301
|
LEI Y, MEI Y, ZHANG W, LI H. The neural mechanism of fear generalization based on perception. ACTA ACUST UNITED AC 2018. [DOI: 10.3724/sp.j.1042.2018.01391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
302
|
Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OFX, Antoniou K, Sousa N, Dalla C. The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 2018; 23:579-586. [PMID: 28397837 PMCID: PMC5822458 DOI: 10.1038/mp.2017.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
The hippocampus and prefrontal cortex (PFC) are connected in a reciprocal manner: whereas the hippocampus projects directly to the PFC, a polysynaptic pathway that passes through the nucleus reuniens (RE) of the thalamus relays inputs from the PFC to the hippocampus. The present study demonstrates that lesioning and/or inactivation of the RE reduces coherence in the PFC-hippocampal pathway, provokes an antidepressant-like behavioral response in the forced swim test and prevents, but does not ameliorate, anhedonia in the chronic mild stress (CMS) model of depression. Additionally, RE lesioning before CMS abrogates the well-known neuromorphological and endocrine correlates of CMS. In summary, this work highlights the importance of the reciprocal connectivity between the hippocampus and PFC in the establishment of stress-induced brain pathology and suggests a role for the RE in promoting resilience to depressive illness.
Collapse
Affiliation(s)
- V Kafetzopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - N Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece,First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - I Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - J F Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - H Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - A Vasalou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - V M Sardinha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Z Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - O F X Almeida
- NeuroAdaptations Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - K Antoniou
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - C Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece,Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Athens 11527, Greece. E-mail:
| |
Collapse
|
303
|
Kruse O, Tapia León I, Stalder T, Stark R, Klucken T. Altered reward learning and hippocampal connectivity following psychosocial stress. Neuroimage 2017; 171:15-25. [PMID: 29288866 DOI: 10.1016/j.neuroimage.2017.12.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Acute stress has a profound influence on learning, as has been demonstrated in verbal learning or fear conditioning. However, its effect on appetitive conditioning is still unclear. Fear conditioning research suggests the possibility of overgeneralization of conditioning to the CS- under acute stress due to its effect on prefrontal and hippocampal processing. In this study, participants (N = 56 males) were subjected to the Trier Social Stress Test or a placebo version. After that, all participants underwent an appetitive conditioning paradigm in the fMRI, in which one neutral cue (CS+) was repeatedly paired with reward, while another (CS-) was not. Importantly, the stress-group revealed overgeneralization of conditioning to the CS- on the behavioral level. On the neural level, stressed participants showed increased connectivity between the hippocampus and amygdala, vACC, and OFC, which maintain specificity of conditioning and also showed reduced differential activation. The results indicate overgeneralization of appetitive conditioning promoted by maladaptive balancing of pattern separation and pattern completion in the hippocampus under acute stress and are discussed with respect to clinical implications.
Collapse
Affiliation(s)
- Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany; Bender Institute for Neuroimaging (BION), Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany; Department of Clinical Psychology, University of Siegen, Adolf-Reichwein-Str. 2a, 57076 Siegen, Germany.
| | - Isabell Tapia León
- Bender Institute for Neuroimaging (BION), Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany; Department of Clinical Psychology, University of Siegen, Adolf-Reichwein-Str. 2a, 57076 Siegen, Germany.
| | - Tobias Stalder
- Department of Clinical Psychology, University of Siegen, Adolf-Reichwein-Str. 2a, 57076 Siegen, Germany.
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany; Bender Institute for Neuroimaging (BION), Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany.
| | - Tim Klucken
- Bender Institute for Neuroimaging (BION), Justus Liebig University Giessen, Otto-Behaghel-Str. 10H, 35394 Giessen, Germany; Department of Clinical Psychology, University of Siegen, Adolf-Reichwein-Str. 2a, 57076 Siegen, Germany.
| |
Collapse
|
304
|
Liu Y, Ge R, Zhao X, Guo R, Huang L, Zhao S, Guan S, Lu W, Cui S, Wang S, Wang JH. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget 2017; 8:112401-112416. [PMID: 29348834 PMCID: PMC5762519 DOI: 10.18632/oncotarget.19918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
The capabilities of learning and memory in parents are presumably transmitted to their offsprings, in which genetic codes and epigenetic regulations are thought as molecular bases. As neural plasticity occurs during memory formation as cellular mechanism, we aim to examine the correlation of activity strengths at cortical glutamatergic and GABAergic neurons to the transgenerational inheritance of learning ability. In a mouse model of associative learning, paired whisker and odor stimulations led to odorant-induced whisker motion, whose onset appeared fast (high learning efficiency, HLE) or slow (low learning efficiency, LLE). HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice were cross-mated to have their first generation of offsprings, filials (F1). The onset of odorant-induced whisker motion appeared a sequence of high-to-low efficiency in three groups of F1 mice that were from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to glutamatergic neurons in barrel cortices appeared a sequence of high-to-low strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to GABAergic neurons in barrel cortices appeared a sequence of low-to-high strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Neuronal activity strength was linearly correlated to learning efficiency among three groups. Thus, the coordinated activities at glutamatergic and GABAergic neurons may constitute the cellular basis for the transgenerational inheritance of learning ability.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rui Guo
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shirlene Wang
- Department of Psychiatry, Northwestern University, Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
- Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China
- Qingdao University, School of Pharmacy, Shandong 266021, China
| |
Collapse
|
305
|
The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun 2017; 8:2190. [PMID: 29259187 PMCID: PMC5736595 DOI: 10.1038/s41467-017-02315-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Encoding specificity theory predicts most effective recall by the original conditions at encoding, while generalization endows recall flexibly under circumstances which deviate from the originals. The CA1 regions have been implicated in memory and generalization but whether and which locally separated mechanisms are involved is not clear. We report here that fear memory is quickly formed, but generalization develops gradually over 24 h. Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral (con) CA1, and by optogenetic silencing of the ipsCA1 projections onto conCA1. By contrast, in vivo fEPSP recordings reveal that ipsCA1–conCA1 synaptic efficacy is increased with delay over 24 h when generalization is formed but it is unchanged if generalization is disrupted. Direct excitation of ipsCA1–conCA1 synapses using chemogenetic hM3Dq facilitates generalization formation. Thus, rapid generalization is an active process dependent on bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1–conCA1 circuit. Previous work has documented a slow form of memory generalization although a rapid one is demanded. Here the authors elucidate the role of the interhemispheric CA1-CA1 projection in a form of rapid generalization of contextual fear memory via gradual potentiation of these synapses over 24 h.
