301
|
Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 2012; 7:e31745. [PMID: 22363718 PMCID: PMC3283661 DOI: 10.1371/journal.pone.0031745] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023] Open
Abstract
As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.
Collapse
Affiliation(s)
- David Chagné
- Plant and Food Research, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Ross N. Crowhurst
- Plant and Food Research, Mount Albert Research Centre, Auckland, New Zealand
| | - Michela Troggio
- IASMA Research and Innovation Centre, Foundation Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Mark W. Davey
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Leuven, Belgium
| | - Barbara Gilmore
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
| | - Cindy Lawley
- Illumina Inc., Hayward, California, United States of America
| | - Stijn Vanderzande
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Leuven, Belgium
| | - Roger P. Hellens
- Plant and Food Research, Mount Albert Research Centre, Auckland, New Zealand
| | - Satish Kumar
- Plant and Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Alessandro Cestaro
- IASMA Research and Innovation Centre, Foundation Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Riccardo Velasco
- IASMA Research and Innovation Centre, Foundation Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Dorrie Main
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
| | - Jasper D. Rees
- Agricultural Research Council, Onderstepoort, South Africa
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Todd Mockler
- The Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Larry Wilhelm
- Oregon Health Sciences University, Portland, Oregon, United States of America
| | - Eric Van de Weg
- Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Susan E. Gardiner
- Plant and Food Research, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
| | - Cameron Peace
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
302
|
Wong JH, Namasivayam P, Abdullah MP. The PAL2 promoter activities in relation to structural development and adaptation in Arabidopsis thaliana. PLANTA 2012; 235:267-277. [PMID: 21874349 DOI: 10.1007/s00425-011-1506-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/11/2011] [Indexed: 05/27/2023]
Abstract
Phenylalanine ammonia lyase (PAL) plays a major role in plant growth, development and adaptation. In Arabidopsis thaliana, the enzyme is encoded by four genes, namely PAL1, PAL2, PAL3, and PAL4 with PAL1 and PAL2 being closely related phylogenetically and functionally. PAL1 promoter activities are associated with plant development and are inducible by various stress agents. However, PAL2 promoter activities have not been functionally analysed. Here, we show that the PAL2 promoter activities are associated with the structural development of a plant and its organs. This function was inducible in an organ-specific manner by the avirulent strain of Pseudomonas syringae pv. tomato (JL1065). The PAL2 promoter was active throughout the course of the plant development particularly in the root, rosette leaf, and inflorescence stem that provide the plant with structural support. In aerial organs, the levels of PAL2 promoter activities were negatively correlated with relative positions of the organs to the rosette leaves. The promoter was inducible in the root following an inoculation by JL1065 in the leaf suggesting PAL2 to be part of an induced defence system. Our results demonstrate how the PAL2 promoter activities are being coordinated and synchronised for the structural development of the plant and its organs based on the developmental programme. Under certain stress conditions the activity may be induced in favour of certain organs.
Collapse
MESH Headings
- Adaptation, Biological
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Enzyme Assays
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Phenylalanine Ammonia-Lyase/genetics
- Phenylalanine Ammonia-Lyase/metabolism
- Plant Components, Aerial/genetics
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/metabolism
- Plant Immunity
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- Pseudomonas syringae/pathogenicity
- Sodium Chloride/pharmacology
- Stress, Physiological
- Transcriptional Activation
- Water/metabolism
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
303
|
Stamm P, Verma V, Ramamoorthy R, Kumar PP. Manipulation of plant architecture to enhance lignocellulosic biomass. AOB PLANTS 2012; 2012:pls026. [PMID: 23071897 PMCID: PMC3471074 DOI: 10.1093/aobpla/pls026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/03/2012] [Accepted: 08/19/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biofuels hold the promise to replace an appreciable proportion of fossil fuels. Not only do they emit significantly lower amounts of greenhouse gases, they are much closer to being 'carbon neutral', since the source plants utilize carbon dioxide for their growth. In particular, second-generation lignocellulosic biofuels from agricultural wastes and non-food crops such as switchgrass promise sustainability and avoid diverting food crops to fuel. Currently, available lignocellulosic biomass could yield sufficient bioethanol to replace ∼10 % of worldwide petroleum use. Increasing the biomass used for biofuel production and the yield of bioethanol will thus help meet global energy demands while significantly reducing greenhouse gas emissions. SCOPE We discuss the advantages of various biotechnological approaches to improve crops and highlight the contribution of genomics and functional genomics in this field. Current knowledge concerning plant hormones and their intermediates involved in the regulation of plant architecture is presented with a special focus on gibberellins and cytokinins, and their signalling intermediates. We highlight the potential of information gained from model plants such as Arabidopsis thaliana and rice (Oryza sativa) to accelerate improvement of fuel crops.
