301
|
Whelan SA, Lane MD, Hart GW. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 2008; 283:21411-7. [PMID: 18519567 DOI: 10.1074/jbc.m800677200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-Linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues in response to stimuli or stress analogous to phosphorylation by Ser/Thr-kinases. Like protein phosphatases, OGT appears to be targeted to myriad specific substrates by transiently interacting with specific targeting subunits. Here, we show that OGT is activated by insulin signaling. Insulin treatment of 3T3-L1 adipocytes stimulates both tyrosine phosphorylation and catalytic activity of OGT. A subset of OGT co-immunoprecipitates with the insulin receptor. Insulin stimulates purified insulin receptor to phosphorylate OGT in vitro. OGT is a competitive substrate with reduced and carboxyamidomethylated lysozyme (RCAM-lysozyme), a well characterized insulin receptor substrate. Insulin stimulation of 3T3-L1 adipocytes results in a partial translocation of OGT from the nucleus to the cytoplasm. The insulin activation of OGT results in increased O-GlcNAc modification of OGT and other proteins including, signal transducer and activator of transcription 3 (STAT3). We conclude that insulin stimulates the tyrosine phosphorylation and activity of OGT.
Collapse
Affiliation(s)
- Stephen A Whelan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
302
|
Fülöp N, Feng W, Xing D, He K, Nőt LG, Brocks CA, Marchase RB, Miller AP, Chatham JC. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 2008; 9:139. [PMID: 18185980 PMCID: PMC2810282 DOI: 10.1007/s10522-007-9123-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
Changes in the levels of O-linked N-acetyl-glucosamine (O-GlcNAc) on nucleocytoplasmic protein have been associated with a number of age-related diseases such as Alzheimer's and diabetes; however, there is relatively little information regarding the impact of age on tissue O-GlcNAc levels. Therefore, the goal of this study was to determine whether senescence was associated with alterations in O-GlcNAc in heart, aorta, brain and skeletal muscle and if so whether there were also changes in the expression of enzymes critical in regulating O-GlcNAc levels, namely, O-GlcNAc transferase (OGT), O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase (GFAT). Tissues were harvested from 5- and 24-month old Brown-Norway rats; UDP-GlcNAc, a precursor of O-GlcNAc was assessed by HPLC, O-GlcNAc and OGT levels were assessed by immunoblot analysis and GFAT1/2, OGT, O-GlcNAcase mRNA levels were determined by RT-PCR. In the 24-month old animals serum insulin and triglyceride levels were significantly increased compared to the 5-month old group; however, glucose levels were unchanged. Protein O-GlcNAc levels were significantly increased with age (30-107%) in all tissues examined; however, paradoxically the expression of OGT, which catalyzes O-GlcNAc formation, was decreased by approximately 30% in the heart, aorta and brain. In the heart increased O-GlcNAc was associated with increased UDP-GlcNAc levels and elevated GFAT mRNA while in other tissues we found no difference in UDP-GlcNAc or GFAT mRNA levels. These results demonstrate that senescence is associated with increased O-GlcNAc levels in multiple tissues and support the notion that dysregulation of pathways leading to O-GlcNAc formation may play an important role in the development of age-related diseases.
Collapse
Affiliation(s)
- Norbert Fülöp
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - Kai He
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - László G Nőt
- Department of Cell Biology, MCLM 684, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charlye A Brocks
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - Richard B Marchase
- Department of Cell Biology, MCLM 684, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew P Miller
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | - John C Chatham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA.
- Department of Cell Biology, MCLM 684, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
303
|
Crawford GL, Hart GW, Whiteheart SW. Murine platelets are not regulated by O-linked beta-N-acetylglucosamine. Arch Biochem Biophys 2008; 474:220-4. [PMID: 18387355 PMCID: PMC2587368 DOI: 10.1016/j.abb.2008.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/12/2008] [Accepted: 03/16/2008] [Indexed: 11/30/2022]
Abstract
It is generally appreciated that platelets derived from diabetic patients display increased responsiveness to low levels of agonists. O-GlcNAcylation has been linked to hyperglycemia-related effects in other tissues; therefore we examined this modification in platelets to determine if O-GlcNAcylation affects platelet function. This post-translational modification consists of an N-acetylglucosamine attached to serine and/or threonine residues. We examined O-GlcNAc levels in platelets from a hyperglycemic murine model of Type I diabetes with known hypersensitivity to agonists and a Type II diabetes model (ob/ob) lacking detectable alterations in the aggregation profile. Neither model showed marked increases in protein O-GlcNAcylation. Treatment of platelets with multiple O-GlcNAcase inhibitors led to O-GlcNAc accumulation on multiple platelet proteins. However, the inhibitor-induced accumulation of this modification does not correlate with any gross alterations in platelet aggregation. These data suggest that while the modification occurs in platelets, their activity is not globally sensitive to O-GlcNAc levels.
