301
|
Provorov NA, Zhukov VA, Kurchak ON, Onishchuk OP, Andronov EE, Borisov AY, Chizhevskaya EP, Naumkina TS, Ovtsyna AO, Vorobyov NI, Simarov BV, Tikhonovich IA. Comigration of root nodule bacteria and bean plants to new habitats: Coevolution mechanisms and practical importance. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
302
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium–legume symbiosis. FEMS Microbiol Rev 2013; 37:364-83. [DOI: 10.1111/1574-6976.12003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
|
303
|
Shigenobu S, Stern DL. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc Biol Sci 2013; 280:20121952. [PMID: 23173201 PMCID: PMC3574423 DOI: 10.1098/rspb.2012.1952] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts.
Collapse
Affiliation(s)
- Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
304
|
Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, VandenBosch KA. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 2013; 8:e60355. [PMID: 23573247 PMCID: PMC3613412 DOI: 10.1371/journal.pone.0060355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/25/2013] [Indexed: 12/31/2022] Open
Abstract
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kevin A. T. Silverstein
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Deborah A. Samac
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Bruna Bucciarelli
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Carroll P. Vance
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Kathryn A. VandenBosch
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
305
|
Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS One 2013; 8:e58992. [PMID: 23527067 PMCID: PMC3601123 DOI: 10.1371/journal.pone.0058992] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/08/2013] [Indexed: 12/18/2022] Open
Abstract
Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.
Collapse
|
306
|
Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. THE NEW PHYTOLOGIST 2013; 197:1250-1261. [PMID: 23278348 DOI: 10.1111/nph.12091] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells.
Collapse
Affiliation(s)
- Marie Bourcy
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Lysiane Brocard
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Catalina I Pislariu
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Viviane Cosson
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Millon Tadege
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Kirankumar S Mysore
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Michael K Udvardi
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| |
Collapse
|
307
|
Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci U S A 2013; 110:2395-400. [PMID: 23341627 DOI: 10.1073/pnas.1213958110] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is likely that many small ORFs (sORFs; 30-100 amino acids) are missed when genomes are annotated. To overcome this limitation, we identified ∼8,000 sORFs with high coding potential in intergenic regions of the Arabidopsis thaliana genome. However, the question remains as to whether these coding sORFs play functional roles. Using a designed array, we generated an expression atlas for 16 organs and 17 environmental conditions among 7,901 identified coding sORFs. A total of 2,099 coding sORFs were highly expressed under at least one experimental condition, and 571 were significantly conserved in other land plants. A total of 473 coding sORFs were overexpressed; ∼10% (49/473) induced visible phenotypic effects, a proportion that is approximately seven times higher than that of randomly chosen known genes. These results indicate that many coding sORFs hidden in plant genomes are associated with morphogenesis. We believe that the expression atlas will contribute to further study of the roles of sORFs in plants.
Collapse
|
308
|
Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (Mini-review). Symbiosis 2013. [DOI: 10.1007/s13199-012-0220-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
309
|
|
310
|
Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelandais-Brière C. Small RNA pathways and diversity in model legumes: lessons from genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:236. [PMID: 23847640 PMCID: PMC3707012 DOI: 10.3389/fpls.2013.00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/15/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs (smRNA) participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA) and short-interfering RNAs (siRNA) are generated from long double stranded RNA (dsRNA) that are cleaved into 20-24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL). One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO) proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in three legumes: Medicago truncatula, soybean (Glycine max) and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179, and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes, like AGO10 or DCL4, could not yet be detected in M. truncatula available genomic and expressed sequence (EST) databases. In contrast to Arabidopsis, an important gene diversification was observed in the three legume models (for DCL2, AGO4, AGO2, and AGO10) or specifically in soybean for DCL1 and DCL4. Functional significance of these variant isoforms may reflect peculiarities of smRNA biogenesis and functions in legumes.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
| | - Jérémie Bazin
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| | - Caroline Hartmann
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| | - Martin Crespi
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- *Correspondence: Martin Crespi, Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Bât 23. Avenue de la Terrasse, 91198 Gif sur Yvette, France e-mail:
| | - Christine Lelandais-Brière
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| |
Collapse
|
311
|
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
Collapse
Affiliation(s)
- Michael Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
312
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
313
|
Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein. J Bacteriol 2012; 195:389-98. [PMID: 23161027 DOI: 10.1128/jb.01445-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.
