301
|
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE) and cannot be fully explained by traditional cardiovascular risk factors. Recent immunologic discoveries have outlined putative pathways in SLE that may also accelerate the development of atherosclerosis. RECENT FINDINGS Aberrant innate and adaptive immune responses implicated in lupus pathogenesis may also contribute to the development of accelerated atherosclerosis in these patients. Defective apoptosis, abnormal lipoprotein function, autoantibodies, aberrant neutrophil responses, and a dysregulated type I interferon pathway likely contribute to endothelial dysfunction. SLE macrophages have an inflammatory phenotype that may drive progression of plaque. SUMMARY Recent discoveries have placed increased emphasis on the immunology of atherosclerotic cardiovascular disease. Understanding the factors that drive the increased risk for cardiovascular disease in SLE patients may provide selective therapeutic targets for reducing inflammation and improving outcomes in atherosclerosis.
Collapse
Affiliation(s)
- Laura B. Lewandowski
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
302
|
Abstract
Finding better treatments for lupus nephritis requires an understanding of the pathogenesis of the causative systemic disease, how this leads to kidney disease, and how lupus nephritis progresses to end-stage kidney disease. Here, we provide a brief conceptual overview on the related pathomechanisms. As a main focus we discuss in detail the roles of neutrophils, dendritic cells, Toll-like receptors, and interferon-α in the pathogenesis of lupus nephritis by separately reviewing their roles in extrarenal systemic autoimmunity and in intrarenal inflammation and immunopathology.
Collapse
|
303
|
Akk A, Springer LE, Pham CTN. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype. Front Immunol 2016; 7:325. [PMID: 27617014 PMCID: PMC4999646 DOI: 10.3389/fimmu.2016.00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022] Open
Abstract
Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild-type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase in the alveolar space and plasma that peaked on day 2 post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow-derived cells to release cytokines that can amplify the inflammatory cascade.
Collapse
Affiliation(s)
- Antonina Akk
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine , Saint Louis, MO , USA
| | - Luke E Springer
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine , Saint Louis, MO , USA
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine , Saint Louis, MO , USA
| |
Collapse
|
304
|
Hoffmann JHO, Enk AH. Neutrophil extracellular traps in dermatology: Caught in the NET. J Dermatol Sci 2016; 84:3-10. [PMID: 27481818 DOI: 10.1016/j.jdermsci.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Neutrophil, or polymorphonuclear granulocytes (PMN) constitute the most abundant type of leucocytes in peripheral human blood. One of the major advances in the last decade was the discovery of neutrophil extracellular trap (NET) formation: a process by which neutrophils externalize web-like chromatin strands decorated with antimicrobial peptides. These structures were soon implicated in immune defense and auto-immunity alike and now link neutrophils to the pathogenesis of a variety of diseases of dermatological relevance. Currently, NET formation is mainly subdivided into suicidal and vital NETosis. Controversy exists regarding the capacity of NETs to kill pathogens, and little is known about the way NETs are formed in vivo. Here, we discuss the current terminology, methods for NET quantification, pathways leading to NET formation, and the role of NETs in systemic and cutaneous immune defense and auto-immunity, with a focus on psoriasis and systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Alexander H Enk
- Department of Dermatology, University of Heidelberg, Germany
| |
Collapse
|
305
|
Berthelot JM, Le Goff B, Neel A, Maugars Y, Hamidou M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine 2016; 84:255-262. [PMID: 27426444 DOI: 10.1016/j.jbspin.2016.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
Suicidal NETosis differs from other mechanisms of cell death by the release of a lattice, composed of DNA associated with proteins citrullinated by protein-arginine deiminase 4, from neutrophils. These 'NETs' are composed of granule-derived proteins with microbicidal activity. A similar type of release occurs during vital NETosis, in which anuclear neutrophils maintain their chemotactic ability and imprison live bacteria, even after NET extrusion. Mitochondrial NETosis is limited to the expulsion of oxidised mitochondrial DNA and cytoplasmic enzymes. NETs include the targets of most autoantibodies found in rheumatoid arthritis, lupus, and vasculitis. The clinical and biological overlaps sometimes observed between bronchectiasis and RA, RA and SLE, or SLE and vasculitis, implicate NETosis as a major triggering event common to these disorders. NETosis increases the possibility of association between autoantigens and infectious antigens in mucosal biofilms, impairing the clearance of pathogens and possibly triggering autoimmune reactions. NETosis aggravates these three conditions and increases endothelial damage and the risk of thrombosis. However, the pathogenesis of RA, SLE, and vasculitis is not confined to autoantibodies against NET components, and other mechanisms have been suggested to explain the breakdown of tolerance to NET autoantigens, such as hypercitrullination. The question of whether continuous presentation of autoantigens mixed with antigens from dormant intracellular pathogens (released following suicidal, vital, or mitochondrial NETosis) is required to induce and sustain autoimmunity must be addressed. Inhibiting NETois may not be sufficient to improve autoimmune disorders whereas such latent infections remain uncontrolled.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France.
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France
| | - Antoine Neel
- Internal Medicine Unit, Nantes University Hospital, 44093 Nantes, France
| | - Yves Maugars
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes cedex 01, France
| | - Mohamed Hamidou
- Internal Medicine Unit, Nantes University Hospital, 44093 Nantes, France
| |
Collapse
|
306
|
Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo. Mediators Inflamm 2016; 2016:5898074. [PMID: 27445437 PMCID: PMC4944069 DOI: 10.1155/2016/5898074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/30/2022] Open
Abstract
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Collapse
|
307
|
Montes RA, Mocarzel LO, Lanzieri PG, Lopes LM, Carvalho A, Almeida JR. Smoking and Its Association With Morbidity in Systemic Lupus Erythematosus Evaluated by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index: Preliminary Data and Systematic Review. Arthritis Rheumatol 2016; 68:441-8. [PMID: 26359794 DOI: 10.1002/art.39427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/03/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Due to the increased availability of effective treatments, patients with systemic lupus erythematosus (SLE) now have longer survival times, and factors involved in cumulative chronic damage in SLE need to be better understood. This study was undertaken to evaluate the relationship between smoking and cumulative chronic damage in SLE patients. METHODS A cross-sectional study of SLE patients was performed to investigate the possible association between smoking exposure (ever [previous or current, active or secondhand smokers] or never) and cumulative chronic damage as measured by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). A systematic review of the literature was conducted by cross-searching Medline for the terms lupus and smoking. RESULTS We enrolled 105 patients with SLE (96% female), with a mean ± SD age of 40.7 ± 11.4 years and a mean followup time of 8.98 years. Of the 105 patients, 74 had an SDI score of 1-10, and 31 had an SDI score of 0. The difference between smoking exposure and no smoking exposure was significant (P = 0.02 by chi-square test in contingency table analysis), and SLE patients who were never exposed to smoking had 0.78 times the risk of progressing toward a cumulative damage status (SDI score of > 0) (95% confidence interval 0.16-0.98) throughout the followup period compared to those who were ever exposed. In the systematic review of the literature, we found only a small number of articles that addressed some aspects of the relationship between smoking exposure and cumulative damage in SLE patients. CONCLUSION Our findings indicate that smoking exposure is associated with cumulative chronic damage, as determined by the SDI score, in patients with SLE. Smoking exposure may have deleterious effects on lupus morbidity, and more detailed studies of this association are needed.