Collapse
Affiliation(s)
- Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
| | - Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
| | - Rengasamy Ramamoorthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
| | - Prakash P. Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore117604
- Corresponding author's e-mail address:
| |
Collapse
|
304
|
Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:261-74. [PMID: 21984652 DOI: 10.1093/jxb/err277] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Leaf morphology in maize is regulated by developmental patterning along three axes: proximodistal, mediolateral, and adaxial-abaxial. Maize contains homologues of many genes identified as regulators of leaf development in other species, but their relationship to the natural variation of leaf shape remains unknown. In this study, quantitative trait loci (QTLs) for leaf angle, leaf orientation value, leaf length, and leaf width were mapped by a total of 256 F(2:3) families evaluated in three environments. Meta-analysis was used to integrate genetic maps and detect QTLs across several independent QTL studies, on the basis of the previously reported experimental results for leaf architecture traits. Candidate gene sequences for leaf architecture were mapped in the integrated consensus genetic map. In total, 21 QTLs and 17 meta-QTLs (mQTLs) were detected. Among these QTLs, qLA1-1 and qLA2 were consistently detected in five and three populations respectively, and six of seven QTLs with contributions (R(2)) >10% were integrated in mQTLs. Six key mQTLs (mQTL1-1, mQTL2-1, mQTL3-3, mQTL5-1, mQTL7-2, and mQTL8-1) with R(2) of some initial QTLs >10% included 4-6 initial QTLs associated with 2-4 traits. Therefore, the chromosome regions for six mQTLs with high QTL co-localization might be hot spots of the important QTLs for the associated traits. Fifteen key candidate genes controlling leaf architecture traits coincided with 11 corresponding mQTLs, namely DWARF4, KAN3, liguleless1, TAC1, ROT3, AS2/liguleless2, PFL2, yabby9/SE/LIC/yabby15, mwp1, CYCD3;2, and CYCB1. In particular, DWARF4, liguleless1, AS2/liguleless2, yabby9/SE/LIC/yabby15, and CYCD3;2 were mapped within the important mQTL1-1, mQTL2-1, mQTL3-3, mQTL5-1, and mQTL7-2 intervals, respectively. Fine mapping or construction of single chromosome segment lines for genetic regions of these five mQTLs is worth further study and could be put to use in marker-assisted breeding. In conclusion, the results provide useful information for further research and help to reveal the molecular mechanisms with regard to leaf architecture traits.
Collapse
Affiliation(s)
- L X Ku
- College of Agronomy, Henan Agricultural University and Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, 450002, China
| | | | | | | | | | | |
Collapse
|
305
|
Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One 2011; 6:e29229. [PMID: 22216221 PMCID: PMC3247246 DOI: 10.1371/journal.pone.0029229] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05-5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). METHODS AND FINDINGS A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. CONCLUSIONS The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P=8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production.
Collapse
|
306
|
Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1439-49. [PMID: 21318372 DOI: 10.1007/s00122-011-1543-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 01/19/2011] [Indexed: 05/18/2023]
Abstract
Architecture of the rice inflorescence, which is determined mainly by the morphology, number and length of primary and secondary inflorescence branches, is an important agronomical trait. In the current study, we characterized a novel dense and erect panicle (EP) mutant, dep3, derived from the Oryza sativa ssp. japonica cultivar Hwacheong treated with N-methyl-N-nitrosourea. The panicle of the dep3 mutant remained erect from flowering to full maturation, whereas the panicle of the wild type plant began to droop after flowering. The dep3 mutation also regulated other panicle characteristics, including panicle length, grain shape and grain number per panicle. Anatomical observations revealed that the dep3 mutant had more small vascular bundles and a thicker culm than wild type plants, explaining the EP phenotype. Genetic analysis indicated that the phenotype with the dense and EP was controlled by a single recessive gene, termed dep3. The DEP3 gene was identified as the candidate via a map-based cloning approach and was predicted to encode a patatin-like phospholipase A2 (PLA2) superfamily domain-containing protein. The mutant allele gene carried a 408 bp genomic deletion within LOC_Os06g46350, which included the last 47 bp coding region of the third exon and the first 361 bp of the 3'-untranslated region. Taken together, our results indicated that the patatin-like PLA2 might play a significant role in the formation of vascular bundles, and that the dep3 mutant may provide another EP resource for rice breeding programs.
