301
|
Gupta S, Lodha R, Kabra SK. Asthma, GERD and Obesity: Triangle of Inflammation. Indian J Pediatr 2018; 85:887-892. [PMID: 29127618 DOI: 10.1007/s12098-017-2484-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
Abstract
There is increasing prevalence of both asthma and obesity in children globally in recent years. Various epidemiological studies link obesity as a risk factor for asthma and suggest a possible causal association. Obesity asthma phenotype is considered as distinct in view of greater severity and poor asthma control. Various mechanisms underlying this phenotype have been suggested including mechanical effects of obesity and systemic inflammation, but still the exact mechanism is unclear. Also, the comorbidities like gastroesophageal reflux disease (GERD) and sleep disordered breathing (SDB) lead to inflammation in airways and contribute to asthma obesity association. A better understanding of mechanisms by which obesity and GERD lead to inflammation in airways and increase the risk of asthma may provide insight towards targeted treatment approach of these patients.
Collapse
Affiliation(s)
- Samriti Gupta
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
302
|
Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy 2018; 48:1275-1285. [PMID: 29900603 DOI: 10.1111/cea.13191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whilst severe asthma has classically been categorized as a predominantly Th2-driven pathology, there has in recent years been a paradigm shift with the realization that it is a heterogeneous disease that may manifest with quite disparate underlying inflammatory and remodelling profiles. A subset of asthmatics, particularly those with a severe, corticosteroid refractory disease, present with a prominent neutrophilic component. Given the potential of neutrophils to impart extensive tissue damage and promote inflammation, it has been anticipated that these cells are closely implicated in the underlying pathophysiology of severe asthma. However, uncertainty persists as to why the neutrophil is present in the asthmatic lung and what precisely it is doing there, with evidence supporting its role as a protagonist of pathology being primarily circumstantial. Furthermore, our view of the neutrophil as a primitive, indiscriminate killer has evolved with the realization that neutrophils can exhibit a marked anti-inflammatory, pro-resolving and wound healing capacity. We suggest that the neutrophil likely exhibits pleiotropic and potentially conflicting roles in defining asthma pathophysiology-some almost certainly detrimental and some potentially beneficial-with context, timing and location all critical confounders. Accordingly, indiscriminate blockade of neutrophils with a broad sword approach is unlikely to be the answer, but rather we should first seek to understand their complex and multifaceted roles in the disease state and then target them with the same subtleties and specificity that they themselves exhibit.
Collapse
Affiliation(s)
- R J Snelgrove
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - D F Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - T Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - C M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
303
|
Garbutcheon-Singh KB, Carnt N, Pattamatta U, Samarawickrama C, White A, Calder V. A Review of the Cytokine IL-17 in Ocular Surface and Corneal Disease. Curr Eye Res 2018; 44:1-10. [PMID: 30230384 DOI: 10.1080/02713683.2018.1519834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aim: To investigate the role of interleukin-17 in ocular surface and corneal disease. Ocular surface and corneal disease is a leading cause of blindness and is an ongoing challenge for the public health sector to implement effective therapies. The majority of cells in corneal lesions are derived primarily from neutrophils that induce inflammatory events that lead to tissue damage. One of the key pro-inflammatory cytokines is IL-17, and it has been investigated in order to facilitate the understanding of the pathogenesis of ocular surface lesion development. Method: A review of the literature was performed through a systematic approach. Results: IL-17 has been shown to exacerbate dry eye disease, viral and bacterial keratitis lesion severity, although it was found to be protective for Acanthamoeba. Antibodies developed to neutralize IL-17 have shown some promise in reducing the severity of some diseases. Conclusion: IL-17 plays a role in the pathogenesis of ocular surface and corneal disease and targeting this cytokine may provide a useful treatment option in the future.
Collapse
Affiliation(s)
| | - N Carnt
- a Westmead Millennium Institute , Sydney , Australia.,b University of New South Wales , Sydney , Australia
| | - U Pattamatta
- a Westmead Millennium Institute , Sydney , Australia.,c University of Sydney , Sydney , Australia
| | | | - A White
- a Westmead Millennium Institute , Sydney , Australia.,c University of Sydney , Sydney , Australia
| | - V Calder
- d Institute of Ophthalmology , University College London , London , England
| |
Collapse
|
304
|
Keeler SP, Agapov EV, Hinojosa ME, Letvin AN, Wu K, Holtzman MJ. Influenza A Virus Infection Causes Chronic Lung Disease Linked to Sites of Active Viral RNA Remnants. THE JOURNAL OF IMMUNOLOGY 2018; 201:2354-2368. [PMID: 30209189 DOI: 10.4049/jimmunol.1800671] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Clinical and experimental observations suggest that chronic lung disease is linked to respiratory viral infection. However, the long-term aspect of this relationship is not yet defined using a virus that replicates at properly high levels in humans and a corresponding animal model. In this study, we show that influenza A virus infection achieves 1 × 106-fold increases in viral load in the lung and dose-dependent severity of acute illness in mice. Moreover, these events are followed by persistence of negative- and positive-strand viral RNA remnants for 15 wk and chronic lung disease for at least 26 wk postinfection. The disease is manifested by focal areas of bronchiolization and mucus production that contain increased levels of viral RNA remnants along with mucin Muc5ac and Il13 mRNA compared with uninvolved areas of the lung. Excess mucus production and associated airway hyperreactivity (but not fibrosis or emphysema) are partially attenuated with loss of IL-13 production or signaling (using mice with IL-13 or STAT6 deficiency). These deficiencies cause reciprocal increases in l17a mRNA and neutrophils in the lung; however, none of these disease endpoints are changed with IL-13/IL-17a compared with IL-13 deficiency or STAT6/IL-17a compared with STAT6 deficiency. The results establish the capacity of a potent human respiratory virus to produce chronic lung disease focally at sites of active viral RNA remnants, likely reflecting locations of viral replication that reprogram the region. Viral dose dependency of disease also implicates high-level viral replication and severity of acute infection as determinants of chronic lung diseases such as asthma and COPD with IL-13-dependent and IL-13/IL-17-independent mechanisms.
Collapse
Affiliation(s)
- Shamus P Keeler
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael E Hinojosa
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Adam N Letvin
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
305
|
Patel NN, Kohanski MA, Maina IW, Workman AD, Herbert DR, Cohen NA. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 2018; 9:93-99. [PMID: 30260580 DOI: 10.1002/alr.22206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022]
Abstract
Recent evidence has demonstrated an expanding role of respiratory epithelial cells in immune surveillance and modulation. Studies have been focusing on the earliest events that link epithelial injury to downstream inflammatory responses. Cytokines produced by and released from respiratory epithelial cells are among these early trigger signals. Epithelial-derived cytokines, namely thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, have come to the forefront of recent investigations. Each of these 3 cytokines has been implicated in chronic rhinosinusitis (CRS), asthma, and atopy. Herein we review studies elucidating the roles of epithelial-derived cytokines in the pathobiology of upper airway disease, with particular emphasis on type 2 inflammatory conditions.
Collapse
Affiliation(s)
- Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA.,Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
306
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease consisting of different phenotypes that are driven by different mechanistic pathways. The purpose of this review is to emphasize the important role of precision medicine in asthma management. RECENT FINDINGS Despite asthma heterogeneity, the approach to management has been on the basis of disease severity, with the most severe patients reserved for the maximum treatments with corticosteroids and bronchodilators. At the severe end, the recent availability of biologic therapies in the form of anti-IgE (omalizumab) and anti-IL5 therapies (mepolizumab and reslizumab) has driven the adaptation of precision medicine. These therapies are reserved for severe asthma with defined either allergic or eosinophilic background, respectively. SUMMARY Unbiased definition of phenotypes or endotypes (which are phenotypes defined by mechanisms) is an important step towards the use of precision medicine in asthma. Although T2-high asthma has been defined with targets becoming available for treating allergic or eosinophilic asthma, the definition of non-T2 phenotypes remains a priority. Precision medicine is also dependent on the definition of biomarkers that can help differentiate between these phenotypes and pinpoint patients suitable for specific-targeted therapies. Thus, precision medicine links phenotypes (endotypes) to targeted treatments for better outcomes.