Collapse
|
306
|
Zhang Z, Liao M, Yao Z, Hu B, Xie Y, Zheng W, Hu T, Zhao Y, Yang F, Zhang Y, Su L, Li L, Gutknecht J, Majoe D. Frequency-Specific Functional Connectivity Density as an Effective Biomarker for Adolescent Generalized Anxiety Disorder. Front Hum Neurosci 2017; 11:549. [PMID: 29259549 PMCID: PMC5723402 DOI: 10.3389/fnhum.2017.00549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Several neuropsychiatric diseases have been found to influence the frequency-specific spontaneous functional brain organization (SFBO) in resting state, demonstrating that the abnormal brain activities of different frequency bands are associated with various physiological and psychological dysfunctions. However, little is known about the frequency specificities of SFBO in adolescent generalized anxiety disorder (GAD). Here, a novel complete ensemble empirical mode decomposition with adaptive noise method was applied to decompose the time series of each voxel across all participants (31 adolescent patients with GAD and 28 matched healthy controls; HCs) into four frequency-specific bands with distinct intrinsic oscillation. The functional connectivity density (FCD) of different scales (short-range and long-range) was calculated to quantify the SFBO changes related to GAD within each above frequency-specific band and the conventional frequency band (0.01–0.08 Hz). Support vector machine classifier was further used to examine the discriminative ability of the frequency-specific FCD values. The results showed that adolescent GAD patients exhibited abnormal alterations of both short-range and long-range FCD (S-FCD and L-FCD) in widespread brain regions across three frequency-specific bands. Positive correlation between the State Anxiety Inventory (SAI) score and increased L-FCD in the fusiform gyrus in the conventional frequency band was found in adolescents with GAD. Both S-FCD and L-FCD in the insula in the lower frequency band (0.02–0.036 Hz) had the highest classification performance compared to all other brain regions with inter-group difference. Furthermore, a satisfactory classification performance was achieved by combining the discrepant S-FCD and L-FCD values in all frequency bands, with the area under the curve (AUC) value of 0.9414 and the corresponding sensitivity, specificity, and accuracy of 87.15, 92.92, and 89.83%, respectively. This study indicates that the alterations of SFBO in adolescent GAD are frequency dependence and the frequency-specific FCD can potentially serve as a valuable biomarker in discriminating GAD patients from HCs. These findings may provide new insights into the pathophysiological mechanisms of adolescent GAD.
Collapse
Affiliation(s)
- Zhe Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Mei Liao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanwei Xie
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Tao Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yu Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Fan Yang
- Guangdong Mental Health Center, Guangdong General Hospital, Guangzhou, China
| | - Yan Zhang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Linyan Su
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Lingjiang Li
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Jürg Gutknecht
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| | - Dennis Majoe
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
307
|
Feng J, Lu W, Wang D, Ma K, Song Z, Chen N, Sun Y, Du K, Shen M, Cui S, Wang JH. Barrel Cortical Neuron Integrates Triple Associated Signals for Their Memory Through Receiving Epigenetic-Mediated New Synapse Innervations. Cereb Cortex 2017; 27:5858-5871. [PMID: 29121184 DOI: 10.1093/cercor/bhx292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Associative learning is common way for information acquisition. Associative memory is essential to logical reasoning and associative thinking. The storages of multiple associated signals in individual neurons facilitate their integration, expand memory volume, and strengthen cognition ability. Associative memory cells that encode multiple signals have been reported, however, the mechanisms underlying their recruitment and working principle remain to be addressed. We have examined the recruitment of associative memory cells that integrate and store triple sensory signals as well as the potential mechanism of their recruitment. Paired mouse whisker, olfaction, and tail stimulations lead to odorant-induced motion and tail-induced whisker motion. In mice of expressing this cross-modal response, their barrel cortical neurons become to encode odor and tail signals alongside whisker signal. These barrel cortical neurons receive new synapse innervations from piriform and S1-tail cortical neurons. The emergence of cross-modal responses as well as the recruitments of new synapse innervations and associative memory cells in the barrel cortex need miRNA-324 and miRNA-133a, which downregulate Ttbk1 and Tet3. The co-activations of sensory cortices recruit their mutual synapse innervations and associative memory cells that integrate and store multiple associated signals through epigenetic-mediated process.
Collapse
Affiliation(s)
- Jing Feng
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dangui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Ma
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Zhenhua Song
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Kaixin Du
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Mengmeng Shen
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Science and Technology of China, Hefei Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
308
|
Liu Y, Gao Z, Chen C, Wen B, Huang L, Ge R, Zhao S, Fan R, Feng J, Lu W, Wang L, Wang JH. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget 2017; 8:95719-95740. [PMID: 29221161 PMCID: PMC5707055 DOI: 10.18632/oncotarget.21207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Zilong Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 10010, China
| | - Changfeng Chen
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Bo Wen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 10010, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Ruichen Fan
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
| | - Jing Feng
- Qingdao University, School of Pharmacy, Qingdao 266021, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao 266021, China
| | - Liping Wang
- University of Chinese Academy of Sciences, Beijing 100101, China
- Shengzheng Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 10010, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Qingdao University, School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
309
|
Lei Z, Wang D, Chen N, Ma K, Lu W, Song Z, Cui S, Wang JH. Synapse Innervation and Associative Memory Cell Are Recruited for Integrative Storage of Whisker and Odor Signals in the Barrel Cortex through miRNA-Mediated Processes. Front Cell Neurosci 2017; 11:316. [PMID: 29118695 PMCID: PMC5661269 DOI: 10.3389/fncel.2017.00316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Associative learning is a common way for information acquisition, and the integrative storage of multiple associated signals is essential for associative thinking and logical reasoning. In terms of the cellular mechanism for associative memory, our studies by behavioral task and cellular imaging demonstrate that paired whisker and odor stimulations lead to odorant-induced whisker motion and associative memory cell recruitment in the barrel cortex (BC), which is driven presumably by synapse innervation from co-activated sensory cortices. To confirm these associative memory cells and synapse innervations essential for associative memory and to examine their potential mechanisms, we studied a causal relationship between epigenetic process and memory cell/synapse recruitment by manipulating miRNAs and observing the changes from the recruitments of associative memory cells and synapse innervations to associative memory. Anti-miRNA-324 and anti-miRNA-133a in the BC significantly downregulate new synapse innervation, associative memory cell recruitment and odorant-induced whisker motion, where Tau-tubulin kinase-1 expression is increased. Therefore, the upregulated miRNA-324 in associative learning knocks down Ttbk1-mediated Tau phosphorylation and microtubule depolymerization, which drives the balance between polymerization and depolymerization toward the axon prolongation and spine stabilization to initiate new synapse innervations and to recruit associative memory cells.
