301
|
Tejera D, Mercan D, Sanchez‐Caro JM, Hanan M, Greenberg D, Soreq H, Latz E, Golenbock D, Heneka MT. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J 2019; 38:e101064. [PMID: 31359456 PMCID: PMC6717897 DOI: 10.15252/embj.2018101064] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease is the most prevalent type of dementia and is caused by the deposition of extracellular amyloid-beta and abnormal tau phosphorylation. Neuroinflammation has emerged as an additional pathological component. Microglia, representing the brain's major innate immune cells, play an important role during Alzheimer's. Once activated, microglia show changes in their morphology, characterized by a retraction of cell processes. Systemic inflammation is known to increase the risk for cognitive decline in human neurogenerative diseases including Alzheimer's. Here, we assess for the first time microglial changes upon a peripheral immune challenge in the context of aging and Alzheimer's in vivo, using 2-photon laser scanning microscopy. Microglia were monitored at 2 and 10 days post-challenge by lipopolysaccharide. Microglia exhibited a reduction in the number of branches and the area covered at 2 days, a phenomenon that resolved at 10 days. Systemic inflammation reduced microglial clearance of amyloid-beta in APP/PS1 mice. NLRP3 inflammasome knockout blocked many of the observed microglial changes upon lipopolysaccharide, including alterations in microglial morphology and amyloid pathology. NLRP3 inhibition may thus represent a novel therapeutic target that may protect the brain from toxic peripheral inflammation during systemic infection.
Collapse
Affiliation(s)
- Dario Tejera
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dilek Mercan
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
| | - Juan M Sanchez‐Caro
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
| | - Mor Hanan
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - David Greenberg
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Institute of Innate ImmunityUniversity Hospitals BonnBonnGermany
| | - Douglas Golenbock
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
302
|
Wu Y, Qiu A, Yang Z, Wu J, Li X, Bao K, Wang M, Wu B. Malva sylvestris extract alleviates the astrogliosis and inflammatory stress in LPS-induced depression mice. J Neuroimmunol 2019; 336:577029. [PMID: 31487612 DOI: 10.1016/j.jneuroim.2019.577029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Neuro-inflammation is widely regarded as the inflammation occurred in the central nervous system (CNS) tissue, which authentically involved in the pathogenesis such as depression although the underlying mechanism remains to be elucidated. Malva sylvestris (MS), a plant widely used in traditional medicine to mitigate urological, respiratory and oral diseases, exhibits excellent anti-oxidative and anti-inflammatory properties. In the present study, we first used LPS-induced depression-like mice to evaluate the neuro-protective effect of MS extract. We found that, after 7 days' administration of MS extract, the cognitive impairment of LPS-induced depression-like mice was efficiently alleviated, evaluated by behavioral test including the Open field, Morris water maze (MWM), Elevated plus-maze (EPM) and Rota-rod test. Furthermore, we found that MS extract also inhibited the LPS-induced neuron apoptosis and astrogliosis both in the cortex and the CA1 region of hippocampus. Finally, our findings showed that the extract of MS relieved inflammatory stress induced by LPS injury, indicated by the down-regulation of IL-1β/6 and TNF-α, and up-regulation of IL-4 level both in vitro and in vivo. Collectively, MS extract exhibits neuro-protective activity in vivo, and therefore, it may be widely used for food to relieve the symptoms of neuro-inflammation associated disorders such as depression.
Collapse
Affiliation(s)
- Ye Wu
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aizhen Qiu
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongxiu Yang
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wu
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinjian Li
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexiu Bao
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Wang
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Baoyu Wu
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
303
|
Biber K, Bhattacharya A, Campbell BM, Piro JR, Rohe M, Staal RGW, Talanian RV, Möller T. Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Front Pharmacol 2019; 10:840. [PMID: 31507408 PMCID: PMC6716448 DOI: 10.3389/fphar.2019.00840] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a large and increasing unmet medical need with no disease-modifying treatment currently available. Genetic evidence from genome-wide association studies (GWASs) and gene network analysis has clearly revealed a key role of the innate immune system in the brain, of which microglia are the most important element. Single-nucleotide polymorphisms (SNPs) in genes predominantly expressed in microglia have been associated with altered risk of developing AD. Furthermore, microglia-specific pathways are affected on the messenger RNA (mRNA) expression level in post-mortem AD tissue and in mouse models of AD. Together these findings have increased the interest in microglia biology, and numerous scientific reports have proposed microglial molecules and pathways as drug targets for AD. Target identification and validation are generally the first steps in drug discovery. Both target validation and drug lead identification for central nervous system (CNS) targets and diseases entail additional significant obstacles compared to peripheral targets and diseases. This makes CNS drug discovery, even with well-validated targets, challenging. In this article, we will illustrate the special challenges of AD drug discovery by discussing the viability/practicality of possible microglia drug targets including cluster of differentiation 33 (CD33), KCa3.1, kynurenines, ionotropic P2 receptor 7 (P2X7), programmed death-1 (PD-1), Toll-like receptors (TLRs), and triggering receptor expressed in myeloid cells 2 (TREM2).
