301
|
Miyata-Morita K, Morita S, Dejima H, Saito K, Sakao Y, Mochizuki M, Sasajima Y. Cytological features of stromal spindle cells and their prognostic significance in lung adenocarcinoma. Cytopathology 2023; 34:337-345. [PMID: 36946097 DOI: 10.1111/cyt.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) in the tumour microenvironment play a key role in tumour development, proliferation, invasion, and metastasis. The cytological features of spindle cells including CAFs-defined as stromal spindle cells (SSCs) adjacent to cancer cells-are frequently encountered in pulmonary adenocarcinomas. This study aimed to investigate the association between the presence of SSCs in cytological specimens and the clinicopathological features. METHODS We evaluated 211 patients with pulmonary adenocarcinoma who underwent surgical resection. All participants had cytological specimens corresponding to the histological specimens available for review. RESULTS Of the 211 cases examined, 89 were SSC-positive (SSC+ ) and 122 were SSC-negative (SSC- ). SSC+ cases were more frequently associated with higher pathological stage (P < 0.001), lymph node metastasis (P = 0.002), anaplastic lymphoma kinase (ALK) gene rearrangement (P = 0.04), high tumour grade (P < 0.001), solid and micropapillary predominant pattern (P = 0.02), and lymphatic vessel (P = 0.003), blood vessel (P < 0.001), and pleural invasion (P = 0.03) as compared to SSC- cases. Patients with SSC+ adenocarcinoma had a significantly shorter recurrence-free survival than those with SSC- adenocarcinoma (P = 0.009). Cytologically, necrotic background (P = 0.002), mucinous cancer cells (P = 0.02), pleomorphic cells (P < 0.001), and mutual cell inclusions (P = 0.01) were observed more frequently in SSC+ adenocarcinomas. CONCLUSIONS The presence of SSCs could be an important cytological feature for predicting poor prognosis in lung adenocarcinomas.
Collapse
Affiliation(s)
- Kana Miyata-Morita
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Shigeki Morita
- Department of Pathology, Mitsui Memorial Hospital, Tokyo, Japan
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Hitoshi Dejima
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Saito
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Yukinori Sakao
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Mochizuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| |
Collapse
|
302
|
Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023; 55:1322-1332. [PMID: 37394578 PMCID: PMC10394065 DOI: 10.1038/s12276-023-01013-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as a central component of the tumor microenvironment in primary and metastatic tumors, profoundly influence the behavior of cancer cells and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Furthermore, the innate versatility and plasticity of CAFs allow their education by cancer cells, resulting in dynamic alterations in stromal fibroblast populations in a context-dependent manner, which highlights the importance of precise assessment of CAF phenotypical and functional heterogeneity. In this review, we summarize the proposed origins and heterogeneity of CAFs as well as the molecular mechanisms regulating the diversity of CAF subpopulations. We also discuss current strategies to selectively target tumor-promoting CAFs, providing insights and perspectives for future research and clinical studies involving stromal targeting.
Collapse
Affiliation(s)
- Dakai Yang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai, People's Republic of China
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Qin Zhuang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
| |
Collapse
|
303
|
Shiau C, Cao J, Gregory MT, Gong D, Yin X, Cho JW, Wang PL, Su J, Wang S, Reeves JW, Kim TK, Kim Y, Guo JA, Lester NA, Schurman N, Barth JL, Weissleder R, Jacks T, Qadan M, Hong TS, Wo JY, Roberts H, Beechem JM, Castillo CFD, Mino-Kenudson M, Ting DT, Hemberg M, Hwang WL. Therapy-associated remodeling of pancreatic cancer revealed by single-cell spatial transcriptomics and optimal transport analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546848. [PMID: 37425692 PMCID: PMC10327107 DOI: 10.1101/2023.06.28.546848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In combination with cell intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with specific malignant subtypes and neoadjuvant chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor microenvironment using high-plex single-cell spatial transcriptomics allows for identification of molecular interactions that may play a role in the emergence of chemoresistance and establishes a translational spatial biology paradigm that can be broadly applied to other malignancies, diseases, and treatments.
Collapse
Affiliation(s)
- Carina Shiau
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Cao
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Dennis Gong
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
| | - Xunqin Yin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Won Cho
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter L Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Su
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Jimmy A Guo
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Nicole A Lester
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jamie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah Roberts
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
304
|
Croft W, Pearce H, Margielewska-Davies S, Lim L, Nicol SM, Zayou F, Blakeway D, Marcon F, Powell-Brett S, Mahon B, Merard R, Zuo J, Middleton G, Roberts K, Brown RM, Moss P. Spatial determination and prognostic impact of the fibroblast transcriptome in pancreatic ductal adenocarcinoma. eLife 2023; 12:e86125. [PMID: 37350578 PMCID: PMC10361717 DOI: 10.7554/elife.86125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a poor clinical outcome and responses to immunotherapy are suboptimal. Stromal fibroblasts are a dominant but heterogenous population within the tumor microenvironment and therapeutic targeting of stromal subsets may have therapeutic utility. Here, we combine spatial transcriptomics and scRNA-Seq datasets to define the transcriptome of tumor-proximal and tumor-distal cancer-associated fibroblasts (CAFs) and link this to clinical outcome. Tumor-proximal fibroblasts comprise large populations of myofibroblasts, strongly expressed podoplanin, and were enriched for Wnt ligand signaling. In contrast, inflammatory CAFs were dominant within tumor-distal subsets and expressed complement components and the Wnt-inhibitor SFRP2. Poor clinical outcome was correlated with elevated HIF-1α and podoplanin expression whilst expression of inflammatory and complement genes was predictive of extended survival. These findings demonstrate the extreme transcriptional heterogeneity of CAFs and its determination by apposition to tumor. Selective targeting of tumor-proximal subsets, potentially combined with HIF-1α inhibition and immune stimulation, may offer a multi-modal therapeutic approach for this disease.
