301
|
Neurotoxicity of Tumor Immunotherapy: The Emergence of Clinical Attention. JOURNAL OF ONCOLOGY 2022; 2022:4259205. [PMID: 35087588 PMCID: PMC8789457 DOI: 10.1155/2022/4259205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy brings substantial and long-term clinical benefits that can even cure tumors. However, the accumulation of evidence suggests that immunotherapy also induces severe and complex neurologic immune-related adverse events (ir-AEs) and even leads to immunotherapy-related death, which arouses the concern of clinicians. The timely and accurate identification of neurotoxicity helps clinicians detect and treat these complications early, thereby enhancing treatment efficiency and improving the prognosis of patients. At present, the mechanism of neurotoxicity caused by immunotherapy has not been completely elucidated. This paper mainly reviews the clinical features, pathogenesis, and therapeutic strategies of neurologic ir-AEs.
Collapse
|
302
|
Cao W, Geng ZZ, Wang N, Pan Q, Guo S, Xu S, Zhou J, Liu WR. A Reversible Chemogenetic Switch for Chimeric Antigen Receptor T Cells**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenyue Cao
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Zhi Zachary Geng
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Na Wang
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Quan Pan
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shaodong Guo
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jianfeng Zhou
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences College of Medicine Texas A&M University Houston TX 77030 USA
- Department of Biochemistry and Biophysics Texas A&M University Houston TX 77843 USA
- Department of Molecular and Cellular Medicine College of Medicine Texas A&M University Houston TX 77843 USA
| |
Collapse
|
303
|
Möhn N, Bonda V, Grote-Levi L, Panagiota V, Fröhlich T, Schultze-Florey C, Wattjes MP, Beutel G, Eder M, David S, Körner S, Höglinger G, Stangel M, Ganser A, Koenecke C, Skripuletz T. Neurological management and work-up of neurotoxicity associated with CAR T cell therapy. Neurol Res Pract 2022; 4:1. [PMID: 35000613 PMCID: PMC8744256 DOI: 10.1186/s42466-021-00166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction Treatment with CD19 chimeric antigen receptor (CAR) T cells is an innovative therapeutic approach for patients with relapsed/refractory diffuse large B cell lymphoma (r/rDLBCL) and B-lineage acute lymphoblastic leukemia (r/rALL). However, convincing therapeutic response rates can be accompanied by cytokine release syndrome (CRS) and severe neurotoxicity termed immune effector cell-associated neurotoxicity syndrome (ICANS). Methods Single center, prospective observational study of fifteen consecutive r/r DLBCL patients treated with Tisagenlecleucel within 1 year at Hannover Medical School. Extensive neurological work-up prior to CAR T cell infusion included clinical examination, cognitive testing (Montreal-Cognitive-Assessment), brain MRI, electroencephalogram, electroneurography, and analysis of cerebrospinal fluid. After CAR T cell infusion, patients were neurologically examined for 10 consecutive days. Afterwards, all patients were assessed at least once a week. Results ICANS occurred in 4/15 patients (27%) within 6 days (4–6 days) after CAR T cell infusion. Patients with ICANS grade 2 (n = 3) exhibited similar neurological symptoms including apraxia, expressive aphasia, disorientation, and hallucinations, while brain MRI was inconspicuous in either case. Treatment with dexamethasone rapidly resolved the clinical symptoms in all three patients. Regarding baseline parameters prior to CAR T cell treatment, patients with and without ICANS did not differ. Conclusions In our cohort, ICANS occurred in only every fourth patient and rather low grade neurotoxicity was found during daily examination. Our results demonstrate that a structured neurological baseline examination and close monitoring are helpful to detect CAR T cell related neurotoxicity already at an early stage and to potentially prevent higher grade neurotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-021-00166-5.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Viktoria Bonda
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Victoria Panagiota
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Tabea Fröhlich
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Schultze-Florey
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sascha David
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Sonja Körner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
304
|
Wehrli M, Gallagher K, Chen YB, Leick MB, McAfee SL, El-Jawahri AR, DeFilipp Z, Horick N, O'Donnell P, Spitzer T, Dey B, Cook D, Trailor M, Lindell K, Maus MV, Frigault MJ. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). J Immunother Cancer 2022; 10:jitc-2021-003847. [PMID: 34996813 PMCID: PMC8744112 DOI: 10.1136/jitc-2021-003847] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
In addition to remarkable antitumor activity, chimeric antigen receptor (CAR) T-cell therapy is associated with acute toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Current treatment guidelines for CRS and ICANS include use of tocilizumab, a monoclonal antibody that blocks the interleukin (IL)-6 receptor, and corticosteroids. In patients with refractory CRS, use of several other agents as third-line therapy (including siltuximab, ruxolitinib, anakinra, dasatinib, and cyclophosphamide) has been reported on an anecdotal basis. At our institution, anakinra has become the standard treatment for the management of steroid-refractory ICANS with or without CRS, based on recent animal data demonstrating the role of IL-1 in the pathogenesis of ICANS/CRS. Here, we retrospectively analyzed clinical and laboratory parameters, including serum cytokines, in 14 patients at our center treated with anakinra for steroid-refractory ICANS with or without CRS after standard treatment with tisagenlecleucel (Kymriah) or axicabtagene ciloleucel (Yescarta) CD19-targeting CAR T. We observed statistically significant and rapid reductions in fever, inflammatory cytokines, and biomarkers associated with ICANS/CRS after anakinra treatment. With three daily subcutaneous doses, anakinra did not have a clear, clinically dramatic effect on neurotoxicity, and its use did not result in rapid tapering of corticosteroids; although neutropenia and thrombocytopenia were common at the time of anakinra dosing, there were no clear delays in hematopoietic recovery or infections that were directly attributable to anakinra. Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.
Collapse
Affiliation(s)
- Marc Wehrli
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA
| | - Kathleen Gallagher
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA
| | - Yi-Bin Chen
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Steven L McAfee
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Areej R El-Jawahri
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Zachariah DeFilipp
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nora Horick
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Paul O'Donnell
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Thomas Spitzer
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Bimal Dey
- Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Daniella Cook
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Michael Trailor
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Kevin Lindell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA .,Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Medical School, Boston, MA, USA.,Hematopoietic Cell Transplant & Cell Therapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
305
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
306
|
Abstract
In 1891, Dr. William B. Coley, an American surgeon, made a compelling observation that immune system can be triggered to shrink tumors. The quest to exploit the power of immunotherapy however was forestalled by an era of chemotherapy that ensued. During World War II, the accidental sinking of a US naval ship led to a group of sailors developing pancytopenia due to poisoning from mustard gas (nitrogen mustard). The observation prompted wide-scale screening of these chemical compounds with cytotoxic potential; further clinical trials led to the first Food and Drug Administration (FDA) approval of a chemotherapy drug, nitrogen mustard. Immunotherapy field took further impetus, not until the last two decades, due to our deeper understanding of the immune system and the cellular and molecular pathways leading to tumor development. Two groundbreaking therapies which have shown great promise in this field involve "taking the breaks off" and "pushing the pedal" of the immune system. These therapies, namely, immune checkpoint inhibitors and adoptive cell therapy, respectively, have been successful in a variety of malignancies, while the former mostly in solid tumors and the latter in hematological malignancies.
Collapse
Affiliation(s)
- Ranjit Nair
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Jason Westin
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
307
|
Neurologic Toxicities of Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:417-429. [PMID: 34972978 DOI: 10.1007/978-3-030-79308-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunotherapy has revolutionized treatment of cancer over the past two decades. The antitumor effects of immunotherapy approaches are at the expense of growing spectrum of immune-related adverse events (irAEs) due to cross-reactivity between the tumor and normal host tissue. These adverse events can happen in any organ and range from mild to severe and even life-threatening conditions. While neurological irAEs associated with immune checkpoint inhibitors (CPIs) are rare, they pose a significant challenge in management as the clinical phenotypes are heterogenous and frequently necessitate cessation of therapy and systemic immune suppression and lead to transient functional decline. On the other hand, immune effector cell-associated neurotoxicity (ICANS) is common, frequently occurs in conjunction with cytokine release syndrome (CRS), and poses a significant clinical challenge to the development and widespread use of these effective therapies. Early recognition of these neurological syndromes, timely diagnosis, and thoughtful management are key for further clinical development of these effective therapies in cancer patients. Here, we describe clinical phenotypes of CPI-induced neurological complications and ICANS and discuss steps in clinical monitoring, diagnosis, and effective management.