Collapse
|
314
|
|
315
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiol Rev 2012. [DOI: 10.1111/1574-6976.2012.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Markus F. F. Arnold
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Kamila K. Myka
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Sergio Dall'Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique; Gif-sur-Yvette Cedex; France
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| |
Collapse
|
316
|
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. FRONTIERS IN PLANT SCIENCE 2012; 3:223. [PMID: 23060892 PMCID: PMC3464683 DOI: 10.3389/fpls.2012.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/14/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.
Collapse
Affiliation(s)
| | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
317
|
Terpolilli JJ, Hood GA, Poole PS. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses? Adv Microb Physiol 2012; 60:325-89. [PMID: 22633062 DOI: 10.1016/b978-0-12-398264-3.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biological nitrogen fixation is vital to nutrient cycling in the biosphere and is the major route by which atmospheric dinitrogen (N(2)) is reduced to ammonia. The largest single contribution to biological N(2) fixation is carried out by rhizobia, which include a large group of both alpha and beta-proteobacteria, almost exclusively in association with legumes. Rhizobia must compete to infect roots of legumes and initiate a signaling dialog with host plants that leads to nodule formation. The most common form of infection involves the growth of rhizobia down infection threads which are laid down by the host plant. Legumes form either indeterminate or determinate types of nodules, with these groups differing widely in nodule morphology and often in the developmental program by which rhizobia form N(2) fixing bacteroids. In particular, indeterminate legumes from the inverted repeat-lacking clade (IRLC) (e.g., peas, vetch, alfalfa, medics) produce a cocktail of antimicrobial peptides which cause endoreduplication of the bacterial genome and force rhizobia into a nongrowing state. Bacteroids often become dependent on the plant for provision of key cofactors, such as homocitrate needed for nitrogenase activity or for branched chain amino acids. This has led to the suggestion that bacteroids at least from the IRLC can be considered as ammoniaplasts, where they are effectively facultative plant organelles. A low O(2) tension is critical both to induction of genes needed for N(2) fixation and to the subsequent exchange of nutrient between plants and bacteroids. To achieve high rates of N(2) fixation, the legume host and Rhizobium must be closely matched not only for infection, but for optimum development, nutrient exchange, and N(2) fixation. In this review, we consider the multiple steps of selection and bacteroid development and how these alter the overall efficiency of N(2) fixation.
Collapse
Affiliation(s)
- Jason J Terpolilli
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
318
|
Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P. TwoSinorhizobium melilotiglutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environ Microbiol 2012; 15:795-810. [DOI: 10.1111/j.1462-2920.2012.02835.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
319
|
Redondo-Nieto M, Maunoury N, Mergaert P, Kondorosi E, Bonilla I, Bolaños L. Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling? THE NEW PHYTOLOGIST 2012; 195:14-9. [PMID: 22568527 DOI: 10.1111/j.1469-8137.2012.04176.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
320
|
Heath KD, Burke PV, Stinchcombe JR. Coevolutionary genetic variation in the legume-rhizobium transcriptome. Mol Ecol 2012; 21:4735-47. [PMID: 22672103 DOI: 10.1111/j.1365-294x.2012.05629.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Illinois, 250 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | | | |
Collapse
|
321
|
Abstract
The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future.