Collapse
Affiliation(s)
- Zhuofan Lei
- School of Pharmacy, Qingdao University, Dengzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Dangui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke Ma
- School of Pharmacy, Qingdao University, Dengzhou, China
| | - Wei Lu
- School of Pharmacy, Qingdao University, Dengzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, Dengzhou, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- School of Pharmacy, Qingdao University, Dengzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
310
|
Treanor M, Brown LA, Rissman J, Craske MG. Can Memories of Traumatic Experiences or Addiction Be Erased or Modified? A Critical Review of Research on the Disruption of Memory Reconsolidation and Its Applications. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:290-305. [PMID: 28346121 DOI: 10.1177/1745691616664725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research suggests that the mere act of retrieving a memory can temporarily make that memory vulnerable to disruption. This process of "reconsolidation" will typically restabilize the neural representation of the memory and foster its long-term storage. However, the process of reconsolidating the memory takes time to complete, and during this limited time window, the original memory may be modified either by the presentation of new information or with pharmacological agents. Such findings have prompted rising interest in using disruption during reconsolidation as a clinical intervention for anxiety, posttraumatic stress, and substance use disorders. However, "boundary conditions" on memory reconsolidation may pose significant obstacles to clinical translation. The aim of this article is to critically examine the nature of these boundary conditions, their neurobiological substrates, and the potential effect they may have on disruption of reconsolidation as a clinical intervention. These boundary conditions also highlight potential constraints on the reconsolidation phenomenon and suggest a limited role for memory updating consistent with evolutionary accounts of associative learning for threat and reward. We conclude with suggestions for future research needed to elucidate the precise conditions under which reconsolidation disruption may be clinically useful.
Collapse
|
311
|
Abstract
Progress in clinical and affective neuroscience is redefining psychiatric illness as symptomatic expression of cellular/molecular dysfunctions in specific brain circuits. Post-traumatic stress disorder (PTSD) has been an exemplar of this progress, with improved understanding of neurobiological systems subserving fear learning, salience detection, and emotion regulation explaining much of its phenomenology and neurobiology. However, many features remain unexplained and a parsimonious model that more fully accounts for symptoms and the core neurobiology remains elusive. Contextual processing is a key modulatory function of hippocampal-prefrontal-thalamic circuitry, allowing organisms to disambiguate cues and derive situation-specific meaning from the world. We propose that dysregulation within this context-processing circuit is at the core of PTSD pathophysiology, accounting for much of its phenomenology and most of its biological findings. Understanding core mechanisms like this, and their underlying neural circuits, will sharpen diagnostic precision and understanding of risk factors, enhancing our ability to develop preventive and "personalized" interventions.
Collapse
Affiliation(s)
- Israel Liberzon
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA; Mental Health Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA
| |
Collapse
|
312
|
Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice. Physiol Behav 2017; 179:467-477. [DOI: 10.1016/j.physbeh.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022]
|
313
|
Xia F, Richards BA, Tran MM, Josselyn SA, Takehara-Nishiuchi K, Frankland PW. Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. eLife 2017; 6:27868. [PMID: 28960176 PMCID: PMC5655147 DOI: 10.7554/elife.27868] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Following learning, increased coupling between spindle oscillations in the medial prefrontal cortex (mPFC) and ripple oscillations in the hippocampus is thought to underlie memory consolidation. However, whether learning-induced increases in ripple-spindle coupling are necessary for successful memory consolidation has not been tested directly. In order to decouple ripple-spindle oscillations, here we chemogenetically inhibited parvalbumin-positive (PV+) interneurons, since their activity is important for regulating the timing of spiking activity during oscillations. We found that contextual fear conditioning increased ripple-spindle coupling in mice. However, inhibition of PV+ cells in either CA1 or mPFC eliminated this learning-induced increase in ripple-spindle coupling without affecting ripple or spindle incidence. Consistent with the hypothesized importance of ripple-spindle coupling in memory consolidation, post-training inhibition of PV+ cells disrupted contextual fear memory consolidation. These results indicate that successful memory consolidation requires coherent hippocampal-neocortical communication mediated by PV+ cells.
Collapse
Affiliation(s)
- Frances Xia
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Matthew M Tran
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sheena A Josselyn
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Paul W Frankland
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
314
|
Emsaki G, NeshatDoost HT, Tavakoli M, Barekatain M. Memory specificity training can improve working and prospective memory in amnestic mild cognitive impairment. Dement Neuropsychol 2017; 11:255-261. [PMID: 29213522 PMCID: PMC5674669 DOI: 10.1590/1980-57642016dn11-030007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amnestic Mild Cognitive Impairment (MCI) is one of the cognitive profiles of aging. OBJECTIVE In this study, Memory Specificity Training (MEST) was used as cognitive training in patients with amnestic MCI to understand the effectiveness of the intervention on memory dimensions. METHODS Twenty patients that met the criteria for amnestic MCI were selected and randomly assigned to experimental (n=10) or control (n=10) groups. The experimental group received five sessions of training on memory specificity while the participants in the control group took part in two general placebo sessions. Participants were assessed before, immediately after, and three months after, the treatment using the Autobiographical Memory Test, the Prospective and Retrospective Memory Questionnaire, the Wechsler Memory Scale, and the Hospital Anxiety and Depression Scale. Analysis of variance was used to analyze the data. RESULTS Results from both post-test and follow-up treatment indicated that MEST improves working and prospective memory (p<0.05). CONCLUSION These findings support the effectiveness of MEST for MCI patients as a viable cognitive intervention. Also, the findings have implications for the role of brain plasticity in the effectiveness of this intervention.