Collapse
Affiliation(s)
- Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Computational Biology, University of BirminghamBirminghamUnited Kingdom
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Lindsay Lim
- Cancer Research Horizons, The Francis Crick InstituteLondonUnited Kingdom
| | - Samantha M Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Fouzia Zayou
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Daniel Blakeway
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Francesca Marcon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Sarah Powell-Brett
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Brinder Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Reena Merard
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Keith Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Rachel M Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| |
Collapse
|
305
|
邓 婷, 杜 伯, 郗 雪. [Colorectal cancer cells induce the formation of cancer-associated fibroblasts by activating the ERK signaling pathway in fibroblasts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:943-951. [PMID: 37439166 PMCID: PMC10339307 DOI: 10.12122/j.issn.1673-4254.2023.06.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 07/14/2023]
Abstract
OBJECTIVE To investigate the mechanism by which conditioned medium of colorectal cancer cells promotes the formation of cancer-associated fibroblasts (CAFs). METHODS Normal human colorectal fibroblasts (CCD-18Co cells) in logarithmic growth phase were treated with the conditioned media of colorectal cancer HCT116 cells (HCT116-CM) or Caco-2 cells (Caco-2-CM) alone or in combination with 300 nmol/L ERK inhibitor SCH772984. The expression levels of CAFs-related molecular markers were detected in the treated cells with real-time quantitative PCR (RT- qPCR) and immunofluorescence assay, and the changes in cell proliferation, colony formation and migration were assessed with RTCA, colony formation and wound healing assays; Western blotting was performed to detect the activated signaling pathways in the fibroblasts and the changes in CAFs formation after blocking of the signaling pathway. RESULTS HCT116-CM and Caco-2-CM significantly upregulated mRNA expression levels of CAFs markers (including α-SMA, FAP, FN and TGF-β) in CCD-18Co cells, and strongly promoted fibroblast transformation into CAFs (P < 0.05). The two conditioned media also promoted the proliferation, colony formation and migration of CCD-18Co cells (P < 0.05) and significantly increased the levels of α-SMA protein and ERK phosphorylation in the cells (P < 0.05). The ERK inhibitor SCH772984 obviously inhibited the expression of α-SMA and the transformation of CCD-18Co cells into CAFs induced by the conditioned medium of colorectal cancer cells (P < 0.05). CONCLUSION Colorectal cancer cells may induce the formation of colorectal CAFs by activating the ERK pathway in the fibroblasts.
Collapse
Affiliation(s)
- 婷 邓
- />湖北医药学院基础医学院免疫教研室,湖北 十堰 442000Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - 伯雨 杜
- />湖北医药学院基础医学院免疫教研室,湖北 十堰 442000Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - 雪艳 郗
- />湖北医药学院基础医学院免疫教研室,湖北 十堰 442000Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
306
|
Luo W, Zhang T. Cancer-associated fibroblasts: A key target to snatch victory from defeat in therapy resistance associated with the pancreatic cancer stroma. Cancer Lett 2023:216279. [PMID: 37336287 DOI: 10.1016/j.canlet.2023.216279] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The stroma plays a dual role in the tumour microenvironment (TME), where it can both promote or restrict tumour growth. These effects are significantly modulated by the presence of cancer-associated fibroblasts (CAFs), key components of the TME. The stroma and CAFs influence pancreatic cancer (PC) both physically and functionally. The physical impact involves the deposition of a wall-like matrix, creating a solid barrier that prevents the escape of materials from the inside and the entry of substances from the outside. Functionally, the stroma influences PC treatment through crosstalk between CAFs, cancer cells, and immune cells. Transformation of the "CAFs wall", however, may reduce the original benefit of limiting PC metastasis. In this review, we found that targeting the CAFs and designing novel carriers allowing the entry of drugs or therapeutic agents into the TME are alternative strategies to effectively treat PC. This article aims to provide a specific review focusing on the possibly therapeutic markers and its novel therapeutic strategies of CAFs in PC, discussing the concise treatment methods and its new challenging in current advanced researches.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
307
|
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, Wang X, Gu Y, Zhang G, Lian Y, Zhang W, Zhang M, Li T, Zang Y, Tan M, Li Q, Wang X, Yu Z, Jiang J, Huang H, Qin J. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell 2023:S1535-6108(23)00183-6. [PMID: 37352863 DOI: 10.1016/j.ccell.2023.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-β signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tianyi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
308
|
Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther 2023; 31:1514-1532. [PMID: 36518080 PMCID: PMC10278049 DOI: 10.1016/j.ymthe.2022.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of the chemotherapeutic agents in cancer. Chronic inflammation provides a favorable environment for tumorigenesis by inducing immunosuppression, whereas acute inflammation prompts tumor suppression by generating anti-tumor immune responses. Inflammatory factors derived from interstitial cells or tumor cells can stimulate cell proliferation and survival by modulating oncogenes and/or tumor suppressors. Recently, a new class of RNAs, i.e., circular RNAs (circRNAs), has been implicated in inflammatory diseases. Although there are reports on circRNAs imparting functions in inflammatory insults, whether these circularized transcripts hold the potential to regulate inflammation-induced cancer or tumor-related inflammation, and modulate the interactions between tumor microenvironment (TME) and the inflammatory stromal/immune cells, awaits further elucidation. Contextually, the current review describes the molecular association between inflammation and cancer, and spotlights the regulatory mechanisms by which circRNAs can moderate TME in response to inflammatory signals/triggers. We also present comprehensive information about the immune cell(s)-specific expression and functions of the circRNAs in TME, modulation of inflammatory signaling pathways to drive tumorigenesis, and their plausible roles in inflammasomes and tumor development. Moreover, the therapeutic potential of these circRNAs in harnessing inflammatory responses in cancer is also discussed.
Collapse
Affiliation(s)
- Javeria Qadir
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shuo-Yang Wen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
309
|
Yan R, Moresco P, Gegenhuber B, Fearon DT. T cell-Mediated Development of Stromal Fibroblasts with an Immune-Enhancing Chemokine Profile. Cancer Immunol Res 2023; 11:OF1-OF11. [PMID: 37285176 PMCID: PMC10700667 DOI: 10.1158/2326-6066.cir-22-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Stromal fibroblasts reside in inflammatory tissues that are characterized by either immune suppression or activation. Whether and how fibroblasts adapt to these contrasting microenvironments remains unknown. Cancer-associated fibroblasts (CAF) mediate immune quiescence by producing the chemokine CXCL12, which coats cancer cells to suppress T-cell infiltration. We examined whether CAFs can also adopt an immune-promoting chemokine profile. Single-cell RNA sequencing of CAFs from mouse pancreatic adenocarcinomas identified a subpopulation of CAFs with decreased expression of Cxcl12 and increased expression of the T cell-attracting chemokine Cxcl9 in association with T-cell infiltration. TNFα and IFNγ containing conditioned media from activated CD8+ T cells converted stromal fibroblasts from a CXCL12+/CXCL9- immune-suppressive phenotype into a CXCL12-/CXCL9+ immune-activating phenotype. Recombinant IFNγ and TNFα acted together to augment CXCL9 expression, whereas TNFα alone suppressed CXCL12 expression. This coordinated chemokine switch led to increased T-cell infiltration in an in vitro chemotaxis assay. Our study demonstrates that CAFs have a phenotypic plasticity that allows their adaptation to contrasting immune tissue microenvironments.
