023]
Abstract
Cochliobolus heterostrophus Vel2 and Vos1, members of the velvet family of proteins, play crucial roles in sexual and asexual development as reflected by deletion mutant and overexpression strain phenotypes. vel2 and vos1vel2 mutants are female sterile. Pseudothecia from vel2 or vos1 mutant crosses to an albino wild-type tester strain produce asci, however no full tetrads are found in these crosses, in contrast to crosses between wild-type strains which typically yield asci with a full complement of ascospores. In addition, none of the progeny from crosses of vel2 or vos1 mutants to wild-type mating testers is mutant, thus vos1 and vel2 ascospores are unable to survive meiosis. vos1vel2 double mutants are also female sterile like vel2 single mutants, however, asci in pseudothecia formed in crosses to wild-type testers are devoid of ascospores. Vel2 and Vos1 negatively regulate production of asexual spores, but positively regulate their morphology. vel2 and vos1 single mutant conidia vary in size, in septum number, septum position in the spore, and in germination rate, and are more sensitive to oxidative and thermal stresses compared to wild-type conidia. Trehalose amounts are decreased in single mutants, supporting previous findings that this disaccharide is required for conidium health.
Collapse
Affiliation(s)
- Weiwei Wang
- Dept. of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, United States; College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Dongliang Wu
- Dept. of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - B Gillian Turgeon
- Dept. of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
314
|
Martins I, Hartmann DO, Alves PC, Martins C, Garcia H, Leclercq CC, Ferreira R, He J, Renaut J, Becker JD, Silva Pereira C. Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source. BMC Genomics 2014; 15:613. [PMID: 25043916 PMCID: PMC4117967 DOI: 10.1186/1471-2164-15-613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/16/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi-plant interactions, the pathways involved in the degradation and utilisation of suberin remain largely overlooked. As a structural component of the plant cell wall, suberin isolation, in general, uses harsh depolymerisation methods that destroy its macromolecular structure. We recently overcame this limitation isolating suberin macromolecules in a near-native state. RESULTS Suberin macromolecules were used here to analyse the pathways involved in suberin degradation and utilisation by Aspergillus nidulans. Whole-genome profiling data revealed the complex degrading enzymatic machinery used by this saprophytic fungus. Initial suberin modification involved ester hydrolysis and ω-hydroxy fatty acid oxidation that released long chain fatty acids. These fatty acids were processed through peroxisomal β-oxidation, leading to up-regulation of genes encoding the major enzymes of these pathways (e.g. faaB and aoxA). The obtained transcriptome data was further complemented by secretome, microscopic and spectroscopic analyses. CONCLUSIONS Data support that during fungal growth on suberin, cutinase 1 and some lipases (e.g. AN8046) acted as the major suberin degrading enzymes (regulated by FarA and possibly by some unknown regulatory elements). Suberin also induced the onset of sexual development and the boost of secondary metabolism.
Collapse
Affiliation(s)
- Isabel Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diego O Hartmann
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula C Alves
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Celso Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| | - Helga Garcia
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Céline C Leclercq
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Rui Ferreira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ji He
- />Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, (previously, the Scientific Computing department, Samuel Roberts Noble Foundation, USA, 8717 Grovemont Circle, 20877 Gaithersburg, MD USA
| | - Jenny Renaut
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Jörg D Becker
- />Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Cristina Silva Pereira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| |
Collapse
|
315
|
Palmer JM, Kubatova A, Novakova A, Minnis AM, Kolarik M, Lindner DL. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the Fungus causing white-nose syndrome of bats. G3 (BETHESDA, MD.) 2014; 4:1755-63. [PMID: 25053709 PMCID: PMC4169168 DOI: 10.1534/g3.114.012641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
Abstract
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved α-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin 53726
| | - Alena Kubatova
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Praha 2, Czech Republic
| | - Alena Novakova
- Institute of Soil Biology, Biology Centre Czech Academy of Sciences, Na Sadkach 7, CZ-370 05 Česke Budějovice, Czech Republic Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the AS CR, v.v.i, Vídeňská 1083, CZ-142 20 Praha 4, Czech Republic
| | - Andrew M Minnis
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin 53726
| | - Miroslav Kolarik
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Praha 2, Czech Republic Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the AS CR, v.v.i, Vídeňská 1083, CZ-142 20 Praha 4, Czech Republic
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin 53726
| |
Collapse
|
316
|
Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 2014; 80:5561-71. [PMID: 25002424 DOI: 10.1128/aem.01282-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.