Collapse
Affiliation(s)
- Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | | | | |
Collapse
|
322
|
Ziegler D, Mariotti A, Pflüger V, Saad M, Vogel G, Tonolla M, Perret X. In situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry. PLoS One 2012; 7:e37189. [PMID: 22615938 PMCID: PMC3355115 DOI: 10.1371/journal.pone.0037189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues.
Collapse
Affiliation(s)
- Dominik Ziegler
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Mabritec AG, Riehen, Switzerland
| | - Anna Mariotti
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
| | | | - Maged Saad
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Mauro Tonolla
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
| | - Xavier Perret
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
323
|
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules. BMC Microbiol 2012; 12:74. [PMID: 22587634 PMCID: PMC3462710 DOI: 10.1186/1471-2180-12-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy's Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. RESULTS Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a "SodM-like" (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. CONCLUSIONS Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.
Collapse
Affiliation(s)
- Clothilde Queiroux
- Department of Biological Science, Florida State University, Biology Unit I, 230A, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
|
325
|
Meckfessel MH, Blancaflor EB, Plunkett M, Dong Q, Dickstein R. Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. PLANT PHYSIOLOGY 2012; 159:299-310. [PMID: 22415512 PMCID: PMC3366718 DOI: 10.1104/pp.111.191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/chemistry
- Medicago truncatula/chemistry
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Proteins/chemistry
- Plant Root Nodulation
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/analysis
- RNA, Plant/chemistry
- Recombinant Fusion Proteins/chemistry
- Root Nodules, Plant/chemistry
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Sinorhizobium meliloti/physiology
- Symbiosis
- Vacuoles/chemistry
Collapse
|
326
|
Monoxenic nodulation process of Acacia mangium (Mimosoideae, Phyllodineae) by Bradyrhizobium sp. Symbiosis 2012. [DOI: 10.1007/s13199-012-0163-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
327
|
Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis. Proc Natl Acad Sci U S A 2012; 109:6751-6. [PMID: 22493242 DOI: 10.1073/pnas.1120260109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.
Collapse
|
328
|
Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. THE NEW PHYTOLOGIST 2012; 194:511-522. [PMID: 22360638 DOI: 10.1111/j.1469-8137.2011.04046.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.
Collapse
Affiliation(s)
- Isabelle Damiani
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Fabien Baldacci-Cresp
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Julie Hopkins
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Emilie Andrio
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Sandrine Balzergue
- URGV UMR INRA 1165 - CNRS 8114 - UEVE, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Philippe Lecomte
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Alain Puppo
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Bruno Favery
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Didier Hérouart
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| |
Collapse
|
329
|
Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 2012; 109:5340-5. [PMID: 22371600 DOI: 10.1073/pnas.1118800109] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endosymbiotic acquisition of bacteria by a protist, with subsequent evolution of the bacteria into mitochondria and plastids, had a transformative impact on eukaryotic biology. Reconstructing events that created a stable association between endosymbiont and host during the process of organellogenesis--including establishment of regulated protein import into nascent organelles--is difficult because they date back more than 1 billion years. The amoeba Paulinella chromatophora contains nascent photosynthetic organelles of more recent evolutionary origin (∼60 Mya) termed chromatophores (CRs). After the initial endosymbiotic event, the CR genome was reduced to approximately 30% of its presumed original size and more than 30 expressed genes were transferred from the CR to the amoebal nuclear genome. Three transferred genes--psaE, psaK1, and psaK2--encode subunits of photosystem I. Here we report biochemical evidence that PsaE, PsaK1, and PsaK2 are synthesized in the amoeba cytoplasm and traffic into CRs, where they assemble with CR-encoded subunits into photosystem I complexes. Additionally, our data suggest that proteins routed to CRs pass through the Golgi apparatus. Whereas genome reduction and transfer of genes from bacterial to host genome have been reported to occur in other obligate bacterial endosymbioses, this report outlines the import of proteins encoded by such transferred genes into the compartment derived from the bacterial endosymbiont. Our study showcases P. chromatophora as an exceptional model in which to study early events in organellogenesis, and suggests that protein import into bacterial endosymbionts might be a phenomenon much more widespread than currently assumed.