Collapse
Affiliation(s)
- Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Bruno Gegenhuber
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
310
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
311
|
Diwanji R, O'Brien NA, Choi JE, Nguyen B, Laszewski T, Grauel AL, Yan Z, Xu X, Wu J, Ruddy DA, Piquet M, Pelletier MR, Savchenko A, Charette L, Rodrik-Outmezguine V, Baum J, Millholland JM, Wong CC, Martin AM, Dranoff G, Pruteanu-Malinici I, Cremasco V, Sabatos-Peyton C, Jayaraman P. Targeting the IL1β Pathway for Cancer Immunotherapy Remodels the Tumor Microenvironment and Enhances Antitumor Immune Responses. Cancer Immunol Res 2023; 11:777-791. [PMID: 37040466 DOI: 10.1158/2326-6066.cir-22-0290] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
High levels of IL1β can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1β could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1β blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFβ treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1β blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1β alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1β inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1β blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1β inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.
Collapse
Affiliation(s)
- Rohan Diwanji
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Neil A O'Brien
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California
| | - Jiyoung E Choi
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Beverly Nguyen
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Angelo L Grauel
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Zheng Yan
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Xin Xu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Marc R Pelletier
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | | | | | - Jason Baum
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | | | - Connie C Wong
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Anne-Marie Martin
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Glenn Dranoff
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Viviana Cremasco
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Pushpa Jayaraman
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
312
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
313
|
Ginebaugh SP, Hagner M, Ray A, Erzurum SC, Comhair SAA, Denlinger LC, Jarjour NN, Castro M, Woodruff PG, Christenson SA, Bleecker ER, Meyers DA, Hastie AT, Moore WC, Mauger DT, Israel E, Levy BD, Wenzel SE, Camiolo MJ. Bronchial epithelial cell transcriptional responses to inhaled corticosteroids dictate severe asthmatic outcomes. J Allergy Clin Immunol 2023; 151:1513-1524. [PMID: 36796454 PMCID: PMC10257752 DOI: 10.1016/j.jaci.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.
Collapse
Affiliation(s)
- Scott P Ginebaugh
- Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pa
| | | | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | | | | | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Prescott G Woodruff
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Eugene R Bleecker
- Division for Genetics, Genomics and Personalized Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Deborah A Meyers
- Division for Genetics, Genomics and Personalized Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | | | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Environmental Medicine and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | | |
Collapse
|
314
|
Ma X, Yang F, Wu J, Xu B, Jiang M, Sun Y, Sun C, Yu Y, Xu D, Xiao L, Ren C, Chen C, Ye Z, Liang J, Lin J, Chen W. Efficacy and Safety of Tofacitinib in Patients with Polymyalgia Rheumatica (EAST PMR): An open-label randomized controlled trial. PLoS Med 2023; 20:e1004249. [PMID: 37384596 DOI: 10.1371/journal.pmed.1004249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Polymyalgia rheumatica (PMR) is a common inflammatory disease in elderly persons whose mechanism of pathogenesis has not been elucidated. Glucocorticoids are the main first-line treatments but result in numerous side effects. Therefore, there is a need to explore pathogenetic factors and identify possible glucocorticoid-sparing agents. We aimed to study the pathogenetic features of the disease and assess the efficacy and safety of Janus tyrosine kinase (JAK)-inhibitor tofacitinib in patients with PMR. METHODS AND FINDINGS We recruited treatment-naïve PMR patients from the First Affiliated Hospital, Zhejiang University School of Medicine, between September 2020 and September 2022. In the first cohort, we found that the gene expression patterns of peripheral blood mononuclear cells (PBMCs) in 11 patients (10 female, 1 male, age 68.0 ± 8.3) with newly diagnosed PMR were significantly different from 20 healthy controls (17 female, 3 male, age 63.7 ± 9.8) by RNA sequencing. Inflammatory response and cytokine-cytokine receptor interaction were the most notable pathways affected. We observed marked increases in expression of IL6R, IL1B, IL1R1, JAK2, TLR2, TLR4, TLR8, CCR1, CR1, S100A8, S100A12, and IL17RA, which could trigger JAK signaling. Furthermore, tofacitinib suppressed the IL-6R and JAK2 expression of CD4+T cells from patients with PMR in vitro. In the second cohort, patients with PMR were randomized and treated with tofacitinib or glucocorticoids (1/1) for 24 weeks. All PMR patients underwent clinical and laboratory examinations at 0, 4, 8, 12, 16, 20, and 24 weeks, and PMR activity disease scores (PMR-AS) were calculated. The primary endpoint was the proportion of patients with PMR-AS ≤10 at weeks 12 and 24. Secondary endpoints: PMR-AS score, c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) at weeks 12 and 24. Thirty-nine patients with newly diagnosed PMR received tofacitinib, and 37 patients received glucocorticoid. Thirty-five patients (29 female, 6 male, age 64.4 ± 8.4) and 32 patients (23 female, 9 male, age 65.3 ± 8.7) patients completed the 24-week intervention, respectively. There were no statistically significant differences in primary or secondary outcomes. At weeks 12 and 24, all patients in both groups had PMR-AS <10. PMR-AS, CRP, and ESR were all significantly decreased in both groups. No severe adverse events were observed in either group. Study limitations included the single-center study design with a short observation period. CONCLUSIONS We found that JAK signaling was involved in the pathogenesis of PMR. Tofacitinib effectively treated patients with PMR as glucocorticoid does in this randomized, monocenter, open-label, controlled trial (ChiCTR2000038253). TRIAL REGISTRATION This investigator-initiated clinical trial (IIT) had been registered on the website (http://www.chictr.org.cn/, ChiCTR2000038253).