Collapse
Affiliation(s)
- Golita Emsaki
- PhD Student of Psychology, Department of Psychology, University of Isfahan, Iran
| | | | - Mahgol Tavakoli
- Assistant Professor of Psychology, Department of Psychology, University of Isfahan, Iran
| | - Majid Barekatain
- Professor of Neuropsychiatry, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
315
|
Sans-Dublanc A, Mas-Herrero E, Marco-Pallarés J, Fuentemilla L. Distinct Neurophysiological Mechanisms Support the Online Formation of Individual and Across-Episode Memory Representations. Cereb Cortex 2017; 27:4314-4325. [PMID: 27522079 DOI: 10.1093/cercor/bhw231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/08/2016] [Indexed: 11/12/2022] Open
Abstract
Individual experiences often overlap in their content, presenting opportunities for rapid generalization across them. In this study, we show in 2 independent experiments that integrative encoding-the ability to form individual and across memory representations during online encoding-is supported by 2 distinct neurophysiological responses. Brain potential is increased gradually during encoding and fit to a trial level memory measure for individual episodes, whereas neural oscillations in the theta range (4-6 Hz) emerge later during learning and predict participants' generalization performance in a subsequent test. These results suggest that integrative encoding requires the recruitment of 2 separate neural mechanisms that, despite their co-occurrence in time, differ in their underlying neural dynamics, reflect different brain learning rates and are supportive of the formation of opposed memory representations, individual versus across-event episodes.
Collapse
Affiliation(s)
- A Sans-Dublanc
- Cognition and Brain Plasticity Group, Institute of Biomedicine Research of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - E Mas-Herrero
- Cognition and Brain Plasticity Group, Institute of Biomedicine Research of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.,Montreal Neurological Institute - McGill University, Montreal, QC H3A 2B4, Canada
| | - J Marco-Pallarés
- Cognition and Brain Plasticity Group, Institute of Biomedicine Research of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.,Department of Cognitive, Education and Evolutive Psychology, University of Barcelona, Barcelona, 08035, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Spain
| | - L Fuentemilla
- Cognition and Brain Plasticity Group, Institute of Biomedicine Research of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.,Department of Cognitive, Education and Evolutive Psychology, University of Barcelona, Barcelona, 08035, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Spain
| |
Collapse
|
316
|
Ferrara NC, Cullen PK, Pullins SP, Rotondo EK, Helmstetter FJ. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination. Learn Mem 2017; 24:414-421. [PMID: 28814467 PMCID: PMC5580525 DOI: 10.1101/lm.044131.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Patrick K Cullen
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Shane P Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Elena K Rotondo
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
317
|
Inhibition of Metabotropic Glutamate Receptor Subtype 1 Alters the Excitability of the Commissural Pyramidal Neuron in the Rat Anterior Cingulate Cortex after Chronic Constriction Injury to the Sciatic Nerve. Anesthesiology 2017; 127:515-533. [PMID: 28422818 DOI: 10.1097/aln.0000000000001654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Inhibition of the metabotropic glutamate receptor subtype 1 in the anterior cingulate cortex has an analgesic effect during sustained nociceptive hypersensitivity. However, the specific changes in different subtypes of anterior cingulate cortex layer 5 pyramidal neurons, as well as the distinct effect of metabotropic glutamate receptor subtype 1 inhibition on different neuronal subtypes, have not been well studied.
Methods
Retrograde labeling combined with immunofluorescence, whole cell clamp recording, and behavioral tests combined with RNA interference were performed in a rat model of chronic constriction injury to the sciatic nerve.
Results
Commissural layer 5 pyramidal neurons (projecting to the contralateral cortex) existed in the anterior cingulate cortex. The voltage-gated potassium channel subunit 2–mediated current in these neurons were substantially reduced after chronic constriction injury (current densities at +30 mV for the sham, and chronic constriction injury neurons were [mean ± SD] 10.22 ± 3.42 pA/pF vs. 5.58 ± 2.71 pA/pF, respectively; n = 11; P < 0.01), which increased the spike width and fast afterhyperpolarization potential, resulting in hyperexcitability. Inhibition of metabotropic glutamate receptor subtype 1 alleviated the down-regulation of voltage-gated potassium channel subunit 2 currents (current density increased by 8.11 ± 3.22 pA/pF; n = 7; P < 0.01). Furthermore, knockdown of voltage-gated potassium channel subunit 2 current in the commissural neurons attenuated the analgesic effect of metabotropic glutamate receptor subtype 1 inhibition (n = 6 rats; P < 0.05).
Conclusions
The effect of metabotropic glutamate receptor subtype 1 inhibition on commissural anterior cingulate cortex layer 5 pyramidal neurons is likely different with the modification of previously studied hyperpolarization-activated/cyclic nucleotide-gated channel-dependent neurons but relies on the alteration of voltage-gated potassium channel subunit 2 currents. These results will contribute to a better understanding of the therapeutic role of metabotropic glutamate receptor subtype 1 in chronic pain.
Collapse
|
318
|
Pennington ZT, Anderson AS, Fanselow MS. The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing? ACTA ACUST UNITED AC 2017; 24:400-406. [PMID: 28814465 PMCID: PMC5580532 DOI: 10.1101/lm.046110.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
The ventromedial prefrontal cortex (vmPFC) has consistently appeared altered in post-traumatic stress disorder (PTSD). Although the vmPFC is thought to support the extinction of learned fear responses, several findings support a broader role for this structure in the regulation of fear. To further characterize the relationship between vmPFC dysfunction and responses to traumatic stress, we examined the effects of pretraining vmPFC lesions on trauma reactivity and enhanced fear learning in a rodent model of PTSD. In Experiment 1, lesions did not produce differences in shock reactivity during an acute traumatic episode, nor did they alter the strength of the traumatic memory. However, when lesioned animals were subsequently given a single mild aversive stimulus in a novel context, they showed a blunting of the enhanced fear response to this context seen in traumatized animals. In order to address this counterintuitive finding, Experiment 2 assessed whether lesions also attenuated fear responses to discrete tone cues. Enhanced fear for discrete cues following trauma was preserved in lesioned animals, indicating that the deficit observed in Experiment 1 is limited to contextual stimuli. These findings further support the notion that the vmPFC contributes to the regulation of fear through its influence on context learning and contrasts the prevailing view that the vmPFC directly inhibits fear.
Collapse
Affiliation(s)
| | | | - Michael S Fanselow
- Department of Psychology, UCLA, Los Angeles, California 90095, USA.,Brain Research Institute, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
319
|
Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, Zhang X, Han J. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 2017; 61. [PMID: 28654221 PMCID: PMC5656827 DOI: 10.1002/mnfr.201700134] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
Abstract
Scope A high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open. Methods and results In this study, we found that mice on a 7 week HS diet demonstrated disturbed short‐term memory in an object‐place recognition task, and both 4 week and 7 week HS treatments impaired long‐term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory‐related long‐term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain‐derived neurotrophic factor in specific encephalic region. Conclusion This suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet‐induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity.