Collapse
Affiliation(s)
- Garland L. Crawford
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Gerald W. Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536
| |
Collapse
|
304
|
Abstract
Individuals with type 2 diabetes mellitus have increased cardiovascular disease risk compared with those without diabetes. Treatment of the residual risk, other than blood pressure and LDL-cholesterol control, remains important as the rate of diabetes increases worldwide. The accelerated atherosclerosis and cardiovascular disease in diabetes is likely to be multifactorial and therefore several therapeutic approaches can be considered. Results of mechanistic studies done in vitro and in vivo--animals and people--can provide important insights with the potential to improve clinical management decisions and outcomes. In this Review, we focus on three areas in which pathophysiological considerations could be particularly informative--ie, the roles of hyperglycaemia, diabetic dyslipidaemia (other than the control of LDL-cholesterol concentrations), and inflammation (including that in adipose tissue) in the acceleration of vascular injury.
Collapse
Affiliation(s)
- Theodore Mazzone
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
305
|
Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 2008; 283:13009-20. [PMID: 18353774 PMCID: PMC2435304 DOI: 10.1074/jbc.m801222200] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Indexed: 01/22/2023] Open
Abstract
We have demonstrated previously that a wide array of stress signals induces O-GlcNAc transferase (OGT) expression and increases O-GlcNAcylation of many intracellular proteins, a response that is critical for cell survival. Here, we describe a mechanism by which glucose deprivation induces OGT expression and activity in Neuro-2a neuroblastoma cells. Glucose deprivation increases OGT mRNA and protein expression in an AMP-activated protein kinase-dependent manner, whereas OGT enzymatic activity is regulated in a p38 MAPK-dependent manner. OGT is not phosphorylated by p38, but rather it interacts directly with p38 through its C terminus; this interaction increases with p38 activation during glucose deprivation. Surprisingly, the catalytic activity of OGT, as measured toward peptide substrates, is not altered by glucose deprivation. Instead, p38 regulates OGT activity within the cell by recruiting it to specific targets, including neurofilament H. Neurofilament H is O-GlcNAcylated during glucose deprivation in a p38-dependent manner. Interestingly, neurofilament H solubility is increased by glucose deprivation in an O-GlcNAc-dependent manner, suggesting that O-GlcNAcylation of neurofilament H regulates its disassembly from filaments. Not only do these data help to reveal how OGT is regulated by stress, but these findings also describe a possible mechanism by which defective brain glucose metabolism, as found in aging and ischemia, may directly affect axonal structure.
Collapse
Affiliation(s)
- Win D Cheung
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
306
|
Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283:16283-92. [PMID: 18420577 DOI: 10.1074/jbc.m802240200] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
FoxO proteins are key transcriptional regulators of nutrient homeostasis and stress response. The transcription factor FoxO1 activates expression of gluconeogenic, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and also activates the expression of the oxidative stress response enzymes catalase and manganese superoxide dismutase. Hormonal and stress-dependent regulation of FoxO1 via acetylation, ubiquitination, and phosphorylation, are well established, but FoxOs have not been studied in the context of the glucose-derived O-linked beta-N-acetylglucosamine (O-GlcNAc) modification. Here we show that O-GlcNAc on hepatic FoxO1 is increased in diabetes. Furthermore, O-GlcNAc regulates FoxO1 activation in response to glucose, resulting in the paradoxically increased expression of gluconeogenic genes while concomitantly inducing expression of genes encoding enzymes that detoxify reactive oxygen species. GlcNAcylation of FoxO provides a new mechanism for direct nutrient control of transcription to regulate metabolism and stress response through control of FoxO1 activity.
Collapse
Affiliation(s)
- Michael P Housley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Luo B, Soesanto Y, McClain DA. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28:651-7. [PMID: 18174452 PMCID: PMC2734484 DOI: 10.1161/atvbaha.107.159533] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glucose flux through the hexosamine biosynthesis pathway (HBP) has been implicated in the development of diabetic vascular complications. O-linked N-acetylglucosamine (O-GlcNAc) modification on protein is the major mechanism mediating the actions of the HBP. Impaired angiogenesis is well-recognized in diabetes; however, the mechanisms are not completely defined. Here, we investigated the role of protein O-GlcNAc modification in angiogenesis. METHODS AND RESULTS In a mouse aortic ring assay, elevated O-GlcNAc levels induced by high-fat diet, streptozotocin-induced diabetes, or in vitro glucosamine treatment were associated with impaired angiogenesis. In cultured human umbilical vein endothelial cells and EA.hy926 endothelial cells, glucosamine increased protein O-GlcNAc modification and inhibited cell migration and capillary-like structure formation. Conversely, removal of O-GlcNAc by adenoviral-mediated overexpression of O-GlcNAcase improved these steps of angiogenesis. Also, high concentrations of glucose reduced capillary-like structure formation of human umbilical vein endothelial cells. Akt was recognized by an O-GlcNAc specific lectin, and glucosamine increased the amounts of Akt protein in these lectin precipitates. Increased glycosylation paralleled reduced Akt activity in endothelial cells. CONCLUSIONS These results suggest that elevated protein O-GlcNAc modification through the HBP impairs angiogenesis in endothelial cells, possibly by inhibiting Akt signaling.