Collapse
|
330
|
Haag AF, Kerscher B, Dall'Angelo S, Sani M, Longhi R, Baloban M, Wilson HM, Mergaert P, Zanda M, Ferguson GP. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J Biol Chem 2012; 287:10791-8. [PMID: 22351783 DOI: 10.1074/jbc.m111.311316] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.
Collapse
Affiliation(s)
- Andreas F Haag
- School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Abstract
Legume plants are able to engage in root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This mutualistic association is highly specific, such that each rhizobial species/strain interacts with only a specific group of legumes, and vice versa. Symbiosis specificity can occur at multiple phases of the interaction, ranging from initial bacterial attachment and infection to late nodule development associated with nitrogen fixation. Genetic control of symbiosis specificity is complex, involving fine-tuned signal communication between the symbiotic partners. Here we review our current understanding of the mechanisms used by the host and bacteria to choose their symbiotic partners, with a special focus on the role that the host immunity plays in controlling the specificity of the legume - rhizobial symbiosis.
Collapse
Affiliation(s)
- Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
332
|
Meng L. Roles of secreted peptides in intercellular communication and root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:106-114. [PMID: 22195583 DOI: 10.1016/j.plantsci.2011.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
Intercellular signaling networks control cell identity and activity in all multicellular organisms. Secreted peptides that function as extracellular ligands play essential roles in local communication between adjacent plant cells. The extracellular domain of receptor kinases bind to secreted peptides and initiate downstream cellular responses, resulting in cell proliferation, growth, or differentiation in multicellular organisms. Root growth and development are highly organized processes involving cell division, expansion, and differentiation; these processes depend on the establishment and maintenance of root apical meristem. The regulatory networks controlling root growth and development are tightly controlled by various signal transduction pathways, feedback loops, and crosstalk among signaling pathways. This review demonstrates the remarkable diversity and importance of secreted peptides in cell signaling and summarizes the current understanding of the molecular mechanisms underlying the peptide signaling cascades with particular emphasis on pathways involved in regulating root apical meristem and vascular tissue development and those involved in rhizobium-legume symbiosis. Furthermore, this review provides an integrated view of the regulatory networks that control root development, including transcription factors, phytohormones and peptide signalings. Future perspectives in peptide signaling are also discussed.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
333
|
Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr Biol 2012; 22:160-5. [PMID: 22245001 DOI: 10.1016/j.cub.2011.11.059] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
Imprinted genes are commonly expressed in mammalian placentas and in plant seed endosperms, where they exhibit preferential uniparental allelic expression. In mammals, imprinted genes directly regulate placental function and nutrient distribution from mother to fetus; however, none of the >60 imprinted genes thus far reported in plants have been demonstrated to play an equivalent role in regulating the flow of resources to the embryo. Here we show that imprinted Maternally expressed gene1 (Meg1) in maize is both necessary and sufficient for the establishment and differentiation of the endosperm nutrient transfer cells located at the mother:seed interface. Consistent with these findings, Meg1 also regulates maternal nutrient uptake, sucrose partitioning, and seed biomass yield. In addition, we generated an imprinted and nonimprinted synthetic Meg1 ((syn)Meg1) dosage series whereby increased dosage and absence of imprinting both resulted in an unequal investment of maternal resources into the endosperm. These findings highlight dosage regulation by genomic imprinting as being critical for maintaining a balanced distribution of maternal nutrients to filial tissues in plants, as in mammals. However, unlike in mammals, Meg1 is a maternally expressed imprinted gene that surprisingly acts to promote rather than restrict nutrient allocation to the offspring.