Collapse
Affiliation(s)
- Ricardo A Montes
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz O Mocarzel
- Fluminense Federal University and Hospital Universitario Antonio Pedro, Niteroi, Brazil
| | - Pedro G Lanzieri
- Fluminense Federal University and Hospital Universitario Antonio Pedro, Niteroi, Brazil
| | - Lais M Lopes
- Fluminense Federal University and Hospital Universitario Antonio Pedro, Niteroi, Brazil
| | - Amanda Carvalho
- Fluminense Federal University and Hospital Universitario Antonio Pedro, Niteroi, Brazil
| | - Jorge R Almeida
- Fluminense Federal University and Hospital Universitario Antonio Pedro, Niteroi, Brazil
| |
Collapse
|
308
|
Yan H, Zhou HF, Akk A, Hu Y, Springer LE, Ennis TL, Pham CTN. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol 2016; 36:1660-1669. [PMID: 27283739 DOI: 10.1161/atvbaha.116.307786] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We previously established that neutrophil-derived dipeptidyl peptidase I (DPPI) is essential for experimental abdominal aortic aneurysm (AAA) development. Because DPPI activates several neutrophil serine proteases, it remains to be determined whether the AAA-promoting effect of DPPI is mediated by neutrophil serine proteases. APPROACH AND RESULTS Using an elastase-induced AAA model, we demonstrate that the absence of 2 neutrophil serine proteases, neutrophil elastase and proteinase-3, recapitulates the AAA-resistant phenotype of DPPI-deficient mice. DPPI and neutrophil serine proteases direct the in vitro and in vivo release of extracellular structures termed neutrophil extracellular traps (NETs). Administration of DNase1, which dismantles NETs, suppresses elastase-induced AAA in wild-type animals and in DPPI-deficient mice reconstituted with wild-type neutrophils. NETs also contain the cathelicidin-related antimicrobial peptide that complexes with self-DNA in recruiting plasmacytoid dendritic cells (pDCs), inducing type I interferons (IFNs) and promoting AAA in DPPI-deficient mice. Conversely, depletion of pDCs or blockade of type I IFNs suppresses experimental AAA. Moreover, we find an abundance of human cathelicidin peptide, a 37 amino acid sequence starting with 2 leucines and the human orthologue of cathelicidin-related antimicrobial peptide, in the vicinity of pDCs in human AAA tissues. Increased type I IFN mRNA expression is observed in human AAA tissues and circulating IFN-α is detected in ≈50% of the AAA sera examined. CONCLUSIONS These results suggest that neutrophil protease-mediated NET release contributes to elastase-induced AAA through pDC activation and type I IFN production. These findings increase our understanding of the pathways underlying AAA inflammatory responses and suggest that limiting NET, pDC, and type I IFN activities may suppress aneurysm progression.
Collapse
Affiliation(s)
- Huimin Yan
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hui-Fang Zhou
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Antonina Akk
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ying Hu
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Luke E Springer
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terri L Ennis
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christine T N Pham
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
309
|
Domingo-Gonzalez R, Martínez-Colón GJ, Smith AJ, Smith CK, Ballinger MN, Xia M, Murray S, Kaplan MJ, Yanik GA, Moore BB. Inhibition of Neutrophil Extracellular Trap Formation after Stem Cell Transplant by Prostaglandin E2. Am J Respir Crit Care Med 2016; 193:186-97. [PMID: 26417909 DOI: 10.1164/rccm.201501-0161oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE Autologous and allogeneic hematopoietic stem cell transplant (HSCT) patients are susceptible to pulmonary infections, including bacterial pathogens, even after hematopoietic reconstitution. We previously reported that murine bone marrow transplant (BMT) neutrophils overexpress cyclooxygenase-2, overproduce prostaglandin E2 (PGE2), and exhibit defective intracellular bacterial killing. Neutrophil extracellular traps (NETs) are DNA structures that capture and kill extracellular bacteria and other pathogens. OBJECTIVES To determine whether NETosis was defective after transplant and if so, whether this was regulated by PGE2 signaling. METHODS Neutrophils isolated from mice and humans (both control and HSCT subjects) were analyzed for NETosis in response to various stimuli in the presence or absence of PGE2 signaling modifiers. MEASUREMENTS AND MAIN RESULTS NETs were visualized by immunofluorescence or quantified by Sytox Green fluorescence. Treatment of BMT or HSCT neutrophils with phorbol 12-myristate 13-acetate or rapamycin resulted in reduced NET formation relative to control cells. NET formation after BMT was rescued both in vitro and in vivo with cyclooxygenase inhibitors. Additionally, the EP2 receptor antagonist (PF-04418948) or the EP4 antagonist (AE3-208) restored NET formation in neutrophils isolated from BMT mice or HSCT patients. Exogenous PGE2 treatment limited NETosis of neutrophils collected from normal human volunteers and naive mice in an exchange protein activated by cAMP- and protein kinase A-dependent manner. CONCLUSIONS Our results suggest blockade of the PGE2-EP2 or EP4 signaling pathway restores NETosis after transplantation. Furthermore, these data provide the first description of a physiologic inhibitor of NETosis.
Collapse
Affiliation(s)
| | | | | | - Carolyne K Smith
- 1 Immunology Graduate Program.,3 Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Megan N Ballinger
- 4 Pulmonary, Allergy, Critical Care and Sleep Division, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Meng Xia
- 5 Biostatistics Department, School of Public Health
| | - Susan Murray
- 5 Biostatistics Department, School of Public Health
| | - Mariana J Kaplan
- 3 Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Gregory A Yanik
- 6 Department of Pediatrics, Division of Hematology-Oncology, Medical School
| | - Bethany B Moore
- 7 Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, and.,8 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
310
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
311
|
Witalison EE, Thompson PR, Hofseth LJ. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr Drug Targets 2016; 16:700-10. [PMID: 25642720 DOI: 10.2174/1389450116666150202160954] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/24/2015] [Indexed: 11/22/2022]
Abstract
Human proteins are subjected to more than 200 known post-translational modifications (PTMs) (e.g., phosphorylation, glycosylation, ubiquitination, S-nitrosylation, methylation, Nacetylation, and citrullination) and these PTMs can alter protein structure and function with consequent effects on the multitude of pathways necessary for maintaining the physiological homeostasis. When dysregulated, however, the enzymes that catalyze these PTMs can impact the genesis of countless diseases. In this review, we will focus on protein citrullination, a PTM catalyzed by the Protein Arginine Deiminase (PAD) family of enzymes. Specifically, we will describe the roles of the PADs in both normal human physiology and disease. The development of PAD inhibitors and their efficacy in a variety of autoimmune disorders and cancer will also be discussed.
Collapse
Affiliation(s)
| | | | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy 770 Sumter St., Coker Life Sciences, Rm. 513C University of South Carolina Columbia, SC 29208.
| |
Collapse
|
312
|
Zhang S, Shen H, Shu X, Peng Q, Wang G. Abnormally increased low-density granulocytes in peripheral blood mononuclear cells are associated with interstitial lung disease in dermatomyositis. Mod Rheumatol 2016; 27:122-129. [PMID: 27171278 DOI: 10.1080/14397595.2016.1179861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We previously found that neutrophil extracellular traps (NETs) were associated with interstitial lung disease (ILD) in dermatomyositis (DM) patients. However, it is unclear whether low-density granulocytes (LDGs), endowed with enhanced NET formation capabilities, contribute to the pathogenesis of ILD. This study aims to elucidate the relationship between LDGs and DM-associated ILD. METHODS We recruited 48 DM patients (28 with ILD) as well as 19 healthy volunteers for this study. The percentage of LDGs in peripheral blood mononuclear cells (PBMCs) was ascertained by flow cytometry. Plasma cfDNA was measured by using the Quant-iT PicoGreen dsDNA Kit and plasma LL-37 was tested by using the LL-37 ELISA kit. RESULTS The percentage of LDGs was 7.1 times higher in DM patients than in healthy controls. LDG percentage was 2.7 times higher in DM patients with ILD than in DM patients without ILD. Additionally, LDG percentage positively correlated with MYOACT lung disease activity scores, and NET/neutrophil-related marker levels (LL-37, cfDNA, MPO, and MMP-8) in the DM group were significantly higher than those in the control group. CONCLUSION The abnormal increase of LDGs may exacerbate abnormal NET regulation and further contribute to the pathogenesis of ILD in DM patients by abnormally forming NETs.