Collapse
|
307
|
Abstract
PURPOSE OF REVIEW Despite currently available treatments, many asthma patients remain inadequately controlled, but identifying distinct patient populations (phenotypes/endotypes) may optimize their management. This review discusses some of the controversies and opportunities for improved disease control in severe asthma. RECENT FINDINGS Currently approved anti-immunoglobulin E and anti-interleukin 5 biologics, which target specific pathways instead of using a 'one size fits all' strategy, are efficacious and well tolerated therapies for severe asthma. The appropriate use of these biologics, and of those in development (e.g., benralizumab and dupilumab), should be aided by further understanding of asthma phenotypes and endotypes, utilizing appropriate biomarkers.Oral corticosteroids are often added as maintenance therapy for patients with severe uncontrolled asthma, but their use is associated with significant adverse effects and should be considered a last option. The true cost of this therapy, including the cost of morbidities associated with its use, remains to be determined.Severe asthma in pediatrics poses a unique opportunity for possible prevention strategies and the potential for primary prevention. Although several avenues for primary prevention are being explored and are out of the scope of this review, we focus our discussion on the use of omalizumab, which has been recently explored in clinical trials. SUMMARY Appropriate use of biologics in severe asthma should be supported by further understanding of biomarkers predicting response to targeted therapy. Because of their association with significant adverse effects, add-on oral corticosteroids should be considered a last treatment option for patients with uncontrolled severe asthma. Finally, severe asthma in pediatrics poses a unique opportunity for potential prevention strategies.
Collapse
|
308
|
Abstract
PURPOSE OF REVIEW Recent studies have highlighted the role of alarmins in asthma pathophysiology and tested the roles of these cytokines in asthmatic patients. This review will discuss the recent advances in the role of alarmins in asthma and the potential of future targeted therapies in asthma. RECENT FINDINGS Epithelial-derived cytokines can be released upon exposure to external stimuli, causing damage to the epithelial barrier and resulting in tissue inflammation. Of these cytokines, IL-25, IL-33 and thymic stromal lymphopoeitin (TSLP), have been associated with asthma. These alarmins are all not only overexpressed in asthmatic airways, particularly in airway epithelial cells, but also in other structural and immune cells. Furthermore, all three alarmins drive type-2 pro-inflammatory responses in several immune cells that have been identified as key players in the pathogenesis of asthma, including innate lymphoid type-2 cells. Clinical trials testing therapeutics that block pathways of the alarmins are in progress. SUMMARY To-date, only TSLP blockade has been reported in human clinical trials, and this approach has shown efficacy in asthmatic patients. Current body of evidence suggests that alarmins are useful upstream targets for treatment of asthma.
Collapse
|
309
|
Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, Mulder IE. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 2018; 8:12024. [PMID: 30104645 PMCID: PMC6089914 DOI: 10.1038/s41598-018-30448-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Asthma is a phenotypically heterogeneous disease. In severe asthma, airway inflammation can be predominantly eosinophilic, neutrophilic, or mixed. Only a limited number of drug candidates are in development to address this unmet clinical need. Live biotherapeutics derived from the gut microbiota are a promising new therapeutic area. MRx0004 is a commensal Bifidobacterium breve strain isolated from the microbiota of a healthy human. The strain was tested prophylactically and therapeutically by oral gavage in a house dust mite mouse model of severe asthma. A strong reduction of neutrophil and eosinophil infiltration was observed in lung bronchoalveolar lavage fluid following MRx0004 treatment. Peribronchiolar and perivascular immunopathology was also reduced. MRx0004 increased lung CD4+CD44+ cells and CD4+FoxP3+ cells and decreased activated CD11b+ dendritic cells. Cytokine analysis of lung tissue revealed reductions of pro-inflammatory cytokines and chemokines involved in neutrophil migration. In comparison, anti-IL-17 antibody treatment effectively reduced neutrophilic infiltration and increased CD4+FoxP3+ cells, but it induced lung eosinophilia and did not decrease histopathology scores. We have demonstrated that MRx0004, a microbiota-derived bacterial strain, can reduce both neutrophilic and eosinophilic infiltration in a mouse model of severe asthma. This novel therapeutic is a promising next-generation drug for management of severe asthma.
Collapse
Affiliation(s)
- Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Margaret I Delday
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Seánín M McCluskey
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Mark D Singh
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| |
Collapse
|
310
|
Krishnamoorthy N, Douda DN, Brüggemann TR, Ricklefs I, Duvall MG, Abdulnour REE, Martinod K, Tavares L, Wang X, Cernadas M, Israel E, Mauger DT, Bleecker ER, Castro M, Erzurum SC, Gaston BM, Jarjour NN, Wenzel S, Dunican E, Fahy JV, Irimia D, Wagner DD, Levy BD. Neutrophil cytoplasts induce T H17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol 2018; 3:eaao4747. [PMID: 30076281 PMCID: PMC6320225 DOI: 10.1126/sciimmunol.aao4747] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/09/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Severe asthma is a debilitating and treatment refractory disease. As many as half of these patients have complex neutrophil-predominant lung inflammation that is distinct from milder asthma with type 2 eosinophilic inflammation. New insights into severe asthma pathogenesis are needed. Concomitant exposure of mice to an aeroallergen and endotoxin during sensitization resulted in complex neutrophilic immune responses to allergen alone during later airway challenge. Unlike allergen alone, sensitization with allergen and endotoxin led to NETosis. In addition to neutrophil extracellular traps (NETs), enucleated neutrophil cytoplasts were evident in the lungs. Surprisingly, allergen-driven airway neutrophilia was decreased in peptidyl arginine deiminase 4-deficient mice with defective NETosis but not by deoxyribonuclease treatment, implicating the cytoplasts for the non-type 2 immune responses to allergen. Neutrophil cytoplasts were also present in mediastinal lymph nodes, and the cytoplasts activated lung dendritic cells in vitro to trigger antigen-specific interleukin-17 (IL-17) production from naïve CD4+ T cells. Bronchoalveolar lavage fluid from patients with severe asthma and high neutrophil counts had detectable NETs and cytoplasts that were positively correlated with IL-17 levels. Together, these translational findings have identified neutrophil cytoplast formation in asthmatic lung inflammation and linked the cytoplasts to T helper 17-mediated neutrophilic inflammation in severe asthma.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David N Douda
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thayse R Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Isabell Ricklefs
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Melody G Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Luciana Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiao Wang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, MA 02129, USA
| | - Manuela Cernadas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elliot Israel
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David T Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, PA 17033, USA
| | - Eugene R Bleecker
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Serpil C Erzurum
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin M Gaston
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nizar N Jarjour
- Section of Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine, Madison, WI 53792, USA
| | - Sally Wenzel
- Pulmonary, Allergy, and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Eleanor Dunican
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, MA 02129, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
311
|
Manka LA, Wechsler ME. Selecting the right biologic for your patients with severe asthma. Ann Allergy Asthma Immunol 2018; 121:406-413. [PMID: 30056149 DOI: 10.1016/j.anai.2018.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Severe asthma affects 5% to 10% of the adult asthma population and is associated with increased morbidity, mortality, and consumption of health care resources. Recently, several biologic medications have been approved for use in severe asthma. These medications target the type 2 inflammatory pathway, which is characterized by activation of cytokines, including interleukin (IL)-4, IL-5, and IL-13, which results in eosinophilia, high FeNO, and atopic features. The objective of this review was to provide clinicians with key points to assist in selecting the best biologic medication for each patient. DATA SOURCES A comprehensive literature search was performed, and data were reviewed from basic science articles of inflammatory mediators in type 2 airway inflammation, and clinical trials of biologic medications in patients with severe asthma. STUDY SELECTIONS These studies analyzed outcomes of biologic medications in type 2-high severe asthma including clinical biomarkers, exacerbation rates, lung function, and quality of life measures. RESULTS Biologic mediations in type 2-high severe asthma improve outcomes, including clinical biomarkers, exacerbation rates, lung function, and quality-of-life measures. CONCLUSION When choosing a biologic medication for patients with severe asthma, asthma endotype, clinical biomarkers, and patient-centered factors should be taken into account.
Collapse
Affiliation(s)
- Laurie A Manka
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, and The NJH Cohen Family Asthma Institute, Denver, Colorado
| | - Michael E Wechsler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, and The NJH Cohen Family Asthma Institute, Denver, Colorado.
| |
Collapse
|
312
|
Abstract
PURPOSE OF REVIEW In this review, we herein describe the progress in management of severe asthma, evolving from a 'blockbuster approach' to a more personalized approach targeted to the utilization of endotype-driven therapies. RECENT FINDINGS Severe asthma characterization in phenotypes and endotypes, by means of specific biomarkers, have led to the dichotomization of the concepts of 'personalized medicine' and 'precision medicine', which are often used as synonyms, but actually have conceptual differences in meaning. The recent contribute of the omic sciences (i.e. proteomics, transcriptomics, metabolomics, genomics, …) has brought this initially theoretic evolution into a more concrete level. SUMMARY This step-by-step transition would bring to a better approach to severe asthmatic patients as the personalization of their therapeutic strategy would bring to a better patient selection, a more precise endotype-driven treatment, and hopefully to better results in terms of reduction of exacerbation rates, symptoms, pulmonary function and quality of life.