Collapse
Affiliation(s)
- Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | | | - Justin R Piro
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Michael Rohe
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | - Robert V Talanian
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Thomas Möller
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| |
Collapse
|
304
|
Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 2019; 9:11814. [PMID: 31413350 PMCID: PMC6694197 DOI: 10.1038/s41598-019-48342-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
To understand the role of commensal gut bacteria on the progression of cognitive decline in Alzheimer’s disease via the microbiota-gut-brain axis, we isolated anti-inflammatory Bifidobacterium longum (NK46) from human gut microbiota, which potently inhibited gut microbiota endotoxin production and suppressed NF-κB activation in lipopolysaccharide (LPS)-stimulated BV-2 cells, and examined whether NK46 could simultaneously alleviate gut dysbiosis and cognitive decline in male 5xFAD-transgenic (5XFAD-Tg, 6 months-old) and aged (18 months-old) mice. Oral administration of NK46 (1 × 109 CFU/mouse/day for 1 and 2 months in aged and Tg mice, respectively) shifted gut microbiota composition, particularly Proteobacteria, reduced fecal and blood LPS levels, suppressed NF-κB activation and TNF-α expression, and increased tight junction protein expression in the colon of 5XFAD-Tg and aged mice. NK46 treatment also alleviated cognitive decline in 5XFAD-Tg and aged mice. Furthermore, NK46 treatment suppressed amyloid-β, β/γ-secretases, and caspase-3 expression and amyloid-β accumulation in the hippocampus of 5XFAD-Tg mice. NK46 treatment also reduced Iba1+, LPS+/CD11b+, and caspase-3+/NeuN+ cell populations and suppressed NF-κB activation in the hippocampus of 5XFAD-Tg and aged mice, while BDNF expression was increased. These findings suggest that the suppression of gut dysbiosis and LPS production by NK46 can mitigate cognitive decline through the regulation of microbiota LPS-mediated NF-κB activation.
Collapse
|
305
|
Metabolic Endotoxemia: A Potential Underlying Mechanism of the Relationship between Dietary Fat Intake and Risk for Cognitive Impairments in Humans? Nutrients 2019; 11:nu11081887. [PMID: 31412673 PMCID: PMC6722750 DOI: 10.3390/nu11081887] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Nutrition is a major lifestyle factor that can prevent the risk of cognitive impairment and dementia. Diet-induced metabolic endotoxemia has been proposed as a major root cause of inflammation and these pathways emerge as detrimental factors of healthy ageing. The aim of this paper was to update research focusing on the relationship between a fat-rich diet and endotoxemia, and to discuss the potential role of endotoxemia in cognitive performances. (2) Methods: We conducted a non-systematic literature review based on the PubMed database related to fat-rich meals, metabolic endotoxemia and cognitive disorders including dementia in humans. A total of 40 articles out of 942 in the first screening met the inclusion criteria. (3) Results: Evidence suggested that a fat-rich diet, depending on its quality, quantity and concomitant healthy food components, could influence metabolic endotoxemia. Since only heterogeneous cross-sectional studies are available, it remains unclear to what extent endotoxemia could be associated or not with cognitive disorders and dementia. (4) Conclusions: A fat-rich diet has the capability to provide significant increases in circulating endotoxins, which highlights nutritional strategies as a promising area for future research on inflammatory-associated diseases. The role of endotoxemia in cognitive disorders and dementia remains unclear and deserves further investigation.