Collapse
Affiliation(s)
- Bai Luo
- Division of Endocrinology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Yudi Soesanto
- Division of Endocrinology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Donald A. McClain
- Division of Endocrinology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| |
Collapse
|
308
|
Epidermal growth factor receptors: function modulation by phosphorylation and glycosylation interplay. Mol Biol Rep 2008; 36:631-9. [PMID: 18340549 DOI: 10.1007/s11033-008-9223-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Post-translational modifications (PTMs) of proteins induce structural and functional changes that are most often transitory and difficult to follow and investigate in vivo. In silico prediction procedures for PTMs are very valuable to foresee and define such transitory changes responsible for the multifunctionality of proteins. Epidermal growth factor receptor (EGFR) is such a multifunctional transmembrane protein with intrinsic tyrosine kinase activity that is regulated primarily by ligand-stimulated transphosphorylation of dimerized receptors. In human EGFR, potential phosphorylation sites on Ser, Thr and Tyr residues including five autophosphorylation sites on Tyr were investigated using in silico procedures. In addition to phosphorylation, O-GlcNAc modifications and interplay between these two modifications was also predicted. The interplay of phosphorylation and O-GlcNAc modification on same or neighboring Ser/Thr residues is termed as Yin Yang hypothesis and the interplay sites are named as Yin Yang sites. Amongst these modification sites, one residue is localized in the juxtamembrane (Thr 654) and two are found in the catalytic domain (Ser 1046/1047) of the EGFR. We propose that, when EGFR is O-GlcNAc modified on Thr 654, EGFR may be transferred from early to late endosomes, whereas when EGFR is O-GlcNAc modified on Ser 1046/1047 desensitization of the receptor may be prevented. These findings suggest a complex interplay between phosphorylation and O-GlcNAc modification resulting in modulation of EGFR's functionality.
Collapse
|
309
|
An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC 7806. J Bacteriol 2008; 190:2871-9. [PMID: 18281396 DOI: 10.1128/jb.01867-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis aeruginosa; however, the role of the peptide for the producing organism is poorly understood. Differences in the cellular aggregation of M. aeruginosa PCC 7806 and a microcystin-deficient Delta mcyB mutant guided the discovery of a surface-exposed protein that shows increased abundance in PCC 7806 mutants deficient in microcystin production compared to the abundance of this protein in the wild type. Mass spectrometric and immunoblot analyses revealed that the protein, designated microcystin-related protein C (MrpC), is posttranslationally glycosylated, suggesting that it may be a potential target of a putative O-glycosyltransferase of the SPINDLY family encoded downstream of the mrpC gene. Immunofluorescence microscopy detected MrpC at the cell surface, suggesting an involvement of the protein in cellular interactions in strain PCC 7806. Further analyses of field samples of Microcystis demonstrated a strain-specific occurrence of MrpC possibly associated with distinct Microcystis colony types. Our results support the implication of microcystin in the colony specificity of and colony formation by Microcystis.
Collapse
|
310
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 PMCID: PMC3250351 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
311
|
Molecular biology of gibberellins signaling in higher plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:191-221. [PMID: 18703407 DOI: 10.1016/s1937-6448(08)00806-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gibberellins (GAs), a large family of tetracyclic, diterpenoid plant hormones, play an important role in regulating diverse processes throughout plant development. In recent years, significant advances have been made in the isolation of GA signaling components and GA-responsive genes. All available data have indicated that DELLA proteins are an essential negative regulator in the GA signaling pathway and GA derepresses DELLA-mediated growth suppression by inducing degradation of DELLA proteins through the ubiquitin-26S proteasome proteolytic pathway. Identification of GID1, a gene encoding an unknown protein with similarity to hormone-sensitive lipases, has revealed that GID1 acts as a functional GA receptor with a reasonable binding affinity to biologically active GAs. Furthermore, the GID1 receptor interacts with DELLA proteins in a GA-dependent manner. These results suggest that formation of a GID1-GA-DELLA protein complex targets DELLA protein into the ubiquitin-26S proteasome pathway for degradation.
Collapse
|
312
|
Zhu A, Huang JB, Clark A, Romero R, Petty HR. 2,5-Deoxyfructosazine, a D-glucosamine derivative, inhibits T-cell interleukin-2 production better than D-glucosamine. Carbohydr Res 2007; 342:2745-9. [PMID: 17892867 PMCID: PMC2758268 DOI: 10.1016/j.carres.2007.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
D-Glucosamine has been widely reported to have immunosuppressive actions on neutrophils, lymphocytes, and other cells of the immune system. However, under conditions used in biological experiments (e.g., neutral pH, and phosphate buffers), we have found that D-glucosamine self-reacts to form 2,5-deoxyfructosazine [2-(D-arabino-tetrahydroxybutyl)-5-(D-erythro-2,3,4-trihydroxybutyl)pyrazine] (1) and 2,5-fructosazine [2,5-bis(D-arabino-tetrahydroxybutyl)pyrazine] (2). When tested for bioactivity at nontoxic concentrations, these D-glucosamine derivatives were more effective inhibitors of IL-2 release from PHA-activated T cells than d-glucosamine. Hence, fructosazines constitute a novel class of immunomodulators.