Collapse
|
313
|
Dupin I, Contin-Bordes C, Berger P. Fibrocytes in Asthma and Chronic Obstructive Pulmonary Disease: Variations on the Same Theme. Am J Respir Cell Mol Biol 2018; 58:288-298. [PMID: 29087726 DOI: 10.1165/rcmb.2017-0301ps] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrocytes are circulating cells that have fibroblast properties. They are produced by the bone marrow stroma, and they move from the blood to injured organs using multiple chemokine pathways. They exhibit marked functional and phenotypic plasticity in response to the local tissue microenvironment to ensure a proinflammatory or a more resolving phenotype. They can adopt immune cell properties and modulate conventional immune cell functions. Although their exact function is not always clear, they have emerged as key effector cells in several fibrotic diseases such as keloid, scleroderma, and idiopathic pulmonary fibrosis. Recent evidence suggests that fibrocytes could contribute to bronchial obstructive diseases such as asthma and chronic obstructive pulmonary disease. This review summarizes the reported roles of fibrocytes and their pathways into the lung in the context of asthma and chronic obstructive pulmonary disease, provides an overview of the different roles played by fibrocytes, and discusses their possible contributions to these obstructive diseases.
Collapse
Affiliation(s)
- Isabelle Dupin
- 1 Université de Bordeaux, Centre de Recherche Cardio thoracique de Bordeaux, F 33000 Bordeaux, France.,2 INSERM, Centre de Recherche Cardio thoracique de Bordeaux, U1045, F 33000 Bordeaux, France
| | - Cécile Contin-Bordes
- 3 CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, F 33000, Bordeaux, France.,4 CNRS UMR5164 ImmunoConcEpT, Université de Bordeaux , F 33000, Bordeaux, France
| | - Patrick Berger
- 1 Université de Bordeaux, Centre de Recherche Cardio thoracique de Bordeaux, F 33000 Bordeaux, France.,2 INSERM, Centre de Recherche Cardio thoracique de Bordeaux, U1045, F 33000 Bordeaux, France.,5 CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, CIC 1401, F 33604 Pessac, France
| |
Collapse
|
314
|
Mathews JA, Krishnamoorthy N, Kasahara DI, Hutchinson J, Cho Y, Brand JD, Williams AS, Wurmbrand AP, Ribeiro L, Cuttitta F, Sunday ME, Levy BD, Shore SA. Augmented Responses to Ozone in Obese Mice Require IL-17A and Gastrin-Releasing Peptide. Am J Respir Cell Mol Biol 2018; 58:341-351. [PMID: 28957638 DOI: 10.1165/rcmb.2017-0071oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ozone and obesity both increase IL-17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL-17A in obesity-related increases in the response to ozone observed in obese mice. Lean wild-type and obese db/db mice were pretreated with IL-17A-blocking or isotype antibodies, exposed to air or ozone (2 ppm for 3 h), and evaluated 24 hours later. Microarray analysis of lung tissue gene expression was used to examine the mechanistic basis for effects of anti-IL-17A. Compared with lean mice, ozone-exposed obese mice had greater concentrations of BAL IL-17A and greater numbers of pulmonary IL-17A+ cells. Ozone-induced increases in BAL IL-23 and CCL20, cytokines important for IL-17A+ cell recruitment and activation, were also greater in obese mice. Anti-IL-17A treatment reduced ozone-induced airway hyperresponsiveness toward levels observed in lean mice. Anti-IL-17A treatment also reduced BAL neutrophils in both lean and obese mice, possibly because of reductions in CXCL1. Microarray analysis identified gastrin-releasing peptide (GRP) receptor (Grpr) among those genes that were both elevated in the lungs of obese mice after ozone exposure and reduced after anti-IL-17A treatment. Furthermore, ozone exposure increased BAL GRP to a greater extent in obese than in lean mice, and GRP-neutralizing antibody treatment reduced obesity-related increases in ozone-induced airway hyperresponsiveness and neutrophil recruitment. Our data indicate that IL-17A contributes to augmented responses to ozone in db/db mice. Furthermore, IL-17A appears to act at least in part by inducing expression of Grpr.
Collapse
Affiliation(s)
| | - Nandini Krishnamoorthy
- 2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Massachusetts
| | | | - John Hutchinson
- 3 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Frank Cuttitta
- 4 Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Mary E Sunday
- 5 Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Bruce D Levy
- 2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Massachusetts
| | | |
Collapse
|
315
|
Tian BP, Li F, Li R, Hu X, Lai TW, Lu J, Zhao Y, Du Y, Liang Z, Zhu C, Shao W, Li W, Chen ZH, Sun X, Chen X, Ying S, Ling D, Shen H. Nanoformulated ABT-199 to effectively target Bcl-2 at mitochondrial membrane alleviates airway inflammation by inducing apoptosis. Biomaterials 2018; 192:429-439. [PMID: 30500724 DOI: 10.1016/j.biomaterials.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Elimination of airway inflammatory cells is essential for asthma control. As Bcl-2 protein is highly expressed on the mitochondrial outer membrane in inflammatory cells, we chose a Bcl-2 inhibitor, ABT-199, which can inhibit airway inflammation and airway hyperresponsiveness by inducing inflammatory cell apoptosis. Herein, we synthesized a pH-sensitive nanoformulated Bcl-2 inhibitor (Nf-ABT-199) that could specifically deliver ABT-199 to the mitochondria of bronchial inflammatory cells. The proof-of-concept study of an inflammatory cell mitochondria-targeted therapy using Nf-ABT-199 was validated in a mouse model of allergic asthma. Nf-ABT-199 was proven to significantly alleviate airway inflammation by effectively inducing eosinophil apoptosis and inhibiting both inflammatory cell infiltration and mucus hypersecretion. In addition, the nanocarrier or Nf-ABT-199 showed no obvious influence on cell viability, airway epithelial barrier and liver function, implying excellent biocompatibility and with non-toxic effect. The nanoformulated Bcl-2 inhibitor Nf-ABT-199 accumulates in the mitochondria of inflammatory cells and efficiently alleviates allergic asthma.
Collapse
Affiliation(s)
- Bao-Ping Tian
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China; Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruiqing Li
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Hu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tian-Wen Lai
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China
| | - Jingxiong Lu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China
| | - Yang Du
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zeyu Liang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China
| | - Wei Shao
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China
| | - Xiaolian Sun
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310009, China; State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
316
|
Galeone C, Scelfo C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, Menzella F. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for "Omics" Technology? BIOMED RESEARCH INTERNATIONAL 2018; 2018:4617565. [PMID: 29992143 PMCID: PMC6016214 DOI: 10.1155/2018/4617565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
According to the current guidelines, severe asthma still represents a controversial topic in terms of definition and management. The introduction of novel biological therapies as a treatment option for severe asthmatic patients paved the way to a personalized approach, which aims at matching the appropriate therapy with the different asthma phenotypes. Traditional asthma phenotypes have been decomposing by an increasing number of asthma subclasses based on functional and physiopathological mechanisms. This is possible thanks to the development and application of different omics technologies. The new asthma classification patterns, particularly concerning severe asthma, include an increasing number of endotypes that have been identified using new omics technologies. The identification of endotypes provides new opportunities for the management of asthma symptoms, but this implies that biological therapies which target inflammatory mediators in the frame of specific patterns of inflammation should be developed. However, the pathway leading to a precision approach in asthma treatment is still at its beginning. The aim of this review is providing a synthetic overview of the current asthma management, with a particular focus on severe asthma, in the light of phenotype and endotype approach, and summarizing the current knowledge about "omics" science and their therapeutic relevance in the field of bronchial asthma.
Collapse
Affiliation(s)
- Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
317
|
Abstract
PURPOSE OF REVIEW Although biologic therapies can provide outstanding efficacy in the management of lung disease, especially asthma, most of these agents have been approved only for adults. Recent findings provide new strategies for using these agents in children. RECENT FINDINGS Extensive evidence has consistently demonstrated the efficacy and safety of biologic therapy for asthma. In addition, some studies have documented potentially important secondary effects, such as improving response to respiratory virus infection in asthmatic patients. Additional strategies for improving asthma control using biologic therapy, such as seasonal administration, have been suggested, and may limit cost while still providing a high degree of efficacy. SUMMARY Many of the current biologics are able to readily establish control even in asthmatic patients for whom inhaled steroid and long-acting β agonist have failed. However, biologics currently have limited regulatory approval and availability in the pediatric age range, despite this age being disproportionately affected by asthma. In addition, successful biologics for asthma to date have largely been limited to the Th2-high endotype of asthma, and there is great need for similar medications to target the Th2-low endotype. Other pediatric lung disease might well benefit from the specificity allowed by biologic therapy.