Collapse
|
308
|
Wudhikarn K, Tomás AA, Murata K, Perales MA. Chimeric antigen receptor T cells and management of toxicities: implications of biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
309
|
Chhabra N, Kennedy J. A Review of Cancer Immunotherapy Toxicity II: Adoptive Cellular Therapies, Kinase Inhibitors, Monoclonal Antibodies, and Oncolytic Viruses. J Med Toxicol 2022; 18:43-55. [PMID: 33821435 PMCID: PMC8021214 DOI: 10.1007/s13181-021-00835-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy for cancer has undergone a rapid expansion in classes, agents, and indications. By utilizing aspects of the body's innate immune system, immunotherapy has improved life expectancy and quality of life for patients with several types of cancer. Adoptive cellular therapies, including chimeric antigen receptor T (CAR T) cell therapy, involve the genetic engineering of patient T cells to allow for targeting of neoplastic cells. Monitoring of patients during the lymphodepletion prior to therapy and following CAR T cell infusion is necessary to detect toxicity of therapy. Specific toxicities include cytokine release syndrome and neurologic toxicity, both of which may be life-threatening. Tocilizumab and/or corticosteroids should be considered for moderate to severe toxicity. Kinase inhibitor toxicity can occur as "on target" effects or "off target" effects to multiple organ systems due to shared protein epitopes. Treatments are organ-specific. Infusion reactions are common during treatment with monoclonal antibodies and treatment is largely supportive. Clinical experience with oncolytic viruses is limited, but local reactions including cellulitis as well as systemic influenza-like syndromes have been seen but are typically mild. Although clinical experience with adverse effects due to newer immunotherapy agents is growing, an up-to-date understanding of their mechanisms and potential toxicities is critical.
Collapse
Affiliation(s)
- Neeraj Chhabra
- Department of Emergency Medicine, Division of Medical Toxicology, Cook County Health, 1950 W Polk Street, 7th Floor, Chicago, IL, 60612, USA.
- Toxikon Consortium, Chicago, IL, USA.
| | - Joseph Kennedy
- Department of Emergency Medicine, Division of Medical Toxicology, Cook County Health, 1950 W Polk Street, 7th Floor, Chicago, IL, 60612, USA
- Toxikon Consortium, Chicago, IL, USA
| |
Collapse
|
310
|
Shimabukuro-Vornhagen A, Böll B, Schellongowski P, Valade S, Metaxa V, Azoulay E, von Bergwelt-Baildon M. Critical care management of chimeric antigen receptor T-cell therapy recipients. CA Cancer J Clin 2022; 72:78-93. [PMID: 34613616 DOI: 10.3322/caac.21702] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapeutic treatment concept that is changing the treatment approach to hematologic malignancies. The development of CAR T-cell therapy represents a prime example for the successful bench-to-bedside translation of advances in immunology and cellular therapy into clinical practice. The currently available CAR T-cell products have shown high response rates and long-term remissions in patients with relapsed/refractory acute lymphoblastic leukemia and relapsed/refractory lymphoma. However, CAR T-cell therapy can induce severe life-threatening toxicities such as cytokine release syndrome, neurotoxicity, or infection, which require rapid and aggressive medical treatment in the intensive care unit setting. In this review, the authors provide an overview of the state-of-the-art in the clinical management of severe life-threatening events in CAR T-cell recipients. Furthermore, key challenges that have to be overcome to maximize the safety of CAR T cells are discussed.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
| | - Boris Böll
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
| | - Peter Schellongowski
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Center, Center of Excellence in Medical Intensive Care (CEMIC), Medical University of Vienna, Vienna, Austria
| | - Sandrine Valade
- Medical Intensive Care Unit, St Louis Teaching Hospital, Public Assistance Hospitals of Paris, Paris, France
| | - Victoria Metaxa
- Department of Critical Care, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Elie Azoulay
- Medical Intensive Care Unit, St Louis Teaching Hospital, Public Assistance Hospitals of Paris, Paris, France
| | - Michael von Bergwelt-Baildon
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Comprehensive Cancer Center, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Bavarian Center for Cancer Research, Munich, Germany
- Nine-i Multinational Research Network, Service de Médecine Intensive et Réanimaton Médicale, Hôpital Saint-Louis, France
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| |
Collapse
|
311
|
de Groot PM, Arevalo O, Shah K, Strange CD, Shroff GS, Ahuja J, Truong MT, de Groot JF, Vlahos I. Imaging Primer on Chimeric Antigen Receptor T-Cell Therapy for Radiologists. Radiographics 2022; 42:176-194. [PMID: 34990326 DOI: 10.1148/rg.210065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a recently approved breakthrough treatment that has become a new paradigm in treatment of recurrent or refractory B-cell lymphomas and pediatric or adult acute lymphoid leukemia. CAR T cells are a type of cellular immunotherapy that artificially enhances T cells to boost eradication of malignancy through activation of the native immune system. The CAR construct is a synthetically created functional cell receptor grafted onto previously harvested patient T cells, which bind to preselected tumor-associated antigens and thereby activate host immune signaling cascades to attack tumor cells. Advantages include a single treatment episode of 2-3 weeks and durable disease elimination, with remission rates of over 80%. Responses to therapy are more rapid than with conventional chemotherapy or immunotherapy, with intervening short-interval edema. CAR T-cell administration is associated with therapy-related toxic effects in a large percentage of patients, notably cytokine release syndrome, immune effect cell-associated neurotoxicity syndrome, and infections related to immunosuppression. Knowledge of the expected evolution of therapy response and potential adverse events in CAR T-cell therapy and correlation with the timeline of treatment are important to optimize patient care. Some toxic effects are radiologically evident, and familiarity with their imaging spectrum is key to avoiding misinterpretation. Other clinical toxic effects may be occult at imaging and are diagnosed on the basis of clinical assessment. Future directions for CAR T-cell therapy include new indications and expanded tumor targets, along with novel ways to capture T-cell activation with imaging. An invited commentary by Ramaiya and Smith is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Patricia M de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Octavio Arevalo
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Komal Shah
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Chad D Strange
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Girish S Shroff
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Jitesh Ahuja
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Mylene T Truong
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - John F de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Ioannis Vlahos
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| |
Collapse
|
312
|
Wang Y, Zu C, Teng X, Yang L, Zhang M, Hong R, Zhao H, Cui J, Xu H, Hongsheng AC, Hu Y, Huang H. BCMA CAR-T Therapy Is Safe and Effective for Refractory/Relapsed Multiple Myeloma With Central Nervous System Involvement. J Immunother 2022; 45:25-34. [PMID: 34874329 DOI: 10.1097/cji.0000000000000391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) involvement is a rare complication of multiple myeloma (MM) that portends an extremely poor prognosis. Although chimeric antigen receptor (CAR)-T cell therapy is considered a promising strategy for patients with MM, the role of CAR-T cell therapy in MM involving the CNS has not been fully elucidated. In this study, we retrospectively analyzed 4 cases of B-cell maturation antigen CAR-T cell therapy for patients with relapsed/refractory MM involving the CNS. Patients received a range of 2-7 lines of prior therapy, including 1 autologous hematopoietic stem cell transplant. The most common adverse event was cytokine release syndrome, which was observed in all 4 patients, including 2 with grade 1 and 2 with grade 2. No patient was complicated with immune effector cell-associated neurotoxicity syndrome. Within the follow-up (median: 257 d, range: 116-392 d), 3 of 4 patients reached complete remission (CR), and 1 patient reached partial response. At the data cutoff, 1 patient continued to remain in CR at day 220, and the patient with partial response died at day 116. The other 2 patients relapsed at 317 and 111 days with CR durations of 287 and 81 days, respectively. Our results show promising effectiveness and acceptable safety of CAR-T cell therapy for heavily pretreated patients with CNS MM.