Collapse
|
317
|
Plaza DF, Lin CW, van der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics 2014; 15:492. [PMID: 24942908 PMCID: PMC4082614 DOI: 10.1186/1471-2164-15-492] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022] Open
Abstract
Background It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. Results In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. Conclusions This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-492) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
318
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:541-53. [PMID: 24476152 DOI: 10.1111/pbi.12158] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 05/22/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | |
Collapse
|
319
|
Eugenia de la Torre-Hernández M, Sánchez-Rangel D, Galeana-Sánchez E, Plasencia-de la Parra J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70321-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
320
|
Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. EUKARYOTIC CELL 2014; 13:909-18. [PMID: 24792348 DOI: 10.1128/ec.00022-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
Collapse
|
321
|
Kim HJ, Han JH, Kim KS, Lee YH. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 2014; 66:33-43. [DOI: 10.1016/j.fgb.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
|
322
|
Schoberle TJ, Nguyen-Coleman CK, Herold J, Yang A, Weirauch M, Hughes TR, McMurray JS, May GS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genet 2014; 10:e1004336. [PMID: 24784729 PMCID: PMC4006717 DOI: 10.1371/journal.pgen.1004336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.
Collapse
Affiliation(s)
- Taylor J. Schoberle
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - C. Kim Nguyen-Coleman
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer Herold
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Matt Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John S. McMurray
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory S. May
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
323
|
The mtfA transcription factor gene controls morphogenesis, gliotoxin production, and virulence in the opportunistic human pathogen Aspergillus fumigatus. EUKARYOTIC CELL 2014; 13:766-75. [PMID: 24728192 DOI: 10.1128/ec.00075-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aspergillus fumigatus is the leading causative agent of invasive aspergillosis (IA). The number of cases is on the rise, with mortality rates as high as 90% among immunocompromised patients. Molecular genetic studies in A. fumigatus could provide novel targets to potentially set the basis for antifungal therapies. In the current study, we investigated the role of the transcription factor gene mtfA in A. fumigatus. Our results revealed that mtfA plays a role in the growth and development of the fungus. Deletion or overexpression of mtfA leads to a slight reduction in colony growth, as well as a reduction in conidiation levels, in the overexpression strain compared to the wild-type strain. Furthermore, production of the secondary metabolite gliotoxin increased when mtfA was overexpressed, coinciding with an increase in the transcription levels of the gliotoxin genes gliZ and gliP with respect to the wild type. In addition, our study showed that mtfA is also necessary for normal protease activity in A. fumigatus; deletion of mtfA resulted in a reduction of protease activity compared to wild-type levels. Importantly, the absence of mtfA caused a decrease in virulence in the Galleria mellonella infection model, indicating that mtfA is necessary for A. fumigatus wild-type pathogenesis.