Collapse
|
318
|
Fang SB, Zhang HY, Jiang AY, Fan XL, Lin YD, Li CL, Wang C, Meng XC, Fu QL. Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther 2018; 9:147. [PMID: 29793557 PMCID: PMC5968555 DOI: 10.1186/s13287-018-0897-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells-derived mesenchymal stem cells (iPSC-MSCs) have been shown to be effective in Type 2 helper T cells (Th2)-dominant eosinophilic allergic airway inflammation. However, the role of iPSC-MSCs in Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation remains poorly studied. Therefore, this study was to explore the effects of iPSC-MSCs on an experimental mouse model of steroid-resistant neutrophilic airway inflammation and further determine the underlying mechanisms. METHODS A mouse model of neutrophilic airway inflammation was established using ovalbumin (OVA) and lipopolysaccharide (LPS). Human iPSC-MSCs were systemically administered, and the lungs or bronchoalveolar lavage fluids (BALF) were collected at 4 h and 48 h post-challenge. The pathology and inflammatory cell infiltration, the T helper cells, T helper cells-associated cytokines, nuclear transcription factors and possible signaling pathways were evaluated. Human CD4+ T cells were polarized to T helper cells and the effects of iPSC-MSCs on the differentiation of T helper cells were determined. RESULTS We successfully induced the mouse model of Th17 dominant neutrophilic airway inflammation. Human iPSC-MSCs but not dexamethasone significantly prevented the neutrophilic airway inflammation and decreased the levels of Th17 cells, IL-17A and p-STAT3. The mRNA levels of Gata3 and RORγt were also decreased with the treatment of iPSC-MSCs. We further confirmed the suppressive effects of iPSC-MSCs on the differentiation of human T helper cells. CONCLUSIONS iPSC-MSCs showed therapeutic potentials in neutrophilic airway inflammation through the regulation on Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for the asthma patients with steroid-resistant neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Ai-Yun Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Dong Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Cong Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiang-Ci Meng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
319
|
Pavord ID. Biologics and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2018; 141:1983-1991. [PMID: 29729941 DOI: 10.1016/j.jaci.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
The presence of airway inflammation in patients with chronic obstructive pulmonary disease (COPD) provides a rationale for biological agents targeting specific inflammatory pathways. This approach has been strikingly effective in patients with other chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, and asthma. However, there are important and unresolved challenges in COPD, including our incomplete understanding of heterogeneity of the lower airway inflammatory response and how these contribute to the clinical expression of disease. As a result, progress has been slow, and there have been many failures. One notable exception is the targeting of eosinophilic airway inflammation with anti-IL-5, which has an acknowledged and important role in the treatment of severe eosinophilic asthma. Recent phase III studies have shown a reduction in exacerbations of around 20% in patients with COPD and clear evidence of a blood eosinophil count-dependent beneficial effect. The demonstration of clinical efficacy linked to a clinically accessible biomarker raises the possibility of precision biomarker-directed use of biological agents in patients with COPD. The hope is that this will be an exemplar for the future development of biological agents in patients with COPD.
Collapse
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford, United Kingdom.
| |
Collapse
|
320
|
Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol Ther 2018; 189:149-172. [PMID: 29730443 DOI: 10.1016/j.pharmthera.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory diseases affect millions of people worldwide, and account for significant levels of disability and mortality. The treatment of lung cancer and asthma with therapeutic antibodies (Abs) is a breakthrough that opens up new paradigms for the management of respiratory diseases. Antibodies are becoming increasingly important in respiratory medicine; dozens of Abs have received marketing approval, and many more are currently in clinical development. Most of these Abs target asthma, lung cancer and respiratory infections, while very few target chronic obstructive pulmonary disease - one of the most common non-communicable causes of death - and idiopathic pulmonary fibrosis. Here, we review Abs approved for or in clinical development for the treatment of respiratory diseases. We notably highlight their molecular mechanisms, strengths, and likely future trends.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France
| | - L Guilleminault
- Pôle des Voies respiratoires, Hôpital Larrey, CHU de Toulouse, F-31059 Toulouse, France; STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, F-31013 Toulouse, France
| | - K Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - I Amanam
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - L Plantier
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France; CHRU de Tours, Service de Pneumologie, F-37000 Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France.
| |
Collapse
|
321
|
Li J, Casanova JL, Puel A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation. Mucosal Immunol 2018; 11:581-589. [PMID: 29186107 PMCID: PMC5975098 DOI: 10.1038/mi.2017.97] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-17A is a pro-inflammatory cytokine in mice and humans. It is recognized as a key factor for the protection of mice against various pathogens, but it also underlies pathogenic inflammatory responses in numerous mouse models. The inborn errors of IL-17A- and IL-17F-mediated immunity identified in humans in the last decade have revealed that IL-17A and IL-17F are key players in mucocutaneous immunity to Candida albicans, and, to a lesser extent, Staphylococcus aureus. By contrast, there is currently no genetic evidence for a causal link between excess of IL-17 and autoimmunity, autoinflammation, or allergy in humans. We discuss here the physiological and pathological roles of mouse and human IL-17A and IL-17F in host defense and excessive inflammation. We highlight recent advances in our understanding of the consequences of deficient or excessive IL-17 immunity at various mucocutaneous sites, including the oral cavity, skin, intestine, lungs, and vagina.
Collapse
Affiliation(s)
- Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France, EU
- Paris Descartes University, Imagine Institute, 75015 Paris, France, EU
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France, EU
- Paris Descartes University, Imagine Institute, 75015 Paris, France, EU
| |
Collapse
|
322
|
De Luca A, Pariano M, Cellini B, Costantini C, Villella VR, Jose SS, Palmieri M, Borghi M, Galosi C, Paolicelli G, Maiuri L, Fric J, Zelante T. The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways. Cell Rep 2018; 20:1667-1680. [PMID: 28813677 DOI: 10.1016/j.celrep.2017.07.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/17/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022] Open
Abstract
The interleukin 17 (IL-17) cytokine and receptor family is central to antimicrobial resistance and inflammation in the lung. Mice lacking IL-17A, IL-17F, or the IL-17RA subunit were compared with wild-type mice for susceptibility to airway inflammation in models of infection and allergy. Signaling through IL-17RA was required for efficient microbial clearance and prevention of allergy; in the absence of IL-17RA, signaling through IL-17RC on epithelial cells, predominantly by IL-17F, significantly exacerbated lower airway Aspergillus or Pseudomonas infection and allergic airway inflammation. In contrast, following infection with the upper respiratory pathogen Staphylococcus aureus, the IL-17F/IL-17RC axis mediated protection. Thus, IL-17A and IL-17F exert distinct biological effects during pulmonary infection; the IL-17F/IL-17RC signaling axis has the potential to significantly worsen pathogen-associated inflammation of the lower respiratory tract in particular, and should be investigated further as a therapeutic target for treating pathological inflammation in the lung.
Collapse
Affiliation(s)
- Antonella De Luca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Shyam Sushama Jose
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Melissa Palmieri
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Galosi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Paolicelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy; Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
323
|
Abstract
PURPOSE OF REVIEW The inflammatory makeup of severe asthma is heterogeneous. Identification of the predominant cellular endotype via biomarkers can aid in the selection of more advanced therapies. This review is clinically focused on how to use these biomarkers to help select between biologic agents and/or bronchial thermoplasty. RECENT FINDINGS Several Th2 biomarkers exist for the detection of eosinophilic disease; however, the best biomarker for clinical practice is debatable depending upon local resources. Currently, there are three federal drug agency-approved biologic agents (omalizumab, mepolizumab and reslizumab) to treat severe asthma with frequent exacerbations despite standard medical therapy. Several others are either in clinical trials or in the development phase for the treatment of eosinophilic asthma. To date, agents targeting neutrophilic inflammation have been largely unsuccessful. Bronchial thermoplasty has emerged as an option for the treatment of severe asthma. SUMMARY The appropriate selection of patients through the use of eosinophilic biomarkers has led to significant reductions in exacerbations with the use of mAb therapy. Bronchial thermoplasty has also shown reductions in asthma exacerbations and improved quality of life; however, it is unclear which patients may respond best to this intervention.
Collapse
|
324
|
Abstract
INTRODUCTION Allergic conditions such as asthma and atopic dermatitis have a high prevalence but represent a heterogeneous group of diseases despite similar clinical presentation and underlying pathophysiology. A better understanding of the phenotypes and endotypes of these diseases has driven rapid development of biologic medications targeting many steps of the inflammatory pathways. Areas covered: There are 2 major inflammatory pathways that drive allergic diseases: Type-2 (Th-2) inflammation and non-type 2 inflammation. All of the biologic medications currently approved for use, and most of the biologic medications under development for allergic diseases have focused on the Th-2 inflammatory pathway. Biologic targets along this pathway include Anti-Immunoglobulin E (IgE), Anti-Interleukin 5 (IL-5), Anti-IL 4, and Anti-IL 13. Although the most study has been done in the realm of severe asthma, biologic targets for other allergic diseases including atopic dermatitis, chronic rhinosinusitis with nasal polyposis, chronic idiopathic urticaria, eosinophilic esophagitis, and eosinophilic granulomatosis with polyangiitis are also discussed. Expert commentary: Novel biologic therapies have emerged over the last several years that have revolutionized the management of patients with refractory allergic disease.