Collapse
Affiliation(s)
- Sigong Zhang
- a Department of Rheumatology , Lanzhou University Second Hospital , Lanzhou , China and
| | - Haili Shen
- a Department of Rheumatology , Lanzhou University Second Hospital , Lanzhou , China and
| | - Xiaoming Shu
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| | - Qinglin Peng
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| | - Guochun Wang
- b Department of Rheumatology , China-Japan Friendship Hospital , Beijing , China
| |
Collapse
|
313
|
Marder W, Knight JS, Kaplan MJ, Somers EC, Zhang X, O'Dell AA, Padmanabhan V, Lieberman RW. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med 2016; 3:e000134. [PMID: 27158525 PMCID: PMC4854113 DOI: 10.1136/lupus-2015-000134] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is associated with increased risk of adverse pregnancy outcomes, including pre-eclampsia, particularly in association with antiphospholipid antibody syndrome (APS). While significant placental abnormalities are expected in pre-eclampsia, less is known about how lupus activity and APS in pregnancy affect the placenta. We describe placental pathology from a population of lupus pregnancies, several of which were complicated by APS-related thromboses, in which pre-eclampsia and other complications developed. We performed standard histopathological placental review and quantified neutrophils and neutrophil extracellular traps (NETs) in the intervillous space, given the recognised association of NETs with lupus, APS and pre-eclampsia. Methods Pre-eclampsia, SLE and control placentas were scored for histological features, and neutrophils were quantified on H&E and immunohistochemical staining for the granular protein myeloperoxidase. NETs were identified by extracellular myeloperoxidase staining in the setting of decondensed nuclei. Non-parametric analysis was used to evaluate differences in netting and intact neutrophils between groups, with Kruskal–Wallis testing for associations between histological findings and neutrophils. Results Placentas were evaluated from 35 pregnancies: 10 controls, 11 pre-eclampsia, 4 SLE+pre-eclampsia and 10 SLE, including one complicated by catastrophic APS and one complicated by hepatic and splenic vein thromboses during pregnancy. Intrauterine growth restriction and oligohydramnios were observed in lupus cases but not controls. Significantly more NETs were found infiltrating placental intervillous spaces in pre-eclampsia, SLE+pre-eclampsia and all 10 SLE non-pre-eclampsia cases. The ratio of NETs to total neutrophils was significantly increased in all case groups compared with controls. When present, NETs were associated with maternal vasculitis, laminar decidual necrosis, maternal–fetal interface haemorrhage and non-occlusive fetal thrombotic vasculopathy. Conclusions In this pilot study of placental tissue from lupus pregnancies, outcomes were more complicated, particularly if associated with APS. Placental tissue revealed marked inflammatory and vascular changes that were essentially indistinguishable from placental tissue of pre-eclampsia pregnancies.
Collapse
Affiliation(s)
- Wendy Marder
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland , USA
| | - Emily C Somers
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Xu Zhang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Alexander A O'Dell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard W Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
314
|
López-Pedrera C, Barbarroja N, Jimenez-Gomez Y, Collantes-Estevez E, Aguirre MA, Cuadrado MJ. Oxidative stress in the pathogenesis of atherothrombosis associated with anti-phospholipid syndrome and systemic lupus erythematosus: new therapeutic approaches. Rheumatology (Oxford) 2016; 55:2096-2108. [PMID: 27018059 DOI: 10.1093/rheumatology/kew054] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/18/2016] [Indexed: 12/25/2022] Open
Abstract
Atherothrombosis is a recurrent complication in APS and SLE patients. Oxidative stress has been suggested as a key player underlying this process. Autoantibodies have been pointed to as the main contributors to abnormality in the oxidative status observed in APS and SLE patients, promoting the increased production of oxidant species and the reduction of antioxidant molecules. This imbalance causes vascular damage through the activation of immune cells, including monocytes, lymphocytes and neutrophils, causing the expression of pro-inflammatory and procoagulant molecules, the formation of neutrophil extracellular traps and the adhesion of these cells to the endothelium; the induction of cellular apoptosis and impaired cell clearance, which in turn enhances autoantibody neogeneration; and cytotoxicity of endothelial cells. This review describes the mechanisms underlying the role of oxidative stress in the pathogenesis of atherothrombosis associated with APS and SLE, focused on the effect of autoantibodies, the different cell types involved and the diverse effectors, including cytokines, procoagulant proteins and their main modulators, such as oxidant/antioxidant species and intracellular pathways in each pathology. We further discuss new therapies aimed at restoring the oxidative stress balance and subsequently to tackle atherothrombosis in APS and SLE.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Nuria Barbarroja
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Yolanda Jimenez-Gomez
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Eduardo Collantes-Estevez
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ma Angeles Aguirre
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ma Jose Cuadrado
- Rheumatology Service, St Thomas Hospital, Lupus Research Unit, London, UK
| |
Collapse
|
315
|
Van Avondt K, van der Linden M, Naccache PH, Egan DA, Meyaard L. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing. THE JOURNAL OF IMMUNOLOGY 2016; 196:3686-94. [DOI: 10.4049/jimmunol.1501650] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
|
316
|
Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, Wagner DD. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 2016; 5:e1134073. [PMID: 27467952 DOI: 10.1080/2162402x.2015.1134073] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Neutrophils play a major role in cancer biology and both pro- and antitumoral functions of tumor-infiltrating neutrophils have been described. We have shown that tumors, by releasing G-CSF into the bloodstream, prime circulating neutrophils to form neutrophil extracellular traps (NETs) and we have detected the presence of NETs within the tumor microenvironment. Here, we report, using PAD4-deficient mice with a defect in neutrophil chromatin decondensation and NET formation, that the priming of neutrophils toward NETosis favors tumor growth. Interestingly, in a tumor model that does not release G-CSF and in which neutrophils are not primed for NETosis, PAD4-deficiency did not reduce tumor growth. However, supplying exogenous G-CSF to the wild-type (WT) host promoted intratumoral NETosis and tumor growth. Taken together, our results suggest that the priming of neutrophils for NETosis by the tumor or its environment leads to the accumulation of intratumoral NETs and a growth advantage to the tumor. Our work unveiled a pro-tumoral role for NETs which strengthens their potential as a new target in the fight against cancer.
Collapse
Affiliation(s)
- Mélanie Demers
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Siu Ling Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Jessica E Cabral
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, PA, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
317
|
Maksimov P, Hermosilla C, Kleinertz S, Hirzmann J, Taubert A. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition. Parasitol Res 2016; 115:1991-2001. [PMID: 26847631 DOI: 10.1007/s00436-016-4941-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.