Collapse
Affiliation(s)
- Aiping Zhu
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Ji-Biao Huang
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Andrea Clark
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Roberto Romero
- Department of Perinatology Research Branch, National Institute of Child Health and Human Development, Hutzel Hospital, 4707 St. Antoine Blvd., Detroit, MI 48201
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
313
|
Oppenheimer SB, Alvarez M, Nnoli J. Carbohydrate-based experimental therapeutics for cancer, HIV/AIDS and other diseases. Acta Histochem 2007; 110:6-13. [PMID: 17963823 PMCID: PMC2278011 DOI: 10.1016/j.acthis.2007.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/13/2007] [Accepted: 08/21/2007] [Indexed: 11/28/2022]
Abstract
This review, primarily for general readers, briefly presents experimental approaches to therapeutics of cancer, HIV/AIDS and various other diseases based on advances in glycobiology and glycochemistry. Experimental cancer and HIV/AIDS vaccines are being developed in attempts to overcome weak immunological responses to carbohydrate-rich surface antigens using carriers, adjuvants and novel carbohydrate antigen constructs. Current carbohydrate-based vaccines are used for typhus, pneumonia, meningitis; vaccines for anthrax, malaria and leishmaniasis are under development. The link between O-linked beta-N-acetylglucosamine glycosylation and protein phosphorylation in diseases including diabetes and Alzheimer's disease is also explored. Carbohydrate-associated drugs that are in current use or under development, such as heparan sulfate binders, lectins, acarbose, aminoglycosides, tamiflu and heparin, and technologies using carbohydrate and lectin microarrays that offer improved diagnostic and drug development possibilities, are described. Advances in carbohydrate synthesis, analysis and manipulation through the emerging fields of glycochemistry and glycobiology are providing new approaches to disease therapeutics.
Collapse
Affiliation(s)
- Steven B Oppenheimer
- Department of Biology and Center for Cancer and Developmental Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA.
| | | | | |
Collapse
|
314
|
Golks A, Tran TTT, Goetschy JF, Guerini D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 2007; 26:4368-79. [PMID: 17882263 PMCID: PMC2034663 DOI: 10.1038/sj.emboj.7601845] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 08/10/2007] [Indexed: 01/25/2023] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) by the O-linked N-acetylglucosaminyltransferase (OGT) is a regulatory post-translational modification that is responsive to various stimuli. Here, we demonstrate that OGT is a central factor for T- and B-lymphocytes activation. SiRNA-mediated knockdown of OGT in T cells leads to an impaired activation of the transcription factors NFAT and NFkappaB. This results in a reduction of IL-2 production consistent with prevention of T-cell activation. OGT is also required for the early activation of B cells mediated by stimulation of the B-cell receptor. Mechanistically, we demonstrate that NFkappaB as well as NFAT are glycosylated with O-GlcNAc after direct binding to OGT. Moreover, kinetic experiments show that O-GlcNAc modification prominently increased shortly after activation of lymphoid cells and it might be required for nuclear translocation of the transcription factors NFkappaB and NFAT.
Collapse
Affiliation(s)
- Alexander Golks
- Autoimmunity and Transplantation, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Danilo Guerini
- Autoimmunity and Transplantation, Novartis Pharma AG, Basel, Switzerland
- Autoimmunity and Transplantation, Novartis Pharma AG, Forum 1, Novartis Campus, Basel CH-4056, Switzerland. Tel.: +41 61 3243862; Fax: +41 61 3242488; E-mail:
| |
Collapse
|
315
|
Common pathological processes in Alzheimer disease and type 2 diabetes: a review. ACTA ACUST UNITED AC 2007; 56:384-402. [PMID: 17920690 DOI: 10.1016/j.brainresrev.2007.09.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) are conditions that affect a large number of people in the industrialized countries. Both conditions are on the increase, and finding novel treatments to cure or prevent them are a major aim in research. Somewhat surprisingly, AD and T2DM share several molecular processes that underlie the respective degenerative developments. This review describes and discusses several of these shared biochemical and physiological pathways. Disturbances in insulin signalling appears to be the main common impairment that affects cell growth and differentiation, cellular repair mechanisms, energy metabolism, and glucose utilization. Insulin not only regulates blood sugar levels but also acts as a growth factor on all cells including neurons in the CNS. Impairment of insulin signalling therefore not only affects blood glucose levels but also causes numerous degenerative processes. Other growth factor signalling systems such as insulin growth factors (IGFs) and transforming growth factors (TGFs) also are affected in both conditions. Also, the misfolding of proteins plays an important role in both diseases, as does the aggregation of amyloid peptides and of hyperphosphorylated proteins. Furthermore, more general physiological processes such as angiopathic and cytotoxic developments, the induction of apoptosis, or of non-apoptotic cell death via production of free radicals greatly influence the progression of AD and T2DM. The increase of detailed knowledge of these common physiological processes open up the opportunities for treatments that can prevent or reduce the onset of AD as well as T2DM.