Collapse
Affiliation(s)
- Laurie A Manka
- a Division of Pulmonary, Critical Care, and Sleep Medicine , National Jewish Health , Denver , CO , USA
| | - Michael E Wechsler
- b The Cohen Family Asthma Institute, Division of Pulmonary, Critical Care, and Sleep Medicine , National Jewish Health , Denver , CO , USA
| |
Collapse
|
325
|
Abstract
PURPOSE OF REVIEW Airway inflammation is considered to be a cardinal feature of asthma. However, the type of airway inflammation is heterogeneous and airway inflammation may even be absent. Biomarkers may help to identify the inflammatory phenotype or endotype, especially now the time has come that targeted therapies enter daily practice. RECENT FINDINGS Sputum biomarkers have increased our insights into the different inflammatory asthma phenotypes, their response to treatment and their association with progression of disease. New endotypes of type 2 driven inflammation were identified using a multidimensional approach. A specific mast cell subtype has been linked with type 2 driven inflammation and response to inhaled corticosteroids. Advances have been made with regard to sputum cytokine analysis and might also help to guide future treatment of severe asthma. SUMMARY Identifying the target population for biological therapies will not be possible without the use of biomarkers. Optimized, easy-to-apply, automated methods for sputum analysis (cellular content or soluble markers) need to be developed for implementation of sputum biomarkers in daily clinical practice.
Collapse
|
326
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease not only on a clinical but also on a mechanistic level. For a long time, the molecular mechanisms of asthma were considered to be driven by type 2 helper T cells (Th2) and eosinophilic airway inflammation; however, extensive research has revealed that T2-low subtypes that differ from the dominant T2 paradigm are also common. RECENT FINDINGS Research into asthma pathways has led to the recognition that some asthma phenotypes show absence of T2 inflammation or alternate between T2 and non-T2 responses. Moreover, numerous immune response modifiers that block key-molecules such as interleukin (IL)-5, IL-13, and immunoglobulin E (IgE) have been identified. Along the way, these studies pointed that T2-low inflammation may also be responsible for lack of responsiveness to current treatment regimes. SUMMARY Asthma pathogenesis is characterized by two major endotypes, a T2-high featuring increased eosinophilic airway inflammation, and a T2-low endotype presenting with either neutrophilic or paucigranulocytic airway inflammation and showing greater resistance to steroids. This clearly presents an unmet therapeutic challenge. A precise definition and characterization of the mechanisms that drive this T2-low inflammatory response in each patient phenotype is necessary to help identify novel drug targets and design more effective and targeted treatments.
Collapse
|
327
|
Kortekaas Krohn I, Shikhagaie MM, Golebski K, Bernink JH, Breynaert C, Creyns B, Diamant Z, Fokkens WJ, Gevaert P, Hellings P, Hendriks RW, Klimek L, Mjösberg J, Morita H, Ogg GS, O'Mahony L, Schwarze J, Seys SF, Shamji MH, Bal SM. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy 2018; 73:837-850. [PMID: 29069535 DOI: 10.1111/all.13340] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
Innate lymphoid cells (ILC) represent a group of lymphocytes that lack specific antigen receptors and are relatively rare as compared to adaptive lymphocytes. ILCs play important roles in allergic and nonallergic inflammatory diseases due to their location at barrier surfaces within the airways, gut, and skin, and they respond to cytokines produced by activated cells in their local environment. Innate lymphoid cells contribute to the immune response by the release of cytokines and other mediators, forming a link between innate and adaptive immunity. In recent years, these cells have been extensively characterized and their role in animal models of disease has been investigated. Data to translate the relevance of ILCs in human pathology, and the potential role of ILCs in diagnosis, as biomarkers and/or as future treatment targets are also emerging. This review, produced by a task force of the Immunology Section of the European Academy of Allergy and Clinical Immunology (EAACI), encompassing clinicians and researchers, highlights the role of ILCs in human allergic and nonallergic diseases in the airways, gastrointestinal tract, and skin, with a focus on new insights into clinical implications, therapeutic options, and future research opportunities.
Collapse
Affiliation(s)
- I. Kortekaas Krohn
- Laboratory of Clinical Immunology; Department Microbiology & Immunology; KU Leuven; Leuven Belgium
| | - M. M. Shikhagaie
- Department of Experimental Immunology; Academic Medical Center; Amsterdam the Netherlands
| | - K. Golebski
- Department of Experimental Immunology; Academic Medical Center; Amsterdam the Netherlands
- Department of Otorhinolaryngology; Academic Medical Center; Amsterdam the Netherlands
| | - J. H. Bernink
- Department of Experimental Immunology; Academic Medical Center; Amsterdam the Netherlands
| | - C. Breynaert
- Laboratory of Clinical Immunology; Department Microbiology & Immunology; KU Leuven; Leuven Belgium
- Department of General Internal Medicine; Allergy and Clinical Immunology; University Hospitals of Leuven; Leuven Belgium
| | - B. Creyns
- Laboratory of Clinical Immunology; Department Microbiology & Immunology; KU Leuven; Leuven Belgium
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology; Institute for Clinical Science; Skåne University Hospital; Lund Sweden
- Department of General Practice and Department of Clinical Pharmacy & Pharmacology; University Medical Centre Groningen; and QPS-Netherlands; University of Groningen; Groningen the Netherlands
| | - W. J. Fokkens
- Department of Otorhinolaryngology; Academic Medical Center; Amsterdam the Netherlands
| | - P. Gevaert
- Upper Airways Research Laboratory; Ghent University; Ghent Belgium
| | - P. Hellings
- Laboratory of Clinical Immunology; Department Microbiology & Immunology; KU Leuven; Leuven Belgium
- Department of Otorhinolaryngology; Academic Medical Center; Amsterdam the Netherlands
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery; University Hospitals Leuven; Leuven Belgium
| | - R. W. Hendriks
- Department of Pulmonary Medicine; Erasmus MC; Rotterdam the Netherlands
| | - L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - J. Mjösberg
- Center for Infectious Medicine; Department of Medicine Huddinge; Karolinska Institutet; Stockholm Sweden
| | - H. Morita
- Department of Allergy and Clinical Immunology; National Research Institute for Child Health and Development; Tokyo Japan
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - G. S. Ogg
- MRC Human Immunology Unit and Oxford University Hospitals NHS Trust; Weatherall Institute of Molecular Medicine; Oxford UK
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - J. Schwarze
- MRC Centre for Inflammation Research; The University of Edinburgh; Edinburgh UK
- Child Life & Health; The University of Edinburgh; Edinburgh UK
| | - S. F. Seys
- Laboratory of Clinical Immunology; Department Microbiology & Immunology; KU Leuven; Leuven Belgium
| | - M. H. Shamji
- Immunomodulation and Tolerance group, Allergy and Clinical Immunology; Inflammation, Repair and Development; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | - S. M. Bal
- Department of Experimental Immunology; Academic Medical Center; Amsterdam the Netherlands
| |
Collapse
|
328
|
Abstract
Severe asthma is a heterogeneous and often difficult to treat condition that results in a disproportionate cost to healthcare systems. Appropriate diagnosis and management of severe asthma is critical, as most asthma deaths have been retrospectively identified as having poorly recognised severe asthma. With multiple biologic agents becoming available, it is crucial to correctly phenotype patients in order to identify those that will respond to these high-cost treatments. We provide an overview of the assessment, phenotyping and management of severe asthma in primary and secondary care.
Collapse
Affiliation(s)
- Thomas L Jones
- Department of Respiratory Medicine, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Daniel M Neville
- Department of Respiratory Medicine, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Anoop J Chauhan
- Department of Respiratory Medicine, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| |
Collapse
|
329
|
Abstract
The growth and maturity of the peripheral immune system and subsequent development of pulmonary immunity in early life is dictated by host, environmental and microbial factors. Dysregulation during the critical window of immune development in the postnatal years results in disease which impacts on lifelong lung health. Asthma is a common disease in childhood and is often preceded by wheezing illnesses during the preschool years. However, the mechanisms underlying development of wheeze and how and why only some children progress to asthma is unknown. Human studies to date have generally focused on peripheral immune development, with little assessment of local tissue pathology in young children. Moreover, mechanisms underlying the interactions between inflammation and tissue repair at mucosal surfaces in early life remain unknown. Disappointingly, mechanistic studies in mice have predominantly used adult models. This review will consider the aspects of the neonatal immune system which might contribute to the development of early life wheezing disorders and asthma, and discuss the external environmental factors which may influence this process.