Collapse
Affiliation(s)
- P Maksimov
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Riems, Germany
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - S Kleinertz
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - J Hirzmann
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - A Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.
| |
Collapse
|
318
|
Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Núñez-Álvarez C, Hernández-Ramírez D, Bockenstedt PL, Liaw PC, Cabral AR, Knight JS. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol 2016; 67:2990-3003. [PMID: 26097119 DOI: 10.1002/art.39247] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Antiphospholipid antibodies (aPL), especially those targeting β2 -glycoprotein I (β2 GPI), are well known to activate endothelial cells, monocytes, and platelets, with prothrombotic implications. In contrast, the interaction of aPL with neutrophils has not been extensively studied. Neutrophil extracellular traps (NETs) have recently been recognized as an important activator of the coagulation cascade, as well as an integral component of arterial and venous thrombi. This study was undertaken to determine whether aPL activate neutrophils to release NETs, thereby predisposing to the arterial and venous thrombosis inherent in the antiphospholipid syndrome (APS). METHODS Neutrophils, sera, and plasma were prepared from patients with primary APS (n = 52) or from healthy volunteers and characterized. No patient had concomitant systemic lupus erythematosus. RESULTS Sera and plasma from patients with primary APS had elevated levels of both cell-free DNA and NETs, as compared to healthy volunteers. Freshly isolated neutrophils from patients with APS were predisposed to high levels of spontaneous NET release. Further, APS patient sera, as well as IgG purified from APS patients, stimulated NET release from control neutrophils. Human aPL monoclonal antibodies, especially those targeting β2 GPI, also enhanced NET release. The induction of APS NETs was abrogated with inhibitors of reactive oxygen species formation and Toll-like receptor 4 signaling. Highlighting the potential clinical relevance of these findings, APS NETs promoted thrombin generation. CONCLUSION Our findings indicate that NET release warrants further investigation as a novel therapeutic target in APS.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Núñez-Álvarez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Antonio R Cabral
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
319
|
Barnado A, Crofford LJ, Oates JC. At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 2016; 99:265-78. [PMID: 26658004 PMCID: PMC6608010 DOI: 10.1189/jlb.5bt0615-234r] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps are associated with a unique form of cell death distinct from apoptosis or necrosis, whereby invading microbes are trapped and killed. Neutrophil extracellular traps can contribute to autoimmunity by exposing autoantigens, inducing IFN-α production, and activating the complement system. The association of neutrophil extracellular traps with autoimmune diseases, particularly systemic lupus erythematosus, will be reviewed. Increased neutrophil extracellular trap formation is seen in psoriasis, antineutrophil cytoplasmic antibody-associated vasculitis, antiphospholipid antibody syndrome rheumatoid arthritis, and systemic lupus erythematosus. Neutrophil extracellular traps may promote thrombus formation in antineutrophil cytoplasmic antibody-associated vasculitis and antiphospholipid antibody syndrome. In systemic lupus erythematosus, increased neutrophil extracellular trap formation is associated with increased disease activity and renal disease, suggesting that neutrophil extracellular traps could be a disease activity marker. Neutrophil extracellular traps can damage and kill endothelial cells and promote inflammation in atherosclerotic plaques, which may contribute to accelerated atherosclerosis in systemic lupus erythematosus. As neutrophil extracellular traps induce IFN-α production, measuring neutrophil extracellular traps may estimate IFN-α levels and identify which systemic lupus erythematosus patients have elevated levels and may be more likely to respond to emerging anti-IFN-α therapies. In addition to anti-IFN-α therapies, other novel agents, such as N-acetyl-cysteine, DNase I, and peptidylarginine deiminase inhibitor 4, target neutrophil extracellular traps. Neutrophil extracellular traps offer insight into the pathogenesis of autoimmune diseases and provide promise in developing disease markers and novel therapeutic agents in systemic lupus erythematosus. Priority areas for basic research based on clinical research insights will be identified, specifically the potential role of neutrophil extracellular traps as a biomarker and therapeutic target in systemic lupus erythematosus.
Collapse
Affiliation(s)
- April Barnado
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Leslie J Crofford
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jim C Oates
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
320
|
Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 2016; 26:1-8. [PMID: 26719220 DOI: 10.1016/j.numecd.2015.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
AIMS To review the significance of a new type of neutrophil cell death (NETosis) in diabetes and cardiometabolic diseases. DATA SYNTHESIS Diabetes and the metabolic syndrome are characterized by activation of the innate immune system. In this framework, neutrophils are front line defences against infections, but can also turn deleterious if abnormally stimulated. NETosis refers to a type of cell death whereby neutrophils release nuclear material and granule enzymes that together form the NETs (neutrophil extracellular traps). As NETs entrap bacteria, NETosis is instrumental to the clearance of microorganisms, but an exaggerated NETosis response can also lead to tissue damage in several pathological conditions. In diabetes, the finely tuned balance of NETosis required to protect the human body from microorganisms yet avoiding self-damage seems to be lost. In fact, in vitro induction of NETosis and circulating concentrations of NET-associated proteins appear to be enhanced in diabetic patients. Furthermore, NETs contribute to endothelial damage, thrombosis, and ischemia/reperfusion injury, making it a novel player in the pathobiology of cardiovascular disease. Though the cellular events taking place during NETosis have been described and directly visualized, its molecular machinery is still incompletely understood. Protein kinase C (PKC) and NADPH oxidase (NOX) are two important targets to counter NETosis in the setting of diabetes. CONCLUSIONS NETosis appears to be part of an abnormal response to damage in diabetes that, in turn, can promote or aggravate end-organ complications. We suggest that this will be a hot topic of investigation in diabetology in the near future.
Collapse
Affiliation(s)
- G P Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| | - L Menegazzo
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - V Scattolini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - M Gintoli
- Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - M Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
321
|
Rao AN, Kazzaz NM, Knight JS. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol 2015; 7:829-842. [PMID: 26730289 PMCID: PMC4691810 DOI: 10.4330/wjc.v7.i12.829] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
Thrombotic events, both arterial and venous, are a major health concern worldwide. Further, autoimmune diseases, such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, and antiphospholipid syndrome, predispose to thrombosis, and thereby push the risk for these morbid events even higher. In recent years, neutrophils have been identified as important players in both arterial and venous thrombosis. Specifically, chromatin-based structures called neutrophil extracellular traps (NETs) play a key role in activating the coagulation cascade, recruiting platelets, and serving as scaffolding upon which the thrombus can be assembled. At the same time, neutrophils and NETs are emerging as important mediators of pathogenic inflammation in the aforementioned autoimmune diseases. Here, we first review the general role of NETs in thrombosis. We then posit that exaggerated NET release contributes to the prothrombotic diatheses of systemic lupus erythematosus, ANCA-associated vasculitis, and antiphospholipid syndrome.