Collapse
|
334
|
Brown DB, Forsberg LS, Kannenberg EL, Carlson RW. Characterization of galacturonosyl transferase genes rgtA, rgtB, rgtC, rgtD, and rgtE responsible for lipopolysaccharide synthesis in nitrogen-fixing endosymbiont Rhizobium leguminosarum: lipopolysaccharide core and lipid galacturonosyl residues confer membrane stability. J Biol Chem 2012; 287:935-49. [PMID: 22110131 PMCID: PMC3256847 DOI: 10.1074/jbc.m111.311571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/17/2011] [Indexed: 11/06/2022] Open
Abstract
Rhizobium lipopolysaccharide (LPS) contains four terminally linked galacturonic acid (GalA) residues; one attached to the lipid A and three attached to the core oligosaccharide moiety. Attachment of the GalA residues requires the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA), which is synthesized by the GalA transferase RgtE reported here. The galacturonosyl transferases RgtA, -B, and -C utilize Dod-P-GalA to attach GalAs on the LPS core region, and RgtD attaches GalA to the lipid A 4' position. As reported here, the functions of the rgtD and rgtE genes were determined via insertion mutagenesis and structural characterization of the mutant lipid A. The rgtE(-) mutant lacked Dod-P-GalA as determined by mass spectrometry of total lipid extracts and the inability of rgtE(-) mutant membranes to provide the substrate for heterologously expressed RgtA activity. In addition, we created single mutations in each of the rgtA, -B, -C, -D, and -E genes to study the biological function of the GalA residues. The structures of the core oligosaccharide region from each of the rgt mutants were elucidated by glycosyl linkage analysis. Each mutant was assayed for its sensitivity to sodium deoxycholate and to the antimicrobial cationic peptide, polymyxin B (PmxB). The rgt mutants were more sensitive than the parent strain to deoxycholate by varying degrees. However, the rgtA, -B, and -C mutants were more resistant to PmxB, whereas the rgtD and E mutants were less resistant in comparison to the parent strain.
Collapse
Affiliation(s)
- Dusty B. Brown
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - L. Scott Forsberg
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Elmar L. Kannenberg
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Russell W. Carlson
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
335
|
Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K, Petersen TR, Sandal N, Stougaard J, Udvardi MK, Tamaoki M, Kawaguchi M, Kouchi H, Suganuma N. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. PLANT & CELL PHYSIOLOGY 2012; 53:225-36. [PMID: 22123791 DOI: 10.1093/pcp/pcr167] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.
Collapse
Affiliation(s)
- Tsuneo Hakoyama
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Markmann K, Radutoiu S, Stougaard J. Infection of Lotus japonicus Roots by Mesorhizobium loti. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
337
|
López-García B, San Segundo B, Coca M. Antimicrobial Peptides as a Promising Alternative for Plant Disease Protection. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B. López-García
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - B. San Segundo
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - M. Coca
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
338
|
Abstract
Legumes are the third-largest family of angiosperms, the second-most-important crop family, and a key source of biological nitrogen in agriculture. Recently, the genome sequences of Glycine max (soybean), Medicago truncatula, and Lotus japonicus were substantially completed. Comparisons among legume genomes reveal a key role for duplication, especially a whole-genome duplication event approximately 58 Mya that is shared by most agriculturally important legumes. A second and more recent genome duplication occurred only in the lineage leading to soybean. Outcomes of genome duplication, including gene fractionation and sub- and neofunctionalization, have played key roles in shaping legume genomes and in the evolution of legume-specific traits. Analysis of legume genome sequences also enables the discovery of legume-specific gene families and provides a framework for genome-wide association mapping that will target phenotypes of special importance in legumes. Translating genomic resources from sequenced species to less studied but still important "orphan" legumes will enhance prospects for world food production.