Collapse
|
324
|
Kück U, Bloemendal S, Teichert I. Putting fungi to work: harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS Pathog 2014; 10:e1003950. [PMID: 24626260 PMCID: PMC3953401 DOI: 10.1371/journal.ppat.1003950] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| | - Sandra Bloemendal
- Christian Doppler Laboratory for Fungal Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
325
|
Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-013-0328-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
326
|
VelC positively controls sexual development in Aspergillus nidulans. PLoS One 2014; 9:e89883. [PMID: 24587098 PMCID: PMC3938535 DOI: 10.1371/journal.pone.0089883] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/29/2014] [Indexed: 12/18/2022] Open
Abstract
Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins including VeA, VosA, VelB and VelC. Among these, VelC has not been characterized in Aspergillus nidulans. In this study, we characterize the role of VelC in asexual and sexual development in A. nidulans. The velC mRNA specifically accumulates during the early phase of sexual development. The deletion of velC leads to increased number of conidia and reduced production of sexual fruiting bodies (cleistothecia). In the velC deletion mutant, mRNA levels of the brlA, abaA, wetA and vosA genes that control sequential activation of asexual sporulation increase. Overexpression of velC causes increased formation of cleistothecia. These results suggest that VelC functions as a positive regulator of sexual development. VelC is one of the five proteins that physically interact with VosA in yeast two-hybrid and GST pull down analyses. The ΔvelC ΔvosA double mutant produced fewer cleistothecia and behaved similar to the ΔvosA mutant, suggesting that VosA is epistatic to VelC in sexual development, and that VelC might mediate control of sex through interacting with VosA at specific life stages for sexual fruiting.
Collapse
|
327
|
Niehaus EM, von Bargen KW, Espino JJ, Pfannmüller A, Humpf HU, Tudzynski B. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 2014; 98:1749-62. [PMID: 24389666 DOI: 10.1007/s00253-013-5453-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The "bakanae" fungus Fusarium fujikuroi is a common pathogen of rice and produces a variety of mycotoxins, pigments, and phytohormones. Fusaric acid is one of the oldest known secondary metabolites produced by F. fujikuroi and some other Fusarium species. Investigation of its biosynthesis and regulation is of great interest due to its occurrence in cereal-based food and feed. This study describes the identification and characterization of the fusaric acid gene cluster in F. fujikuroi consisting of the PKS-encoding core gene and four co-regulated genes, FUB1-FUB5. Besides fusaric acid, F. fujikuroi produces two fusaric acid-like derivatives: fusarinolic acid and 9,10-dehydrofusaric acid. We provide evidence that these derivatives are not intermediates of the fusaric acid biosynthetic pathway, and that their formation is catalyzed by genes outside of the fusaric acid gene cluster. Target gene deletions of all five cluster genes revealed that not all of them are involved in fusaric acid biosynthesis. We suggest that only two genes, FUB1 and FUB4, are necessary for the biosynthesis. Expression of the FUB genes and production of fusaric acid and the two derivatives are favored under high nitrogen. We show that nitrogen-dependent expression of fusaric acid genes is positively regulated by the nitrogen-responsive GATA transcription factor AreB, and that pH-dependent regulation is mediated by the transcription factor PacC. In addition, fusaric acid production is regulated by two members of the fungal-specific velvet complex: Vel1 and Lae1. In planta expression studies show a higher expression in the favorite host plant rice compared to maize.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
328
|
|
329
|
Schmidt-Dannert C. Biosynthesis of terpenoid natural products in fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:19-61. [PMID: 25414054 DOI: 10.1007/10_2014_283] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla--the Ascomycota and Basidiomycota--which will be illustrated for each group of terpenoid natural products.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minneapolis, MN, 55108, USA,
| |
Collapse
|
330
|
|
331
|
|
332
|
Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 2013; 11:e1001750. [PMID: 24391470 PMCID: PMC3876986 DOI: 10.1371/journal.pbio.1001750] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022] Open
Abstract
This study reveals an important family of fungal regulatory proteins to be transcription factors that contain a DNA-binding “velvet” domain structurally related to that of mammalian NFkB. Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors. In many fungi, developmental processes and the synthesis of nonessential chemicals (secondary metabolites) are regulated by various external stimuli, such as light. Although fungi employ them for defensive purposes, secondary metabolites range from useful antibiotics to powerful toxins, so understanding the molecular processes that regulate their synthesis is of particular interest to us. In the mold Aspergillus nidulans the main regulators of these processes are the so-called “velvet” proteins VeA, VelB, and VosA, which share a 150-amino acid region known as the velvet domain. Velvet proteins interact with each other, alone (“homodimers”), in various combinations (“heterodimers”), and also with other proteins, but the molecular mechanism by which these proteins exert their regulatory function has been unclear. In this work we show that velvet proteins form a family of fungus-specific transcription factors that directly bind to target DNA, even though analysis of their amino acid sequence does not reveal any known DNA-binding domains or motifs. We determined the three-dimensional structure of the VosA-VosA homodimer and the VosA-VelB heterodimer and found that the structure of the velvet domain is strongly reminiscent of the N-terminal immunoglobulin-like domain found in the mammalian transcription factor NFκB-p50, despite the very low sequence similarity. We propose that, like NFκB, various homo- or heterodimers of velvet proteins modulate gene expression to drive development and defensive pathways in fungi.