Collapse
|
322
|
Aggarwal A, Gupta R. High burden of cardiovascular disease in lupus: Is there a way out? INDIAN JOURNAL OF RHEUMATOLOGY 2015. [DOI: 10.1016/j.injr.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
323
|
Pashevin DO, Nagibin VS, Tumanovska LV, Moibenko AA, Dosenko VE. Proteasome Inhibition Diminishes the Formation of Neutrophil Extracellular Traps and Prevents the Death of Cardiomyocytes in Coculture with Activated Neutrophils during Anoxia-Reoxygenation. Pathobiology 2015; 82:290-8. [PMID: 26558384 DOI: 10.1159/000440982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Polymorphic mononuclear neutrophils (PMN) are very important cells participating in nonspecific defense of the organism. Among their well-known functions, the formation of neutrophil extracellular traps (NET) is interesting and potentially dangerous for the mechanisms of other cells. Ubiquitin-dependent proteasomal proteolysis is a very important regulator of all cellular activities, but the role of proteasomal proteolysis in NET formation has not been investigated. METHODS We performed experiments with PMN activated to form NET with phorbol 12-myristate 13-acetate (PMA) and the application of a proteasome inhibitor. We also added activated neutrophils to primary culture of isolated rat neonatal cardiomyocytes with or without anoxia-reoxygenation modeling. RESULTS The data obtained show that proteasomes participate in NET formation and proteasome inhibitors facilitate the blocking of the NET program. The percentage of NET after PMA application was 70.8 ± 7.2 and the proteasome inhibitor decreased this amount to 4.7 ± 0.9%. In coculture with cardiomyocytes during anoxia-reoxygenation, this effect prevented cardiac cell death induced by activated PMN. The stimulation of NET formation by PMA in coculture with isolated cardiomyocytes led to an increase in the number of necrotic cardiomyocytes of up to 33.1 ± 12.9% and a corresponding decrease in living cardiomyocytes to 66.9 ± 12.9%. The number of living cardiomyocytes in coculture after incubation with both PMA and proteasome inhibitor was 76.6 ± 13.3% (p < 0.05), and the number of necrotic cardiomyocytes was 23.4 ± 13.3% (p < 0.05). CONCLUSION Proteasome inhibition blocks NET formation and prevents cardiomyocyte necrosis in coculture with activated neutrophils.
Collapse
Affiliation(s)
- Denis O Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
324
|
Wigren M, Nilsson J, Kaplan MJ. Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention. J Intern Med 2015; 278:494-506. [PMID: 25720452 PMCID: PMC4550575 DOI: 10.1111/joim.12357] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that primarily affects young women and is characterized by inflammation in several organs including kidneys, skin, joints, blood and nervous system. Abnormal immune cellular and humoral responses play important roles in the development of the disease process. Impaired clearance of apoptotic material is a key factor contributing to the activation of self-reactive immune cells. The incidence of atherosclerotic cardiovascular disease (CVD) is increased up to 50-fold in patients with SLE compared to age- and gender-matched controls, and this can only partly be explained by traditional risk factors for CVD. Currently, there is no effective treatment to prevent CVD complications in SLE. Traditional preventive CVD therapies have not been found to significantly lower the incidence of CVD in SLE; therefore, there is a need for novel treatment strategies and increased understanding of the mechanisms involved in the pathogenesis of CVD complications in SLE. The pathogenic immune responses in SLE and development of atherosclerotic plaques share some characteristics, such as impaired efferocytosis and skewed T-cell activation, suggesting the possibility of identifying novel targets for intervention. As novel immune-based therapies for CVD are being developed, it is possible that some of these may be effective for the prevention of CVD and for immunomodulation in SLE. However, further understanding of the mechanisms leading to an increased prevalence of cardiovascular events in SLE is critical for the development of such therapies.
Collapse
Affiliation(s)
- M Wigren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - M J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
325
|
Grayson PC, Kaplan MJ. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol 2015; 99:253-64. [PMID: 26432901 DOI: 10.1189/jlb.5bt0615-247r] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
The putative role of neutrophils in host defense against pathogens is a well-recognized aspect of neutrophil function. The discovery of neutrophil extracellular traps has expanded the known range of neutrophil defense mechanisms and catalyzed a discipline of research focused upon ways in which neutrophils can shape the immunologic landscape of certain autoimmune diseases, including systemic lupus erythematosus. Enhanced neutrophil extracellular trap formation and impaired neutrophil extracellular trap clearance may contribute to immunogenicity in systemic lupus erythematosus and other autoimmune diseases by promoting the externalization of modified autoantigens, inducing synthesis of type I IFNs, stimulating the inflammasome, and activating both the classic and alternative pathways of the complement system. Vasculopathy is a central feature of many autoimmune diseases, and neutrophil extracellular traps may contribute directly to endothelial cell dysfunction, atherosclerotic plaque burden, and thrombosis. The elucidation of the subcellular events of neutrophil extracellular trap formation may generate novel, therapeutic strategies that target the innate immune system in autoimmune and vascular diseases.
Collapse
Affiliation(s)
- Peter C Grayson
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
326
|
Grayson PC, Carmona-Rivera C, Xu L, Lim N, Gao Z, Asare AL, Specks U, Stone JH, Seo P, Spiera RF, Langford CA, Hoffman GS, Kallenberg CGM, St Clair EW, Tchao NK, Ytterberg SR, Phippard DJ, Merkel PA, Kaplan MJ, Monach PA. Neutrophil-Related Gene Expression and Low-Density Granulocytes Associated With Disease Activity and Response to Treatment in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2015; 67:1922-32. [PMID: 25891759 DOI: 10.1002/art.39153] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To discover biomarkers involved in the pathophysiology of antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and to determine whether low-density granulocytes (LDGs) contribute to gene expression signatures in AAV. METHODS The source of clinical data and linked biologic specimens was a randomized controlled treatment trial in AAV. RNA sequencing of whole blood from patients with AAV was performed during active disease at the baseline visit and during remission 6 months later. Gene expression was compared between patients who met versus those who did not meet the primary trial outcome of clinical remission at 6 months (responders versus nonresponders). Measurement of neutrophil-related gene expression was confirmed in peripheral blood mononuclear cells (PBMCs) to validate the findings in whole blood. A negative-selection strategy isolated LDGs from PBMC fractions. RESULTS Differential expression between responders (n = 77) and nonresponders (n = 35) was detected in 2,346 transcripts at the baseline visit (P < 0.05). Unsupervised hierarchical clustering demonstrated a cluster of granulocyte-related genes, including myeloperoxidase (MPO) and proteinase 3 (PR3). A granulocyte multigene composite score was significantly higher in nonresponders than in responders (P < 0.01) and during active disease than during remission (P < 0.01). This signature strongly overlapped an LDG signature identified previously in lupus (false discovery rate by gene set enrichment analysis <0.01). Transcription of PR3 measured in PBMCs was associated with active disease and treatment response (P < 0.01). LDGs isolated from patients with AAV spontaneously formed neutrophil extracellular traps containing PR3 and MPO. CONCLUSION In AAV, increased expression of a granulocyte gene signature is associated with disease activity and decreased response to treatment. The source of this signature is likely LDGs, a potentially pathogenic cell type in AAV.