Collapse
|
306
|
Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 2019; 30:5-15. [PMID: 29659380 DOI: 10.1097/fbp.0000000000000407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation and β-amyloid (Aβ) deposition in the brain are well known characteristics of neurodegeneration. Diabetes and hypercholesterolemia are the main risk factors leading to memory loss and cognitive impairment. Recently, it was found that statins and thiazolidinediones have promising anti-inflammatory and neuroprotective effects that could delay neurodegeneration and neuronal loss in diabetic and hypercholesterolemic patients. The aim of the present study was to investigate the protective effect of simvastatin, pioglitazone, and their combination in lipopolysaccharide (LPS)-induced neuroinflammation and amyloidogenesis. Mice were divided into five groups: group 1 received 0.9% saline, group 2 received LPS (0.8 mg/kg in saline), group 3 received LPS (0.8 mgl kg)+simvastatin (5 mg/kg in saline), group 4 received LPS (0.8 mg/kg)+pioglitazone (20 mg/kg in saline), group 5 receiving LPS (0.8 mg/kg)+simvastatin (5 mg/kg)+pioglitazone (20 mg/kg). Y-maze and novel object recognition were used to assess the spatial and nonspatial behavioral changes. Nitric oxide levels and glutamate levels were measured to elucidate the anti-glutamatergic and anti-inflammatory effects of the tested drugs. Immunohistochemistry was performed to detect the presence of Aβ1-42 in the mice brain. LPS impaired memory, and increased Aβ deposition, nitric oxide, and glutamate brain levels. Both drugs produced a significant improvement in all parameters. We conclude that simvastatin and pioglitazone may have a protective effect against cognitive impairment induced by LPS, through targeting the glutamatergic and inflammatory pathways, especially in patients having hypercholesterolemia and diabetes.
Collapse
|
307
|
Akbari Z, Reisi P, Torkaman-Boutorabi A, Farahmandfar M. The Effect of Pentoxifylline on Passive Avoidance Learning and Expression of Tumor Necrosis Factor-Alpha and Caspase-3 in the Rat Hippocampus Following Lipopolysaccharide-Induced Inflammation. Adv Biomed Res 2019; 8:39. [PMID: 31360680 PMCID: PMC6621342 DOI: 10.4103/abr.abr_33_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Peripheral inflammation is effective in the development of neurodegenerative diseases. Pentoxifylline (PTX) has an inhibitory effect on inflammatory cytokines; therefore, we aimed to evaluate the effect of PTX on passive avoidance learning and the expression of tumor necrosis factor-alpha (TNF-α) and caspase-3 in the rat hippocampus, following systemic lipopolysaccharide (LPS) injection. Materials and Methods: Male Wistar rats were randomly divided into five groups: control, LPS, and LPS + PTX, receiving doses of 10, 25, and 50 mg/kg of PTX, respectively. The animals received daily injections of PTX (i.p.) 1 week before and 2 weeks after the LPS injection (5 mg/kg; i.p.). Learning and memory were evaluated by passive avoidance learning. Then, the expression of the associated genes was measured in the hippocampus. Results: The results showed that the peripheral LPS injection had no significant effect on learning and memory. PTX only with a dose of 10 mg/kg shows an improvement (P < 0.05). Results from reverse transcription polymerase chain reaction showed that LPS had no significant effect on the expression of caspase-3 and TNF-α. PTX with a dose of 10 mg/kg decreased the caspase-3 expression in the LPS + PTX group (P < 0.001), but the expression of both genes increased, using other concentrations. Conclusions: Findings showed that systemic application of LPS after 2 weeks had no effect on learning and memory and the expression of inflammatory genes in the hippocampus, but PTX led to an increase in the expression of these genes, which could be due to its direct effects or possible exacerbation of LPS effects.
Collapse
Affiliation(s)
- Zahra Akbari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,International Campuses, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
308
|
Aguayo S, Schuh CMAP, Vicente B, Aguayo LG. Association between Alzheimer's Disease and Oral and Gut Microbiota: Are Pore Forming Proteins the Missing Link? J Alzheimers Dis 2019; 65:29-46. [PMID: 30040725 DOI: 10.3233/jad-180319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition affecting millions of people worldwide. It is associated with cerebral amyloid-β (Aβ) plaque deposition in the brain, synaptic disconnection, and subsequent progressive neuronal death. Although considerable progress has been made to elucidate the pathogenesis of AD, the specific causes of the disease remain highly unknown. Recent research has suggested a potential association between certain infectious diseases and dementia, either directly due to bacterial brain invasion and toxin production, or indirectly by modulating the immune response. Therefore, in the present review we focus on the emerging issues of bacterial infection and AD, including the existence of antimicrobial peptides having pore-forming properties that act in a similar way to pores formed by Aβ in a variety of cell membranes. Special focus is placed on oral bacteria and biofilms, and on the potential mechanisms associating bacterial infection and toxin production in AD. The role of bacterial outer membrane vesicles on the transport and delivery of toxins as well as porins to the brain is also discussed. Aβ has shown to possess antimicrobial activity against several bacteria, and therefore could be upregulated as a response to bacteria and bacterial toxins in the brain. Although further research is needed, we believe that the control of biofilm-mediated diseases could be an important potential prevention mechanism for AD development.