Collapse
|
316
|
Abstract
The O,O-dibenzyl-S-glycosyl phosphothioite derived from 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-1-thio-alpha-D-glucopyranose rearranges under the influence of triethylborane and air to provide the corresponding 1-C-pyranosyl-O,O-dibenzylphosphonothioate, a new type of carbohydrate derivative. The isomeric beta phosphothioite is compared, and evidence of a radical chain mechanism for the Pudovik rearrangement is presented.
Collapse
Affiliation(s)
- Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers - The State University of New Jersey 610 Taylor Road, Piscataway, New Jersey 08854-8087 USA
| | | |
Collapse
|
317
|
Shen A, Kamp HD, Gründling A, Higgins DE. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 2007; 20:3283-95. [PMID: 17158746 PMCID: PMC1686605 DOI: 10.1101/gad.1492606] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Flagellar motility is an essential mechanism by which bacteria adapt to and survive in diverse environments. Although flagella confer an advantage to many bacterial pathogens for colonization during infection, bacterial flagellins also stimulate host innate immune responses. Consequently, many bacterial pathogens down-regulate flagella production following initial infection. Listeria monocytogenes is a facultative intracellular pathogen that represses transcription of flagellar motility genes at physiological temperatures (37 degrees C and above). Temperature-dependent expression of flagellar motility genes is mediated by the opposing activities of MogR, a DNA-binding transcriptional repressor, and DegU, a response regulator that functions as an indirect antagonist of MogR. In this study, we identify an additional component of the molecular circuitry governing temperature-dependent flagellar gene expression. At low temperatures (30 degrees C and below), MogR repression activity is specifically inhibited by an anti-repressor, GmaR. We demonstrate that GmaR forms a stable complex with MogR, preventing MogR from binding its DNA target sites. GmaR anti-repression activity is temperature dependent due to DegU-dependent transcriptional activation of gmaR at low temperatures. Thus, GmaR production represents the first committed step for flagella production in L. monocytogenes. Interestingly, GmaR also functions as a glycosyltransferase exhibiting O-linked N-acetylglucosamine transferase (OGT) activity for flagellin (FlaA). GmaR is the first OGT to be identified and characterized in prokaryotes that specifically beta-O-GlcNAcylates a prokaryotic protein. Unlike the well-characterized, highly conserved OGT regulatory protein in eukaryotes, the catalytic activity of GmaR is functionally separable from its anti-repression function. These results establish GmaR as the first known example of a bifunctional protein that transcriptionally regulates expression of its enzymatic substrate.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
318
|
Fülöp N, Marchase RB, Chatham JC. Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 2007; 73:288-97. [PMID: 16970929 PMCID: PMC2848961 DOI: 10.1016/j.cardiores.2006.07.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022] Open
Abstract
There is growing recognition that the O-linked attachment of N-acetyl-glucosamine (O-GlcNAc) on serine and threonine residues of nuclear and cytoplasmic proteins is a highly dynamic post-translational modification that plays a key role in signal transduction pathways. Numerous proteins have been identified as targets of O-GlcNAc modifications including kinases, phosphatases, transcription factors, metabolic enzymes, chaperons, and cytoskeletal proteins. Modulation of O-GlcNAc levels has been shown to modify DNA binding, enzyme activity, protein-protein interactions, the half-life of proteins, and subcellular localization. The level of O-GlcNAc is regulated in part by the metabolism of glucose via the hexosamine biosynthesis pathway (HBP), and the metabolic abnormalities associated with insulin resistance and diabetes, such as hyperglycemia, hyperlipidemia, and hyperinsulinemia, are all associated with increased flux through the HBP and elevated O-GlcNAc levels. Increased HBP flux and O-GlcNAc levels have been implicated in the impaired relaxation of isolated cardiomyocytes, blunted response to angiotensin II and phenylephrine, hyperglycemia-induced cardiomyocyte apoptosis, and endothelial and vascular cell dysfunction. In contrast to these adverse effects, recent studies have also shown that O-GlcNAc levels increase in response to acute stress and that this is associated with increased cell survival. Thus, while the relationship between O-GlcNAc levels and cellular function is complex and not well-understood, it is clear that these pathways play a critical role in the regulation of cell function and survival in the cardiovascular system and may be implicated in the adverse effects of metabolic disease on the heart.