Collapse
Affiliation(s)
- Yiyun Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Cheng Zu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Alex Chang Hongsheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| |
Collapse
|
313
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
314
|
Faulhaber LD, Phuong AQ, Hartsuyker KJ, Cho Y, Mand KK, Harper SD, Olson AK, Garden GA, Shih AY, Gust J. Brain capillary obstruction during neurotoxicity in a mouse model of anti-CD19 chimeric antigen receptor T-cell therapy. Brain Commun 2021; 4:fcab309. [PMID: 35169706 PMCID: PMC8833245 DOI: 10.1093/braincomms/fcab309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy for haematologic malignancies with CD19-directed chimeric antigen receptor T cells has been highly successful at eradicating cancer but is associated with acute neurotoxicity in ∼40% of patients. This neurotoxicity correlates with systemic cytokine release syndrome, endothelial activation and disruption of endothelial integrity, but it remains unclear how these mechanisms interact and how they lead to neurologic dysfunction. We hypothesized that dysfunction of the neurovascular unit is a key step in the development of neurotoxicity. To recapitulate the interaction of the intact immune system with the blood-brain barrier, we first developed an immunocompetent mouse model of chimeric antigen receptor T-cell treatment-associated neurotoxicity. We treated wild-type mice with cyclophosphamide lymphodepletion followed by escalating doses of murine CD19-directed chimeric antigen receptor T cells. Within 3-5 days after chimeric antigen receptor T-cell infusion, these mice developed systemic cytokine release and abnormal behaviour as measured by daily neurologic screening exams and open-field testing. Histologic examination revealed widespread brain haemorrhages, diffuse extravascular immunoglobulin deposition, loss of capillary pericyte coverage and increased prevalence of string capillaries. To measure any associated changes in cerebral microvascular blood flow, we performed in vivo two-photon imaging through thinned-skull cranial windows. Unexpectedly, we found that 11.9% of cortical capillaries were plugged by Day 6 after chimeric antigen receptor T-cell treatment, compared to 1.1% in controls treated with mock transduced T cells. The capillary plugs comprised CD45+ leucocytes, a subset of which were CD3+ T cells. Plugging of this severity is expected to compromise cerebral perfusion. Indeed, we found widely distributed patchy hypoxia by hypoxyprobe immunolabelling. Increased serum levels of soluble ICAM-1 and VCAM-1 support a putative mechanism of increased leucocyte-endothelial adhesion. These data reveal that brain capillary obstruction may cause sufficient microvascular compromise to explain the clinical phenotype of chimeric antigen receptor T-cell neurotoxicity. The translational impact of this finding is strengthened by the fact that our mouse model closely approximates the kinetics and histologic findings of the chimeric antigen receptor T-cell neurotoxicity syndrome seen in human patients. This new link between systemic immune activation and neurovascular unit injury may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Lila D. Faulhaber
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Anthea Q. Phuong
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kendra Jae Hartsuyker
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yeheun Cho
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Katie K. Mand
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Stuart D. Harper
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Aaron K. Olson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Juliane Gust
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
315
|
Barrière S, El-Ghazzi N, Garcia M, Guièze R. [Bispecific antibodies in onco-hematology: Applications and perspectives]. Bull Cancer 2021; 108:S195-S204. [PMID: 34920803 DOI: 10.1016/j.bulcan.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Bispecific antibodies are novel approaches of immunotherapy engaging immune cells to destroy tumor cells. Their structure is variable and underlies their pharmacocinetic properties. These coumpounds are now being evaluated across multiple hematological malignancies. The anti-CD3/CD19 antibody blinatumomab is the first in class and have been approved for the treatment of patients with Ph-negative B-cell acute lymphoblastic leukemia. Other emerging applications are lymphoma, multiple myeloma and acute myeloid leukemia. The safety profile of bispecific antibodies is acceptable while limited by neurotoxicity and cytokine-release syndrome. The present review aims to depict the landscape of emerging bispecific antibodies currently in development for hematological malignancies.
Collapse
Affiliation(s)
- Sabrina Barrière
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France.
| | - Nathan El-Ghazzi
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France
| | - Manon Garcia
- Université Clermont-Auvergne, EA 7453, CHELTER, Clermont-Ferrand, France; Institut GReD, 28, place Henri-Dunant, 63100 Clermont-Ferrand, France
| | - Romain Guièze
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France; Université Clermont-Auvergne, EA 7453, CHELTER, Clermont-Ferrand, France
| |
Collapse
|
316
|
Zhang ZZ, Wang T, Wang XF, Zhang YQ, Song SX, Ma CQ. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol Res 2021; 175:106036. [PMID: 34920118 DOI: 10.1016/j.phrs.2021.106036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a late-model of immune cell therapy that has been shown to be effective in refractory/recurrent B-cell leukemia and lymphoma. Compared with the traditional anti-tumor methods, CAR-T cell therapy has the advantages of higher specificity, stronger lethality and longer-lasting efficacy. Although CAR-T cells have made significant progress in the treatment of hematologic malignancies, diverse difficulties remain in the treatment of solid tumors, including immune escape due to tumor antigen heterogeneity, preventing entry or limiting the persistence of CAR-T cells by physical or cytokine barriers and along with other immunosuppressive molecule and cells in the tumor microenvironment (TME). Otherwise, the intracellular signaling of CAR also impact on CAR-T cells persistence. Appropriate modification of intracellular costimulatory molecular signal in the structure of CAR or coexpression of CAR and cytokines can provide a way to enhance CAR-T cells activity. Additionally, CAR-T cells dysfunction due to T cell exhaustion is associated with multi-factors, especially transcription factors, such as c-Jun, NR4A. Engineering CAR-T cells to coexpress or knockout transcription factors in favor of TCM memory CAR-T cells differentiation was proved to prolonged the survival of CAR-T cells. Finally, combination of CAR-T cells with oncolytic viruses, nanoparticles or immune checkpoint inhibitors provides an effective measure to improve CAR-T cells function. Here, we discuss all of these advances and challenges and review promising strategies for treating solid tumors. In particular, we also highlight that CAR-T cells have enormous potential to be used in combination with other immunotherapies.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Tian Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Xiao-Feng Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Yu-Qing Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Shu-Xia Song
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| | - Cui-Qing Ma
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| |
Collapse
|
317
|
Walkovich K. Understanding neutropenia secondary to intrinsic or iatrogenic immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:504-513. [PMID: 34889406 PMCID: PMC8791120 DOI: 10.1182/hematology.2021000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a key member of the innate and adaptive immune response, neutrophils provide insights into the hematopoietic and inflammatory manifestations of inborn errors of immunity (IEI) and the consequences of immunotherapy. The facile recognition of IEI presenting with neutropenia provides an avenue for hematologists to facilitate early diagnosis and expedite biologically rationale care. Moreover, enhancing the understanding of the molecular mechanisms driving neutropenia in IEI-decreased bone marrow reserves, diminished egress from the bone marrow, and decreased survival-offers an opportunity to further dissect the pathophysiology driving neutropenia secondary to iatrogenic immune dysregulation, eg, immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Kelly Walkovich
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Correspondence Kelly Walkovich, Department of Pediatrics, University of Michigan, 1540 E Medical Center Dr, Ann Arbor, MI 48109; e-mail:
| |
Collapse
|
318
|
Ferreira LMR, Muller YD. CAR T-Cell Therapy: Is CD28-CAR Heterodimerization Its Achilles' Heel? Front Immunol 2021; 12:766220. [PMID: 34868017 PMCID: PMC8635711 DOI: 10.3389/fimmu.2021.766220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Leonardo M R Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Yannick D Muller
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
319
|
Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, Li Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:367. [PMID: 34794490 PMCID: PMC8600921 DOI: 10.1186/s13046-021-02148-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has yielded impressive outcomes and transformed treatment algorithms for hematological malignancies. To date, five CAR T-cell products have been approved by the US Food and Drug Administration (FDA). Nevertheless, some significant toxicities pose great challenges to the development of CAR T-cell therapy, most notably cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Understanding the mechanisms underlying these toxicities and establishing prevention and treatment strategies are important. In this review, we summarize the mechanisms underlying CRS and ICANS and provide potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.,Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, People's Republic of China.
| |
Collapse
|
320
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Optimizing the Clinical Impact of CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia: Looking Back While Moving Forward. Front Immunol 2021; 12:765097. [PMID: 34777381 PMCID: PMC8581403 DOI: 10.3389/fimmu.2021.765097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been successful in creating extraordinary clinical outcomes in the treatment of hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). With several FDA approvals, CAR-T therapy is recognized as an alternative treatment option for particular patients with certain conditions of B-ALL, diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, or multiple myeloma. However, CAR-T therapy for B-ALL can be surrounded by challenges such as various adverse events including the life-threatening cytokine release syndrome (CRS) and neurotoxicity, B-cell aplasia-associated hypogammaglobulinemia and agammaglobulinemia, and the alloreactivity of allogeneic CAR-Ts. Furthermore, recent advances such as improvements in media design, the reduction of ex vivo culturing duration, and other phenotype-determining factors can still create room for a more effective CAR-T therapy in R/R B-ALL. Herein, we review preclinical and clinical strategies with a focus on novel studies aiming to address the mentioned hurdles and stepping further towards a milestone in CAR-T therapy of B-ALL.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
321
|
Liu W, Cao W, Geng ZZ, Wang N, Pan Q, Guo S, Zhou J, Xu S. A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angew Chem Int Ed Engl 2021; 61:e202109550. [PMID: 34783141 DOI: 10.1002/anie.202109550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/08/2021] [Indexed: 11/11/2022]
Abstract
As a revolutionary cancer treatment, the chimeric antigen receptor (CAR) T cell therapy suffers from complications such as cytokine release syndromes and T cell exhaustion. Their mitigation desires controllable activation of CAR-T cells that is achievable through regulatory display of CARs. By embedding the hepatitis C virus NS3 protease (HCV-NS3) between the single-chain variable fragment (scFv) and the hinge domain, we showed that the display of anti-CD19 scFv on CAR-T cells was positively correlated to the presence of a clinical HCV-NS3 inhibitor asunaprevir (ASV). This novel CAR design that allows the display of anti-CD19 scFv in the presence of ASV and its removal in the absence of ASV creates a practically recurring chemical switch. We demonstrated that the intact CAR on T cells can be repeatedly turned on and off by controlling the presence of ASV in a dose dependent manner both in vitro and in vivo, which enables delicate modulation of CAR-T activation during cancer treatment.