Collapse
Affiliation(s)
- Yongli Qiao
- Department of Plant Science, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Role of RNA interference in plant improvement. Naturwissenschaften 2011; 98:473-92. [PMID: 21503773 DOI: 10.1007/s00114-011-0798-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.
Collapse
|
308
|
Yang W, Ren S, Zhang X, Gao M, Ye S, Qi Y, Zheng Y, Wang J, Zeng L, Li Q, Huang S, He Z. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. THE PLANT CELL 2011; 23:661-80. [PMID: 21307285 PMCID: PMC3077787 DOI: 10.1105/tpc.110.081802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/08/2011] [Accepted: 01/18/2011] [Indexed: 05/18/2023]
Abstract
The actin cytoskeleton is an important regulator of cell expansion and morphogenesis in plants. However, the molecular mechanisms linking the actin cytoskeleton to these processes remain largely unknown. Here, we report the functional analysis of rice (Oryza sativa) FH5/BENT UPPERMOST INTERNODE1 (BUI1), which encodes a formin-type actin nucleation factor and affects cell expansion and plant morphogenesis in rice. The bui1 mutant displayed pleiotropic phenotypes, including bent uppermost internode, dwarfism, wavy panicle rachis, and enhanced gravitropic response. Cytological observation indicated that the growth defects of bui1 were caused mainly by inhibition of cell expansion. Map-based cloning revealed that BUI1 encodes the class II formin FH5. FH5 contains a phosphatase tensin-like domain at its amino terminus and two highly conserved formin-homology domains, FH1 and FH2. In vitro biochemical analyses indicated that FH5 is capable of nucleating actin assembly from free or profilin-bound monomeric actin. FH5 also interacts with the barbed end of actin filaments and prevents the addition and loss of actin subunits from the same end. Interestingly, the FH2 domain of FH5 could bundle actin filaments directly and stabilize actin filaments in vitro. Consistent with these in vitro biochemical activities of FH5/BUI1, the amount of filamentous actin decreased, and the longitudinal actin cables almost disappeared in bui1 cells. The FH2 or FH1FH2 domains of FH5 could also bind to and bundle microtubules in vitro. Thus, our study identified a rice formin protein that regulates de novo actin nucleation and spatial organization of the actin filaments, which are important for proper cell expansion and rice morphogenesis.
Collapse
Affiliation(s)
- Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sulin Ren
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shenghai Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongbin Qi
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiyan Zheng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Wang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Longjun Zeng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Address correspondence to
| |
Collapse
|
309
|
Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. THE PLANT CELL 2011; 23:681-700. [PMID: 21307283 PMCID: PMC3077795 DOI: 10.1105/tpc.110.081349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/01/2011] [Accepted: 01/18/2011] [Indexed: 05/19/2023]
Abstract
Multicellular organisms contain a large number of formins; however, their physiological roles in plants remain poorly understood. Here, we reveal that formin homology 5 (FH5), a type II formin mutated in rice morphology determinant (rmd), plays a crucial role in determining rice (Oryza sativa) morphology. FH5/RMD encodes a formin-like protein consisting of an N-terminal phosphatase tensin (PTEN)-like domain, an FH1 domain, and an FH2 domain. The rmd mutants display a bending growth pattern in seedlings, are stunted as adult plants, and have aberrant inflorescence (panicle) and seed shape. Cytological analysis showed that rmd mutants have severe cell elongation defects and abnormal microtubule and microfilament arrays. FH5/RMD is ubiquitously expressed in rice tissues, and its protein localization to the chloroplast surface is mediated by the PTEN domain. Biochemical assays demonstrated that recombinant FH5 protein can nucleate actin polymerization from monomeric G-actin or actin/profilin complexes, cap the barbed end of actin filaments, and bundle actin filaments in vitro. Moreover, FH5 can directly bind to and bundle microtubules through its FH2 domain in vitro. Our findings suggest that the rice formin protein FH5 plays a critical role in determining plant morphology by regulating actin dynamics and proper spatial organization of microtubules and microfilaments.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hexin Tan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
310
|
Dosio GAA, Tardieu F, Turc O. Floret initiation, tissue expansion and carbon availability at the meristem of the sunflower capitulum as affected by water or light deficits. THE NEW PHYTOLOGIST 2011; 189:94-105. [PMID: 20831646 DOI: 10.1111/j.1469-8137.2010.03445.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• The co-ordination between floret initiation and meristem expansion, and their relationships with carbon availability, were studied and quantified in sunflower (Helianthus annuus) plants subjected to light or water shortages. • Meristem size, number of floret primordia, primordium size, rate of plant biomass accumulation, leaf area, photosynthetic rate, and soluble sugar content in the capitulum were measured until completion of floret initiation. • Although treatments differentially affected tissue expansion and biomass acquisition, a common relationship between the final number of florets and the rate and duration of meristem expansion was conserved. In the absence of water deficit, changes in relative expansion rate in the meristem paralleled changes in soluble sugar content. Water deficit reduced tissue expansion both in leaves and in the capitulum, and induced the accumulation of soluble sugars in the meristem. Use of these sugars at re-watering was associated with increased meristem growth and higher floret numbers compared with control plants. • Floret initiation and meristem tissue expansion remained strongly co-ordinated under all studied circumstances, and both depended on local carbon availability when water supply was unlimited. Transient water deficits favoured reproductive meristem growth and floret production. Equations accounting for these results constitute a framework for phenotyping the response to drought.