Collapse
MESH Headings
- Aspergillus nidulans/genetics
- Aspergillus nidulans/physiology
- Consensus Sequence/genetics
- Consensus Sequence/physiology
- DNA, Fungal/genetics
- DNA, Fungal/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Fungal/genetics
- Gene Expression Regulation, Fungal/physiology
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Genes, rel/genetics
- Genes, rel/physiology
- NF-kappa B/genetics
- NF-kappa B/physiology
Collapse
Affiliation(s)
- Yasar Luqman Ahmed
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Hee-Soo Park
- Departments of Bacteriology and Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Min Ni
- Departments of Bacteriology and Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Dae-Jon, Republic of Korea
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail: (J.-H.Y.); (G.H.B.); (R.F.)
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
- * E-mail: (J.-H.Y.); (G.H.B.); (R.F.)
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
- * E-mail: (J.-H.Y.); (G.H.B.); (R.F.)
| |
Collapse
|
333
|
Li L, Hu X, Xia Y, Xiao G, Zheng P, Wang C. Linkage of oxidative stress and mitochondrial dysfunctions to spontaneous culture degeneration in Aspergillus nidulans. Mol Cell Proteomics 2013; 13:449-61. [PMID: 24345786 DOI: 10.1074/mcp.m113.028480] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi including mushrooms frequently and spontaneously degenerate during subsequent culture maintenance on artificial media, which shows the loss or reduction abilities of asexual sporulation, sexuality, fruiting, and production of secondary metabolites, thus leading to economic losses during mass production. To better understand the underlying mechanisms of fungal degeneration, the model fungus Aspergillus nidulans was employed in this study for comprehensive analyses. First, linkage of oxidative stress to culture degeneration was evident in A. nidulans. Taken together with the verifications of cell biology and biochemical data, a comparative mitochondrial proteome analysis revealed that, unlike the healthy wild type, a spontaneous fluffy sector culture of A. nidulans demonstrated the characteristics of mitochondrial dysfunctions. Relative to the wild type, the features of cytochrome c release, calcium overload and up-regulation of apoptosis inducing factors evident in sector mitochondria suggested a linkage of fungal degeneration to cell apoptosis. However, the sector culture could still be maintained for generations without the signs of growth arrest. Up-regulation of the heat shock protein chaperones, anti-apoptotic factors and DNA repair proteins in the sector could account for the compromise in cell death. The results of this study not only shed new lights on the mechanisms of spontaneous degeneration of fungal cultures but will also provide alternative biomarkers to monitor fungal culture degeneration.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
334
|
López-Berges MS, Schäfer K, Hera C, Di Pietro A. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genet Biol 2013; 62:78-84. [PMID: 24240057 DOI: 10.1016/j.fgb.2013.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 12/11/2022]
Abstract
Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum.