Collapse
Affiliation(s)
- Wenshe Liu
- Texas A&M University, Department of Chemistry, Corner of Ross and Spence Streets, 77845, College Station, UNITED STATES
| | - Wenyue Cao
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, CHINA
| | - Zhi Z Geng
- Texas A&M University, Chemistry, Department of Chemistry, Corner of Spence and Ross Streets, 77843-3255, United States, College Station, UNITED STATES
| | - Na Wang
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, UNITED STATES
| | - Quan Pan
- Texas A&M University, Nutrition and food science, UNITED STATES
| | - Shaodong Guo
- Texas A&M University, Nutrition and food science, UNITED STATES
| | - Jianfeng Zhou
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, CHINA
| | - Shiqing Xu
- Texas A&M University, Chemistry, UNITED STATES
| |
Collapse
|
322
|
Uckun FM. Dual Targeting of Multiple Myeloma Stem Cells and Myeloid-Derived Suppressor Cells for Treatment of Chemotherapy-Resistant Multiple Myeloma. Front Oncol 2021; 11:760382. [PMID: 34858838 PMCID: PMC8631522 DOI: 10.3389/fonc.2021.760382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Here we review the insights and lessons learned from early clinical trials of T-cell engaging bispecific antibodies (BsABs) as a new class of biotherapeutic drug candidates with clinical impact potential for the treatment of multiple myeloma (MM). BsABs are capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant MM clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC). T-cell engaging BsAB targeting the BCMA antigen may help delay disease progression in MM by destroying the MM cells. T-cell engaging BsAB targeting the CD38 antigen may help delay disease progression in MM by depleting both the malignant MM clones and the MDSC in the bone marrow microenvironment (BMME). BsABs may facilitate the development of a new therapeutic paradigm for achieving improved survival in MM by altering the immunosuppressive BMME. T-cell engaging BsiABs targeting the CD123 antigen may help delay disease progression in MM by depleting the MDSC in the BMME and destroying the MM stem cells that also carry the CD123 antigen on their surface.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN, United States
- Clinical Research Program, Aptevo Therapeutics, Seattle, WA, United States
- Translational Oncology Program, Reven Pharmaceuticals, Westminster, CO, United States
| |
Collapse
|
323
|
Smith DA, Kikano E, Tirumani SH, de Lima M, Caimi P, Ramaiya NH. Imaging-based Toxicity and Response Pattern Assessment Following CAR T-Cell Therapy. Radiology 2021; 302:438-445. [PMID: 34751616 DOI: 10.1148/radiol.2021210760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Chimeric antigen receptor (CAR) T-cell immunotherapy is increasingly used for refractory lymphoma but may lead to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Imaging may assist in clinical management. Associations between CRS or ICANS grade and imaging findings remain not fully established. Purpose To determine associations between imaging findings and clinical grade of CRS or ICANS, evaluate response patterns, and assess imaging use following CAR T-cell treatment. Materials and Methods Patients with refractory B-cell lymphoma who received CAR T-cell infusion between 2018 and 2020 at a single center were analyzed retrospectively. Clinical CRS or ICANS toxicity grade was assessed using American Society for Transplantation and Cellular Therapy, or ASTCT, consensus grading. Thoracic and head images (radiographs, CT scans, MRI scans) were evaluated. Associations between imaging findings and clinical CRS or ICANS grade were analyzed. Wilcoxon signed-rank and χ2 tests were used to assess associations between thoracic imaging findings, clinical CRS toxicity grade, and imaging-based response. Response to therapy was evaluated according to Deauville five-point scale criteria. Results A total of 38 patients (mean age ± standard deviation, 59 years ± 10; 23 men) who received CAR T-cell infusion were included. Of these, 24 (63% [95% CI: 48, 79]) and 11 (29% [95% CI: 14, 44]) experienced clinical grade 1 or higher CRS and ICANS, respectively. Patients with grade 2 or higher CRS were more likely to have thoracic images with abnormal findings (10 of 14 patients [71%; 95% CI: 47, 96] vs five of 24 patients [21%; 95% CI: 4, 37]; P = .002) and more likely to have imaging evidence of pleural effusions (five of 14 [36%; 95% CI: 10, 62] vs two of 24 [8.3%; 95% CI: 0, 20]; P = .04) and atelectasis (eight of 14 [57%; 95% CI: 30, 84] vs six of 24 [25%; 95% CI: 7, 43]; P = .048). Positive imaging findings were identified in three of seven patients (43%) with grade 2 or higher ICANS who underwent neuroimaging. The best treatment response included 20 of 36 patients (56% [95% CI: 39, 72]) with complete response, seven of 36 (19% [95% CI: 6, 33]) with partial response, one of 36 (2.8% [95% CI: 0, 8]) with stable disease, and eight of 36 (22% [95% CI: 8, 36]) with progressive disease. Conclusion Thoracic imaging findings, including pleural effusions and atelectasis, correlated with cytokine release syndrome grade following chimeric antigen receptor (CAR) T-cell infusion. CAR T-cell therapy yielded high response rates. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Langer in this issue.
Collapse
Affiliation(s)
- Daniel A Smith
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| | - Elias Kikano
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| | - Sree Harasha Tirumani
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| | - Marcos de Lima
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| | - Paolo Caimi
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| | - Nikhil H Ramaiya
- From the Department of Radiology (D.A.S., E.K., S.H.T., N.H.R.) and Department of Medicine, Division of Hematology and Oncology (P.C.), University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Blood and Marrow Transplant Program, The Ohio State University, Columbus, Ohio (M.d.L.)
| |
Collapse
|
324
|
Johnsrud A, Craig J, Baird J, Spiegel J, Muffly L, Zehnder J, Tamaresis J, Negrin R, Johnston L, Arai S, Shizuru J, Lowsky R, Meyer E, Weng WK, Shiraz P, Rezvani A, Latchford T, Mackall C, Miklos D, Frank M, Sidana S. Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy. Blood Adv 2021; 5:4465-4475. [PMID: 34521106 PMCID: PMC8579267 DOI: 10.1182/bloodadvances.2021004716] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Bleeding and thrombotic events are an emerging toxicity associated with chimeric antigen receptor (CAR) therapies. To determine their incidence, we retrospectively analyzed consecutive adult patients (N = 127) with large B-cell lymphoma (LBCL) or B-cell acute lymphoblastic leukemia (B-ALL) treated from 2017 through 2020 with axicabtagene ciloleucel (axi-cel; n = 89) or a bispecific CD19/CD22 CAR (n = 38). Twelve (9.4%) and 8 (6.3%) patients developed bleeding and thrombosis within the first 3 months, respectively. In the axi-cel subgroup, these occurred in 11.2% and 6.7%, respectively. Bleeding occurred between days 8 and 30 (median, 17.5) and thrombosis between days 2 and 91 (median, 29). Bleeding sites included genitourinary, soft tissue, intracranial, gastrointestinal, and pulmonary and were associated with features of consumptive coagulopathy. On univariate analysis, patients with bleeding were older, had lower baseline platelets (86 × 103/μL vs 178 × 103/μL; P < .01), lower platelet and fibrinogen nadirs , and elevated lactate dehydrogenase. Immune effector cell (IEC)-associated neurotoxicity syndrome (ICANS) grade ≥3 was associated with increased bleeding (50% vs 15%; P = .01), thrombosis (50% vs 16%; P = .04), prothrombin time prolongation, hypofibrinogenemia, and elevated D-dimer. Low pretreatment platelet counts were associated with bleeding in a multivariate logistic regression model. Patients with thrombocytopenia or severe ICANS are at increased risk of bleeding and should be closely monitored, particularly within the first month after CAR therapy. Future studies in larger cohorts should assess risk factors for systemic coagulopathies in CAR T therapy, including their association with neurotoxicity.