Collapse
Affiliation(s)
- Qian Ge
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuwei Wu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qing Huo
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoqiang Qian
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xia Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
320
|
Chemogenetic Interrogation of a Brain-wide Fear Memory Network in Mice. Neuron 2017; 94:363-374.e4. [PMID: 28426969 DOI: 10.1016/j.neuron.2017.03.037] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 01/27/2023]
Abstract
Behavior depends on coordinated activity across multiple brain regions. Within such networks, highly connected hub regions are assumed to disproportionately influence behavioral output, although this hypothesis has not been systematically evaluated. Previously, by mapping brain-wide expression of the activity-regulated gene c-fos, we identified a network of brain regions co-activated by fear memory. To test the hypothesis that hub regions are more important for network function, here, we simulated node deletion in silico in this behaviorally defined functional network. Removal of high degree nodes produced the greatest network disruption (e.g., reduction in global efficiency). To test these predictions in vivo, we examined the impact of post-training chemogenetic silencing of different network nodes on fear memory consolidation. In a series of independent experiments encompassing 25% of network nodes (i.e., 21/84 brain regions), we found that node degree accurately predicted observed deficits in memory consolidation, with silencing of highly connected hubs producing the largest impairments.
Collapse
|
321
|
Abstract
How are fear memories organized? In this issue of Neuron, Vetere et al. (2017) take a network-based approach to demonstrate the importance of highly interconnected hub regions in the consolidation of a fear memory. By doing so, they provide an elegant framework for predicting behavior from functional network properties.
Collapse
Affiliation(s)
- Nicholas I Woods
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
322
|
Hulbert JC, Hirschstein Z, Brontë CAL, Broughton E. Unintended side effects of a spotless mind: theory and practice. Memory 2017; 26:306-320. [DOI: 10.1080/09658211.2017.1354999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
323
|
Verma M, Schneider JS. Strain specific effects of low level lead exposure on associative learning and memory in rats. Neurotoxicology 2017; 62:186-191. [PMID: 28720388 DOI: 10.1016/j.neuro.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 12/28/2022]
Abstract
Exposure to lead (Pb) remains a significant public health concern. Lead exposure in early life impairs the normal development of numerous cognitive and neurobehavioral processes. Previous work has shown that the effects of developmental Pb exposure on gene expression patterns in the brain are modulated by various factors including the developmental timing of the exposure, level of exposure, sex, and genetic background. Using gene microarray profiling, we previously reported a significant strain-specific effect of Pb exposure on the hippocampal transcriptome, with the greatest number of differentially expressed transcripts in Long Evans (LE) rats and the fewest in Sprague Dawley (SD) rats. The present study examined the extent to which this differential effect of Pb on hippocampal gene expression might influence behavior. Animals (males and females) were tested in a trace fear conditioning paradigm to evaluate effects of Pb exposures (perinatal (PERI; gestation to postnatal day 21) or early postnatal (EPN; postnatal day 1 to day 21)) on associative learning and memory. All animals (Pb-exposed and non-Pb-exposed controls) showed normal acquisition of the conditioned stimulus (tone)-unconditioned stimulus (footshock) association. Long Evans rats showed a significant deficit in short- and long-term recall, influenced by sex and the timing of Pb exposure (PERI or EPN). In contrast, Pb exposure had no significant effect on memory consolidation or recall in any SD rats. These results further demonstrate the important influence of genetic background to the functional outcomes from developmental Pb exposure.
Collapse
Affiliation(s)
- Megha Verma
- Department of Pathology, Anatomy Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| | - J S Schneider
- Department of Pathology, Anatomy Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| |
Collapse
|
324
|
Dillingham CM, Jankowski MM, Chandra R, Frost BE, O'Mara SM. The claustrum: Considerations regarding its anatomy, functions and a programme for research. Brain Neurosci Adv 2017; 1:2398212817718962. [PMID: 32166134 PMCID: PMC7058237 DOI: 10.1177/2398212817718962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 01/20/2023] Open
Abstract
The claustrum is a highly conserved but enigmatic structure, with connections to the entire cortical mantle, as well as to an extended and extensive range of heterogeneous subcortical structures. Indeed, the human claustrum is thought to have the highest number of connections per millimetre cubed of any other brain region. While there have been relatively few functional investigations of the claustrum, many theoretical suggestions have been put forward, including speculation that it plays a key role in the generation of consciousness in the mammalian brain. Other claims have been more circumspect, suggesting that the claustrum has a particular role in, for example, orchestrating cortical activity, spatial information processing or decision making. Here, we selectively review certain key recent anatomical, electrophysiological and behavioural experimental advances in claustral research and present evidence that calls for a reassessment of its anatomical boundaries in the rodent. We conclude with some open questions for future research.
Collapse
Affiliation(s)
| | - Maciej M Jankowski
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruchi Chandra
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Bethany E Frost
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
325
|
Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron 2017; 95:424-435.e6. [DOI: 10.1016/j.neuron.2017.06.025] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/07/2017] [Accepted: 06/15/2017] [Indexed: 11/22/2022]
|
326
|
|
327
|
Guo R, Ge R, Zhao S, Liu Y, Zhao X, Huang L, Guan S, Lu W, Cui S, Wang S, Wang JH. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons. Front Cell Neurosci 2017; 11:168. [PMID: 28659764 PMCID: PMC5469894 DOI: 10.3389/fncel.2017.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II-III of the barrel cortex and layers IV-V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Yulong Liu
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Sodong Guan
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Wei Lu
- School of Pharmacy, Qingdao UniversityQingdao, China
| | - Shan Cui
- Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, United States
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
- School of Pharmacy, Qingdao UniversityQingdao, China
- Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
- Department of Biology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
328
|
Walsh DA, Brown JT, Randall AD. In vitro characterization of cell-level neurophysiological diversity in the rostral nucleus reuniens of adult mice. J Physiol 2017; 595:3549-3572. [PMID: 28295330 PMCID: PMC5451734 DOI: 10.1113/jp273915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS The nucleus reuniens (Re), a nucleus of the midline thalamus, is part of a cognitive network including the hippocampus and the medial prefrontal cortex. To date, very few studies have examined the electrophysiological properties of Re neurons at a cellular level. The majority of Re neurons exhibit spontaneous action potential firing at rest. This is independent of classical amino-acid mediated synaptic transmission. When driven by various forms of depolarizing current stimulus, Re neurons display considerable diversity in their firing patterns. As a result of the presence of a low threshold Ca2+ channel, spike output functions are strongly modulated by the prestimulus membrane potential. Finally, we describe a novel form of activity-dependant intrinsic plasticity that eliminates the high-frequency burst firing present in many Re neurons. These results provide a comprehensive summary of the intrinsic electrophysiological properties of Re neurons allowing us to better consider the role of the Re in cognitive processes. ABSTRACT The nucleus reuniens (Re) is the largest of the midline thalamic nuclei. We have performed a detailed neurophysiological characterization of neurons in the rostral Re of brain slices prepared from adult male mice. At resting potential (-63.7 ± 0.6 mV), ∼90% of Re neurons fired action potentials, typically continuously at ∼8 Hz. Although Re neurons experience a significant spontaneous barrage of fast, amino-acid-mediate synaptic transmission, this was not predominantly responsible for spontaneous spiking because firing persisted in the presence of glutamate and GABA receptor antagonists. With resting potential preset to -80 mV, -20 pA current injections revealed a mean input resistance of 615 MΩ and a mean time constant of 38 ms. Following cessation of this stimulus, a significant rebound potential was seen that was sometimes sufficiently large to trigger a short burst of very high frequency (100-300 Hz) firing. In most cells, short (2 ms), strong (2 nA) current injections elicited a single spike followed by a large afterdepolarizing potential which, when suprathreshold, generated high-frequency spiking. Similarly, in the majority of cells preset at -80 mV, 500 ms depolarizing current injections to cells led to a brief initial burst of very high-frequency firing, although this was lost when cells were preset at -72 mV. Biophysical and pharmacological experiments indicate a prominent role for T-type Ca2+ channels in the high-frequency bursting of Re neurons. Finally, we describe a novel form of activity-dependent intrinsic plasticity that persistently eliminates the burst firing potential of Re neurons.