Collapse
Affiliation(s)
- Xinlei Ma
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinzhi Wu
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bei Xu
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengdi Jiang
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiduo Sun
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanying Sun
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Yu
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danyi Xu
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanlan Xiao
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunyun Ren
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunyan Chen
- AnJi Branch of the First Affiliated Hospital, Zhejiang University School of Medicine, HuZhou, Zhejiang, China
| | - Zi Ye
- LinHai First People's Hospital, TaiZhou, Zhejiang, China
| | - Junyu Liang
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
315
|
Borlongan MC, Wang H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front Cell Dev Biol 2023; 11:1125174. [PMID: 37305676 PMCID: PMC10247984 DOI: 10.3389/fcell.2023.1125174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy. A better characterization of the CSCs' unique signaling mechanisms will improve our understanding of the pathology and treatment of cancer. In this paper, we will discuss CSC origin, followed by an in-depth review of CSC-associated signaling pathways. Particular emphasis is given on CSC signaling pathways' ligand-receptor engagement, upstream and downstream mechanisms, and associated genes, and molecules. Signaling pathways associated with regulation of CSC development stand as potential targets of CSC therapy, which include Wnt, TGFβ (transforming growth factor-β)/SMAD, Notch, JAK-STAT (Janus kinase-signal transducers and activators of transcription), Hedgehog (Hh), and vascular endothelial growth factor (VEGF). Lastly, we will also discuss milestone discoveries in CSC-based therapies, including pre-clinical and clinical studies featuring novel CSC signaling pathway cancer therapeutics. This review aims at generating innovative views on CSCs toward a better understanding of cancer pathology and treatment.
Collapse
Affiliation(s)
- Mia C. Borlongan
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
| | - Hongbin Wang
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
316
|
Li XX, Li H, Jin LQ, Tan YB. Exploration and Validation of Pancreatic Cancer Hub Genes Based on Weighted Gene Co-Expression Network Analysis and Immune Infiltration Score Analysis. Pharmgenomics Pers Med 2023; 16:467-480. [PMID: 37252337 PMCID: PMC10216855 DOI: 10.2147/pgpm.s403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Objective To find pancreatic cancer (PC)-related hub genes based on weighted gene co-expression network analysis (WGCNA) construction and immune infiltration score analysis and validate them immunohistochemically by clinical cases, to generate new concepts or therapeutic targets for the early diagnosis and treatment of PC. Material and Methods In this study, WGCNA and immune infiltration score were utilized to identify the relevant core modules of PC and the hub genes within these core modules. Results Using WGCNA analysis, data from PC and normal pancreas integrated with TCGA and GTEX were analyzed and brown modules were chosen from the six modules. Five hub genes, including DPYD, FXYD6, MAP6, FAM110B, and ANK2, were discovered to have differential survival significance via validation tests utilizing survival analysis curves and the GEPIA database. The DPYD gene was the only gene associated with PC survival side effects. Validation of the Human Protein Atlas (HPA) database and immunohistochemical testing of clinical samples showed positive results for DPYD expression in PC. Conclusion In this study, we identified DPYD, FXYD6, MAP6, FAM110B, and ANK2, as immune-related candidate markers for PC. Only the DPYD gene had a negative impact on the survival of PC patients. Through validation of the HPA database and immunohistochemical testing of clinical cases, we believe that the DPYD gene brings novel ideas and therapeutic targets in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
| | - Hong Li
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Hubei, 443001, People’s Republic of China
| | - Li-Quan Jin
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| | - Yun-Bo Tan
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| |
Collapse
|
317
|
Jolly G, Duka T, Shivapurkar N, Chen W, Bansal S, Cheema A, Smith JP. Cholecystokinin Receptor Antagonist Induces Pancreatic Stellate Cell Plasticity Rendering the Tumor Microenvironment Less Oncogenic. Cancers (Basel) 2023; 15:2811. [PMID: 37345148 PMCID: PMC10216345 DOI: 10.3390/cancers15102811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CCK receptors are expressed on pancreatic cancer epithelial cells, and blockade with receptor antagonists decreases tumor growth. Activated pancreatic stellate cells or myofibroblasts have also been described to express CCK receptors, but the contribution of this novel pathway in fibrosis of the pancreatic cancer microenvironment has not been studied. We examined the effects of the nonselective CCK receptor antagonist proglumide on the activation, proliferation, collagen deposition, differential expression of genes, and migration in both murine and human PSCs. CCK receptor expression was examined using western blot analysis. Collagen production using activated PSCs was analyzed by mass spectroscopy and western blot. Migration of activated PSCs was prevented in vitro by proglumide and the CCK-B receptor antagonist, L365,260, but not by the CCK-A receptor antagonist L365,718. Proglumide effectively decreased the expression of extracellular matrix-associated genes and collagen-associated proteins in both mouse and human PSCs. Components of fibrosis, including hydroxyproline and proline levels, were significantly reduced in PSC treated with proglumide compared to controls. CCK peptide stimulated mouse and human PSC proliferation, and this effect was blocked by proglumide. These investigations demonstrate that targeting the CCK-B receptor signaling pathway with proglumide may alter the plasticity of PSC, rendering them more quiescent and leading to a decrease in fibrosis in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Gurbani Jolly
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Tetyana Duka
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Narayan Shivapurkar
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Wenqiang Chen
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Sunil Bansal
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Amrita Cheema
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Jill P. Smith
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
318
|
Huang P, Gao W, Fu C, Tian R. Functional and Clinical Proteomic Exploration of Pancreatic Cancer. Mol Cell Proteomics 2023:100575. [PMID: 37209817 PMCID: PMC10388587 DOI: 10.1016/j.mcpro.2023.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changying Fu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
319
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
320
|
Schwörer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C, Thompson CB. Hypoxia Potentiates the Inflammatory Fibroblast Phenotype Promoted by Pancreatic Cancer Cell-Derived Cytokines. Cancer Res 2023; 83:1596-1610. [PMID: 36912618 PMCID: PMC10658995 DOI: 10.1158/0008-5472.can-22-2316] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a major cell type in the stroma of solid tumors and can exert both tumor-promoting and tumor-restraining functions. CAF heterogeneity is frequently observed in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by a dense and hypoxic stroma that features myofibroblastic CAFs (myCAF) and inflammatory CAFs (iCAF) that are thought to have opposing roles in tumor progression. While CAF heterogeneity can be driven in part by tumor cell-produced cytokines, other determinants shaping CAF identity and function are largely unknown. In vivo, we found that iCAFs displayed a hypoxic gene expression and biochemical profile and were enriched in hypoxic regions of PDAC tumors, while myCAFs were excluded from these regions. Hypoxia led fibroblasts to acquire an inflammatory gene expression signature and synergized with cancer cell-derived cytokines to promote an iCAF phenotype in a HIF1α-dependent fashion. Furthermore, HIF1α stabilization was sufficient to induce an iCAF phenotype in stromal cells introduced into PDAC organoid cocultures and to promote PDAC tumor growth. These findings indicate hypoxia-induced HIF1α as a regulator of CAF heterogeneity and promoter of tumor progression in PDAC. SIGNIFICANCE Hypoxia in the tumor microenvironment of pancreatic cancer potentiates the cytokine-induced inflammatory CAF phenotype and promotes tumor growth. See related commentary by Fuentes and Taniguchi, p. 1560.