Collapse
Affiliation(s)
- Andrew Johnsrud
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Juliana Craig
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - John Baird
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Jay Spiegel
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | | | - John Tamaresis
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Robert Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Laura Johnston
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Sally Arai
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Judith Shizuru
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Robert Lowsky
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Everett Meyer
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Wen-Kai Weng
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Parveen Shiraz
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Andrew Rezvani
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Theresa Latchford
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Crystal Mackall
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - David Miklos
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Matthew Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| | - Surbhi Sidana
- Division of Blood and Marrow Transplantation and Cellular Therapy; and
| |
Collapse
|
325
|
Rebechi MT, Bork JT, Riedel DJ. HHV-6 Encephalitis After Chimeric Antigen Receptor T-cell Therapy (CAR-T): 2 Case Reports and a Brief Review of the Literature. Open Forum Infect Dis 2021; 8:ofab470. [PMID: 34738024 PMCID: PMC8562470 DOI: 10.1093/ofid/ofab470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) reactivation can occur in patients who are highly immunosuppressed, including those who have undergone hematopoietic stem cell transplantation (HSCT). HHV-6 encephalitis is a severe manifestation that is well described in the HSCT population. Chimeric antigen receptor T-cell (CAR-T) therapy is a novel cancer-directed immunotherapy that results in severe immunosuppression. Patients undergoing CAR-T therapy may be at risk for HHV-6 encephalitis, which can be difficult to distinguish from a common adverse effect of CAR-T therapy, neurotoxicity. Herein, we describe 2 patients diagnosed with HHV-6 encephalitis after CAR-T therapy and discuss the diagnostic approach and differential diagnosis for altered mental status after CAR-T therapy. Diagnosing HHV-6 encephalitis can be difficult in this patient population as altered mental status is common after CAR-T therapy and may be attributed to CAR-T-associated neurotoxicity.
Collapse
Affiliation(s)
| | - Jacqueline T Bork
- University of Maryland School of Medicine, Baltimore Maryland,USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland,USA
| | - David J Riedel
- University of Maryland School of Medicine, Baltimore Maryland,USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland,USA
| |
Collapse
|
326
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
327
|
Burton LB, Eskian M, Guidon AC, Reynolds KL. A review of neurotoxicities associated with immunotherapy and a framework for evaluation. Neurooncol Adv 2021; 3:v108-v120. [PMID: 34859238 PMCID: PMC8633791 DOI: 10.1093/noajnl/vdab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immuno-oncology agents, including immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T (CAR-T) cell therapies, are increasing in use for a growing list of oncologic indications. While harnessing the immune system against cancer cells has a potent anti-tumor effect, it can also cause widespread autoimmune toxicities that limit therapeutic potential. Neurologic toxicities have unique presentations and can progress rapidly, necessitating prompt recognition. In this article, we review the spectrum of central and peripheral neurologic immune-related adverse events (irAEs) associated with ICI therapies, emphasizing a diagnostic framework that includes consideration of the therapy regimen, timing of symptom onset, presence of non-neurologic irAEs, pre-existing neurologic disease, and syndrome specific features. In addition, we review the immune effector cell-associated neurotoxicity syndrome (ICANS) associated with CAR-T cell therapy and address diagnostic challenges specific to patients with brain metastases. As immunotherapy use grows, so too will the number of patients affected by neurotoxicity. There is an urgent need to understand pathogenic mechanisms, predictors, and optimal treatments of these toxicities, so that we can manage them without sacrificing anti-tumor efficacy.
Collapse
Affiliation(s)
- Leeann B Burton
- Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Eskian
- Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda C Guidon
- Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kerry L Reynolds
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
328
|
Heslop HE, Stadtmauer EA, Levine JE, Ballen KK, Chen YB, DeZern AE, Eapen M, Hamadani M, Hamilton BK, Hari P, Jones RJ, Logan BR, Kean LS, Leifer ES, Locke FL, Maziarz RT, Nemecek ER, Pasquini M, Phelan R, Riches ML, Shaw BE, Walters MC, Foley A, Devine SM, Horowitz MM. Blood and Marrow Transplant Clinical Trials Network State of the Science Symposium 2021: Looking Forward as the Network Celebrates its 20th Year. Transplant Cell Ther 2021; 27:885-907. [PMID: 34461278 PMCID: PMC8556300 DOI: 10.1016/j.jtct.2021.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
In 2021 the BMT CTN held the 4th State of the Science Symposium where the deliberations of 11 committees concerning major topics pertinent to a particular disease, modality, or complication of transplant, as well as two committees to consider clinical trial design and inclusion, diversity, and access as cross-cutting themes were reviewed. This article summarizes the individual committee reports and their recommendations on the highest priority questions in hematopoietic stem cell transplant and cell therapy to address in multicenter trials.
Collapse
Affiliation(s)
| | | | - John E Levine
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Mary Eapen
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Mehdi Hamadani
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Parameswaran Hari
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Brent R Logan
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | | | | | - Marcelo Pasquini
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Rachel Phelan
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Bronwen E Shaw
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Mark C Walters
- University of California San Francisco, San Francisco, California
| | - Amy Foley
- National Marrow Donor Program, Minneapolis, Minnesota
| | | | - Mary M Horowitz
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| |
Collapse
|
329
|
Wudhikarn K, Bansal R, Khurana A, Hathcock MA, Braksick SA, Bennani NN, Paludo J, Villasboas JC, Wang Y, Johnston PB, Ansell SM, Lin Y. Age defining immune effector cell associated neurotoxicity syndromes in aggressive large B cell lymphoma patients treated with axicabtagene ciloleucel. Am J Hematol 2021; 96:E427-E430. [PMID: 34424554 DOI: 10.1002/ajh.26330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Kitsada Wudhikarn
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
- Division of Hematology and Research Unit in Translational Hematology, Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Radhika Bansal
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Arushi Khurana
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Matthew A. Hathcock
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | | | - N. Nora Bennani
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Jose C. Villasboas
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Yucai Wang
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Patrick B. Johnston
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Stephen M. Ansell
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Yi Lin
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
330
|
Caimi PF, Pacheco Sanchez G, Sharma A, Otegbeye F, Ahmed N, Rojas P, Patel S, Kleinsorge Block S, Schiavone J, Zamborsky K, Boughan K, Hillian A, Reese-Koc J, Maschan M, Dropulic B, Sekaly RP, de Lima M. Prophylactic Tocilizumab Prior to Anti-CD19 CAR-T Cell Therapy for Non-Hodgkin Lymphoma. Front Immunol 2021; 12:745320. [PMID: 34712233 PMCID: PMC8546323 DOI: 10.3389/fimmu.2021.745320] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Anti-CD19 chimeric antigen receptor T (CAR-T) cells have demonstrated activity against relapsed/refractory lymphomas. Cytokine release syndrome (CRS) and immune effector cell – associated neurotoxicity syndrome (ICANS) are well-known complications. Tocilizumab, a monoclonal antibody targeting the interleukin-6 (IL-6) receptor was administered 1 hour prior to infusion of anti-CD19 CAR-T cells with CD3ζ/4-1BB costimulatory signaling used to treat non-Hodgkin lymphoma patients. Relapsed/refractory lymphoma patients treated with anti-CD19 CAR-T cells were included in this analysis. Cytokine plasma levels were measured by electrochemiluminescence before lymphodepleting chemotherapy, prior to infusion and then on days 2, 4,6, and 14 days after treatment. Twenty patients were treated. Cell products included locally manufactured anti-CD19 CAR-T (n=18) and tisagenlecleucel (n=2). There were no adverse events attributed to tocilizumab. Ten patients had grade 1–2 CRS at a median of 4 (range 3-7) days. There were no cases of grade ≥3 CRS. Five patients had ICANS, grade 1 (n=4) and grade 4 (n=1). Laboratory studies obtained prior to lymphodepleting chemotherapy were comparable between patients with and without CRS, except for interleukin (IL)-15 plasma concentrations. patients with CRS had higher post-infusion ferritin and C reactive protein, with more marked increases in inflammatory cytokines, including IL-6, IL-15, IFN-γ, fractalkine and MCP-1. Fifteen patients (75%) achieved CR and 2 (10%), PR. One-year OS and PFS estimates were 83% and 73%. Prophylactic tocilizumab was associated with low CRS incidence and severity. There were no adverse events associated with tocilizumab, no increase in frequency or severity of ICANS and excellent disease control and overall survival.
Collapse
Affiliation(s)
- Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | | | - Ashish Sharma
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - Folashade Otegbeye
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Nausheen Ahmed
- Department of Medicine, The University of Kansas, Kansas City, KY, United States
| | - Patricio Rojas
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Seema Patel
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Sarah Kleinsorge Block
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Jennifer Schiavone
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Kayla Zamborsky
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Kirsten Boughan
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Antoinette Hillian
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Jane Reese-Koc
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail Maschan
- Dmitryi Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Boro Dropulic
- Lentigen, A Miltenyi Biotec Company, Gaithersburg, MD, United States
| | | | - Marcos de Lima
- Department of Hematology and Oncology, Cleveland Clinic, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
331
|
Ferreras C, Fernández L, Clares-Villa L, Ibáñez-Navarro M, Martín-Cortázar C, Esteban-Rodríguez I, Saceda J, Pérez-Martínez A. Facing CAR T Cell Challenges on the Deadliest Paediatric Brain Tumours. Cells 2021; 10:2940. [PMID: 34831165 PMCID: PMC8616287 DOI: 10.3390/cells10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood-brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients' quality of life.