Collapse
Affiliation(s)
- Darren A. Walsh
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
| | - Jonathan T. Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
| | - Andrew D. Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
- School of Clinical SciencesUniversity of BristolBristolUK
| |
Collapse
|
329
|
Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity. Neurobiol Learn Mem 2017; 144:1-10. [PMID: 28577998 DOI: 10.1016/j.nlm.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning.
Collapse
|
330
|
Chen J. Empathy for Distress in Humans and Rodents. Neurosci Bull 2017; 34:216-236. [PMID: 28493169 DOI: 10.1007/s12264-017-0135-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
Empathy is traditionally thought to be a unique ability of humans to feel, understand, and share the emotional state of others. However, the notion has been greatly challenged by the emerging discoveries of empathy for pain or distress in rodents. Because empathy is believed to be fundamental to the formation of prosocial, altruistic, and even moral behaviors in social animals and humans, studies associated with decoding the neural circuits and unraveling the underlying molecular and neural mechanisms of empathy for pain or distress in rodents would be very important and encouraging. In this review, the author set out to outline and update the concept of empathy from the evolutionary point of view, and introduce up-to-date advances in the study of empathy and its neural correlates in both humans and rodents. Finally, the author highlights the perspectives and challenges for the further use of rodent models in the study of empathy for pain or distress.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
331
|
Zemla R, Basu J. Hippocampal function in rodents. Curr Opin Neurobiol 2017; 43:187-197. [PMID: 28477511 DOI: 10.1016/j.conb.2017.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
The hippocampus is crucial for the formation and recall of long-term memories about people, places, objects, and events. Capitalizing on high-resolution microscopy, in vivo electrophysiology, and genetic manipulation, recent research in rodents provides evidence for hippocampal ensemble coding on the spatial, episodic, and contextual dimensions. Here we highlight the functional contribution of newly described long-range connections between hippocampus and cortical areas, and the relative impact of inhibitory and excitatory dynamics in generating behaviorally relevant population activity. Our goal is to provide an integrated view of hippocampal circuit function to understand mnemonic computations at the systems and cellular levels that underlie adaptive learned behaviors.
Collapse
Affiliation(s)
- Roland Zemla
- Neuroscience Institute, New York University School of Medicine, USA; Medical Scientist Training Program, New York University School of Medicine, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University School of Medicine, USA; Department of Neuroscience and Physiology, New York University School of Medicine, USA.
| |
Collapse
|
332
|
Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. Thalamic amplification of cortical connectivity sustains attentional control. Nature 2017; 545:219-223. [PMID: 28467827 PMCID: PMC5570520 DOI: 10.1038/nature22073] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/15/2017] [Indexed: 12/20/2022]
Abstract
While interactions between the thalamus and cortex are critical for cognitive function1–3, the exact contribution of the thalamus to these interactions is often unclear. Recent studies have shown diverse connectivity patterns across the thalamus 4,5, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions6 is unknown. Here, by investigating prefrontal cortical (PFC) representation of two rules used to guide attention, we find that the mediodorsal thalamus (MD) sustains these representations without relaying categorical information. Specifically, MD input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioral performance, while enhancing MD excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function indicates that the thalamus plays much more central roles in cognition than previously thought.
Collapse
Affiliation(s)
- L Ian Schmitt
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Ralf D Wimmer
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Miho Nakajima
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Michael Happ
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Sima Mofakham
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Michael M Halassa
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, New York 10016, USA.,Center for Neural Science, New York University, New York, New York 10016, USA
| |
Collapse
|
333
|
Chen LY, Jiang M, Zhang B, Gokce O, Südhof TC. Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. Neuron 2017; 94:611-625.e4. [PMID: 28472659 PMCID: PMC5501922 DOI: 10.1016/j.neuron.2017.04.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
Neurexins are recognized as key organizers of synapses that are essential for normal brain function. However, it is unclear whether neurexins are fundamental building blocks of all synapses with similar overall functions or context-dependent specifiers of synapse properties. To address this question, we produced triple cKO (conditional knockout) mice that allow ablating all neurexin expression in mice. Using neuron-specific manipulations combined with immunocytochemistry, paired recordings, and two-photon Ca2+ imaging, we analyzed excitatory synapses formed by climbing fibers on Purkinje cells in cerebellum and inhibitory synapses formed by parvalbumin- or somatostatin-positive interneurons on pyramidal layer 5 neurons in the medial prefrontal cortex. After pan-neurexin deletions, we observed in these synapses severe but dramatically different synaptic phenotypes that ranged from major impairments in their distribution and function (climbing-fiber synapses) to large decreases in synapse numbers (parvalbumin-positive synapses) and severe alterations in action potential-induced presynaptic Ca2+ transients (somatostatin-positive synapses). Thus, neurexins function primarily as context-dependent specifiers of synapses.