Collapse
Affiliation(s)
- Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Carmelo Carmona-Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Lijing Xu
- Immune Tolerance Network, Bethesda, Maryland
| | - Noha Lim
- Immune Tolerance Network, Bethesda, Maryland
| | - Zhong Gao
- Immune Tolerance Network, Bethesda, Maryland
| | | | | | | | - Philip Seo
- Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Paul A Monach
- Boston University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
327
|
Hollan I, Dessein PH, Ronda N, Wasko MC, Svenungsson E, Agewall S, Cohen-Tervaert JW, Maki-Petaja K, Grundtvig M, Karpouzas GA, Meroni PL. Prevention of cardiovascular disease in rheumatoid arthritis. Autoimmun Rev 2015; 14:952-69. [PMID: 26117596 DOI: 10.1016/j.autrev.2015.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
The increased risk of cardiovascular disease (CVD) in rheumatoid arthritis (RA) has been recognized for many years. However, although the characteristics of CVD and its burden resemble those in diabetes, the focus on cardiovascular (CV) prevention in RA has lagged behind, both in the clinical and research settings. Similar to diabetes, the clinical picture of CVD in RA may be atypical, even asymptomatic. Therefore, a proactive screening for subclinical CVD in RA is warranted. Because of the lack of clinical trials, the ideal CVD prevention (CVP) in RA has not yet been defined. In this article, we focus on challenges and controversies in the CVP in RA (such as thresholds for statin therapy), and propose recommendations based on the current evidence. Due to the significant contribution of non-traditional, RA-related CV risk factors, the CV risk calculators developed for the general population underestimate the true risk in RA. Thus, there is an enormous need to develop adequate CV risk stratification tools and to identify the optimal CVP strategies in RA. While awaiting results from randomized controlled trials in RA, clinicians are largely dependent on the use of common sense, and extrapolation of data from studies on other patient populations. The CVP in RA should be based on an individualized evaluation of a broad spectrum of risk factors, and include: 1) reduction of inflammation, preferably with drugs decreasing CV risk, 2) management of factors associated with increased CV risk (e.g., smoking, hypertension, hyperglycemia, dyslipidemia, kidney disease, depression, periodontitis, hypothyroidism, vitamin D deficiency and sleep apnea), and promotion of healthy life style (smoking cessation, healthy diet, adjusted physical activity, stress management, weight control), 3) aspirin and influenza and pneumococcus vaccines according to current guidelines, and 4) limiting use of drugs that increase CV risk. Rheumatologists should take responsibility for the education of health care providers and RA patients regarding CVP in RA. It is immensely important to incorporate CV outcomes in testing of anti-rheumatic drugs.
Collapse
Affiliation(s)
- I Hollan
- Lillehammer Hospital for Rheumatic Diseases, Norway
| | - P H Dessein
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - N Ronda
- Department of Pharmacy, University of Parma, Italy
| | - M C Wasko
- Department of Rheumatology, West Penn Hospital Allegheny Health Network, USA
| | - E Svenungsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Agewall
- Department of Cardiology, Oslo University Hospital Ullevål, University of Oslo, Oslo, Norway; Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - J W Cohen-Tervaert
- Clinical and Experimental Immunology, Maastricht University, Maastricht, The Netherlands
| | - K Maki-Petaja
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | - M Grundtvig
- Department of Medicine, Innlandet Hospital Trust, Lillehammer, Norway
| | - G A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center, Torrance, USA; Los Angeles Biomedical Research Institute, Torrance, USA
| | - P L Meroni
- Department of Clinical Sciences and Community Health, University of Milan, Italy; IRCCS Istituto Auxologico Italiano, Italy
| |
Collapse
|
328
|
Tay SH, Mak A. Anti-NR2A/B Antibodies and Other Major Molecular Mechanisms in the Pathogenesis of Cognitive Dysfunction in Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:10281-300. [PMID: 25955648 PMCID: PMC4463646 DOI: 10.3390/ijms160510281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects approximately 1–45.3 per 100,000 people worldwide. Although deaths as a result of active and renal diseases have been substantially declining amongst SLE patients, disease involving the central nervous system (CNS), collectively termed neuropsychiatric systemic lupus erythematosus (NPSLE), remains one of the important causes of death in these patients. Cognitive dysfunction is one of the most common manifestations of NPSLE, which comprises deficits in information-processing speed, attention and executive function, in conjunction with preservation of speech. Albeit a prevalent manifestation of NPSLE, the pathogenetic mechanisms of cognitive dysfunction remain unclear. Recent advances in genetic studies, molecular techniques, neuropathology, neuroimaging and cognitive science have gleaned valuable insights into the pathophysiology of lupus-related cognitive dysfunction. In recent years, a role for autoantibodies, molecular and cellular mechanisms in cognitive dysfunction, has been emerging, challenging our previous concept of the brain as an immune privileged site. This review will focus on the potential pathogenic factors involved in NPSLE, including anti-N-methyl-d-aspartate receptor subunit NR2A/B (anti-NR2A/B) antibodies, matrix metalloproteinase-9, neutrophil extracellular traps and pro-inflammatory mediators. Better understanding of these mechanistic processes will enhance identification of new therapeutic modalities to halt the progression of cognitive decline in SLE patients.
Collapse
Affiliation(s)
- Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.
- Divison of Rheumatology, Department of Medicine, National University Hospital, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.
- Divison of Rheumatology, Department of Medicine, National University Hospital, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| |
Collapse
|
329
|
Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, Singhi AD, Kang R, Tang D, Lotze MT, Zeh HJ. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 2015; 22:326-34. [PMID: 25908451 PMCID: PMC4470814 DOI: 10.1038/cgt.2015.21] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are formed when neutrophils expel their DNA, histones and intracellular proteins into the extracellular space or circulation. NET formation is dependent on autophagy and is mediated by citrullination of histones to allow for unwinding and subsequent expulsion of DNA. NETs play an important role in the pathogenesis of several sterile inflammatory diseases, including malignancy, therefore we investigated the role of NETs in the setting of pancreatic ductal adenocarcinoma (PDA). Neutrophils isolated from two distinct animal models of PDA had an increased propensity to form NETs following stimulation with platelet activating factor (PAF). Serum DNA, a marker of circulating NET formation, was elevated in tumor bearing animals as well as in patients with PDA. Citrullinated histone H3 expression, a marker of NET formation, was observed in pancreatic tumors obtained from murine models and patients with PDA. Inhibition of autophagy with chloroquine or genetic ablation of RAGE resulted in decreased propensity for NET formation, decreased serum DNA, and decreased citrullinated histone H3 expression in the pancreatic tumor microenvironment. We conclude that NETs are upregulated in pancreatic cancer through RAGE dependent/autophagy pathways.
Collapse
Affiliation(s)
- B A Boone
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - L Orlichenko
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - N E Schapiro
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - P Loughran
- 1] Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA [2] Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - G C Gianfrate
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - J T Ellis
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - A D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - M T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - H J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
330
|
Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 2015; 14:633-40. [PMID: 25797532 DOI: 10.1016/j.autrev.2015.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
The pathogenesis of many autoimmune diseases is initially based on a redundant or prolonged activation of the innate immune system. It was suggested that an excessive activation of the innate immunity is often the result of a chronic inflammatory process in the organism. This inflammation can be induced by exogenous and endogenous alarm factors, or alarmins. We believe that the recently discovered neutrophil extracellular traps, or NETs, completely meet the criteria of alarmins. This review summarizes current knowledge concerning the general characteristics of NETs, their antimicrobial properties, and their role in the development of chronic inflammatory processes that underlie the pathogenesis of psoriasis and atherosclerosis. Studies on the NETosis can provide the foundation for developing new diagnostic methods and effective treatment of chronic inflammatory and autoimmune diseases.