Collapse
Affiliation(s)
- Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Lucía Fernández
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Laura Clares-Villa
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Marta Ibáñez-Navarro
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Carla Martín-Cortázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | | | - Javier Saceda
- Department of Paediatric Neurosurgery, University Hospital La Paz, 28046 Madrid, Spain;
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
- Paediatric Haemato-Oncology Department, University Hospital La Paz, 28046 Madrid, Spain
- Faculty of Medicine Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
332
|
Wudhikarn K, Soh SY, Huang H, Perales MA. Toxicity of Chimeric Antigen Receptor T Cells and its Management. BLOOD CELL THERAPY 2021; 4:S1-S7. [PMID: 36713468 PMCID: PMC9847268 DOI: 10.31547/bct-2021-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 02/01/2023]
Abstract
Recently, chimeric antigen receptor (CAR) T cell therapy has transformed the treatment armamentarium of relapsed/refractory B lymphoid malignancies. CAR T cells provide an excellent response rate and potential cure for these patients. However, CAR T cells also possess unique and potentially life-threatening immune-mediated side effects. Among these, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are the two most common complications associated with CAR T cell therapy. While the pathogenesis of CRS involves the activation of complex immune axes, including both cellular networks and inflammatory cytokine milieu, the mechanism of ICANS has not been fully elucidated. Other notable toxicities of CAR T cells include macrophage activation syndrome, cytopenia, and potential organ toxicities. Treatments for these complications typically encompass close observation, multidisciplinary supportive measures, and cytokine-modifying agents such as anti-interleukin-6 antibody and systemic corticosteroids. CAR T therapies can cause immunologic adverse events and management of these toxicities could also instigate a profound immune suppression state that predisposes patients to a variety of infectious complications. Prompt diagnosis and proper management of these complications are crucial to minimize CAR T cell-associated complications and to maximize the outcome of CAR T cell therapy.
Collapse
Affiliation(s)
- Kitsada Wudhikarn
- Division of Hematology and Research Unit in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shui Yen Soh
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore
| | - He Huang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
333
|
Fabrizio VA, Curran KJ. Clinical experience of CAR T cells for B cell acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2021; 34:101305. [PMID: 34625231 DOI: 10.1016/j.beha.2021.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment for both pediatric and adult patients with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL). Clinical trial results across multiple institutions with different CAR constructs report significant response rates in treated patients. One product (tisagenlecleucel) is currently FDA approved for the treatment of R/R B-ALL in patients <26 y/o. Successful application of this therapy is limited by high relapse rates, potential for significant toxicity, and logistical issues surrounding collection/production. Herein, we review published data on the use of CAR T cells for B-ALL, including results from early pivotal clinical trials, relapse data, incidence of toxicity, and mechanisms to optimize CAR T cell therapy.
Collapse
Affiliation(s)
- Vanessa A Fabrizio
- Duke University, Department of Pediatrics, Division of Pediatric Transplant and Cellular Therapy, 2400 Pratt Road, Durham, NC, 27705, USA.
| | - Kevin J Curran
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, 1275 York Avenue, New York, NY, 10065, USA; Weill Cornell Medical College, Department of Pediatrics, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
334
|
Hansen DK, Dam M, Faramand RG. Toxicities associated with adoptive cellular therapies. Best Pract Res Clin Haematol 2021; 34:101287. [PMID: 34625233 DOI: 10.1016/j.beha.2021.101287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is an effective strategy for the treatment of relapsed/refractory hematologic malignancies leading to the Food and Drug Administration (FDA) approval of five CAR T cell products. Despite encouraging efficacy, the widespread utilization of CAR T cell therapy is limited by unique immune mediated toxicities, primarily cytokine release syndrome (CRS) and neurologic toxicity. Data regarding late effects and long-term toxicities of CAR T cell therapy is evolving and includes prolonged cytopenias, hypogammaglobulinemia, infections and secondary malignancies. In this review, we will describe the clinical presentation, diagnosis, mechanisms and management of short- and long-term toxicities of CAR T cell therapy.
Collapse
Affiliation(s)
- Doris K Hansen
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL, 33612, USA.
| | - Marian Dam
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL, 33612, USA.
| | - Rawan G Faramand
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL, 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
335
|
Holroyd KB, Rubin DB, Vaitkevicius H. Neurologic Complications in Patients with Cancer. Semin Neurol 2021; 41:588-605. [PMID: 34619783 DOI: 10.1055/s-0041-1733788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurologic symptoms are commonly seen in patients with cancer and can be among the most challenging to diagnose and manage. It is often difficult to determine if new neurologic symptoms are secondary to direct effects of a malignant lesion, systemic complications of disease, paraneoplastic disorders, or side effects of cancer treatment itself. However, early diagnosis and treatment of each of these conditions can improve patients' quality of life and long-term functional outcomes. In this review, we describe a systematic approach to the diagnosis of new neurologic symptoms in patients with known malignancy. We have categorized the neurologic complications of cancer through a mechanistic approach, with an emphasis on ascertaining underlying pathophysiology to guide treatment choice. This review focuses on the acute neurologic complications of cancer that require hospital admission.
Collapse
Affiliation(s)
| | - Daniel B Rubin
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
336
|
Messmer AS, Que YA, Schankin C, Banz Y, Bacher U, Novak U, Pabst T. CAR T-cell therapy and critical care : A survival guide for medical emergency teams. Wien Klin Wochenschr 2021; 133:1318-1325. [PMID: 34613477 PMCID: PMC8671280 DOI: 10.1007/s00508-021-01948-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T‑cells are genetically engineered to give T‑cells the ability to attack specific cancer cells, and to improve outcome of patients with refractory/relapsed aggressive B‑cell malignancies. To date, several CAR T‑cell products are approved and additional products with similar indication or extended to other malignancies are currently being evaluated. Side effects of CAR T‑cell treatment are potentially severe or even life-threatening immune-related toxicities, specifically cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Consequently, medical emergency teams (MET) are increasingly involved in the assessment and management of CAR T‑cell recipients. This article describes the principles of CAR T‑cell therapy and summarizes the main complications and subsequent therapeutic interventions aiming to provide a survival guide for METs with a proposed management algorithm.
Collapse
Affiliation(s)
- Anna S Messmer
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
337
|
Arnesen VS, Gras Navarro A, Chekenya M. Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers (Basel) 2021; 13:4986. [PMID: 34638471 PMCID: PMC8507952 DOI: 10.3390/cancers13194986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive primary brain tumour with a dismal prognosis. Treatment at diagnosis has limited efficacy and there is no standardised treatment at recurrence. New, personalised treatment options are under investigation, although challenges persist for heterogenous tumours such as GBM. Gene editing technologies are a game changer, enabling design of novel molecular-immunological treatments to be used in combination with chemoradiation, to achieve long lasting survival benefits for patients. Here, we review the literature on how cutting-edge molecular gene editing technologies can be applied to known and emerging tumour-associated antigens to enhance chimeric antigen receptor T and NK cell therapies for GBM. A tight balance of limiting neurotoxicity, avoiding tumour antigen loss and therapy resistance, while simultaneously promoting long-term persistence of the adoptively transferred cells must be maintained to significantly improve patient survival. We discuss the opportunities and challenges posed by the brain contexture to the administration of the treatments and achieving sustained clinical responses.
Collapse
Affiliation(s)
| | - Andrea Gras Navarro
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| |
Collapse
|
338
|
Gutierrez-Gutierrez J, Muñoz-Calahorro R, Bermejo-Guerrero L, Molina-Collado Z, de la Fuente IS, Sánchez-Izquierdo JA. Plasmapheresis in the Treatment of Refractory Myoclonic Status. A Case Report. J Crit Care Med (Targu Mures) 2021; 7:290-293. [PMID: 34934819 PMCID: PMC8647669 DOI: 10.2478/jccm-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
A case of myoclonic status treated with plasmapheresis in a patient of 63 years of age who was admitted to a Spanish intensive care unit is reported. The patient showed clinical and radiological evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; molecular tests did not verify this.
Collapse
|
339
|
Guo H, Qian L, Cui J. Focused evaluation of the roles of macrophages in chimeric antigen receptor (CAR) T cell therapy associated cytokine release syndrome. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0087. [PMID: 34570442 PMCID: PMC8958886 DOI: 10.20892/j.issn.2095-3941.2021.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022] Open
Abstract
Cytokine release syndrome (CRS) is a major obstacle to the widespread clinical application of chimeric antigen receptor (CAR) T cell therapies. CRS can also be induced by infections (such as SARS-CoV-2), drugs (such as therapeutic antibodies), and some autoimmune diseases. Myeloid-derived macrophages play key roles in the pathogenesis of CRS, and participate in the production and release of the core CRS cytokines, including interleukin (IL)-1, IL-6, and interferon-γ. In this review, we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.