Collapse
Affiliation(s)
- Clare M Lloyd
- Inflammation, Repair & Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Sejal Saglani
- Inflammation, Repair & Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Royal Brompton Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
330
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
331
|
Abstract
Purpose of Review Chronic rhinosinusitis is a disease with high prevalence, significant impact on health-related quality of life (HRQoL) and it is associated with substantial healthcare and productivity costs. We face an urgent need to improve the level of disease control and achieve higher patient satisfaction and disease prevention. Precision medicine is increasingly recognized as the way forward in optimal patient care. The combination of personalized care, prevention of disease, prediction of success of treatment, and participation of the patient in the elaboration of the treatment plan is expected to guarantee the best possible therapeutic approach for individuals suffering from a chronic disabling condition. Recent Findings This is a narrative review on the current state of endotypes, biomarkers, and targeted treatments in chronic inflammatory conditions of the nose and paranasal sinuses. Different phenotypes of rhinitis and chronic rhinosinusitis (CRS) have been described based on symptom severity and duration, atopy status, level of control, comorbidities, and presence or absence of nasal polyps in CRS. The underlying pathophysiological mechanisms are diverse, with different endotypes being recognized. Novel emerging therapies are targeting specific pathophysiological pathways or endotypes. This endotype-driven treatment approach requires careful selection of the patient population who might benefit from a specific treatment. Summary This review provides a comprehensive overview of the current state of endotypes, biomarkers and targeted treatments in chronic inflammatory conditions of the nose and paranasal sinuses.
Collapse
|
332
|
Siddiqui S, Shikotra A, Richardson M, Doran E, Choy D, Bell A, Austin CD, Eastham-Anderson J, Hargadon B, Arron JR, Wardlaw A, Brightling CE, Heaney LG, Bradding P. Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis. J Allergy Clin Immunol 2018; 142:1457-1468. [PMID: 29550052 DOI: 10.1016/j.jaci.2017.12.982] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Asthma is a complex chronic disease underpinned by pathological changes within the airway wall. How variations in structural airway pathology and cellular inflammation contribute to the expression and severity of asthma are poorly understood. OBJECTIVES Therefore we evaluated pathological heterogeneity using topological data analysis (TDA) with the aim of visualizing disease clusters and microclusters. METHODS A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks. RESULTS In the discovery cohort TDA identified 4 groups/networks with multiple microclusters/regions of interest that were masked by group-level statistics. Specifically, TDA group 1 consisted of a high proportion of healthy subjects, with a microcluster representing a topological continuum connecting healthy subjects to patients with mild-to-moderate asthma. Three additional TDA groups with moderate-to-severe asthma (Airway Smooth MuscleHigh, Reticular Basement MembraneHigh, and RemodelingLow groups) were identified and contained numerous microclusters with varying pathological and clinical features. Mutually exclusive TH2 and TH17 tissue gene expression signatures were identified in all pathological groups. Discovery and external replication applied to the severe asthma subgroup identified only highly similar "pathological data shapes" through analyses of persistent homology. CONCLUSIONS We have identified and replicated novel pathological phenotypes of asthma using TDA. Our methodology is applicable to other complex chronic diseases.
Collapse
Affiliation(s)
- Salman Siddiqui
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.
| | - Aarti Shikotra
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew Richardson
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | | | | | - Alex Bell
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | | | | | - Beverley Hargadon
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | | | - Andrew Wardlaw
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher E Brightling
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Infection and Immunity, Health Sciences Building, Queens University Belfast, Belfast, United Kingdom
| | - Peter Bradding
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
333
|
Porsbjerg C, Sverrild A, Baines KJ, Searles A, Maltby S, Foster PS, Brightling C, Gibson PG. Advancing the management of obstructive airways diseases through translational research. Clin Exp Allergy 2018; 48:493-501. [PMID: 29412485 DOI: 10.1111/cea.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obstructive airways diseases (OAD) represent a huge burden of illness world-wide, and in spite of the development of effective therapies, significant morbidity and mortality related to asthma and COPD still remains. Over the past decade, our understanding of OAD has improved vastly, and novel treatments have evolved. This evolution is the result of successful translational research, which has connected clinical presentations of OAD and underlying disease mechanisms, thereby enabling the development of targeted treatments. The next challenge of translational research will be to position these novel treatments for OAD for optimal clinical use. At the same time, there is great potential in these treatments providing even better insights into disease mechanisms in OAD by studying the effects of blocking individual immunological pathways. To optimize this potential, there is a need to ensure that translational aspects are added to randomized clinical trials, as well as real-world studies, but also to use other trial designs such as platform studies, which allow for simultaneous assessment of different interventions. Furthermore, demonstrating clinical impact, that is research translation, is an increasingly important component of successful translational research. This review outlines concepts of translational research, exemplifying how translational research has moved management of obstructive airways diseases into the next century, with the introduction of targeted, individualized therapy. Furthermore, the review describes how these therapies may be used as research tools to further our understanding of disease mechanisms in OAD, through translational, mechanistic studies. We underline the current need for implementing basic immunological concepts into clinical care in order to optimize the use of novel targeted treatments and to further the clinical understanding of disease mechanisms. Finally, potential barriers to adoption of novel targeted therapies into routine practice and how these may be overcome are described.
Collapse
Affiliation(s)
- C Porsbjerg
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - A Sverrild
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - K J Baines
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - A Searles
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - S Maltby
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - P S Foster
- Centre for Asthma and Respiratory Diseases, and Hunter Medical Research Institute, The University of Newcastle/Royal Newcastle Hospital, Newcastle, Australia
| | - C Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR BRU Respiratory Medicine, University of Leicester, Leicester, UK
| | - P G Gibson
- Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
334
|
Mammen MJ, Sands MF, Abou‐Jaoude E, Aalinkeel R, Reynolds JL, Parikh NU, Sharma U, Schwartz SA, Mahajan SD. Role of Galectin-3 in the pathophysiology underlying allergic lung inflammation in a tissue inhibitor of metalloproteinases 1 knockout model of murine asthma. Immunology 2018; 153:387-396. [PMID: 28992358 PMCID: PMC5795177 DOI: 10.1111/imm.12848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory respiratory disease characterized by airway inflammation, airway hyperresponsiveness and reversible airway obstruction. Understanding the mechanisms that underlie the various endotypes of asthma could lead to novel and more personalized therapies for individuals with asthma. Using a tissue inhibitor of metalloproteinases 1 (TIMP-1) knockout murine allergic asthma model, we previously showed that TIMP-1 deficiency results in an asthma phenotype, exhibiting airway hyperreactivity, enhanced eosinophilic inflammation and T helper type 2 cytokine gene and protein expression following sensitization with ovalbumin. In the current study, we compared the expression of Galectins and other key cytokines in a murine allergic asthma model using wild-type and TIMP-1 knockout mice. We also examined the effects of Galectin-3 (Gal-3) inhibition on a non-T helper type 2 cytokine interleukin-17 (IL-17) to evaluate the relationship between Gal-3 and the IL-17 axis in allergic asthma. Our results showed a significant increase in Gal-3, IL-17 and transforming growth factor-β1 gene expression in lung tissue isolated from an allergic asthma murine model using TIMP-1 knockout. Gal-3 gene and protein expression levels were also significantly higher in lung tissue from an allergic asthma murine model using TIMP-1 knockout. Our data show that Gal-3 may regulate the IL-17 axis and play a pivotal role in the modulation of inflammation during experimental allergic asthma.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Mark F. Sands
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
- WNY VA Healthcare SystemBuffaloNYUSA
| | - Elaine Abou‐Jaoude
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Ravikumar Aalinkeel
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Jessica L. Reynolds
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Neil U. Parikh
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Umesh Sharma
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Stanley A. Schwartz
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Supriya D. Mahajan
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| |
Collapse
|
335
|
Panariti A, Baglole CJ, Sanchez V, Eidelman DH, Hussain S, Olivenstein R, Martin JG, Hamid Q. Interleukin-17A and vascular remodelling in severe asthma; lack of evidence for a direct role. Clin Exp Allergy 2018; 48:365-378. [PMID: 29337379 DOI: 10.1111/cea.13093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bronchial vascular remodelling may contribute to the severity of airway narrowing through mucosal congestion. Interleukin (IL)-17A is associated with the most severe asthmatic phenotype but whether it might contribute to vascular remodelling is uncertain. OBJECTIVE To assess vascular remodelling in severe asthma and whether IL-17A directly or indirectly may cause endothelial cell activation and angiogenesis. METHODS Bronchial vascularization was quantified in asthmatic subjects, COPD and healthy subjects together with the number of IL-17A+ cells as well as the concentration of angiogenic factors in the sputum. The effect of IL-17A on in vitro angiogenesis, cell migration and endothelial permeability was assessed directly on primary human lung microvascular endothelial cells (HMVEC-L) or indirectly with conditioned medium derived from normal bronchial epithelial cells (NHBEC), fibroblasts (NHBF) and airway smooth muscle cells (ASMC) after IL-17A stimulation. RESULTS Severe asthmatics have increased vascularity compared to the other groups, which correlates positively with the concentrations of angiogenic factors in sputum. Interestingly, we demonstrated that increased bronchial vascularity correlates positively with the number of subepithelial IL-17A+ cells. However IL-17A had no direct effect on HMVEC-L function but it enhanced endothelial tube formation and cell migration through the production of angiogenic factors by NHBE and ASMC. CONCLUSIONS & CLINICAL RELEVANCE Our results shed light on the role of IL-17A in vascular remodelling, most likely through stimulating the synthesis of other angiogenic factors. Knowledge of these pathways may aid in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- A Panariti
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - C J Baglole
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - V Sanchez
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - D H Eidelman
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - S Hussain
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - R Olivenstein
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - J G Martin
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Q Hamid
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
336
|
Low K, Bardin PG. Targeted Therapy for Severe Asthma: Identifying the Right Patients. Mol Diagn Ther 2018; 21:235-247. [PMID: 28044257 DOI: 10.1007/s40291-016-0252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Asthma affects over 300 million people worldwide. Most asthmatics are well controlled with inhaled corticosteroids and long-acting beta-agonists; however, a proportion of patients are unresponsive and attain limited disease control. This group represents a considerable healthcare and financial burden, particularly patients who experience frequent exacerbations and require hospital admission. Development of new biological agents and disease biomarkers has provided novel avenues for treatment. These treatments have been highly successful, reducing exacerbations and yielding modest improvements in quality of life and lung function. However, only a proportion of severe asthmatics respond to this targeted treatment, highlighting the heterogeneity of severe asthma. One of the first biological therapies targeted immunoglobulin E (IgE) and demonstrated modest benefit but could only be used in a subgroup of patients. Recent research has shown that treatment aimed at the T helper-2-(Th2)-high pathways and cytokines such as interleukin (IL)-5, IL-4, and IL-13 may also be effective in another partially overlapping subgroup. A blood eosinophil count over a defined threshold (generally ≥300 cells/μl) was a reliable biomarker and identified the majority of responders in this group. Further discovery and validation of biological markers to define asthmatic phenotypes that may benefit from biological treatments remain an area of intense interest and research. We review the latest information pertaining to biological agents and demonstrate how patient responders may potentially be identified for treatment.