Collapse
Affiliation(s)
- Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Francesco V Cimino
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manon Ros
- Center for Genomics and Systems Biology, New York University, New York, New York
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Ng
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
321
|
Stouten I, van Montfoort N, Hawinkels LJAC. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24108707. [PMID: 37240052 DOI: 10.3390/ijms24108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.
Collapse
Affiliation(s)
- Imke Stouten
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
322
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
323
|
Kartha N, Gianopulos JE, Schrank Z, Cavender SM, Dobersch S, Kynnap BD, Wallace-Povirk A, Wladyka CL, Santana JF, Kim JC, Yu A, Bridgwater CM, Fuchs K, Dysinger S, Lampano AE, Notta F, Price DH, Hsieh AC, Hingorani SR, Kugel S. Sirtuin 6 is required for the integrated stress response and resistance to inhibition of transcriptional cyclin-dependent kinases. Sci Transl Med 2023; 15:eabn9674. [PMID: 37134154 DOI: 10.1126/scitranslmed.abn9674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.
Collapse
Affiliation(s)
- Nithya Kartha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessica E Gianopulos
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98105, USA
| | - Zachary Schrank
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah M Cavender
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stephanie Dobersch
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Bryan D Kynnap
- Physician Assistant Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Juan F Santana
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jaeseung C Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Angela Yu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Kathrin Fuchs
- Department of Experimental Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Nuremberg 91054, Germany
| | - Sarah Dysinger
- Department of Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron E Lampano
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
324
|
Al-Hetty HRAK, Abdulameer SJ, Alkubaisy SA, Zaid SA, Jalil AT, Jasim IK. STAT3 signaling in pancreatic ductal adenocarcinoma: a candidate therapeutic target. Pathol Res Pract 2023; 245:154425. [PMID: 37019018 DOI: 10.1016/j.prp.2023.154425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis which is lethal in over 90% of cases despite the standard therapies. Mainly activated by Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) is a key transcription factor, capable of exerting the expression of multitude of genes involved in survival. Moreover, STAT3 activity is regulated by the interleukin 28 receptor α (IL28RA) and glutathione s-transferase mu-3 (GSTM3), up-regulation of both contributes to the invasiveness of pancreatic cancer cells. In this regard, STAT3 overactivity has an important pathogenic role in the development of PDAC as it is associated with enhanced cell proliferation, survival, angiogenesis, and metastasis. STAT3-associated expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 3 and 9 are implicated in the angiogenic and metastatic behavior of the PDAC. Multitude of evidence underline the protective role of STAT3 inhibition against PDAC both in cell cultures and in tumor grafts. However, specific inhibition of STAT3 was not feasible until recently, when a selective potent chemical STAT3 inhibitor, termed N4, were developed and it turned out to be highly effective against PDAC in vitro, as well as in vivo. This review aims to discuss the most recent advances in our understanding of STAT3 role in the pathogenesis of PDAC and its therapeutic applications.
Collapse
|
325
|
Proietto M, Crippa M, Damiani C, Pasquale V, Sacco E, Vanoni M, Gilardi M. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol 2023; 13:1164535. [PMID: 37188201 PMCID: PMC10175698 DOI: 10.3389/fonc.2023.1164535] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Heterogeneity describes the differences among cancer cells within and between tumors. It refers to cancer cells describing variations in morphology, transcriptional profiles, metabolism, and metastatic potential. More recently, the field has included the characterization of the tumor immune microenvironment and the depiction of the dynamics underlying the cellular interactions promoting the tumor ecosystem evolution. Heterogeneity has been found in most tumors representing one of the most challenging behaviors in cancer ecosystems. As one of the critical factors impairing the long-term efficacy of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive metastasizing, and recurrence. We review the role of the main models and the emerging single-cell and spatial genomic technologies in our understanding of tumor heterogeneity, its contribution to lethal cancer outcomes, and the physiological challenges to consider in designing cancer therapies. We highlight how tumor cells dynamically evolve because of the interactions within the tumor immune microenvironment and how to leverage this to unleash immune recognition through immunotherapy. A multidisciplinary approach grounded in novel bioinformatic and computational tools will allow reaching the integrated, multilayered knowledge of tumor heterogeneity required to implement personalized, more efficient therapies urgently required for cancer patients.
Collapse
Affiliation(s)
- Marco Proietto
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Martina Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Chiara Damiani
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Pasquale
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Sacco
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Vanoni
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Salk Cancer Center, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
326
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
327
|
Palma AM, Bushnell GG, Wicha MS, Gogna R. Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:343-372. [PMID: 37268400 PMCID: PMC11218813 DOI: 10.1016/bs.acr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer in the United States. Additionally, the low survival rate makes PDAC the third-leading cause of cancer-related mortality in the United States, and it is projected that by 2030, it will become the second-leading cause of cancer mortality. Several biological factors contribute to PDAC aggressiveness, and their understanding will narrow the gap from biology to clinical care of PDAC, leading to earlier diagnoses and the development of better treatment options. In this review, we describe the origins of PDAC highlighting the role of cancer stem cells (CSC). CSC, also known as tumor initiating cells, which exhibit a unique metabolism that allows them to maintain a highly plastic, quiescent, immune- and therapy-evasive state. However, CSCs can exit quiescence during proliferation and differentiation, with the capacity to form tumors while constituting a small population in tumor tissues. Tumorigenesis depends on the interactions between CSCs and other cellular and non-cellular components in the microenvironment. These interactions are fundamental to support CSC stemness and are maintained throughout tumor development and metastasis. PDAC is characterized by a massive desmoplastic reaction, which result from the deposition of high amounts of extracellular matrix components by stromal cells. Here we review how this generates a favorable environment for tumor growth by protecting tumor cells from immune responses and chemotherapy and inducing tumor cell proliferation and migration, leading to metastasis formation ultimately leading to death. We emphasize the interactions between CSCs and the tumor microenvironment leading to metastasis formation and posit that better understanding and targeting of these interactions will improve patient outcomes.