Collapse
Affiliation(s)
- Lulu Y Chen
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Man Jiang
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Bo Zhang
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
334
|
Chen W, Wang Y, Wang X, Li H. Neural circuits involved in the renewal of extinguished fear. IUBMB Life 2017; 69:470-478. [PMID: 28464461 DOI: 10.1002/iub.1636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017.
Collapse
Affiliation(s)
- Weihai Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Yan Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Xiaqing Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Hong Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| |
Collapse
|
335
|
Ali M, Cholvin T, Muller MA, Cosquer B, Kelche C, Cassel JC, Pereira de Vasconcelos A. Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiol Learn Mem 2017; 141:108-123. [DOI: 10.1016/j.nlm.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/06/2017] [Indexed: 11/26/2022]
|
336
|
Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sci 2017; 7:brainsci7040043. [PMID: 28420200 PMCID: PMC5406700 DOI: 10.3390/brainsci7040043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall.
Collapse
|
337
|
Rossignoli MT, Lopes-Aguiar C, Ruggiero RN, Do Val da Silva RA, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Crippa JA, Cecilio Hallak JE, Zuardi AW, Szawka RE, Anselmo-Franci J, Leite JP, Romcy-Pereira RN. Selective post-training time window for memory consolidation interference of cannabidiol into the prefrontal cortex: Reduced dopaminergic modulation and immediate gene expression in limbic circuits. Neuroscience 2017; 350:85-93. [PMID: 28344069 DOI: 10.1016/j.neuroscience.2017.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
Abstract
The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits.
Collapse
Affiliation(s)
- Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte - MG, Brazil.
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Raquel Araujo Do Val da Silva
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Lezio Soares Bueno-Junior
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Ludmyla Kandratavicius
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - José Eduardo Peixoto-Santos
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - José Alexandre Crippa
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Jaime Eduardo Cecilio Hallak
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Antonio Waldo Zuardi
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Raphael Escorsim Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte - MG, Brazil.
| | - Janete Anselmo-Franci
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - João Pereira Leite
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | | |
Collapse
|
338
|
Guise KG, Shapiro ML. Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding. Neuron 2017; 94:183-192.e8. [PMID: 28343868 DOI: 10.1016/j.neuron.2017.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by "teaching" the hippocampus to retrieve distinct representations of similar circumstances.
Collapse
Affiliation(s)
- Kevin G Guise
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthew L Shapiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
339
|
Abstract
Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts.
Collapse
Affiliation(s)
- Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.,School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
340
|
Abstract
Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts.
Collapse
Affiliation(s)
- Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
341
|
Sierra RO, Pedraza LK, Zanona QK, Santana F, Boos FZ, Crestani AP, Haubrich J, de Oliveira Alvares L, Calcagnotto ME, Quillfeldt JA. Reconsolidation-induced rescue of a remote fear memory blocked by an early cortical inhibition: Involvement of the anterior cingulate cortex and the mediation by the thalamic nucleus reuniens. Hippocampus 2017; 27:596-607. [DOI: 10.1002/hipo.22715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Rodrigo O. Sierra
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lizeth K. Pedraza
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Querusche K. Zanona
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Flávia Z. Boos
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Ana P. Crestani
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lucas de Oliveira Alvares
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Lab; Biochemistry Department, ICBS, CEP 90.030-003, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Jorge A. Quillfeldt
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
342
|
Berkers RMWJ, van der Linden M, de Almeida RF, Müller NCJ, Bovy L, Dresler M, Morris RGM, Fernández G. Transient medial prefrontal perturbation reduces false memory formation. Cortex 2017; 88:42-52. [PMID: 28068640 DOI: 10.1016/j.cortex.2016.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/06/2016] [Accepted: 12/19/2016] [Indexed: 01/25/2023]
Abstract
Knowledge extracted across previous experiences, or schemas, benefit encoding and retention of congruent information. However, they can also reduce specificity and augment memory for semantically related, but false information. A demonstration of the latter is given by the Deese-Roediger-McDermott (DRM) paradigm, where the studying of words that fit a common semantic schema are found to induce false memories for words that are congruent with the given schema, but were not studied. The medial prefrontal cortex (mPFC) has been ascribed the function of leveraging prior knowledge to influence encoding and retrieval, based on imaging and patient studies. Here, we used transcranial magnetic stimulation (TMS) to transiently perturb ongoing mPFC processing immediately before participants performed the DRM-task. We observed the predicted reduction in false recall of critical lures after mPFC perturbation, compared to two control groups, whereas veridical recall and recognition memory performance remained similar across groups. These data provide initial causal evidence for a role of the mPFC in biasing the assimilation of new memories and their consolidation as a function of prior knowledge.
Collapse
Affiliation(s)
- Ruud M W J Berkers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany.
| | - Marieke van der Linden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rafael F de Almeida
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nils C J Müller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Leonore Bovy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Richard G M Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
343
|
Rizzo V, Touzani K, Raveendra BL, Swarnkar S, Lora J, Kadakkuzha BM, Liu XA, Zhang C, Betel D, Stackman RW, Puthanveettil SV. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:158-169. [PMID: 28503670 DOI: 10.1016/j.bpsc.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. METHODS Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. RESULTS We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. CONCLUSIONS Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Khalid Touzani
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Bindu L Raveendra
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Joan Lora
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | - Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Robert W Stackman
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | | |
Collapse
|
344
|
Hippocampal GABA B(1a) Receptors Constrain Generalized Contextual Fear. Neuropsychopharmacology 2017; 42:914-924. [PMID: 27834391 PMCID: PMC5312073 DOI: 10.1038/npp.2016.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
Many anxiety disorders are characterized by generalization of fear responses to neutral or ambiguous stimuli. Therefore, a comprehensive understanding of the mechanisms contributing to generalized fear is essential for formulating successful treatments for anxiety disorders. Previous research shows that GABA-mediated presynaptic inhibition has a critical role in cued fear generalization, as animals with genetically deleted presynaptic GABAB(1a) receptors cannot discriminate between CS+ and CS- tones. Work from our laboratory has further identified that GABAB(1a) receptors are necessary for maintaining contextual memory precision, thereby constraining generalized contextual fear. We previously found that GABAB(1a) KO mice show generalized fear to a neutral context 24 h after training, but not 2 h after training. A similar pattern was observed with object location and recognition, suggesting that this receptor subtype affects consolidation and/or retrieval of precise contextual and spatial memories. Here we sought to specifically examine the involvement of GABAB(1a) receptors in consolidation or retrieval of a precise fear memory. To do so, we infused a selective GABAB(1a) receptor antagonist, CGP 36216, intracerebroventricularly (ICV), or locally into the dorsal hippocampus, ventral hippocampus, or anterior cingulate cortex (ACC), during consolidation and retrieval of context fear training. Blockade of GABAB(1a) receptors through ICV, dorsal hippocampal, or ventral hippocampal infusions 'after' training (consolidation) resulted in fear generalization to the neutral context when mice were tested 24, but not 6 h after training. Post-training infusions of CGP into the ACC, however, did not promote generalized fear. In addition, ICV, dorsal hippocampal, ventral hippocampal, or ACC infusions immediately 'before' testing (retrieval) did not result in context fear generalization. These data suggest that GABA-mediated presynaptic inhibition is not critical for retrieval of precise contextual memory, but rather has an important role in the long-term consolidation of precise contextual memories and constrains generalized fear responses.