Collapse
Affiliation(s)
- Norbert Fülöp
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard B. Marchase
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C. Chatham
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
319
|
Huang JB, Clark AJ, Petty HR. The hexosamine biosynthesis pathway negatively regulates IL-2 production by Jurkat T cells. Cell Immunol 2007; 245:1-6. [PMID: 17481598 PMCID: PMC3178408 DOI: 10.1016/j.cellimm.2007.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/21/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
To test the hypothesis that the hexosamine biosynthesis pathway (HBP) affects cytokine production, we studied IL-2 production by Jurkat cells in response to PHA. We found that the HBP activator glucosamine (GlcN), but not glucose (Glc), dose-dependently reduced IL-2 production. Importantly, GlcN blocked trafficking of a GFP-NFAT chimeric protein to the nucleus of stimulated transfectants. Not surprisingly, changes in O-GlcNAc protein modifications were noted during cell activation with and without GlcN addition. These findings could not be explained by some non-specific change in cell metabolism because ATP concentrations did not significantly change. We speculate that HBP-active compounds may contribute to patient care in certain inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ji-Biao Huang
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
320
|
Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DMF. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. J Am Chem Soc 2006; 128:16484-5. [PMID: 17177381 PMCID: PMC7116141 DOI: 10.1021/ja066743n] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many phosphorylation signal transduction pathways in the eukaryotic cell are modulated by posttranslational modification of specific serines/threonines with N-acetylglucosamine (O-GlcNAc). Levels of O-GlcNAc on key proteins regulate biological processes as diverse as the cell cycle, insulin signaling, and protein degradation. The two enzymes involved in this dynamic and abundant modification are the O-GlcNAc transferase and O-GlcNAcase. Structural data have recently revealed that the O-GlcNAcase possesses an active site with significant structural similarity to that of the human lysosomal hexosaminidases HexA/HexB. PUGNAc, an O-GlcNAcase inhibitor widely used to raise levels of O-GlcNAc in human cell lines, also inhibits these hexosaminidases. Here, we have exploited recent structural information of an O-GlcNAcase-PUGNAc complex to design and synthesize a glucoimidazole-based inhibitor, GlcNAcstatin, which is a 5 pM competitive inhibitor of enzymes of the O-GlcNAcase family, shows 100000-fold selectivity over HexA/B, and binds to the O-GlcNAcase active site by mimicking the transition state as revealed by X-ray crystallography. This compound is able to raise O-GlcNAc levels in human HEK 293 and SH-SY5Y neuroblastoma cell lines and thus provides a novel, potent tool for the study of the role of O-GlcNAc in intracellular signal transduction pathways.
Collapse
Affiliation(s)
- Helge C. Dorfmueller
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Vladimir S. Borodkin
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Marianne Schimpl
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sharon M. Shepherd
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Natalia A. Shpiro
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Daan M. F. van Aalten
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
321
|
Masson E, Lagarde M, Wiernsperger N, El Bawab S. Hyperglycemia and glucosamine-induced mesangial cell cycle arrest and hypertrophy: Common or independent mechanisms? IUBMB Life 2006; 58:381-8. [PMID: 16801212 DOI: 10.1080/15216540600755980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Hexosamine Pathway (HP) is one hypothesis proposed to explain glucose toxicity and the alterations observed during the course of diabetic microvascular complication development. Glucosamine is a precursor of UDP-N-Acetylglucosamine (UDP-GlcNAc), the main product of the HP that has often been used to mimic its activation. The transfer of a UDP-GlcNAc residue onto proteins (O-GlcNAc modification) represents the final step of the HP and is considered as a major mechanism by which this pathway exerts its signalling effects. While it is well accepted that the HP promotes extracellular matrix accumulation in the context of diabetic nephropathy, its involvement in the perturbations of cell cycle progression and hypertrophy of renal cells has been poorly investigated. Nevertheless, in a growing number of studies, the HP and O-GlcNAc modification are emerging as important regulators of cell cycle progression. This review will focus on the role of glucosamine and O-GlcNAc modification in cell cycle regulation in the context of diabetic nephropathy. Special emphasis will be given into the role of the HP as a potential mediator of the effects of high glucose on the perturbations of renal cell growth.