Collapse
|
331
|
Muñoz-Caro T, Mena Huertas SJ, Conejeros I, Alarcón P, Hidalgo MA, Burgos RA, Hermosilla C, Taubert A. Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Vet Res 2015; 46:23. [PMID: 25885264 PMCID: PMC4349228 DOI: 10.1186/s13567-015-0155-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023] Open
Abstract
Eimeria bovis is an important coccidian parasite that causes high economic losses in the cattle industry. We recently showed that polymorphonuclear neutrophils (PMN) react upon E. bovis sporozoite exposure by neutrophil extracellular trap (NET) formation. We focused here on the molecular mechanisms that are involved in this process. The sporozoite encounter led to an enhanced surface expression of neutrophil CD11b suggesting a potential role of this receptor in E. bovis-mediated NETosis. Antibody-mediated blockage of CD11b confirmed this assumption and led to a significantly decreased sporozoite-triggered NET. In addition, E. bovis-induced NETosis was found to be Ca2+-dependent since the inhibition of store-operated calcium entry (SOCE) significantly diminished NET. Furthermore, NADPH oxidase, neutrophil elastase (NE) and myeloperoxidase (MPO) were confirmed as key molecules in sporozoite-triggered NETosis, as inhibition thereof blocked parasite-triggered NET. PMN degranulation analyses revealed a significant release of matrix metalloprotease-9 containing granules upon sporozoite exposure. We further show a significantly enhanced phosphorylation of ERK1/2 and p38 MAPK in sporozoite-exposed PMN indicating a key role of this signaling pathway in E. bovis-mediated NETosis. Accordingly, ERK 1/2 and p38 MAPK inhibition led to a significant decrease in NET formation. Finally, we demonstrate that sporozoite-induced NETosis is neither a stage-, species-, nor host-specific process.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany.
| | - Sandra Jaqueline Mena Huertas
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Austral University of Chile, Valdivia, 5110566, Chile. .,Department of Biology, University of Nariño, Pasto, 520002, Colombia.
| | - Ivan Conejeros
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Austral University of Chile, Valdivia, 5110566, Chile.
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Austral University of Chile, Valdivia, 5110566, Chile.
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Austral University of Chile, Valdivia, 5110566, Chile.
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Austral University of Chile, Valdivia, 5110566, Chile.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany.
| |
Collapse
|
332
|
Yu AP, Tam BT, Yau WY, Chan KS, Yu SS, Chung TL, Siu PM. Association of endothelin-1 and matrix metallopeptidase-9 with metabolic syndrome in middle-aged and older adults. Diabetol Metab Syndr 2015; 7:111. [PMID: 26692905 PMCID: PMC4676096 DOI: 10.1186/s13098-015-0108-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) contains a cluster of cardiovascular risk factors. People with MetS are more susceptible to cardiovascular disease, diabetes mellitus, and cancer. Endothelin-1 (ET-1) and matrix metallopeptidase-9 (MMP-9) have been implicated in the development of cardiovascular diseases, diabetes mellitus and cancers. This cross-sectional study aimed to examine the association of ET-1 and MMP-9 with MetS in middle-aged and older Hong Kong Chinese adults. METHODS 149 adults aged 50 to 92 (n = 75 for non-MetS group and n = 74 for MetS group) were examined. All subjects were screened for MetS according to the diagnostic guideline of the United States National Cholesterol Education Program (NCEP) Expert Panel Adult Treatment Panel (ATP) III criteria. Serum levels of ET-1 and MMP-9 were measured. Independent t test was used to detect differences between non-MetS and MetS groups and between subjects with or without certain metabolic abnormality. The association of the serum concentration of MMP-9 and ET-1 with MetS parameters were examined by Pearson's correlation analysis. RESULTS Serum level of ET-1 is higher in MetS-positive subjects and in subjects with high blood pressure, elevated fasting blood glucose, and central obesity. The serum concentration of MMP-9 is higher in subjects positively diagnosed with MetS and subjects with high blood pressure, elevated fasting blood glucose, low blood high-density lipoprotein-cholesterol (HDL-C), high blood triglycerides, and central obesity. Correlation analyses revealed that serum concentration of ET-1 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. MMP-9 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. CONCLUSION Serum ET-1 is higher in subjects with hypertension, hyperglycemia, central obesity or MetS. Serum MMP-9 is higher in subjects diagnosed with MetS or having either one of the MetS parameters. Both circulating levels of ET-1 and MMP-9 are correlated to systolic blood pressure, waist circumference, fasting blood glucose, HDL-C, and age. Further research is needed to fully dissect the role of ET-1 and MMP-9 in the development of cancers, diabetes and cardiovascular disease in relation to MetS.
Collapse
Affiliation(s)
- A. P. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - B. T. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - W. Y. Yau
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - K. S. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - S. S. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - T. L. Chung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - P. M. Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
333
|
In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One 2014; 9:e111888. [PMID: 25372699 PMCID: PMC4221155 DOI: 10.1371/journal.pone.0111888] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/01/2014] [Indexed: 12/02/2022] Open
Abstract
Neutrophil extracellular traps (NETs) represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. NETs were classified as two distinct forms; cell-free NETs that were released away from neutrophils and anchored NETs that were anchored to neutrophils. Circulating cell-free NETs were characterized as fragmented or cotton-like structures, while anchored NETs were characterized as linear, reticular, membranous, or spot-like structures. In septic mice, both anchored and cell-free NETs were significantly increased in postcapillary venules of the cecum and hepatic sinusoids with increased leukocyte-endothelial interactions. NETs were also observed in both alveolar space and pulmonary capillaries of the lung. The interactions of NETs with platelet aggregates, leukocyte-platelet aggregates or vascular endothelium of arterioles and venules were observed in the microcirculation of septic mice. Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis.
Collapse
|
334
|
Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, Gillespie BW, Carmona-Rivera C, Liu X, Subramanian V, Hasni S, Thompson PR, Heinecke JW, Saran R, Pennathur S, Kaplan MJ. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol 2014; 66:2532-2544. [PMID: 24838349 DOI: 10.1002/art.38703] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Oxidative stress and oxidized high-density lipoprotein (HDL) are implicated as risk factors for cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Yet, how HDL is oxidized and rendered dysfunctional in SLE remains unclear. Neutrophil extracellular traps (NETs), the levels of which are elevated in lupus, possess oxidant-generating enzymes, including myeloperoxidase (MPO), NADPH oxidase (NOX), and nitric oxide synthase (NOS). We hypothesized that NETs mediate HDL oxidation, impairing cholesterol efflux capacity (CEC). METHODS Plasma MPO levels and CEC activity were examined in controls and lupus patients, and 3-chlorotyrosine (MPO specific) and 3-nitrotyrosine (derived from reactive nitrogen species) were quantified in human HDL. Multivariable linear models were used to estimate and test differences between groups. HDL was exposed to NETs from control and lupus neutrophils in the presence or absence of MPO, NOX, NOS inhibitors, and chloroquine (CQ). Murine HDL oxidation was quantified after NET inhibition in vivo. RESULTS SLE patients displayed higher MPO levels and diminished CEC compared to controls. SLE HDL had higher 3-nitrotyrosine and 3-chlorotyrosine content than control HDL, with site-specific oxidation signatures on apolipoprotein A-I. Experiments with human and murine NETs confirmed that chlorination was mediated by MPO and NOX, and nitration by NOS and NOX. Mice with lupus treated with the NET inhibitor Cl-amidine displayed significantly decreased HDL oxidation. CQ inhibited NET formation in vitro. CONCLUSION Active NOS, NOX, and MPO within NETs significantly modify HDL, rendering the lipoprotein proatherogenic. Since NET formation is enhanced in SLE, these findings support a novel role for NET-derived lipoprotein oxidation in SLE-associated CVD and identify additional proatherogenic roles of neutrophils and putative protective roles of antimalarials in autoimmunity.