Collapse
Affiliation(s)
- Hanfei Guo
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lei Qian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
340
|
Hu K, Wang Y, Teng X, Hu Y, Huang H. Cell subsets and cytokine dynamics in cerebrospinal fluid after CAR-T cell therapy for B-cell acute lymphoblastic leukemia with central nervous system involvement. Bone Marrow Transplant 2021; 56:3088-3090. [PMID: 34580421 DOI: 10.1038/s41409-021-01471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Kejia Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
341
|
Yuen C, Rezania K, Kelly T, Bishop MR. Clinical predictors of chimeric antigen receptor T-cell therapy neurotoxicity: a single-center study. Immunotherapy 2021; 13:1261-1269. [PMID: 34558978 DOI: 10.2217/imt-2021-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aims: Neurotoxicity (NT) is a common complication of chimeric antigen receptor (CAR) T-cell therapy. Data on early clinical identifiers for impending severe NT are lacking. Methods: The authors performed a retrospective study on 26 adult relapsed/refractory diffuse large B cell lymphoma patients treated with commercial CAR T-cell therapy (December 2017 - September 2018). Results: NT of any grade and severe NT occurred in 88 and 31% of patients, respectively. Dysgraphia (p < 0.01), disorientation (p = 0.01) and inattention (p = 0.018) were associated with severe NT, with positive predictive values of 100, 87.5 and 87.5%, respectively. Dysnomia was not associated with severe NT. Conclusion: In the authors' limited cohort, the dysgraphia, disorientation and inattention components of the CAR T-cell therapy-associated toxicity 10 scoring system were significantly associated with and predictive of impending severe NT.
Collapse
Affiliation(s)
- Carlen Yuen
- Department of Neuro-Oncology, Columbia University, New York, NY 10033 USA.,Department of Neurology, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kourosh Rezania
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Thomas Kelly
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael R Bishop
- Department of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
342
|
Rives S. CAR T cells in CNS-relapsed leukaemia: one step forward. LANCET HAEMATOLOGY 2021; 8:e675-e676. [PMID: 34560010 DOI: 10.1016/s2352-3026(21)00281-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Susanna Rives
- CAR T-cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu Barcelona, Barcelona 08950, Spain.
| |
Collapse
|
343
|
Yoo HJ, Harapan BN. Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunol Res 2021; 69:471-486. [PMID: 34554405 PMCID: PMC8580929 DOI: 10.1007/s12026-021-09236-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
With recent advances, chimeric antigen receptor (CAR) immunotherapy has become a promising modality for patients with refractory cancer diseases. The successful results of CAR T cell therapy in relapsed and refractory B-cell malignancies shifted the paradigm of cancer immunotherapy by awakening the scientific, clinical, and commercial interest in translating this technology for the treatment of solid cancers. This review elaborates on fundamental principles of CAR T cell therapy (development of CAR construct, challenges of CAR T cell therapy) and its application on solid tumors as well as CAR T cell therapy potential in the field of neuro-oncology. Glioblastoma (GBM) is identified as one of the most challenging solid tumors with a permissive immunological milieu and dismal prognosis. Standard multimodal treatment using maximal safe resection, radiochemotherapy, and maintenance chemotherapy extends the overall survival beyond a year. Recurrence is, however, inevitable. GBM holds several unique features including its vast intratumoral heterogeneity, immunosuppressive environment, and a partially permissive anatomic blood–brain barrier, which offers a unique opportunity to investigate new treatment approaches. Tremendous efforts have been made in recent years to investigate novel CAR targets and target combinations with standard modalities for solid tumors and GBM to improve treatment efficacy. In this review, we outline the history of CAR immunotherapy development, relevant CAR target antigens validated with CAR T cells as well as preclinical approaches in combination with adjunct approaches via checkpoint inhibition, bispecific antibodies, and second-line systemic therapies that enhance anticancer efficacy of the CAR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hyeon Joo Yoo
- Department of Internal Medicine V, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Biyan Nathanael Harapan
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University of Munich, 81377, Munich, Germany.
| |
Collapse
|
344
|
Serra López-Matencio JM, Gómez Garcia de Soria V, Gómez M, Alañón-Plaza E, Muñoz-Calleja C, Castañeda S. Monitoring and safety of CAR-T therapy in clinical practice. Expert Opin Drug Saf 2021; 21:363-371. [PMID: 34519234 DOI: 10.1080/14740338.2021.1979958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In the last few years, a new T cell therapy, chimeric antigen receptor-T (CAR-T) cells, has been developed. CAR-T cells are highly effective at inhibiting antitumor activity, but they can cause a wide spectrum of unusual side effects. AREAS COVERED The present review provides an overview of the adverse events of CAR-T cell therapy, focusing on cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, increased risk of infections, and other long-term complications. Representative studies addressing the safety and efficacy of CAR-T cell therapy are summarized. EXPERT OPINION In the coming years, we predict a great expansion in the use of CAR-T cell therapy with it applied to a higher number of patients with both malignant neoplasms and immune-mediated diseases. Despite physicians and patient expectations about the potential of this therapy, there are still several barriers that may limit providers' ability to supply quality care. This exciting and powerful new therapy requires the formation of new multidisciplinary teams to carry out a safe treatment administration and to successfully manage the resultant complications. The follow-up of these therapies is important for two aspects: effectiveness in different populations and real-life safety in short and in long-term follow-up.
Collapse
Affiliation(s)
| | | | - Manuel Gómez
- Methodology Unit, Health Research Institute Princesa (IIS-IP), Madrid, Spain
| | - Estefanía Alañón-Plaza
- Hospital Pharmacy Department, Hospital Universitario de La Princesa, IIS-P, Madrid, Spain
| | | | - Santos Castañeda
- Rheumatology Division, Hospital Universitario de La Princesa, IIS-IP, Madrid, Spain.,Catedra UAM-Roche, EPID-Future, Medicine Department, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
345
|
Zhang Q, Xiao Y. [Mechanism and prevention strategies of neurotoxicity in CAR-T treatment of B cell tumors]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:787-792. [PMID: 34753239 PMCID: PMC8607045 DOI: 10.3760/cma.j.issn.0253-2727.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Q Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Y Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
346
|
Deng HB, Liu MJ, Jiang YY, Yuan T, Zhang R, Deng Q. [Effects of glucocorticoids on the proliferation of CD19 CAR-T cells targeting B-cell tumor cell lines]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:747-751. [PMID: 34753229 PMCID: PMC8607036 DOI: 10.3760/cma.j.issn.0253-2727.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 11/25/2022]
Abstract
Objective: To evaluate the effects of glucocorticoids (dexamethasone and methylprednisolone) on the proliferation of CD19 Chimeric antigen receptor (CAR) modified T cells in vitro. Methods: Peripheral blood mononuclear cells from healthy volunteers were collected as T cells. CD19 CAR-T cells were prepared by CD3 magnetic beads sorting and CD19 CAR lentivirus transfection. The transfection rates and the proportion of CD19 CAR-T cells in the culture system were analyzed using a flow cytometer. The mean fluorescence intensity (MFI) of CD19 CAR-T cells was measured after staining with Carboxyfluorescein diacetate succinimidyl ester cell proliferation tracer fluorescent probe, Lactate dehydrogenase (LDH) cytotoxicity assay was used to detect the effects of different concentrations of glucocorticoid on the killing activity of B-cell tumor cell lines. Results: In this study, the CD19 CAR transfection rate of CD19 CAR-T cells was (51.34±5.28) %. The killing activities of different doses of methylprednisolone on Nalm6, Pfeiffer, and U2932 tumor cells were higher than that of dexamethasone at 24 h. The killing activities of 4 mg/mL methylprednisolone on Nalm6, Pfeiffer, and U2932 were higher than that of 0.75 mg/ml group, while the killing activity of 12 mg/ml methylprednisolone was lower than that of 2.25 mg/ml dexamethasone at 48 h. However, the killing activities of different doses of methylprednisolone on EHEB tumor cells were lower than those of different doses of dexamethasone at 24 and 48 h. The average MFI and proportion of CD19 CAR-T cells under different concentrations of glucocorticoid the proliferation inhibition of CD19 CAR-T cells by dexamethasone was higher than that of methylprednisolone. The proliferation inhibition of CD19 CAR-T cells of the two glucocorticoids in high concentration groups were more obvious than that in low concentration groups. When CD19 CAR-T cells were co-cultured with different tumor cells, the proportion and average MFI of CD19 CAR-T cells showed that the proliferation inhibition of dexamethasone was higher than that of methylprednisolone. The proliferation inhibition of CD19 CAR-T cells of the two glucocorticoids in high concentration groups was more obvious than that in low concentration groups. Conclusion: Dexamethasone inhibits the cell proliferation of CD19 CAR-T cells more than methylprednisolone during the targeting of different tumor cell lines. The inhibition effect of dexamethasone on the proliferation and amplification of CD19 CAR-T cells was greater than that of methylprednisolone during the targeting of CD19 CAR-T cells to different tumor cell lines. Moreover, the inhibition effect of the high dose group was more obvious.