Collapse
|
311
|
Bull-Hereñu K, Classen-Bockhoff R. Open and closed inflorescences: more than simple opposites. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:79-88. [PMID: 20798000 DOI: 10.1093/jxb/erq262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The absence of a terminal flower in inflorescences ('open inflorescences') is currently explained by the maintenance of putative stem-cells in the central zone (CZ) of the inflorescence meristem (IM) governed by the CLAVATA-WUSCHEL regulatory loop. Disruption of this regulatory pathway, as in Arabidopsis TERMINAL FLOWER LOCUS 1 mutants, leads to terminal flower production. However, recent studies in other taxa reveal novel mechanisms of inflorescence termination; for example, the SEPALLATA-like MADS-box floral identity gene GERBERA REGULATOR OF CAPITULUM DEVELOPMENT 2 in Gerbera excludes the retention of a CZ as an ontogenetic cause for the openness of these inflorescences. Moreover, comparative histological studies show that the retention of a CZ in the IM, mostly a feature of the 'typical open families', is absent in open inflorescences of other families. Concerning these groups, new evidence suggests that spatial constraints at the IM could play a role at the time when terminal flower production (or not) is determined. This indicates that the multiple loss and re-gain of the terminal flower in angiosperms is necessarily based on more than one ontogenetic pathway.
Collapse
Affiliation(s)
- Kester Bull-Hereñu
- Institut für Spezielle Botanik, Johannes Gutenberg Universität, D-55099 Mainz, Germany.
| | | |
Collapse
|
312
|
Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen JP, Jansen MAK, Vissenberg K. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4339-49. [PMID: 20702567 DOI: 10.1093/jxb/erq235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.
Collapse
Affiliation(s)
- Kathleen Hectors
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | | | | | | | | | |
Collapse
|
313
|
Sun F, Zhang W, Xiong G, Yan M, Qian Q, Li J, Wang Y. Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics 2010; 37:69-77. [PMID: 20171579 DOI: 10.1016/s1673-8527(09)60026-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 01/09/2023]
Abstract
Rice tillering is one of the most important agronomic traits that determine grain yields. Our previous study has demonstrated that the MONOCULM1 (MOC1) gene is a key component that controls the formation of rice tiller buds. To further elucidate the molecular mechanism of MOC1 involved in the regulation of rice tillering, we performed a yeast-two-hybrid screening to identify MOC1 interacting proteins (MIPs). Here we reported that MIP1 interacted with MOC1 both in vitro and in vivo. The overexpression of MIP1 resulted in enhanced tillering and reduced plant height. In-depth characterization of the context of MIP1 and MOC1 would further our understanding of molecular regulatory mechanisms of rice tillering.