Collapse
Affiliation(s)
- Nevin D Young
- Department of Plant Pathology and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
339
|
Abstract
AbstractPlant-interacting bacteria can establish either mutualistic or pathogenic interactions that cause beneficial or detrimental effects respectively, to their hosts. In spite of the completely different outcomes, accumulating evidence indicates that similar molecular bases underlie the establishment of these two contrasting plant-bacteria associations. Recent findings observed in the mutualistic nitrogen-fixing Rhizobium-legume symbiosis add new elements to the increasing list of similarities. Amongst these, in this review we describe the role of plant resistance proteins in determining host specificity in the Rhizobium-legume symbiosis that resemble the gene-for-gene resistance of plant-pathogen interactions, and the production of antimicrobial peptides by certain legumes to control rhizobial proliferation within nodules. Amongst common bacterial strategies, cyclic diguanylate (c-di-GMP) appears to be a second messenger used by both pathogenic and mutualistic bacteria to regulate key features for interaction with their plant hosts.
Collapse
|
340
|
Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, et alYoung ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011; 480:520-4. [PMID: 22089132 PMCID: PMC3272368 DOI: 10.1038/nature10625] [Show More Authors] [Citation(s) in RCA: 796] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/13/2011] [Indexed: 11/09/2022]
Abstract
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
Collapse
Affiliation(s)
- Nevin D Young
- Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
|
342
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|
343
|
Doyle JJ. Phylogenetic perspectives on the origins of nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1289-95. [PMID: 21995796 DOI: 10.1094/mpmi-05-11-0114] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent refinements to the phylogeny of rosid angiosperms support the conclusion that nodulation has evolved several times in the so-called N(2)-fixing clade (NFC), and provide dates for these origins. The hypothesized predisposition that enabled the evolution of nodulation occurred approximately 100 million years ago (MYA), was retained in the various lineages that radiated rapidly shortly thereafter, and was functional in its non-nodulation role for at least an additional 30 million years in each nodulating lineage. Legumes radiated rapidly shortly after their origin approximately 60 MYA, and nodulation most likely evolved several times during this radiation. The major lineages of papilionoid legumes diverged close to the time of origin of nodulation, accounting for the diversity of nodule biology in the group. Nodulation symbioses exemplify the concept of "deep homology," sharing various homologous components across nonhomologous origins of nodulation, largely due to recruitment from existing functions, notably the older arbuscular mycorrhizal symbiosis. Although polyploidy may have played a role in the origin of papilionoid legume nodules, it did not do so in other legumes, nor did the prerosid whole-genome triplication lead directly to the predisposition of nodulation.
Collapse
Affiliation(s)
- Jeff J Doyle
- Department of Plant Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
344
|
Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A, Weiss-Gayet M, Rochat D, Heddi A. Antimicrobial peptides keep insect endosymbionts under control. Science 2011; 334:362-5. [PMID: 22021855 DOI: 10.1126/science.1209728] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.
Collapse
Affiliation(s)
- Frédéric H Login
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Longhi R, Boncompagni E, Hérouart D, Dall’Angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 2011; 9:e1001169. [PMID: 21990963 PMCID: PMC3186793 DOI: 10.1371/journal.pbio.1001169] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/22/2011] [Indexed: 01/01/2023] Open
Abstract
A bacterial membrane protein, BacA, protects Sinorhizobium meliloti against the antimicrobial activity of host peptides, enabling the peptides to induce bacterial persistence rather than bacterial death. Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections. Certain bacterial species have the unique capacity to enter into eukaryotic host cells and establish prolonged infections, which can be beneficial (e.g. bacterial-legume symbiosis) or detrimental (e.g. chronic disease) for the host. However, the mechanisms by which bacteria persist in host cells are poorly understood. Legume peptides and the bacterial BacA membrane protein play essential roles in enabling bacteria to establish prolonged legume infections. However, the biological function of BacA in persistent legume infections has eluded scientists for nearly two decades. In this article, we investigated a potential relationship between legume peptides and BacA in the establishment of prolonged bacterial-legume infections. We found that BacA was critical to protect bacteria against the antimicrobial action of legume peptides, thereby allowing the peptides to induce bacterial persistence within the legume rather than rapid bacterial death. Mammalian hosts also produce peptides in response to invading microorganisms and BacA proteins are critical for medically important bacterial pathogens such as Mycobacterium tuberculosis to form prolonged mammalian infections. Therefore, our results suggest that BacA-mediated protection against host peptides might be a conserved mechanism used by both symbiotic and pathogenic bacterial species to establish long-term host infections.