Collapse
Affiliation(s)
- Kathy Low
- Lung and Sleep Medicine, Monash University and Medical Centre, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia
| | - Philip G Bardin
- Lung and Sleep Medicine, Monash University and Medical Centre, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Hudson Institute, Melbourne, VIC, Australia.
| |
Collapse
|
337
|
Diver S, Russell RJ, Brightling CE. New and emerging drug treatments for severe asthma. Clin Exp Allergy 2018; 48:241-252. [PMID: 29315966 DOI: 10.1111/cea.13086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a common chronic inflammatory condition of the airways affecting over 300 million people world-wide. In 5%-10% of cases, it is severe, with disproportionate healthcare resource utilization including costs associated with frequent exacerbations and the long-term health effects of systemic steroids. Characterization of inflammatory pathways in severe asthma has led to the development of targeted biological and small molecule therapies which aim to achieve disease control while minimizing corticosteroid-associated morbidity. Herein, we review currently licensed agents and those in development, and speculate how drug therapy for severe asthma might evolve and impact on clinical outcomes in the near future.
Collapse
Affiliation(s)
- S Diver
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - R J Russell
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - C E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
338
|
Lawrence MG, Steinke JW, Borish L. Cytokine-targeting biologics for allergic diseases. Ann Allergy Asthma Immunol 2018; 120:376-381. [PMID: 29410215 DOI: 10.1016/j.anai.2018.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. DATA SOURCES clinicaltrials.gov and PubMed. STUDY SELECTIONS Relevant clinical trials and recent basic science studies were chosen for discussion. RESULTS Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. CONCLUSION This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed.
Collapse
Affiliation(s)
- Monica G Lawrence
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia
| | - John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia
| | - Larry Borish
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, Virginia; Carter Center for Immunology Research, Charlottesville, Virginia.
| |
Collapse
|
339
|
Pepper AN, Renz H, Casale TB, Garn H. Biologic Therapy and Novel Molecular Targets of Severe Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 5:909-916. [PMID: 28689841 DOI: 10.1016/j.jaip.2017.04.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023]
Abstract
Treatment options for severe or uncontrolled asthma are increasing, especially pertaining to novel biologic therapies. The 2 primary asthma endotypes, T2 high and T2 low, are defined by the level of type 2 T helper and innate lymphoid cell activity and mediators. Most therapies for severe asthma target T2 high asthma, including the 3 biologics approved for use in the United States and Europe: omalizumb, mepolizumb, and reslizumab. Other biologics, with various molecular targets, are under investigation. Unfortunately, treatment options for T2 low asthma are limited. Although these therapies may improve asthma symptoms, exacerbation rates, and lung function parameters, they have not been shown to modify the disease process or provide lasting benefits after discontinuation. Biomarkers identified thus far to help guide individualized therapy in severe asthma are helpful, but imperfect discriminators for picking the best option for individual patients. This review will discuss the mechanisms of action, indications, and therapeutic effects of currently available and emerging biologics for the treatment of severe or uncontrolled asthma.
Collapse
Affiliation(s)
- Amber N Pepper
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Affairs Hospital, Tampa, Fla
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Thomas B Casale
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Affairs Hospital, Tampa, Fla.
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
340
|
Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018; 391:350-400. [PMID: 28911920 DOI: 10.1016/s0140-6736(17)30879-6] [Citation(s) in RCA: 732] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine and NIHR Oxford Biomedical Research Centre, University of Oxford, UK.
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Elisabeth Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Departments of Epidemiology and Respiratory Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Francine M Ducharme
- Departments of Paediatrics and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - John V Fahy
- Cardiovascular Research Institute, and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia; Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia
| | - Liam G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Marc Humbert
- L'Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Paris, France; Service de Pneumologie, Hôpital Bicêtre, Paris, France; INSERM UMR-S 999, Hôpital Marie Lannelongue, Paris, France
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Guy Marks
- Department of Respiratory Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, The University of Arizona, Tuscon, AZ, USA
| | - Peter D Sly
- Department of Children's Health and Environment, Children's Health Queensland, Brisbane, QLD, Australia; Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Erika von Mutius
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität, Munich, Germany
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross Children's Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Andy Bush
- Department of Paediatrics, Imperial College, London, UK; Department of Paediatric Respiratory Medicine, Imperial College, London, UK
| |
Collapse
|
341
|
Khodoun MV, Tomar S, Tocker JE, Wang YH, Finkelman FD. Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol 2018; 141:171-179.e1. [PMID: 28552763 DOI: 10.1016/j.jaci.2017.02.046] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Food allergy (FA) is an increasing problem that has no approved treatment. The pro-TH2 cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are associated with FA, and mAbs to these cytokines are reported to suppress murine FA development. OBJECTIVE We sought to determine whether anti-pro-TH2 cytokine mAbs can block both FA maintenance and induction. METHODS IgE-mediated FA was induced in BALB/c mice by oral gavage with medium-chain triglycerides (MCTs) plus egg white (EW) and was characterized by increased numbers of lamina propria TH2 cells, mast cells, and eosinophils, shock (hypothermia), mast cell degranulation (increased serum mouse mast cell protease 1), increased serum IgG1 anti-EW and IgE levels, and increased IL-4 and IL-13 secretion after MCT/EW challenge. Mice were injected with anti-IL-25, IL-33 receptor, and/or TSLP mAbs before initial oral gavage with MCT/EW to suppress FA development; treatment with the same mAbs was initiated after FA development to suppress established FA. RESULTS Injection of an mAb to IL-25, IL-33 receptor, or TSLP strongly inhibited FA development. No single mAb to a pro-TH2 cytokine could suppress established FA, and optimal FA suppression required treatment with a cocktail of all 3 anti-pro-TH2 mAbs. Treatment with the 3-mAb cocktail during initial MCT/EW immunization induced EW tolerance. CONCLUSION All of the pro-TH2 cytokines are required to induce our model of FA, whereas any pro-TH2 cytokine can maintain established FA. Pro-TH2 cytokines prevent oral tolerance. Combined treatment with antagonists to all 3 pro-TH2 cytokines or with an inhibitor of pro-TH2 cytokine production might be able to suppress established human FA.
Collapse
Affiliation(s)
- Marat V Khodoun
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Research, Cincinnati Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Sunil Tomar
- Division of Allergy and Clinical Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Yui Hsi Wang
- Division of Allergy and Clinical Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Medicine, Cincinnati Department of Veterans Affairs Medical Center, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
342
|
Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, Ciprandi G. New approaches for identifying and testing potential new anti-asthma agents. Expert Opin Drug Discov 2018; 13:51-63. [PMID: 29077521 DOI: 10.1080/17460441.2018.1396315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.