Collapse
Affiliation(s)
- Elodie Masson
- Diabetic Microangiopathy Research Unit, Merck-Santé/INSERM UMR 585, INSA-Lyon, Villeurbanne, France
| | | | | | | |
Collapse
|
322
|
Tao GZ, Kirby C, Whelan SA, Rossi F, Bi X, MacLaren M, Gentalen E, O'Neill RA, Hart GW, Omary MB. Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis. Biochem Biophys Res Commun 2006; 351:708-12. [PMID: 17084817 PMCID: PMC2692749 DOI: 10.1016/j.bbrc.2006.10.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 10/19/2006] [Indexed: 12/19/2022]
Abstract
Phosphorylation and O-GlcNAcylation of keratin 18 (K18) are highly dynamic and involve primarily independent K18 populations. We used in vitro phosphorylation and O-GlcNAcylation of wild-type, phospho-Ser52, glyco-Ser48, and Ser-to-Ala mutant 17mer peptides (K18 amino acids 40-56), which include the major K18 glycosylation (Ser48) and phosphorylation (Ser52) sites, to address whether each modification blocks the other. The glyco-K18 peptide blocks Ser52 phosphorylation by protein kinase C, an in vivo K18 kinase, while the phospho-K18 peptide blocks its O-GlcNAcylation. Our findings support the reciprocity of these two post-translational modifications. Therefore, regulation of protein Ser/Thr phosphorylation and glycosylation at proximal sites can be interdependent and provides a potential mechanism of counter regulation.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Palo Alto VA Medical Center, Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Vanderford NL, Andrali SS, Ozcan S. Glucose induces MafA expression in pancreatic beta cell lines via the hexosamine biosynthetic pathway. J Biol Chem 2006; 282:1577-84. [PMID: 17142462 PMCID: PMC1904346 DOI: 10.1074/jbc.m605064200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MafA is a basic leucine zipper transcription factor that regulates gene expression in both the neuroretina and pancreas. Within the pancreas, MafA is exclusively expressed in the beta cells and is involved in insulin gene transcription, insulin secretion, and beta cell survival. The expression of the mafA gene within beta cells is known to increase in response to high glucose levels by an unknown mechanism. In this study, we demonstrate that pyruvate, which is produced by glycolysis from glucose, is not sufficient to induce mafA gene expression compared with high glucose. This suggests that the signal for MafA induction is independent of ATP levels and that a metabolic event occurring upstream of pyruvate production leads to the induction of MafA. Furthermore, insulin secretion mediated by high glucose is not important for MafA expression. However, the addition of glucosamine to beta cell lines stimulates MafA expression in the absence of high glucose, and inhibition of the hexosamine biosynthetic pathway in the presence of high glucose abolishes MafA induction. Moreover, we demonstrate that the expression of UDP-N-acetylglucosaminyl transferase, the enzyme mediating O-linked glycosylation of cytosolic and nuclear proteins, is essential for glucose-dependent MafA expression. Consistent with this observation, inhibition of N-acetylglucosaminidase, the enzyme involved in the removal of the O-GlcNAc modification from proteins, with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate stimulates MafA expression under low glucose conditions. The presented data suggest that MafA expression mediated by high glucose requires flux through the hexosamine biosynthetic pathway and the O-linked glycosylation of an unknown protein(s) by UDP-N-acetylglucosaminyl transferase.
Collapse
Affiliation(s)
- Nathan L Vanderford
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
324
|
Liu J, Marchase RB, Chatham JC. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol 2006; 42:177-85. [PMID: 17069847 PMCID: PMC1779903 DOI: 10.1016/j.yjmcc.2006.09.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/31/2006] [Accepted: 09/20/2006] [Indexed: 11/29/2022]
Abstract
It has been shown that glutamine protects the heart from ischemia/reperfusion (I/R) injury; however, the mechanisms underlying this protection have not been identified. Glutamine:fructose-6-phosphate amidotransferase (GFAT) regulates the entry of glucose into the hexosamine biosynthesis pathway (HBP), and activation of this pathway has been shown to be cardioprotective. Glutamine is required for metabolism of glucose via GFAT; therefore, the goal of this study was to determine whether glutamine cardioprotection could be attributed to increased flux through the HBP and elevated levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. Hearts from male rats were isolated and perfused with Krebs-Henseliet buffer containing 5 mM glucose, and global, no-flow ischemia was induced for 20 min followed by 60 min of reperfusion. Thirty-minute pre-treatment with 2.5 mM glutamine significantly improved functional recovery (RPP: 15.6+/-5.7% vs. 59.4+/-6.1%; p<0.05) and decreased cardiac troponin I release (25.4+/-3.0 vs. 4.7+/-1.9 ng/ml; p<0.05) during reperfusion. This protection was associated with a significant increase in the levels of protein O-GlcNAc and ATP. Pre-treatment with 80 muM azaserine, an inhibitor of GFAT, completely reversed the protection seen with glutamine and prevented the increase in protein O-GlcNAc. O-GlcNAc transferase (OGT) catalyzes the formation of O-GlcNAc, and inhibition of OGT with 5 mM alloxan also reversed the protection associated with glutamine. These data support the hypothesis that in the ex vivo perfused heart glutamine cardioprotection is due, at least in part, to enhanced flux through the HBP and increased protein O-GlcNAc levels.