Collapse
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mikhail Baloban
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Monica Sani
- Consiglio Nazionale delle Ricerche–Istituto di Chimica del Riconoscimento Molecolare C.N.R.-I.C.R.M., Milano, Italy
- KemoTech s.r.l., Pula, Italy
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Olivier Pierre
- Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice–Sophia Antipolis, Sophia-Antipolis, France
| | - Attila Farkas
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, Szeged, Hungary
| | - Renato Longhi
- Consiglio Nazionale delle Ricerche–Istituto di Chimica del Riconoscimento Molecolare C.N.R.-I.C.R.M., Milano, Italy
| | - Eric Boncompagni
- Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice–Sophia Antipolis, Sophia-Antipolis, France
| | - Didier Hérouart
- Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice–Sophia Antipolis, Sophia-Antipolis, France
| | - Sergio Dall’Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Matteo Zanda
- Consiglio Nazionale delle Ricerche–Istituto di Chimica del Riconoscimento Molecolare C.N.R.-I.C.R.M., Milano, Italy
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- * E-mail: (PM); (GPF)
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (PM); (GPF)
| |
Collapse
|
346
|
El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P. Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2011; 192:496-506. [PMID: 21726232 DOI: 10.1111/j.1469-8137.2011.03810.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legumes form a symbiotic interaction with bacteria of the Rhizobiaceae family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We examined the importance of glutathione (GSH) and homoglutathione (hGSH) during the nitrogen fixation process. Spatial patterns of the expression of the genes involved in the biosynthesis of both thiols were studied using promoter-GUS fusion analysis. Genetic approaches using the nodule nitrogen-fixing zone-specific nodule cysteine rich (NCR001) promoter were employed to determine the importance of (h)GSH in biological nitrogen fixation (BNF). The (h)GSH synthesis genes showed a tissue-specific expression pattern in the nodule. Down-regulation of the γ-glutamylcysteine synthetase (γECS) gene by RNA interference resulted in significantly lower BNF associated with a significant reduction in the expression of the leghemoglobin and thioredoxin S1 genes. Moreover, this lower (h)GSH content was correlated with a reduction in the nodule size. Conversely, γECS overexpression resulted in an elevated GSH content which was correlated with increased BNF and significantly higher expression of the sucrose synthase-1 and leghemoglobin genes. Taken together, these data show that the plant (h)GSH content of the nodule nitrogen-fixing zone modulates the efficiency of the BNF process, demonstrating their important role in the regulation of this process.
Collapse
Affiliation(s)
- Sarra El Msehli
- UMR Interactions Biotiques et Santé Végétale, Université de Nice-Sophia Antipolis, Sophia-Antipolis cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
347
|
Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 2011; 108:E864-70. [PMID: 21949378 DOI: 10.1073/pnas.1104032108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.