Collapse
Affiliation(s)
- Amelia Licari
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Ilaria Brambilla
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Maria Angela Tosca
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | | | - Giorgio Ciprandi
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
- c Internal Medicine , Ospedale Policlinico San Martino , Genoa , Italy
| |
Collapse
|
343
|
Elaidy SM, Essawy SS, Hussain MA, El-Kherbetawy MK, Hamed ER. Modulation of the IL-23/IL-17 axis by fenofibrate ameliorates the ovalbumin/lipopolysaccharide-induced airway inflammation and bronchial asthma in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:309-321. [PMID: 29288381 DOI: 10.1007/s00210-017-1459-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The overlapping between asthmatic subtypes, including both CD4+ T helper (TH)2 and TH17 cells, is found in the natural course of allergic asthma, especially in exacerbations and severe and insensitive forms to steroids, which are in need of new molecular therapies. In the TH2-subset mediated asthma, fenofibrate displays therapeutic promises, besides evidenced therapeutic effects on TH17-mediated colitis and myocarditis. Therefore, the effects of fenofibrate versus dexamethasone on IL-23/IL-17 axis in ovalbumin (OVA)/lipopolysaccharide (LPS)-induced airway inflammation and bronchial asthma in rats were explored. The OVA/LPS sensitization and challenge were performed for 28 days in male Wistar rats. After sensitization, fenofibrate (100 mg/kg/day) or dexamethasone (2.5 mg/kg/day) was orally administered from the day 15 to 28. Either fenofibrate or dexamethasone attenuated the severity of OVA/LPS-induced airway inflammation and bronchial asthma through significant ameliorations in the total serum immunoglobulin (Ig)E assay; the total and differential leukocytic counts in the bronchoalveolar lavage (BAL) fluid; the lung inflammatory cytokines such as interleukin (IL)-4, IL-13, IL-17, and IL-23, transforming growth factor (TGF)-β1, and tumor necrosis factor(TNF)-α levels; and the lung IL-17 and IL-23 expressions. In addition to the reduction in the inflammatory and fibrotic histopathological scores, fenofibrate significantly ameliorated the BAL neutrophilic count and the lung IL-17 and IL-23 expressions in comparison to dexamethasone. The suppression of IL-23/IL-17 axis could be considered a molecular therapeutic target for fenofibrate in OVA/LPS-induced airway inflammation and bronchial asthma. Combined therapeutic regimens of fenofibrate and steroids should be furtherly investigated in severe and resistant asthma.
Collapse
Affiliation(s)
- Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Soha S Essawy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona A Hussain
- Department of Physiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | | | - Eman R Hamed
- Department of Internal Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
344
|
Pavord ID, Afzalnia S, Menzies-Gow A, Heaney LG. The current and future role of biomarkers in type 2 cytokine-mediated asthma management. Clin Exp Allergy 2017; 47:148-160. [PMID: 28134501 DOI: 10.1111/cea.12881] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Assessment and management of asthma is complicated by the heterogeneous pathophysiological mechanisms that underlie its clinical presentation, which are not necessarily reflected in standardized management paradigms and which necessitate an individualized approach to treatment. This is particularly important with the emerging availability of a variety of targeted forms of therapy that may only be appropriate for use in particular patient subgroups. The identification of biomarkers can potentially aid diagnosis and inform prognosis, help guide treatment decisions and allow clinicians to predict and monitor response to treatment. Biomarkers for asthma have been identified from a variety of sources, including airway, exhaled breath and blood. Biomarkers from exhaled breath include fractional exhaled nitric oxide, measurement of which can help identify patients most likely to benefit from inhaled corticosteroids and targeted anti-immunoglobulin E therapy. Biomarkers measured in blood are relatively non-invasive and technically more straightforward than those measured from exhaled breath or directly from the airway. The most well established of these are the blood eosinophil count and serum periostin, both of which have demonstrated utility in identifying patients most likely to benefit from targeted anti-interleukin and anti-immunoglobulin E therapies, and in monitoring subsequent treatment response. For example, serum periostin appears to be a biomarker for responsiveness to inhaled corticosteroid therapy and may help identify patients as suitable candidates for anti-IL-13 treatment. The use of biomarkers can therefore potentially help avoid unnecessary morbidity from high-dose corticosteroid therapy and allow the most appropriate and cost-effective use of targeted therapies. Ongoing clinical trials are helping to further elucidate the role of established biomarkers in routine clinical practice, and a range of other circulating novel potential biomarkers are currently being investigated in the research setting.
Collapse
Affiliation(s)
- I D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - S Afzalnia
- Roche Products Ltd, Welwyn Garden City, Hertfordshire, UK
| | | | - L G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
345
|
Pavord ID, Hilvering B, Shrimanker R. Emerging Biologics in Severe Asthma. Immunol Allergy Clin North Am 2017; 36:609-23. [PMID: 27401629 DOI: 10.1016/j.iac.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Asthma is a heterogeneous disease that can be classified into different clinical endotypes, depending on the type of airway inflammation, clinical severity, and response to treatment. This article focuses on the eosinophilic endotype of asthma, which is defined by the central role that eosinophils play in the pathophysiology of the condition. It is characterized by persistently elevated sputum and/or blood eosinophils and by a significant response to treatments that suppress eosinophilia. Eosinophil activity in the airway may be more important than their numbers and this needs to be investigated. Transcriplomic or Metabolomic signatures may also be useful to identify this endotype.
Collapse
Affiliation(s)
- Ian D Pavord
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| | - Bart Hilvering
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK; Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rahul Shrimanker
- Department of Respiratory Medicine, University of Oxford, Old Road, Oxford, OX3 7LE, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| |
Collapse
|
346
|
Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 2017; 47:161-175. [PMID: 28036144 DOI: 10.1111/cea.12880] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs.
Collapse
Affiliation(s)
- D Robinson
- Department of Respiratory Medicine, Severe Asthma Service, UCLH NHS Trust, London, UK
| | - M Humbert
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, University Paris-Sud, Université Paris-Saclay, INSERM U999, Le Kremlin-Bicêtre, France
| | - R Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - A A Cruz
- ProAR-Center of Excellence in Asthma, Federal University of Bahia School of Medicine, Salvador, Brazil
| | - H Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Korom
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - N A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - P Nair
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
347
|
Dunn NM, Katial RK. Chronic Rhinosinusitis and Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2017; 36:503-14. [PMID: 27401622 DOI: 10.1016/j.iac.2016.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patients with severe asthma and concomitant chronic rhinosinusitis often have severe, refractory upper and lower airway inflammation. This inflammation has been proposed to be similar throughout the upper and lower airways leading to the unified airways concept. This article reviews chronic rhinosinusitis with and without nasal polyps, and the subgroup with aspirin-exacerbated respiratory disease, while focusing on the relationship with asthma. Additionally, diagnosis and treatment with current and newer therapies are discussed.
Collapse
Affiliation(s)
- Neha M Dunn
- Department of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rohit K Katial
- Department of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
348
|
Abstract
Biomarkers have been critical for studies of disease pathogenesis and the development of new therapies in severe asthma. In particular, biomarkers of type 2 inflammation have proven valuable for endotyping and targeting new biological agents. Because of these successes in understanding and marking type 2 inflammation, lack of knowledge regarding non-type 2 inflammatory mechanisms in asthma will soon be the major obstacle to the development of new treatments and management strategies in severe asthma. Biomarkers can play a role in these investigations as well by providing insight into the underlying biology in human studies of patients with severe asthma.
Collapse
|
349
|
Tabatabaian F, Ledford DK, Casale TB. Biologic and New Therapies in Asthma. Immunol Allergy Clin North Am 2017; 37:329-343. [PMID: 28366480 DOI: 10.1016/j.iac.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several biologics are currently FDA approved for asthma that target Th2 high patients. Unfortunately, 50% of patients with severe asthma do not fit this phenotype of disease and have fewer effective therapeutic options. In the clinical setting, total IgE, FeNO and peripheral blood eosinophils are important tools in defining Th2 high patients with asthma. However, precise biomarkers to predict better response to one specific Th2 high asthma therapy versus another is lacking. It is important to recognize that none of the current medications targeting the Th2 pathway induces persistent immunomodulation or remission.
Collapse
Affiliation(s)
- Farnaz Tabatabaian
- Division of Allergy and Immunology, Department of Internal medicine, Morsani College of Medicine, University of South Florida, 13330 USF Laurel Dr. 5th Floor, MDC 80, Tampa, FL 33612-4799, USA
| | - Dennis K Ledford
- Division of Allergy and Immunology, Department of Internal medicine, Morsani College of Medicine, University of South Florida, 13330 USF Laurel Dr. 5th Floor, MDC 80, Tampa, FL 33612-4799, USA; Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, James A. Haley VA Hospital, University of South Florida, 13000 Bruce B, Downs Boulevard, Tampa, FL 33612, USA
| | - Thomas B Casale
- Division of Allergy and Immunology, Department of Internal medicine, Morsani College of Medicine, University of South Florida, 13330 USF Laurel Dr. 5th Floor, MDC 80, Tampa, FL 33612-4799, USA; Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Boulevard, MDC 19, Tampa, FL 33612 USA.
| |
Collapse
|
350
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|