Collapse
Affiliation(s)
| | | | - John C. Chatham
- Department of Cell Biology
- Department of Medicine, University of Alabama at Birmingham,
Birmingham, AL 35294
- Address correspondence to: John C. Chatham,
Department of Medicine, 684 MCLM Building, University of Alabama at Birmingham,
Birmingham, AL 35294-0005, Tel: 205 934-0240, Fax: 205 934-0950, e-mail:
| |
Collapse
|
325
|
Chen IHB, Huber M, Guan T, Bubeck A, Gerace L. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol 2006; 7:38. [PMID: 17062158 PMCID: PMC1635557 DOI: 10.1186/1471-2121-7-38] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/24/2006] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation. RESULTS Using transcriptional microarray analysis, we found that expression of 6 of the NETs significantly increases during myoblast differentiation. We confirmed these results using quantitative RT-PCR, and furthermore, found that all 6 NETs are expressed at high levels in adult mouse skeletal muscle relative to 9 other tissues examined. Using epitope-tagged cDNAs, we determined that the 5 NETs we could analyze (NETs 9, 25, 32, 37 and 39) all target to the nuclear envelope in C2C12 cells. Furthermore, the 3 NETs that we could analyze by immunoblotting were highly enriched in nuclear envelopes relative to microsomal membranes purified from mouse liver. Database searches showed that 4 of the 6 up-regulated NETs contain regions of homology to proteins previously linked to signaling. CONCLUSION This work identified 6 NETs that are predicted to have important functions in muscle development and/or maintenance from their expression patterns during myoblast differentiation and in mouse tissues. We confirmed that 5 of these NETs are authentic nuclear envelope proteins. Four members of this group have potential signaling functions at the NE, based on their sequence homologies.
Collapse
Affiliation(s)
- I-Hsiung Brandon Chen
- Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd., La Jolla CA 92037, USA
| | - Michael Huber
- Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd., La Jolla CA 92037, USA
| | - Tinglu Guan
- Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd., La Jolla CA 92037, USA
| | - Anja Bubeck
- Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd., La Jolla CA 92037, USA
| | - Larry Gerace
- Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd., La Jolla CA 92037, USA
| |
Collapse
|
326
|
Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci U S A 2006; 103:11952-7. [PMID: 16882729 PMCID: PMC1567679 DOI: 10.1073/pnas.0601931103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A dynamic cycle of O-linked N-acetylglucosamine (O-GlcNAc) addition and removal acts on nuclear pore proteins, transcription factors, and kinases to modulate cellular signaling cascades. Two highly conserved enzymes (O-GlcNAc transferase and O-GlcNAcase) catalyze the final steps in this nutrient-driven "hexosamine-signaling pathway." A single nucleotide polymorphism in the human O-GlcNAcase gene is linked to type 2 diabetes. Here, we show that Caenorhabditis elegans oga-1 encodes an active O-GlcNAcase. We also describe a knockout allele, oga-1(ok1207), that is viable and fertile yet accumulates O-GlcNAc on nuclear pores and other cellular proteins. Interfering with O-GlcNAc cycling with either oga-1(ok1207) or the O-GlcNAc transferase-null ogt-1(ok430) altered Ser- and Thr-phosphoprotein profiles and increased glycogen synthase kinase 3beta (GSK-3beta) levels. Both the oga-1(ok1207) and ogt-1(ok430) strains showed elevated stores of glycogen and trehalose, and decreased lipid storage. These striking metabolic changes prompted us to examine the insulin-like signaling pathway controlling nutrient storage, longevity, and dauer formation in the C. elegans O-GlcNAc cycling mutants. Indeed, we found that the oga-1(ok1207) knockout augmented dauer formation induced by a temperature sensitive insulin-like receptor (daf-2) mutant under conditions in which the ogt-1(ok430)-null diminished dauer formation. Our findings suggest that the enzymes of O-GlcNAc cycling "fine-tune" insulin-like signaling in response to nutrient flux. The knockout of O-GlcNAcase (oga-1) in C. elegans mimics many of the metabolic and signaling changes associated with human insulin resistance and provides a genetically amenable model of non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Michele E. Forsythe
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Dona C. Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Brooke D. Lazarus
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Eun Ju Kim
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - William A. Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Gilbert Ashwell
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| | - Michael W. Krause
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
327
|
Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DMF. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J 2006; 25:1569-78. [PMID: 16541109 PMCID: PMC1440316 DOI: 10.1038/sj.emboj.7601026] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/08/2006] [Indexed: 11/08/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) modification of specific serines/threonines on intracellular proteins in higher eukaryotes has been shown to directly regulate important processes such as the cell cycle, insulin sensitivity and transcription. The structure, molecular mechanisms of catalysis, protein substrate recognition/specificity of the eukaryotic O-GlcNAc transferase and hydrolase are largely unknown. Here we describe the crystal structure, enzymology and in vitro activity on human substrates of Clostridium perfringens NagJ, a close homologue of human O-GlcNAcase (OGA), representing the first family 84 glycoside hydrolase structure. The structure reveals a deep active site pocket highly conserved with the human enzyme, compatible with binding of O-GlcNAcylated peptides. Together with mutagenesis data, the structure supports a variant of the substrate-assisted catalytic mechanism, involving two aspartic acids and an unusually positioned tyrosine. Insights into recognition of substrate come from a complex with the transition state mimic O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (Ki=5.4 nM). Strikingly, the enzyme is inhibited by the pseudosubstrate peptide Ala-Cys(-S-GlcNAc)-Ala, and has OGA activity against O-GlcNAcylated human proteins, suggesting that the enzyme is a suitable model for further studies into the function of human OGA.
Collapse
Affiliation(s)
- Francesco V Rao
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Helge C Dorfmueller
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Fabrizio Villa
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthew Allwood
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian M Eggleston
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|