Collapse
Affiliation(s)
- Manuel S López-Berges
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
| | - Katja Schäfer
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
| | - Concepción Hera
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain.
| |
Collapse
|
335
|
Harting R, Bayram O, Laubinger K, Valerius O, Braus GH. Interplay of the fungal sumoylation network for control of multicellular development. Mol Microbiol 2013; 90:1125-45. [PMID: 24279728 DOI: 10.1111/mmi.12421] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/30/2022]
Abstract
The role of the complex network of the ubiquitin-like modifier SumO in fungal development was analysed. SumO is not only required for sexual development but also for accurate induction and light stimulation of asexual development. The Aspergillus nidulans COMPASS complex including its subunits CclA and the methyltransferase SetA connects the SumO network to histone modification. SetA is required for correct positioning of aerial hyphae for conidiophore and asexual spore formation. Multicellular fungal development requires sumoylation and desumoylation. This includes the SumO processing enzyme UlpB, the E1 SumO activating enzyme AosA/UbaB, the E2 conjugation enzyme UbcN and UlpA as major SumO isopeptidase. Genetic suppression analysis suggests a connection between the genes for the Nedd8 isopeptidase DenA and the SumO isopeptidase UlpA and therefore a developmental interplay between neddylation and sumoylation in fungi. Biochemical evidence suggests an additional connection of the fungal SumO network with ubiquitination. Members of the cellular SumO network include histone modifiers, components of the transcription, RNA maturation and stress response machinery, or metabolic enzymes. Our data suggest that the SumO network controls specific temporal and spatial steps in fungal differentiation.
Collapse
Affiliation(s)
- Rebekka Harting
- Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Grisebachstrasse 8, D-37077, Göttingen, Germany
| | | | | | | | | |
Collapse
|
336
|
Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 2013; 41:301-13. [PMID: 24146366 DOI: 10.1007/s10295-013-1366-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.
Collapse
|
337
|
Dhingra S, Lind AL, Lin HC, Tang Y, Rokas A, Calvo AM. The fumagillin gene cluster, an example of hundreds of genes under veA control in Aspergillus fumigatus. PLoS One 2013; 8:e77147. [PMID: 24116213 PMCID: PMC3792039 DOI: 10.1371/journal.pone.0077147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/25/2013] [Indexed: 01/24/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, leading to infection-related mortality in immunocompromised patients. We previously showed that the conserved and unique-to-fungi veA gene affects different cell processes such as morphological development, gliotoxin biosynthesis and protease activity, suggesting a global regulatory effect on the genome of this medically relevant fungus. In this study, RNA sequencing analysis revealed that veA controls the expression of hundreds of genes in A. fumigatus, including those comprising more than a dozen known secondary metabolite gene clusters. Chemical analysis confirmed that veA controls the synthesis of other secondary metabolites in this organism in addition to gliotoxin. Among the secondary metabolite gene clusters regulated by veA is the elusive but recently identified gene cluster responsible for the biosynthesis of fumagillin, a meroterpenoid known for its anti-angiogenic activity by binding to human methionine aminopeptidase 2. The fumagillin gene cluster contains a veA-dependent regulatory gene, fumR (Afu8g00420), encoding a putative C6 type transcription factor. Deletion of fumR results in silencing of the gene cluster and elimination of fumagillin biosynthesis. We found expression of fumR to also be dependent on laeA, a gene encoding another component of the fungal velvet complex. The results in this study argue that veA is a global regulator of secondary metabolism in A. fumigatus, and that veA may be a conduit via which chemical development is coupled to morphological development and other cellular processes.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hsiao-Ching Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
- * E-mail:
| |
Collapse
|
338
|