Collapse
|
348
|
Oono R, Anderson CG, Denison RF. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc Biol Sci 2011; 278:2698-703. [PMID: 21270038 PMCID: PMC3136820 DOI: 10.1098/rspb.2010.2193] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/24/2010] [Indexed: 11/12/2022] Open
Abstract
The legume-rhizobia symbiosis is a classical mutualism where fixed carbon and nitrogen are exchanged between the species. Nonetheless, the plant carbon that fuels nitrogen (N(2)) fixation could be diverted to rhizobial reproduction by 'cheaters'--rhizobial strains that fix less N(2) but potentially gain the benefit of fixation by other rhizobia. Host sanctions can decrease the relative fitness of less-beneficial reproductive bacteroids and prevent cheaters from breaking down the mutualism. However, in certain legume species, only undifferentiated rhizobia reproduce, while only terminally differentiated rhizobial bacteroids fix nitrogen. Sanctions were, therefore, tested in two legume species that host non-reproductive bacteroids. We demonstrate that even legume species that host non-reproductive bacteroids, specifically pea and alfalfa, can severely sanction undifferentiated rhizobia when bacteroids within the same nodule fail to fix N(2). Hence, host sanctions by a diverse set of legumes play a role in maintaining N(2) fixation.
Collapse
Affiliation(s)
- Ryoko Oono
- Department of Plant Biological Sciences, University of Minnesota, 250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108, USA.
| | | | | |
Collapse
|
349
|
Brown DB, Huang YC, Kannenberg EL, Sherrier DJ, Carlson RW. An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris. J Bacteriol 2011; 193:4766-78. [PMID: 21764936 PMCID: PMC3165650 DOI: 10.1128/jb.00392-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/06/2011] [Indexed: 01/31/2023] Open
Abstract
Rhizobium leguminosarum is a Gram-negative bacterium that forms nitrogen-fixing symbioses with compatible leguminous plants via intracellular invasion and establishes a persistent infection within host membrane-derived subcellular compartments. Notably, an unusual very-long-chain fatty acid (VLCFA) is found in the lipid A of R. leguminosarum as well as in the lipid A of the medically relevant pathogens Brucella abortus, Brucella melitensis, Bartonella henselae, and Legionella pneumophila, which are also able to persist within intracellular host-derived membranes. These bacterial symbionts and pathogens each contain a homologous gene region necessary for the synthesis and transfer of the VLCFA to the lipid A. Within this region lies a gene that encodes the specialized acyl carrier protein AcpXL, on which the VLCFA is built. This study describes the biochemical and infection phenotypes of an acpXL mutant which lacks the VLCFA. The mutation was created in R. leguminosarum bv. phaseoli strain 8002, which forms symbiosis with Phaseolus vulgaris, a determinate nodulating legume. Structural analysis using gas chromatography and mass spectrometry revealed that the mutant lipid A lacked the VLCFA. Compared to the parent strain, the mutant was more sensitive to the detergents deoxycholate and dodecyl sulfate and the antimicrobial peptide polymyxin B, suggesting a compromise to membrane stability. In addition, the mutant was more sensitive to higher salt concentrations. Passage through the plant restored salt tolerance. Electron microscopic examination showed that the mutant was developmentally delayed during symbiotic infection of the host plant Phaseolus vulgaris and produced abnormal symbiosome structures.
Collapse
Affiliation(s)
- Dusty B. Brown
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Yu-Chu Huang
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Elmar L. Kannenberg
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - D. Janine Sherrier
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
350
|
Ribeiro A, Gra A IS, Pawlowski K, Santos PC. Actinorhizal plant defence-related genes in response to symbiotic Frankia. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:639-644. [PMID: 32480918 DOI: 10.1071/fp11012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/10/2011] [Indexed: 05/15/2023]
Abstract
Actinorhizal plants have become increasingly important as climate changes threaten to remake the global landscape over the next decades. These plants are able to grow in nutrient-poor and disturbed soils, and are important elements in plant communities worldwide. Besides that, most actinorhizal plants are capable of high rates of nitrogen fixation due to their capacity to establish root nodule symbiosis with N2-fixing Frankia strains. Nodulation is a developmental process that requires a sequence of highly coordinated events. One of these mechanisms is the induction of defence-related events, whose precise role in a symbiotic interaction remains to be elucidated. This review summarises what is known about the induction of actinorhizal defence-related genes in response to symbiotic Frankia and their putative function during symbiosis.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - In S Gra A
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|