Collapse
Affiliation(s)
- Fengli Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
314
|
Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. MOLECULAR PLANT 2010; 3:794-806. [PMID: 20720155 DOI: 10.1093/mp/ssq042] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ∼21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-II (SCL6-II), SCL6-III, and SCL6-IV for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and scl6-II scl6-III scl6-IV triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-II, SCL6-III, and SCL6-IV in 35Spro-MIR171c plants rescues the reduced shoot branching phenotype. Scl6-II scl6-III scl6-IV mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-II, SCL6-III, and SCL6-IV are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-II, SCL6-III, and SCL6-IV play an important role in the regulation of shoot branch production.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
315
|
Wei N, Tan C, Qi B, Zhang Y, Xu G, Zheng H. Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3875-84. [PMID: 20603285 PMCID: PMC2935865 DOI: 10.1093/jxb/erq200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The laterals of both shoots and roots often maintain a particular angle with respect to the gravity vector, and this angle can change during organ development and in response to environmental stimuli. However, the cellular and molecular mechanisms of the lateral organ gravitropic response are still poorly understood. Here it is demonstrated that the young siliques of Arabidopsis thalinana plants subjected to 3-D clinostat rotation exhibited automorphogenesis with increased growth angles between pedicels and the main stem. In addition, the 3-D clinostat rotation treatment significantly influenced the development of vascular bundles in the pedicel and caused an enlargement of gap cells at the branch point site together with a decrease in KNAT1 expression. Comparisons performed between normal and empty siliques revealed that only the pedicels of siliques with normally developing seeds could change their growth angle under the 3-D clinostat rotational condition, while the pedicels of the empty siliques lost the ability to respond to the altered gravity environment. These results indicate that the response of siliques to altered gravity depends on the normal development of seeds, and may be mediated by vascular bundle cells in the pedicel and gap cells at branch point sites.
Collapse
|
316
|
|
317
|
Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ. The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:705-15. [PMID: 20407739 DOI: 10.1007/s00122-010-1342-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/03/2010] [Indexed: 05/10/2023]
Abstract
Barley (Hordeum vulgare L.) carrying recessive mutations at the Low number of tillers1 (Lnt1) gene does not develop secondary tillers and only develops one to four tillers by maturity. Double mutant analysis determined that the lnt1 mutant was epistatic to five of the six low and high tillering mutants tested. Double mutants of lnt1 and the low tillering mutant intermedium-b (int-b) resulted in a uniculm plant, indicating a synergistic interaction and that Lnt and Int-b function in separate tillering pathways. RNA profiling identified 70 transcripts with either increased or decreased abundance in the lnt1 mutant compared to wild-type. One gene with reduced transcript levels in the lnt1 mutant was the BELL-like homeodomain transcription factor JuBel2. The JuBel2 allele in the lnt1.a mutant contained a frameshift mutation that eliminated most of the predicted polypeptide, indicating that the Lnt1 gene encodes JuBel2. Previous studies with the low-tillering mutant absent lower laterals (als) showed that the tillering phenotypes and genetic interactions of als and lnt1 with other tillering mutants were very similar. However, the transcriptomes were very different; many transcripts annotated as stress and defense response exhibited increased abundance in the als mutant. This difference suggests a functional separation between Als and Lnt1 in the genetic control of tillering.
Collapse
Affiliation(s)
- Timothy Dabbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
318
|
Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 2010; 5:e11313. [PMID: 20593023 PMCID: PMC2892489 DOI: 10.1371/journal.pone.0011313] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.
Collapse
Affiliation(s)
- Florence Piron
- Unité de Recherche en Génomique Végétale, UMR INRA-CNRS-Uni. EVRY, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 2010; 20:838-49. [PMID: 20502443 DOI: 10.1038/cr.2010.69] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The architecture of the panicle, including grain size and panicle morphology, directly determines grain yield. Panicle erectness, which is selected for achieving ideal plant architecture in the northern part of China, has drawn increasing attention of rice breeders. Here, dense and erect panicle 2 (dep2) mutant, which shows a dense and erect panicle phenotype, was identified. DEP2 encodes a plant-specific protein without any known functional domain. Expression profiling of DEP2 revealed that it is highly expressed in young tissues, with most abundance in young panicles. Morphological and expression analysis indicated that mutation in DEP2 mainly affects the rapid elongation of rachis and primary and secondary branches, but does not impair the initiation or formation of panicle primordia. Further analysis suggests that decrease of panicle length in dep2 is caused by a defect in cell proliferation during the exponential elongation of panicle. Despite a more compact plant type in the dep2 mutant, no significant alteration in grain production was found between wild type and dep2 mutant. Therefore, the study of DEP2 not only strengthens our understanding of the molecular genetic basis of panicle architecture but also has important implications for rice breeding.