Collapse
Affiliation(s)
| | - Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
328
|
Ware MB, Phillips M, McQuinn C, Zaidi MY, Knochelmann HM, Greene E, Robinson B, Herting CJ, Mace TA, Chen Z, Zhang C, Farren MR, Ruggieri AN, Bowers JS, Shakya R, Farris AB, Young G, Carson WE, El-Rayes B, Paulos CM, Lesinski GB. Dual IL-6 and CTLA-4 blockade regresses pancreatic tumors in a T cell- and CXCR3-dependent manner. JCI Insight 2023; 8:e155006. [PMID: 36881480 PMCID: PMC10243806 DOI: 10.1172/jci.insight.155006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to enhance antitumor immune responses to pancreatic cancer via Ab-based blockade of IL-6 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Mice bearing s.c. or orthotopic pancreatic tumors were treated with blocking Abs to IL‑6 and/or CTLA-4. In both tumor models, dual IL-6 and CTLA-4 blockade significantly inhibited tumor growth. Additional investigations revealed that dual therapy induced an overwhelming infiltration of T cells into the tumor as well as changes in CD4+ T cell subsets. Dual blockade therapy elicited CD4+ T cells to secrete increased IFN-γ in vitro. Likewise, in vitro stimulation of pancreatic tumor cells with IFN-γ profoundly increased tumor cell production of CXCR3-specific chemokines, even in the presence of IL-6. In vivo blockade of CXCR3 prevented orthotopic tumor regression in the presence of the combination treatment, demonstrating a dependence on the CXCR3 axis for antitumor efficacy. Both CD4+ and CD8+ T cells were required for the antitumor activity of this combination therapy, as their in vivo depletion via Abs impaired outcomes. These data represent the first report to our knowledge of IL-6 and CTLA‑4 blockade as a means to regress pancreatic tumors with defined operative mechanisms of efficacy.
Collapse
Affiliation(s)
- Michael Brandon Ware
- Department of Hematology and Medical Oncology
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Christopher McQuinn
- Division of Surgical Oncology, Department of Surgery, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohammad Y. Zaidi
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Hannah M. Knochelmann
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Columbia, South Carolina, USA
| | | | - Brian Robinson
- Department of Pathology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Thomas A. Mace
- Division of Gastroenterology Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Zhengjia Chen
- Department of Biostatistics, Emory University, Atlanta, Georgia, USA
| | - Chao Zhang
- Department of Biostatistics, Emory University, Atlanta, Georgia, USA
| | | | | | - Jacob S. Bowers
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Columbia, South Carolina, USA
| | | | - Alton B. Farris
- Department of Pathology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Gregory Young
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - William E. Carson
- Division of Surgical Oncology, Department of Surgery, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Chrystal M. Paulos
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
329
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
330
|
Hur SK, Somerville TD, Wu XS, Maia-Silva D, Demerdash OE, Tuveson DA, Notta F, Vakoc CR. p73 activates transcriptional signatures of basal lineage identity and ciliogenesis in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537667. [PMID: 37131797 PMCID: PMC10153254 DOI: 10.1101/2023.04.20.537667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During the progression of pancreatic ductal adenocarcinoma (PDAC), tumor cells are known to acquire transcriptional and morphological properties of the basal (also known as squamous) epithelial lineage, which leads to more aggressive disease characteristics. Here, we show that a subset of basal-like PDAC tumors aberrantly express p73 (TA isoform), which is a known transcriptional activator of basal lineage identity, ciliogenesis, and tumor suppression in normal tissue development. Using gain- and loss- of function experiments, we show that p73 is necessary and sufficient to activate genes related to basal identity (e.g. KRT5), ciliogenesis (e.g. FOXJ1), and p53-like tumor suppression (e.g. CDKN1A) in human PDAC models. Owing to the paradoxical combination of oncogenic and tumor suppressive outputs of this transcription factor, we propose that PDAC cells express a low level of p73 that is optimal for promoting lineage plasticity without severe impairment of cell proliferation. Collectively, our study reinforces how PDAC cells exploit master regulators of the basal epithelial lineage during disease progression.
Collapse
Affiliation(s)
- Stella K. Hur
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Diogo Maia-Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
331
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
332
|
Zhou C, Wu Y, Wang Z, Liu Y, Yu J, Wang W, Chen S, Wu W, Wang J, Qian G, He A. Standardization of organoid culture in cancer research. Cancer Med 2023. [PMID: 37081739 DOI: 10.1002/cam4.5943] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Establishing a valid in vitro model to represent tumor heterogeneity and biology is critical but challenging. Tumor organoids are self-assembled three-dimensional cell clusters which are of great significance for recapitulating the histopathological, genetic, and phenotypic characteristics of primary tissues. The organoid has emerged as an attractive in vitro platform for tumor biology research and high-throughput drug screening in cancer medicine. Organoids offer unique advantages over cell lines and patient-derived xenograft models, but there are no standardized methods to guide the culture of organoids, leading to confusion in organoid studies that may affect accurate judgments of tumor biology. This review summarizes the shortcomings of current organoid culture methods, presents the latest research findings on organoid standardization, and proposes an outlook for organoid modeling.
Collapse
Affiliation(s)
- Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanbo Wu
- Department of Ultrasound, Yangxin County People's Hospital, Huangshi, Hubei, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanli Liu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiaqi Yu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Sunrui Chen
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Weihua Wu
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Jidong Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Guowei Qian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Aina He
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
333
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
334
|
Zhao J, Fong A, Seow SV, Toh HC. Organoids as an Enabler of Precision Immuno-Oncology. Cells 2023; 12:1165. [PMID: 37190074 PMCID: PMC10136954 DOI: 10.3390/cells12081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune checkpoints that inhibit T-cell immunity but also harnessing immune cell therapies. The limited efficacy in some cancers results mainly from a complex tumour microenvironment (TME) that, in addition to adaptive immune cells, comprises innate myeloid and lymphoid cells, cancer-associated fibroblasts, and the tumour vasculature that contribute towards immune evasion. As the complexity of TME has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, we discuss how organoids can study the TME across cancers and how these features may improve precision I/O. We outline the approaches to preserve or recapitulate the TME in tumour organoids and discuss their potential, advantages, and limitations. We will discuss future directions of organoid research in understanding cancer immunology in-depth and identifying novel I/O targets and treatment strategies.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antoinette Fong
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - See Voon Seow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| |
Collapse
|
335
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
336
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
337
|
Hu C, Zhang Y, Wu C, Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discov 2023; 9:124. [PMID: 37055382 PMCID: PMC10102018 DOI: 10.1038/s41420-023-01428-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most severe and complex malignant diseases with a high level of heterogeneity and, as a result, a wide range of therapeutic responses, regardless of clinical stage. Tumor progression depends on ongoing co-evolution and cross-talk with the tumor microenvironment (TME). In particular, cancer-associated fibroblasts (CAFs), embedded in the extracellular matrix (ECM), induce tumor growth and survival by interacting with tumor cells. Origin of CAFs is quite varied, and the activation patterns of CAFs are also heterogeneous. Crucially, the heterogeneity of CAFs appears to play a key role in ongoing tumor expansion, including facilitating proliferation, enhancing angiogenesis and invasion, and promoting therapy resistance, through the production of cytokines, chemokines, and other tumor-promotive molecules in the TME. This review describes the various origin and heterogeneous activation mechanisms of CAFs, and biological heterogeneity of CAFs in HNSCC is also included. Moreover, we have highlighted versatility of CAFs heterogeneity in HNSCC progression, and have discussed different tumor-promotive functions of CAFs respectively. In the future, it is a promising strategy for the therapy of HNSCC that specifically targeting tumor-promoting CAF subsets or the tumor-promoting functional targets of CAFs.