Collapse
|
345
|
Optogenetic Examination of Prefrontal-Amygdala Synaptic Development. J Neurosci 2017; 37:2976-2985. [PMID: 28193691 DOI: 10.1523/jneurosci.3097-16.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 11/21/2022] Open
Abstract
A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network.SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations.
Collapse
|
346
|
Reagh ZM, Murray EA, Yassa MA. Repetition reveals ups and downs of hippocampal, thalamic, and neocortical engagement during mnemonic decisions. Hippocampus 2017; 27:169-183. [PMID: 27859884 PMCID: PMC5858562 DOI: 10.1002/hipo.22681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
Abstract
The extent to which current information is consistent with past experiences and our capacity to recognize or discriminate accordingly are key factors in flexible memory-guided behavior. Despite a wealth of evidence linking hippocampal and neocortical computations to these phenomena, many important factors remain poorly understood. One such factor is repeated encoding of learned information. In this experiment, participants completed a task in which study stimuli were incidentally encoded either once or three separate times during high-resolution fMRI scanning. We asked how repetition influenced recognition and discrimination memory judgments, and how this affects engagement of hippocampal and neocortical regions. Repetition revealed shifts in engagement in an anterior (ventral) CA1-thalamic-medial prefrontal network related to true and false recognition. Conversely, repetition revealed shifts in a posterior (dorsal) dentate/CA3-parahippocampal-restrosplenial network related to accurate discrimination. These differences in engagement were accompanied by task-related correlations in respective anterior and posterior networks. In particular, the anterior thalamic region observed during recognition judgments is functionally and anatomically consistent with nucleus reuniens in humans, and was found to mediate correlations between the anterior CA1 and medial prefrontal cortex. These findings offer new insights into how repeated experience affects memory and its neural substrates in hippocampal-neocortical networks. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachariah M. Reagh
- Department of Neurobiology and Behavior and the Center for the Neurobiology of Learning and Memory; University of California, Irvine, Irvine, CA
| | - Elizabeth A. Murray
- Department of Neurobiology and Behavior and the Center for the Neurobiology of Learning and Memory; University of California, Irvine, Irvine, CA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and the Center for the Neurobiology of Learning and Memory; University of California, Irvine, Irvine, CA
| |
Collapse
|
347
|
Moustafa AA, McMullan RD, Rostron B, Hewedi DH, Haladjian HH. The thalamus as a relay station and gatekeeper: relevance to brain disorders. Rev Neurosci 2017; 28:203-218. [DOI: 10.1515/revneuro-2016-0067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 01/18/2023]
Abstract
AbstractHere, we provide a review of behavioural, cognitive, and neural studies of the thalamus, including its role in attention, consciousness, sleep, and motor processes. We further discuss neuropsychological and brain disorders associated with thalamus function, including Parkinson’s disease, Alzheimer’s disease, Korsakoff’s syndrome, and sleep disorders. Importantly, we highlight how thalamus-related processes and disorders can be explained by the role of the thalamus as a relay station.
Collapse
Affiliation(s)
- Ahmed A. Moustafa
- 1School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia
- 2Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, NSW 2751, Australia
| | - Ryan D. McMullan
- 3School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, NSW 2751, Australia
| | - Bjorn Rostron
- 3School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, NSW 2751, Australia
| | - Doaa H. Hewedi
- 4Psychogeriatric Research Center, Department of Psychiatry, School of Medicine, Ain Shams University, 11566 Cairo, Egypt
| | - Harry H. Haladjian
- 5Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS, 75270 Paris Cedex 06, France
| |
Collapse
|
348
|
Barker GRI, Banks PJ, Scott H, Ralph GS, Mitrophanous KA, Wong LF, Bashir ZI, Uney JB, Warburton EC. Separate elements of episodic memory subserved by distinct hippocampal–prefrontal connections. Nat Neurosci 2017; 20:242-250. [DOI: 10.1038/nn.4472] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
|
349
|
Engelke DS, Filev R, Mello LE, Santos-Junior JG. Evidence of memory generalization in contextual locomotor sensitization induced by amphetamine. Behav Brain Res 2017; 317:522-527. [DOI: 10.1016/j.bbr.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
350
|
Keiser AA, Turnbull LM, Darian MA, Feldman DE, Song I, Tronson NC. Sex Differences in Context Fear Generalization and Recruitment of Hippocampus and Amygdala during Retrieval. Neuropsychopharmacology 2017; 42:397-407. [PMID: 27577601 PMCID: PMC5399239 DOI: 10.1038/npp.2016.174] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are commonly associated with increased generalization of fear from a stress- or trauma-associated environment to a neutral context or environment. Differences in context-associated memory in males and females may contribute to increased susceptibility to anxiety disorders in women. Here we examined sex differences in context fear generalization and its neural correlates. We observed stronger context fear conditioning and more generalization of fear to a similar context in females than males. In addition, context preexposure increased fear conditioning in males and decreased generalization in females. Accordingly, males showed stronger cFos activity in dorsal hippocampus during memory retrieval and context generalization, whereas females showed preferential recruitment of basal amygdala. Together, these findings are consistent with previous research showing that hippocampal activity correlates with reduced context fear generalization. Differential competition between hippocampus and amygdala-dependent processes may thus contribute to sex differences in retrieval of context fear and greater generalization of fear-associated memory.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Lacie M Turnbull
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Mara A Darian
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Dana E Feldman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Iris Song
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA,Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA, Tel: +1 734 936 1495, E-mail:
| |
Collapse
|