Zutz C, Gacek A, Sulyok M, Wagner M, Strauss J, Rychli K. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins (Basel) 2013; 5:1723-41. [PMID: 24105402 PMCID: PMC3813908 DOI: 10.3390/toxins5101723] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Aspergillus clavatus is known to produce a variety of secondary metabolites (SM) such as patulin, pseurotin A, and cytochalasin E. In fungi, the production of most SM is strongly influenced by environmental factors and nutrients. Furthermore, it has been shown that the regulation of SM gene clusters is largely based on modulation of a chromatin structure. Communication between fungi and bacteria also triggers chromatin-based induction of silent SM gene clusters. Consequently, chemical chromatin effectors known to inhibit histone deacetylases (HDACs) and DNA-methyltransferases (DNMTs) influence the SM profile of several fungi. In this study, we tested the effect of five different chemicals, which are known to affect chromatin structure, on SM production in A. clavatus using two growth media with a different organic nitrogen source. We found that production of patulin was completely inhibited and cytochalasin E levels strongly reduced, whereas growing A. clavatus in media containing soya-derived peptone led to substantially higher pseurotin A levels. The HDAC inhibitors valproic acid, trichostatin A and butyrate, as well as the DNMT inhibitor 5-azacytidine (AZA) and N-acetyl-d-glucosamine, which was used as a proxy for bacterial fungal co-cultivation, had profound influence on SM accumulation and transcription of the corresponding biosynthetic genes. However, the repressing effect of the soya-based nitrogen source on patulin production could not be bypassed by any of the small chemical chromatin effectors. Interestingly, AZA influenced some SM cluster genes and SM production although no Aspergillus species has yet been shown to carry detectable DNA methylation.
Collapse
Affiliation(s)
- Christoph Zutz
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz1, Vienna 1210, Austria; E-Mails: (C.Z.); (M.W.)
| | - Agnieszka Gacek
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Konrad Lorenz-Straße 24/II, Tulln/Donau 3430, Austria; E-Mails: (A.G.); (J.S.)
| | - Michael Sulyok
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, Tulln/Donau 3430, Austria; E-Mail:
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz1, Vienna 1210, Austria; E-Mails: (C.Z.); (M.W.)
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Konrad Lorenz-Straße 24/II, Tulln/Donau 3430, Austria; E-Mails: (A.G.); (J.S.)
- AIT-Austrian Institute of Technology GmbH, Health and Environment Department, University and Research Campus Tulln, Konrad Lorenz-Straße 24/II, Tulln/Donau 3430, Austria
| | - Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz1, Vienna 1210, Austria; E-Mails: (C.Z.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-1-25077-3510; Fax: +43-1-25077-3590
| |
Collapse
|
339
|
Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M. Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci 2013; 280:20131219. [PMID: 24068353 DOI: 10.1098/rspb.2013.1219] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prey organisms do not tolerate predator attack passively but react with a multitude of inducible defensive strategies. Although inducible defence strategies are well known in plants attacked by herbivorous insects, induced resistance of fungi against fungivorous animals is largely unknown. Resistance to fungivory is thought to be mediated by chemical properties of fungal tissue, i.e. by production of toxic secondary metabolites. However, whether fungi change their secondary metabolite composition to increase resistance against arthropod fungivory is unknown. We demonstrate that grazing by a soil arthropod, Folsomia candida, on the filamentous fungus Aspergillus nidulans induces a phenotype that repels future fungivores and retards fungivore growth. Arthropod-exposed colonies produced significantly higher amounts of toxic secondary metabolites and invested more in sexual reproduction relative to unchallenged fungi. Compared with vegetative tissue and asexual conidiospores, sexual fruiting bodies turned out to be highly resistant against fungivory in facultative sexual A. nidulans. This indicates that fungivore grazing triggers co-regulated allocation of resources to sexual reproduction and chemical defence in A. nidulans. Plastic investment in facultative sex and chemical defence may have evolved as a fungal strategy to escape from predation.
Collapse
Affiliation(s)
- Katharina Döll
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, , Göttingen, Germany, J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen, , Göttingen, Germany
| | | | | | | | | |
Collapse
|
340
|
Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM. The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 2013; 8:e74122. [PMID: 24066102 PMCID: PMC3774644 DOI: 10.1371/journal.pone.0074122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/28/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species.