Collapse
Affiliation(s)
- H B Deng
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - M J Liu
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Y Y Jiang
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - T Yuan
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - R Zhang
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Q Deng
- The First Central Clinical College of Tianjin Medical University, Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
347
|
Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv 2021; 5:3397-3406. [PMID: 34432870 DOI: 10.1182/bloodadvances.2020003885] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Patients who develop chimeric antigen receptor (CAR) T-cell-related severe cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) exhibit hemodynamic instability and endothelial activation. The EASIX (Endothelial Activation and Stress Index) score (lactate dehydrogenase [LDH; U/L] × creatinine [mg/dL]/platelets [PLTs; 109 cells/L]) is a marker of endothelial damage that correlates with outcomes in allogeneic hematopoietic cell transplantation. Elevated LDH and low PLTs have been associated with severe CRS and ICANS, as has C-reactive protein (CRP), while increased creatinine is seen only in a minority of advanced severe CRS cases. We hypothesized that EASIX and 2 new modified EASIX formulas (simplified EASIX, which excludes creatinine, and modified EASIX [m-EASIX], which replaces creatinine with CRP [mg/dL]), calculated peri-CAR T-cell infusion, would be associated with development of severe (grade ≥ 3) CRS and ICANS. We included 118 adults, 53 with B-acute lymphoblastic leukemia treated with 1928z CAR T cells (NCT01044069) and 65 with diffuse large B-cell lymphoma treated with axicabtagene ciloleucel or tisagenlecleucel. The 3 formulas showed similar predictive power for severe CRS and ICANS. However, low PLTs and high CRP values were the only variables individually correlated with these toxicities. Moreover, only m-EASIX was a significant predictor of disease response. m-EASIX could discriminate patients who subsequently developed severe CRS preceding the onset of severe symptoms (area under the curve [AUC] at lymphodepletion, 80.4%; at day -1, 73.0%; and at day +1, 75.4%). At day +3, it also had high discriminatory ability for severe ICANS (AUC, 73%). We propose m-EASIX as a clinical tool to potentially guide individualized management of patients at higher risk for severe CAR T-cell-related toxicities.
Collapse
|
348
|
Schuster SJ, Tam CS, Borchmann P, Worel N, McGuirk JP, Holte H, Waller EK, Jaglowski S, Bishop MR, Damon LE, Foley SR, Westin JR, Fleury I, Ho PJ, Mielke S, Teshima T, Janakiram M, Hsu JM, Izutsu K, Kersten MJ, Ghosh M, Wagner-Johnston N, Kato K, Corradini P, Martinez-Prieto M, Han X, Tiwari R, Salles G, Maziarz RT. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22:1403-1415. [PMID: 34516954 DOI: 10.1016/s1470-2045(21)00375-2] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the primary analysis of the pivotal JULIET trial of tisagenlecleucel, an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, the best overall response rate was 52% and the complete response rate was 40% in 93 evaluable adult patients with relapsed or refractory aggressive B-cell lymphomas. We aimed to do a long-term follow-up analysis of the clinical outcomes and correlative analyses of activity and safety in the full adult cohort. METHODS In this multicentre, open-label, single-arm, phase 2 trial (JULIET) done at 27 treatment sites in ten countries (Australia, Austria, Canada, France, Germany, Italy, Japan, the Netherlands, Norway, and the USA), adult patients (≥18 years) with histologically confirmed relapsed or refractory large B-cell lymphomas who were ineligible for, did not consent to, or had disease progression after autologous haematopoietic stem-cell transplantation, with an Eastern Cooperative Oncology Group performance status of 0-1 at screening, were enrolled. Patients received a single intravenous infusion of tisagenlecleucel (target dose 5 × 108 viable transduced CAR T cells). The primary endpoint was overall response rate (ie, the proportion of patients with a best overall disease response of a complete response or partial response using the Lugano classification, as assessed by an independent review committee) at any time post-infusion and was analysed in all patients who received tisagenlecleucel (the full analysis set). Safety was analysed in all patients who received tisagenlecleucel. JULIET is registered with ClinialTrials.gov, NCT02445248, and is ongoing. FINDINGS Between July 29, 2015, and Nov 2, 2017, 167 patients were enrolled. As of Feb 20, 2020, 115 patients had received tisagenlecleucel infusion and were included in the full analysis set. At a median follow-up of 40·3 months (IQR 37·8-43·8), the overall response rate was 53·0% (95% CI 43·5-62·4; 61 of 115 patients), with 45 (39%) patients having a complete response as their best overall response. The most common grade 3-4 adverse events were anaemia (45 [39%]), decreased neutrophil count (39 [34%]), decreased white blood cell count (37 [32%]), decreased platelet count (32 [28%]), cytokine release syndrome (26 [23%]), neutropenia (23 [20%]), febrile neutropenia (19 [17%]), hypophosphataemia (15 [13%]), and thrombocytopenia (14 [12%]). The most common treatment-related serious adverse events were cytokine release syndrome (31 [27%]), febrile neutropenia (seven [6%]), pyrexia (six [5%]), pancytopenia (three [3%]), and pneumonia (three [3%]). No treatment-related deaths were reported. INTERPRETATION Tisagenlecleucel shows durable activity and manageable safety profiles in adult patients with relapsed or refractory aggressive B-cell lymphomas. For patients with large B-cell lymphomas that are refractory to chemoimmunotherapy or relapsing after second-line therapies, tisagenlecleucel compares favourably with respect to risk-benefit relative to conventional therapeutic approaches (eg, salvage chemotherapy). FUNDING Novartis Pharmaceuticals.
Collapse
Affiliation(s)
- Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Constantine S Tam
- Peter MacCallum Cancer Center, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Peter Borchmann
- Clinic I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Joseph P McGuirk
- Department of Internal Medicine, The University of Kansas Health System, Kansas City, KS, USA
| | - Harald Holte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Edmund K Waller
- Bone Marrow and Stem Cell Transplant Center, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | - Samantha Jaglowski
- Blood and Marrow Transplant Program, James Cancer Hospital and Solove Research Institute, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Michael R Bishop
- Hematopoietic Cellular Therapy Program, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Lloyd E Damon
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stephen Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jason R Westin
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Isabelle Fleury
- Department of Lymphoma and Myeloma, Maisonneuve-Rosement Hospital, University of Montreal, Montreal, QC, Canada
| | - P Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital and University of Sydney, Camperdown, NSW, Australia
| | - Stephan Mielke
- Department of Medicine II, University of Würzburg Medical Center, Würzburg, Germany; Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Huddinge, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Murali Janakiram
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jing-Mei Hsu
- Department of Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Monalisa Ghosh
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nina Wagner-Johnston
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Koji Kato
- Department of Hematology, Oncology, and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Paolo Corradini
- Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, Milan, Italy
| | | | - Xia Han
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | - Gilles Salles
- Department of Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Richard T Maziarz
- Center for Hematologic Malignancies, Oregon Health and Science University Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
349
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
350
|
Castaneda-Puglianini O, Chavez JC. Assessing and Management of Neurotoxicity After CAR-T Therapy in Diffuse Large B-Cell Lymphoma. J Blood Med 2021; 12:775-783. [PMID: 34466048 PMCID: PMC8403007 DOI: 10.2147/jbm.s281247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy represents the most important advances in cancer immunotherapy, especially in hematological malignancies such as B-cell lymphomas. CAR-T cell therapy has significant activity in poor risk B-cell lymphomas. CAR-T cell therapy is associated with potentially life-threatening toxicities such as cytokine release syndrome (CRS) and neurotoxicity (NT). While CRS pathophysiology and management are well established, the understanding and treatment of NT continues to develop. All current CAR-T products approved for DLBCL have been associated with NT with some differences in their severity. As cell therapies continue to advance and its access broadening, it will be imperative for clinicians to be aware of the signs and symptoms of NT, its stratification and basic management.
Collapse
Affiliation(s)
- Omar Castaneda-Puglianini
- Virginia Commonwealth University, Massey Cancer Center, Cellular Immunotherapies and Transplant Program, Richmond, VA, USA
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|