Collapse
|
320
|
A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 2010; 28:301-7. [DOI: 10.1016/j.biotechadv.2010.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/30/2009] [Accepted: 01/01/2010] [Indexed: 11/19/2022]
|
321
|
Abstract
Morphogenesis in living organisms relies on the integration of both biochemical and mechanical signals. During the last decade, attention has been mainly focused on the role of biochemical signals in patterning and morphogenesis, leaving the contribution of mechanics largely unexplored. Fortunately, the development of new tools and approaches has made it possible to re-examine these processes. In plants, shape is defined by two local variables: growth rate and growth direction. At the level of the cell, these variables depend on both the cell wall and turgor pressure. Multidisciplinary approaches have been used to understand how these cellular processes are integrated in the growing tissues. These include quantitative live imaging to measure growth rate and direction in tissues with cellular resolution. In parallel, stress patterns have been artificially modified and their impact on strain and cell behavior been analysed. Importantly, computational models based on analogies with continuum mechanics systems have been useful in interpreting the results. In this review, we will discuss these issues focusing on the shoot apical meristem, a population of stem cells that is responsible for the initiation of the aerial organs of the plant.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon Cedex 07, France.
| | | |
Collapse
|
322
|
Abstract
Strigolactones (SLs) were originally isolated from plant root exudates as germination stimulants for root parasitic plants of the family Orobanchaceae, including witchweeds (Striga spp.), broomrapes (Orobanche and Phelipanche spp.), and Alectra spp., and so were regarded as detrimental to the producing plants. Their role as indispensable chemical signals for root colonization by symbiotic arbuscular mycorrhizal fungi was subsequently unveiled, and SLs then became recognized as beneficial plant metabolites. In addition to these functions in the rhizosphere, it has been recently shown that SLs or their metabolites are a novel class of plant hormones that inhibit shoot branching. Furthermore, SLs are suggested to have other biological functions in rhizosphere communications and in plant growth and development.
Collapse
Affiliation(s)
- Xiaonan Xie
- Weed Science Center, Utsunomiya University, Utsunomiya 321-8505, Japan.
| | | | | |
Collapse
|
323
|
Abstract
Grain yield in rice is a complex trait multiplicatively determined by its three component traits: number of panicles, number of grains per panicle, and grain weight; all of which are typical quantitative traits. The developments in genome mapping, sequencing, and functional genomic research have provided powerful tools for investigating the genetic and molecular bases of these quantitative traits. Dissection of the genetic bases of the yield traits based on molecular marker linkage maps resolved hundreds of quantitative trait loci (QTLs) for these traits. Mutant analyses and map-based cloning of QTLs have identified a large number of genes required for the basic processes underlying the initiation and development of tillers and panicles, as well as genes controlling numbers and sizes of grains and panicles. Molecular characterization of these genes has greatly advanced the mechanistic understanding of the regulation of these rice yield traits. These findings have significant implications in crop genetic improvement.
Collapse
Affiliation(s)
- Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
324
|
|
325
|
|
326
|
Li D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, Xu ZH, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:791-806. [PMID: 19754838 DOI: 10.1111/j.1467-7652.2009.00444.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Generating a new variety of plant with erect-leaf is a critical strategy to improve rice grain yield, as plants with this trait can be dense-planted. The erect-leaf is a significant morphological trait partially regulated by Brassinosteroids (BRs) in rice plants. So far, only a few genes can be used for molecular breeding in rice. Here, we identified OsBAK1 as a potential gene to alter rice architecture. Based on rice genome sequences, four closely related homologs of Arabidopsis BAK1 (AtBAK1) gene were amplified. Phylogenetic analysis and suppression of a weak Arabidopsis mutant bri1-5 indicated that OsBAK1 (Os08g0174700) is the closest relative of AtBAK1. Genetic, physiological, and biochemical analyses all suggest that the function of OsBAK1 is conserved with AtBAK1. Overexpression of a truncated intracellular domain of OsBAK1, but not the extracellular domain of OsBAK1, resulted in a dwarfed phenotype, similar to the rice BR-insensitive mutant plants. The expression of OsBAK1 changed important agricultural traits of rice such as plant height, leaf erectness, grain morphologic features, and disease resistance responses. Our results suggested that a new rice variety with erect-leaf and normal reproduction can be generated simply by suppressing the expression level of OsBAK1. Therefore, OsBAK1 is a potential molecular breeding tool for improving rice grain yield by modifying rice architecture.