Collapse
Affiliation(s)
- Vellaisamy Ramamoorthy
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Alexander Kincaid
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabha Shantappa
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Xuehuan Feng
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America,* E-mail:
| |
Collapse
|
341
|
Peraza-Reyes L, Berteaux-Lecellier V. Peroxisomes and sexual development in fungi. Front Physiol 2013; 4:244. [PMID: 24046747 PMCID: PMC3764329 DOI: 10.3389/fphys.2013.00244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- CNRS, Institut de Génétique et Microbiologie, University Paris-Sud, UMR8621 Orsay, France
| | | |
Collapse
|
342
|
Caballero Ortiz S, Trienens M, Rohlfs M. Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoS One 2013; 8:e74951. [PMID: 24023705 PMCID: PMC3758311 DOI: 10.1371/journal.pone.0074951] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/07/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi. METHODOLOGY/PRINCIPAL FINDINGS Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding. CONCLUSIONS/SIGNIFICANCE Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.
Collapse
Affiliation(s)
- Silvia Caballero Ortiz
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Monika Trienens
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marko Rohlfs
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
343
|
Nakazawa T, Ishiuchi K, Sato M, Tsunematsu Y, Sugimoto S, Gotanda Y, Noguchi H, Hotta K, Watanabe K. Targeted Disruption of Transcriptional Regulators in Chaetomium globosum Activates Biosynthetic Pathways and Reveals Transcriptional Regulator-Like Behavior of Aureonitol. J Am Chem Soc 2013; 135:13446-55. [DOI: 10.1021/ja405128k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takehito Nakazawa
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kan’ichiro Ishiuchi
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michio Sato
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Satoru Sugimoto
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yasutaka Gotanda
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Noguchi
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kinya Hotta
- School
of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Kenji Watanabe
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
344
|
Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf HU. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. ACTA ACUST UNITED AC 2013; 20:1055-66. [PMID: 23932525 DOI: 10.1016/j.chembiol.2013.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster 48143, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
|
346
|
A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol 2013; 11:e1001614. [PMID: 23935449 PMCID: PMC3720256 DOI: 10.1371/journal.pbio.1001614] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Analysis of a transcriptional regulatory network in a fungal pathogen reveals that four interdependent transcription factors respond to human body temperature to trigger changes in cell shape and virulence gene expression. Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature. Microbial pathogens of humans display the ability to thrive at host temperature. So-called “thermally dimorphic” fungal pathogens, which include Histoplasma capsulatum, are a class of soil fungi that upon being inhaled into the human lung, undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. The ability of these pathogens to cause disease is exquisitely coupled to temperature response. Here we elucidate the regulatory network that governs the ability of H. capsulatum to switch from a filamentous form in the soil environment to a pathogenic yeast form at body temperature. The circuit is driven by three transcription regulators (Ryp1, Ryp2, and Ryp3) that control yeast-phase growth. We show that these factors, which include two highly conserved proteins of the Velvet family of unknown function, bind to specific regulatory DNA elements and directly regulate expression of virulence genes. We identify and characterize Ryp4, a fourth regulator of this pathway, and define DNA motifs that recruit these transcription factors to their temperature-responsive target genes. Our results provide a molecular understanding of how changes in cell shape are linked to expression of virulence genes in thermally dimorphic fungi.