Collapse
Affiliation(s)
- Chen Hu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, 100730, Beijing, China
| | - Yifan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| |
Collapse
|
338
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 479] [Impact Index Per Article: 239.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
339
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
340
|
Lyu L, Jiang Y, Ma W, Li H, Liu X, Li L, Shen A, Yu Y, Jiang S, Li H, Zhou P, Yin S. Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. Br J Cancer 2023; 128:1117-1133. [PMID: 36631635 PMCID: PMC10006201 DOI: 10.1038/s41416-022-02126-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND PIT1-positive pituitary adenoma (PIT1-PA) is one of the most important lineages of pituitary adenoma (PA), which causes systematic endocrine disorders and a worse prognosis. Tumour-associated fibroblast (TAF) is a crucial stroma cell type in the tumour microenvironment (TME). However, cellular and functional heterogeneity of TAF and immune cells in PIT1-PA have not been fully investigated. METHODS By single-cell RNA sequencing of four PIT1-PAs and further analyses, we characterised the molecular and functional profiles of 28 different cell subtypes. RESULTS PA stem cells in PIT1/SF1-positve PA were in a hybrid epithelial/mesenchymal state, and differentiated along the PIT1- and SF- dependent branches. C1Q was overwhelmingly expressed in tumour-associated macrophages, indicating its pro-tumoral functionality. PIT1-PA progression was characterised by lower cell-cell communication strength and higher cell adhesion-associated signals, indicating the immunosuppressive but pro-invasive microenvironment. IFN-γ signal repressed functional remodelling of myofibroblastic TAF (mTAF) towards inflammatory TAF/antigen-presenting TAF. IFN-γ inhibited mTAF phenotypes and N-cadherin expression through STAT3 signal axis. CDH2 knockdown in TAFs abrogated their pro-tumour function in PAs. CONCLUSIONS Our study builds up a cellular landscape of PIT1-PA TME and highlights anti-tumour function of IFN-γ mediated TAF remodelling, which benefits clinical treatments and drug development.
Collapse
Affiliation(s)
- Liang Lyu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weichao Ma
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haiyan Li
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Xiaoling Liu
- Departments of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ao Shen
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Yu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shu Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huihui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China.
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Peizhi Zhou
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Senlin Yin
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
341
|
Mao W, Zhang L, Rong Y, Kuang T, Wang D, Xu X, Lou W, Li J. NEDD8-Activating Enzyme Inhibitor MLN4924 Inhibits Both the Tumor Stroma and Angiogenesis in Pancreatic Cancer via Gli1 and REDD1. Dig Dis Sci 2023; 68:1351-1363. [PMID: 36098876 DOI: 10.1007/s10620-022-07671-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/12/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Pancreatic cancer is characterized by a dense desmoplasia stroma, which hinders efficient drug delivery and plays a critical role in tumor progression and metastasis. MLN4924 is a first-in-class NEDD8-activating enzyme inhibitor that exhibits anti-tumor activities toward pancreatic cancer, and given the comprehensive effects that MLN4924 could have, we ask what impact MLN4924 would have on the stroma of pancreatic cancer and its underlying mechanisms. METHODS Primary pancreatic stellate cells (PSCs) and human HMEC-1 cells were treated with MLN4924 in vitro. The proliferation and extracellular matrix protein levels of PSCs were tested, and their relationship with transcription factor Gli1 in PSCs was investigated. The angiogenic phenotypes of HMEC-1 cells were evaluated using capillary-like tube formation assay, and their relationship with REDD1 in HMEC-1 cells was investigated. RESULTS In this study, we found that MLN4924 inhibited the proliferation of pancreatic stellate cells and their secretion of collagen and CXCL-1, and the collagen secretion inhibiting effect of MLN4924 was related with transcription factor Gli1. MLN4924 inhibited multiple angiogenic phenotypes of HMEC-1 cells, and mTOR agonist partially relieved the inhibition of MLN4924 on HEMCs. MLN4924 increased the expression of REDD1 and REDD1 knockdown promoted the angiogenic phenotypes of HMEC-1 cells. CONCLUSIONS Our study suggests that MLN4924 inhibits both the tumor stroma and angiogenesis in pancreatic cancer, and the inhibition effect is related with Gli1 in pancreatic stellate cells and REDD1 in vascular endothelial cells, respectively.