Collapse
Affiliation(s)
- Carolyne K Smith
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Chongren Tang
- Department of Medicine and Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA 98109
| | - Jason S Knight
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Anna Mathew
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Robin L Padilla
- Kidney Epidemiology and Cost Center and Biostatistics, University of Michigan, Ann Arbor, MI 48109
| | - Brenda W Gillespie
- Kidney Epidemiology and Cost Center and Biostatistics, University of Michigan, Ann Arbor, MI 48109
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Xiaodan Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Sarfaraz Hasni
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Jay W Heinecke
- Department of Medicine and Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA 98109
| | - Rajiv Saran
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Kidney Epidemiology and Cost Center and Biostatistics, University of Michigan, Ann Arbor, MI 48109
| | | | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
335
|
Wang Y, Wu B, Dong L, Wang C, Wang X, Shu X. Circulating matrix metalloproteinase patterns in association with aortic dilatation in bicuspid aortic valve patients with isolated severe aortic stenosis. Heart Vessels 2014; 31:189-97. [PMID: 25325992 DOI: 10.1007/s00380-014-0593-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/10/2014] [Indexed: 01/04/2023]
Abstract
Bicuspid aortic valve (BAV) exhibits a clinical incline toward aortopathy, in which aberrant tensile and shear stress generated by BAV can induce differential expression of matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs). Whether stenotic BAV, which exhibits additional eccentric high-velocity flow jet upon ascending aorta and further worsens circumferential systolic wall shear stress than BAV with echocardiographically normal aortic valve, can lead to unique plasma MMP/TIMP patterns is still unknown. According to their valvulopathy and aortic dilatation status, 93 BAV patients were included in the present study. Group A (n = 37) and B (n = 28) comprised severely stenotic patients with or without ascending aorta dilatation; Group C (n = 12) and D (n = 16) comprised echocardiographically normal BAV patients with or without ascending aorta dilatation. Plasma MMP/TIMP levels (MMP-1, -2, -3, -8, -9, -10, -13 and TIMP-1, -2, -4) were determined via a multiplex ELISA detection system in a single procedure. Among patients with isolated severe aortic stenosis, plasma levels of MMP-2 and -9 were significantly elevated when ascending aortic dilatation was present (p = 0.001 and p = 0.002, respectively). MMP-2, however, remained as the single elevated plasma component among echocardiographically normal BAV patients with dilated ascending aorta (p = 0.027). Multivariate analysis revealed that MMP-2 and MMP-9 could both serve as independent risk factor for aortic dilatation in the case of isolated severe stenosis (p = 0.003 and p = 0.001, respectively), and MMP-2 in echocardiographically normal patients (p = 0.002). In conclusion, BAV patients with isolated severe aortic stenosis demonstrated a distinct plasma MMP/TIMP pattern, which might be utilized as circulating biomarkers for early detection of aortic dilatation.
Collapse
Affiliation(s)
- Yongshi Wang
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Boting Wu
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Dong
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xianhong Shu
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
336
|
Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 2014; 15:1017-25. [PMID: 25217981 PMCID: PMC4236687 DOI: 10.1038/ni.2987] [Citation(s) in RCA: 754] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 12/16/2022]
Abstract
Neutrophils are critical for antifungal defense, but the mechanisms that clear hyphae and other pathogens that are too large to be phagocytosed remain unknown. We show that neutrophils sense microbial size and selectively release neutrophil extracellular traps (NETs) in response to large pathogens, such as Candida albicans hyphae and extracellular Mycobacterium bovis aggregates, but not small yeast and single bacteria. NETs are fundamental in countering large pathogens in vivo. Phagocytosis via dectin-1, acts as a sensor for microbial size preventing NETosis by downregulating neutrophil elastase (NE) translocation to the nucleus. Dectin-1 deficiency leads to aberrant NETosis and NET-mediated tissue damage during infection. Size-tailored neutrophil responses clear large microbes and minimize pathology when microbes are small enough to be phagocytosed.
Collapse
|
337
|
Amaya-Amaya J, Montoya-Sánchez L, Rojas-Villarraga A. Cardiovascular involvement in autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:367359. [PMID: 25177690 PMCID: PMC4142566 DOI: 10.1155/2014/367359] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases (AD) represent a broad spectrum of chronic conditions that may afflict specific target organs or multiple systems with a significant burden on quality of life. These conditions have common mechanisms including genetic and epigenetics factors, gender disparity, environmental triggers, pathophysiological abnormalities, and certain subphenotypes. Atherosclerosis (AT) was once considered to be a degenerative disease that was an inevitable consequence of aging. However, research in the last three decades has shown that AT is not degenerative or inevitable. It is an autoimmune-inflammatory disease associated with infectious and inflammatory factors characterized by lipoprotein metabolism alteration that leads to immune system activation with the consequent proliferation of smooth muscle cells, narrowing arteries, and atheroma formation. Both humoral and cellular immune mechanisms have been proposed to participate in the onset and progression of AT. Several risk factors, known as classic risk factors, have been described. Interestingly, the excessive cardiovascular events observed in patients with ADs are not fully explained by these factors. Several novel risk factors contribute to the development of premature vascular damage. In this review, we discuss our current understanding of how traditional and nontraditional risk factors contribute to pathogenesis of CVD in AD.
Collapse
Affiliation(s)
- Jenny Amaya-Amaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 11001000 Bogotá, Colombia
- Mederi, Hospital Universitario Mayor, Calle 24 No. 29-45, 11001000 Bogotá, Colombia
| | - Laura Montoya-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 11001000 Bogotá, Colombia
- Mederi, Hospital Universitario Mayor, Calle 24 No. 29-45, 11001000 Bogotá, Colombia
| | - Adriana Rojas-Villarraga
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 11001000 Bogotá, Colombia
- Mederi, Hospital Universitario Mayor, Calle 24 No. 29-45, 11001000 Bogotá, Colombia
| |
Collapse
|
338
|
Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One 2014; 9:e97088. [PMID: 24819773 PMCID: PMC4018253 DOI: 10.1371/journal.pone.0097088] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
Excessive or aberrant generation of neutrophil extracellular traps (NETs) has recently become implicated in the underlying aetiology of a number of human pathologies including preeclampsia, systemic lupus erythromatosus, rheumatoid arthritis, auto-antibody induced small vessel vasculitis, coagulopathies such as deep vein thrombosis or pulmonary complications. These results imply that effective pharmacological therapeutic strategies will need to be developed to counter overt NETosis in these and other inflammatory disorders. As calcium flux is implicated in the generation of reactive oxygen species and histone citrullination, two key events in NETosis, we analysed the roles of both extra- and intracellular calcium pools and their modulation by pharmacological agents in the NETotic process in detail. Interleukin-8 (IL-8) was used as a physiological stimulus of NETosis. Our data demonstrate that efficient induction of NETosis requires mobilisation of both extracellular and intracellular calcium pools. Since modulation of the calcineurin pathway by cyclosporine A has been described in neutrophils, we investigated its influence on NETosis. Our data indicate that IL-8 induced NETosis is reduced by ascomycin and cyclosporine A, antagonists of the calcineurin pathway, but not following treatment with rapamycin, which utilizes the mTOR pathway. The action of the G protein coupled receptor phospholipase C pathway appears to be essential for the induction of NETs by IL-8, as NETosis was diminished by treatment with either pertussis toxin, a G-protein inhibitor, the phospholipase C inhibitor, U73122, or staurosporine, an inhibitor of protein kinase C. The data regarding the calcineurin antagonists, ascomycin and cyclosporine A, open the possibility to therapeutically supress or modulate NETosis. They also provide new insight into the mechanism whereby such immune suppressive drugs render transplant patients susceptible to opportunistic fungal infections.
Collapse
Affiliation(s)
- Anurag Kumar Gupta
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stavros Giaglis
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Department of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Paul Hasler
- Department of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Sinuhe Hahn
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
339
|
|