Collapse
|
347
|
Aghcheh RK, Druzhinina IS, Kubicek CP. The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS One 2013; 8:e67144. [PMID: 23826217 PMCID: PMC3691206 DOI: 10.1371/journal.pone.0067144] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
In Ascomycota the protein methyltransferase LaeA is a global regulator that affects the expression of secondary metabolite gene clusters, and controls sexual and asexual development. The common mycoparasitic fungus Trichoderma atroviride is one of the most widely studied agents of biological control of plant-pathogenic fungi that also serves as a model for the research on regulation of asexual sporulation (conidiation) by environmental stimuli such as light and/or mechanical injury. In order to learn the possible involvement of LAE1 in these two traits, we assessed the effect of deletion and overexpression of lae1 gene on conidiation and mycoparasitic interaction. In the presence of light, conidiation was 50% decreased in a Δ lae1 and 30-50% increased in lae1-overexpressing (OElae1) strains. In darkness, Δ lae1 strains did not sporulate, and the OElae1 strains produced as much spores as the parent strain. Loss-of-function of lae1 also abolished sporulation triggered by mechanical injury of the mycelia. Deletion of lae1 also increased the sensitivity of T. atroviride to oxidative stress, abolished its ability to defend against other fungi and led to a loss of mycoparasitic behaviour, whereas the OElae1 strains displayed enhanced mycoparasitic vigor. The loss of mycoparasitic activity in the Δ lae1 strain correlated with a significant underexpressionn of several genes normally upregulated during mycoparasitic interaction (proteases, GH16 ß-glucanases, polyketide synthases and small cystein-rich secreted proteins), which in turn was reflected in the partial reduction of formation of fungicidal water soluble metabolites and volatile compounds. Our study shows T. atroviride LAE1 is essential for asexual reproduction in the dark and for defense and parasitism on other fungi.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Microbiology Group, Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Irina S. Druzhinina
- Microbiology Group, Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
- Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian P. Kubicek
- Microbiology Group, Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
- Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
- * E-mail:
| |
Collapse
|
348
|
Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. EUKARYOTIC CELL 2013; 12:1087-96. [PMID: 23729383 DOI: 10.1128/ec.00003-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sirtuins are members of the NAD(+)-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi.
Collapse
|
349
|
Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One 2013; 8:e62088. [PMID: 23658706 PMCID: PMC3641053 DOI: 10.1371/journal.pone.0062088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/16/2013] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and 1H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The 1H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development.
Collapse
|
350
|
Tran VT, Braus-Stromeyer SA, Timpner C, Braus GH. Molecular diagnosis to discriminate pathogen and apathogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Appl Microbiol Biotechnol 2013; 97:4467-83. [PMID: 23229565 PMCID: PMC3647090 DOI: 10.1007/s00253-012-4530-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022]
Abstract
The cruciferous fungal pathogen Verticillium longisporum represents an allodiploid hybrid with long spores and almost double the amount of nuclear DNA compared to other Verticillium species. V. longisporum evolved at least three times by hybridization. In Europe, virulent A1xD1 and avirulent A1xD3 hybrids were isolated from the oilseed crop Brassica napus. Parental A1 or D1 species are yet unknown whereas the D3 lineage represents Verticillium dahliae. Eleven V. longisporum isolates from Europe or California corresponding to hybrids A1xD1 or A1xD3 were compared. A single characteristic type of nuclear ribosomal DNA could be assigned to each hybrid lineage. The two avirulent A1xD3 isolates carried exclusively D3 ribosomal DNA (rDNA) which corresponds to V. dahliae. The rDNA of all nine A1xD1 isolates is identical but distinct from D3 and presumably originates from A1. Both hybrid lineages carry two distinct isogene pairs of four conserved regulatory genes corresponding to either A1 or D1/D3. D1 and D3 paralogues differ in several single nucleotide polymorphisms. Southern hybridization patterns confirmed differences between the A1 and D1/D3 isogenes and resulted in similar patterns for D1 and D3. Distinct signatures of the Verticillium transcription activator (VTA)2 regulatory isogene pair allow identification of V. longisporum hybrids by a single polymerase chain reaction and the separation from haploid species as V. dahliae or Verticillium albo-atrum. The combination between VTA2 signature and rDNA type identification represents an attractive diagnostic tool to discriminate allodiploid from haploid Verticillia and to distinguish between A1xD1 and A1xD3 hybrids which differ in their virulence towards B. napus.
Collapse
Affiliation(s)
- Van Tuan Tran
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Susanna A. Braus-Stromeyer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Christian Timpner
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| |
Collapse
|