Collapse
Affiliation(s)
- Weilin Mao
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
342
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
343
|
Geng X, Li L, Luo Y, Yang W, Hu J, Zhao Z, Cheng C, Zhang T, Zhang Y, Liu L, Xie Y, Li G, Liu D, Bai R, Bai X, Wang G, Chen H, Wang Y, Chen H, Sun B. Tumor Cell Derived Lnc-FSD2-31:1 Contributes to Cancer-Associated Fibroblasts Activation in Pancreatic Ductal Adenocarcinoma Progression through Extracellular Vesicles Cargo MiR-4736. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203324. [PMID: 36727832 PMCID: PMC10074102 DOI: 10.1002/advs.202203324] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents with high mortality and short overall survival. Cancer-associated fibroblasts (CAFs) act as refuge for cancer cells in PDAC. Mechanisms of intracelluar communication between CAFs and cancer cells need to be explored. Long noncoding RNAs (lncRNAs) are involved in the modulation of oncogenesis and tumor progression of PDAC; however, specific lncRNAs and their mechanism of action have not been clarified clearly in tumoral microenvironment. This work aims to identify novel lncRNAs involved in cellular interaction between cancer cells and CAFs in PDAC. To this end, differentially expressed lncRNAs between long-term and short-term survival PDAC patients are screened. Lnc-FSD2-31:1 is found to be significantly increased in long-term survival patients. This work then discovers that tumor-derived lnc-FSD2-31:1 restrains CAFs activation via miR-4736 transported by extracellular vesicles (EVs) in vitro and in vivo. Mechanistically, EVs-derived miR-4736 suppresses autophagy and contributes to CAFs activation by targeting ATG7. Furthermore, blocking miR-4736 suppresses tumor growth in genetically engineered KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+, and Pdx-1-Cre) mouse model of PDAC. This study demonstrates that intratumoral lnc-FSD2-31:1 modulates autophagy in CAFs resulting in their activation through EVs-derived miR-4736. Targeting miR-4736 may be a potential biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xinglong Geng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Le Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yan Luo
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Wenbo Yang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Jisheng Hu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Chundong Cheng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Tao Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yangyang Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Liwei Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yu Xie
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Guanqun Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Danxi Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Rui Bai
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Xuewei Bai
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Gang Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Hua Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yongwei Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Hongze Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Bei Sun
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| |
Collapse
|
344
|
Moghal N, Li Q, Stewart EL, Navab R, Mikubo M, D'Arcangelo E, Martins-Filho SN, Raghavan V, Pham NA, Li M, Shepherd FA, Liu G, Tsao MS. Single-Cell Analysis Reveals Transcriptomic Features of Drug-Tolerant Persisters and Stromal Adaptation in a Patient-Derived EGFR-Mutated Lung Adenocarcinoma Xenograft Model. J Thorac Oncol 2023; 18:499-515. [PMID: 36535627 DOI: 10.1016/j.jtho.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Targeted therapies require life-long treatment, as drug discontinuation invariably leads to tumor recurrence. Recurrence is mainly driven by minor subpopulations of drug-tolerant persister (DTP) cells that survive the cytotoxic drug effect. In lung cancer, DTP studies have mainly been conducted with cell line models. METHODS We conducted an in vivo DTP study using a lung adenocarcinoma patient-derived xenograft tumor driven by an EGFR mutation. Daily treatment of tumor-bearing mice for 5 to 6 weeks with the EGFR inhibitor erlotinib markedly shrunk tumors and generated DTPs, which were analyzed by whole exome, bulk population transcriptome, and single-cell RNA sequencing. RESULTS The DTP tumors maintained the genomic clonal architecture of untreated baseline (BL) tumors but had reduced proliferation. Single-cell RNA sequencing identified a rare (approximately 4%) subpopulation of BL cells (DTP-like) with transcriptomic similarity to DTP cells and intermediate activity of pathways that are up-regulated in DTPs. Furthermore, the predominant transforming growth factor-β activated cancer-associated fibroblast (CAF) population in BL tumors was replaced by a CAF population enriched for IL6 production. In vitro experiments indicate that these populations interconvert depending on the levels of transforming growth factor-β versus NF-κB signaling, which is modulated by tyrosine kinase inhibitor presence. The DTPs had signs of increased NF-κB and STAT3 signaling, which may promote their survival. CONCLUSIONS The DTPs may arise from a specific preexisting subpopulation of cancer cells with partial activation of specific drug resistance pathways. Tyrosine kinase inhibitor treatment induces DTPs revealing greater activation of these pathways while converting the major preexisting CAF population into a new state that may further promote DTP survival.
Collapse
Affiliation(s)
- Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Erin L Stewart
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Masashi Mikubo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Elisa D'Arcangelo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sebastiao N Martins-Filho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vibha Raghavan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
345
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
346
|
Ebi H. Drug-Tolerant Persister Cells After EGFR Tyrosine Kinase Inhibitor Treatment: Their Origin and the Influences From the Tumor Microenvironment. J Thorac Oncol 2023; 18:399-401. [PMID: 36990572 DOI: 10.1016/j.jtho.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
|
347
|
Knipper K, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Lyu SI. Specific Subtypes of Carcinoma-Associated Fibroblasts Are Correlated with Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15072049. [PMID: 37046710 PMCID: PMC10093167 DOI: 10.3390/cancers15072049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE The pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer entities. Effective therapy options are still lacking. The tumor microenvironment possibly bears further treatment possibilities. This study aimed to describe the expression patterns of four established carcinoma-associated fibroblast (CAFs) markers and their correlation in PDAC tissue samples. METHODS This project included 321 patients with PDAC who underwent surgery with a curative intent in one of the PANCALYZE study centers. Immunohistochemical stainings for FAP, PDGFR, periostin, and SMA were performed. The expression patterns of each marker were divided into low- and high-expressing CAFs and correlated with patients' survival. RESULTS Tumors showing SMAhigh-, PeriostinhighSMAhigh-, or PeriostinhighSMAlowPDGFRlowFAPhigh-positive CAFs demonstrated significantly worse survival. Additionally, a high expression of SMA in PDAC tissue samples was shown to be an independent risk factor for worse survival. CONCLUSION This project identified three subgroups of PDAC with different expression patterns of CAF markers which showed significantly worse survival. This could be the base for the further characterization of the fibroblast subgroups in PDAC and contribute to the development of new targeted therapy options against CAFs.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander I Damanakis
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Felix C Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
348
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
349
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
350
|
Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:182-204. [PMID: 37065872 PMCID: PMC10099601 DOI: 10.20517/cdr.2022.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2023]
Abstract
The context-dependent reciprocal interaction between the cancer cells and surrounding fibroblasts is imperative for regulating malignant potential, metabolic reprogramming, immunosuppression, and ECM deposition. However, recent evidence also suggests that cancer-associated fibroblasts induce chemoresistance in cancer cells to various anticancer regimens. Because of the protumorigenic function of cancer-associated fibroblasts, these stromal cell types have emerged as fascinating therapeutic targets for cancer. However, this notion was recently challenged by studies that targeted cancer-associated fibroblasts and highlighted the underlying heterogeneity by identifying a subset of these cells with tumor-restricting functions. Hence, it is imperative to understand the heterogeneity and heterotypic signaling of cancer-associated fibroblasts to target tumor-promoting signaling processes by sparing tumor-restricting ones. In this review, we discuss the heterogeneity and heterotypic signaling of cancer-associated fibroblasts in shaping drug resistance and also list the cancer-associated fibroblast-targeting therapeutics.
Collapse
Affiliation(s)
- Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ashwini Khaladkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Bombay 400076, India
- Authors contributed equally
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Authors contributed equally
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|