Collapse
Affiliation(s)
- Dan Li
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. PLANT MOLECULAR BIOLOGY 2009; 71:265-76. [PMID: 19603144 DOI: 10.1007/s11103-009-9522-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/30/2009] [Indexed: 05/07/2023]
Abstract
Rice architecture is an important agronomic trait that affects grain yield. We characterized a tillering dwarf mutant d88 derived from Oryza sativa ssp. japonica cultivar Lansheng treated with EMS. The mutant had excessive shorter tillers and smaller panicles and seeds compared to the wild-type. A reduction in number and size of parenchyma cells around stem marrow cavity as well as a delay in the elongation of parenchyma cells caused slender tillers and dwarfism in the d88 mutant. The D88 gene was isolated via map-based cloning and identified to encode a putative esterase. The gene was expressed in most rice organs, with especially high levels in the vascular tissues. The mutant carried a nucleotide substitution in the first exon of the gene that led to the substitution of arginine for glycine, which presumably disrupted the functionally conserved N-myristoylation domain of the protein. The function of the gene was confirmed by complementation test and antisense analysis. D88, thus, represents a new category of genes that regulates cell growth and organ development and consequently plant architecture. The potential relationship between the tiller formation associated genes and D88 is discussed and future identification of the substrate for D88 may lead to the characterization of new pathways regulating plant development.
Collapse
Affiliation(s)
- Zhenyu Gao
- National Center for Gene Research/Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200233 Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|
329
|
Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 2009; 183:315-24. [PMID: 19546322 DOI: 10.1534/genetics.109.102681] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice plant architecture is an important agronomic trait and a major determinant in high productivity. Panicle erectness is the preferred plant architecture in japonica rice, but the molecular mechanism underlying domestication of the erect panicle remains elusive. Here we report the map-based cloning of a major quantitative trait locus, qPE9-1, which plays an integral role in regulation of rice plant architecture including panicle erectness. The R6547 qPE9-1 gene encodes a 426-amino-acid protein, homologous to the keratin-associated protein 5-4 family. The gene is composed of three Von Willebrand factor type C domains, one transmembrane domain, and one 4-disulfide-core domain. Phenotypic comparisons of a set of near-isogenic lines and transgenic lines reveal that the functional allele (qPE9-1) results in drooping panicles, and the loss-of-function mutation (qpe9-1) leads to more erect panicles. In addition, the qPE9-1 locus regulates panicle and grain length, grain weight, and consequently grain yield. We propose that the panicle erectness trait resulted from a natural random loss-of-function mutation for the qPE9-1 gene and has subsequently been the target of artificial selection during japonica rice breeding.
Collapse
|
330
|
Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. PLANT PHYSIOLOGY 2009; 150:736-47. [PMID: 19386809 PMCID: PMC2689948 DOI: 10.1104/pp.109.136739] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/14/2009] [Indexed: 05/18/2023]
Abstract
Two types of branches, rachis branches (i.e. nonfloral) and spikelets (i.e. floral), are produced during rice (Oryza sativa) inflorescence development. We previously reported that the ABERRANT PANICLE ORGANIZATION1 (APO1) gene, encoding an F-box-containing protein orthologous to Arabidopsis (Arabidopsis thaliana) UNUSUAL FLORAL ORGANS, suppresses precocious conversion of rachis branch meristems to spikelets to ensure generation of certain number of spikelets. Here, we identified four dominant mutants producing an increased number of spikelets and found that they are gain-of-function alleles of APO1. The APO1 expression levels are elevated in all four mutants, suggesting that an increase of APO1 activity caused the delay in the program shift to spikelet formation. In agreement with this result, ectopic overexpression of APO1 accentuated the APO1 gain-of-function phenotypes. In the apo1-D dominant alleles, the inflorescence meristem starts to increase in size more vigorously than the wild type when switching to the reproductive development phase. This alteration in growth rate is opposite to what is observed with the apo1 mutants that have a smaller inflorescence meristem. The difference in meristem size is caused by different rates of cell proliferation. Collectively, these results suggest that the level of APO1 activity regulates the inflorescence form through control of cell proliferation in the meristem.
Collapse
Affiliation(s)
- Kyoko Ikeda-Kawakatsu
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | | | |
Collapse
|
331
|
Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. THE PLANT CELL 2009; 21:1512-25. [PMID: 19470589 PMCID: PMC2700539 DOI: 10.1105/tpc.109.065987] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 05/17/2023]
Abstract
Tillering in rice (Oryza sativa) is one of the most important agronomic traits that determine grain yields. Previous studies on rice tillering mutants have shown that the outgrowth of tiller buds in rice is regulated by a carotenoid-derived MAX/RMS/D (more axillary branching) pathway, which may be conserved in higher plants. Strigolactones, a group of terpenoid lactones, have been recently identified as products of the MAX/RMS/D pathway that inhibits axillary bud outgrowth. We report here the molecular genetic characterization of d27, a classic rice mutant exhibiting increased tillers and reduced plant height. D27 encodes a novel iron-containing protein that localizes in chloroplasts and is expressed mainly in vascular cells of shoots and roots. The phenotype of d27 is correlated with enhanced polar auxin transport. The phenotypes of the d27 d10 double mutant are similar to those of d10, a mutant defective in the ortholog of MAX4/RMS1 in rice. In addition, 2'-epi-5-deoxystrigol, an identified strigolactone in root exudates of rice seedlings, was undetectable in d27, and the phenotypes of d27 could be rescued by supplementation with GR24, a synthetic strigolactone analog. Our results demonstrate that D27 is involved in the MAX/RMS/D pathway, in which D27 acts as a new member participating in the biosynthesis of strigolactones.
Collapse
Affiliation(s)
- Hao Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:592-605. [PMID: 19154200 DOI: 10.1111/j.1365-313x.2009.03799.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The architecture of the rice inflorescence, which is determined mainly by the number and length of primary and secondary inflorescence branches, is of importance in both agronomy and developmental biology. The position and number of primary branches are established during the phase transition from vegetative to reproductive growth, and several of the genes identified as participating in this process do so by regulating the meristemic activities of inflorescence. However, little is known about the molecular mechanism that controls inflorescence branch elongation. Here, we report on a novel rice mutant, short panicle1 (sp1), which is defective in rice panicle elongation, and thus leads to the short-panicle phenotype. Gene cloning and characterization indicate that SP1 encodes a putative transporter that belongs to the peptide transporter (PTR) family. This conclusion is based on the findings that SP1 contains a conserved PTR2 domain consisting of 12 transmembrane domains, and that the SP1-GFP fusion protein is localized in the plasma membrane. The SP1 gene is highly expressed in the phloem of the branches of young panicles, which is consistent with the predicted function of SP1 and the sp1 phenotype. Phylogenetic analysis implies that SP1 might be a nitrate transporter. However, neither nitrate transporter activity nor any other compounds transported by known PTR proteins could be detected in either a Xenopus oocyte or yeast system, in our study, suggesting that SP1 may need other component(s) to be able to function as a transporter, or that it transports unknown substrates in the monocotyledonous rice plant.
Collapse
Affiliation(s)
- Shengben Li
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K. OsLIC, a Novel CCCH-Type Zinc Finger Protein with Transcription Activation, Mediates Rice Architecture via Brassinosteroids Signaling. PLoS One 2008; 3:e3521. [PMID: 18953406 PMCID: PMC2567845 DOI: 10.1371/journal.pone.0003521] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 10/01/2008] [Indexed: 11/18/2022] Open
Abstract
Rice architecture is an important agronomic trait and a major limiting factor for its high productivity. Here we describe a novel CCCH-type zinc finger gene, OsLIC (Oraza sativaleaf and tiller angle increased controller), which is involved in the regulation of rice plant architecture. OsLIC encoded an ancestral and unique CCCH type zinc finge protein. It has many orthologous in other organisms, ranging from yeast to humane. Suppression of endogenous OsLIC expression resulted in drastically increased leaf and tiller angles, shortened shoot height, and consequently reduced grain production in rice. OsLIC is predominantly expressed in rice collar and tiller bud. Genetic analysis suggested that OsLIC is epistatic to d2-1, whereas d61-1 is epistatic to OsLIC. Interestingly, sterols were significantly higher in level in transgenic shoots than in the wild type. Genome-wide expression analysis indicated that brassinosteroids (BRs) signal transduction was activated in transgenic lines. Moreover, transcription of OsLIC was induced by 24-epibrassinolide. OsLIC, with a single CCCH motif, displayed binding activity to double-stranded DNA and single-stranded polyrA, polyrU and polyrG but not polyrC. It contains a novel conserved EELR domain among eukaryotes and displays transcriptional activation activity in yeast. OsLIC may be a transcription activator to control rice plant architecture.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
| | - Cui Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
| | - Qibin Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
| | - Se-Hwan Joo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Zhihong Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|