Collapse
|
309
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
310
|
Liu S, Li G, Tang H, Pan R, Wang H, Jin F, Yan X, Xing Y, Chen G, Fu Y, Dong J. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway. Neurosci Lett 2019; 709:134386. [PMID: 31330225 DOI: 10.1016/j.neulet.2019.134386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is a predisposing factor for several neurodegenerative diseases. The purpose of this study was to evaluate the protective effect of madecassoside (MA) in lipopolysaccharide (LPS)-induced cognitive impairment and neuroinflammation in rats. MA has many protective effects such as antioxidant and anti-inflammatory properties. We investigated whether MA could improve neurocognitive dysfunction caused by intracerebroventricular injection of LPS. We examined the effects and mechanisms of action of MA on LPS-induced neuroinflammation in the cortex and hippocampus. Our study revealed that MA (120 mg/kg, i.g) treatment for 14 days reduced LPS-induced neurotoxicity by reducing cognitive impairments and suppressing the production of inflammatory cytokines such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha(TNF-α), and interleukin 6(IL-6) via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Furthermore, MA treatment enhanced protein levels of heme oxygenase (HO)-1 by upregulating Nrf2 in LPS-stimulated neurotoxicity. Collectively, these results suggest that MA is effective in preventing neurodegenerative diseases by improving memory functions due to its anti-inflammatory activities and activation of Keap1-Nrf2/HO-1 signaling. As such, MA may be a potential therapy for addressing memory impairment caused by neuroinflammation.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Guangming Li
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Haijie Tang
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Rui Pan
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Huili Wang
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Fujun Jin
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Xueqin Yan
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Yanyan Xing
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Guiling Chen
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Yongmei Fu
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
311
|
Modulation of Innate Immunity by Amyloidogenic Peptides. Trends Immunol 2019; 40:762-780. [PMID: 31320280 DOI: 10.1016/j.it.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Amyloid formation contributes to the development of progressive metabolic and neurodegenerative diseases, while also serving functional roles in host defense. Emerging evidence suggests that as amyloidogenic peptides populate distinct aggregation states, they interact with different combinations of pattern recognition receptors (PRRs) to direct the phenotype and function of tissue-resident and infiltrating innate immune cells. We review recent evidence of innate immunomodulation by distinct forms of amyloidogenic peptides produced by mammals (humans, non-human primates), bacteria, and fungi, as well as the corresponding cell-surface and intracellular PRRs in these interactions, in human and mouse models. Our emerging understanding of peptide aggregate-innate immune cell interactions, and the factors regulating the balance between amyloid function and pathogenicity, might aid the development of anti-amyloid and immunomodulating therapies.
Collapse
|
312
|
Li D, Hagen C, Fett AR, Bui HH, Knopman D, Vemuri P, Machulda MM, Jack CR, Petersen RC, Mielke MM. Longitudinal association between phosphatidylcholines, neuroimaging measures of Alzheimer's disease pathophysiology, and cognition in the Mayo Clinic Study of Aging. Neurobiol Aging 2019; 79:43-49. [PMID: 31026621 PMCID: PMC6591044 DOI: 10.1016/j.neurobiolaging.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Plasma phosphatidylcholines (PCs) have been examined in the context of Alzheimer's disease dementia. However, their association with longitudinal changes in amyloid deposition remains unknown. This study investigated the associations of 8 plasma PC levels (PC aa [14:0_14:0], PC aa [16:0_16:0], PC aa [16:0_18:2], PC aa [16:0_22:6], PC aa [18:0_18:0], PC aa [18:0_18:1], PC aa [18:0_20:4], PC aa [18:1_18:1]) with cross-sectional and longitudinal measures of amyloid deposition, Alzheimer's disease-associated neurodegeneration (glucose metabolism and cortical thickness), and cognition (global- and domain-specific) of 1440 cognitively unimpaired participants (47% female, aged 50.7-95.3 years) in the Mayo Clinic Study of Aging. Longitudinally, higher baseline levels of PC aa [16:0_18:2], PC aa [18:0_18:1], and PC aa [18:1_18:1] were associated with slower decline in performance on tests of global cognition and specific cognitive domains. Furthermore, higher baseline levels of plasma PC aa (14:0_14:0) were associated with slower amyloid deposition and cortical thinning after multiple covariable adjustment (age, sex, education, medical comorbidity, dyslipidemia, statin use, and APOE4 allele presence). Our study findings support an independent association between plasma PC aa (14:0_14:0) with slower amyloid deposition and cortical thinning among cognitively unimpaired older adults.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Clinton Hagen
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ashely R Fett
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hai H Bui
- Eli Lilly and Company, Indianapolis, IN, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
313
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
314
|
Eid RS, Chaiton JA, Lieblich SE, Bodnar TS, Weinberg J, Galea LAM. Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiol Aging 2019; 78:1-17. [PMID: 30825663 DOI: 10.1016/j.neurobiolaging.2019.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
The maternal brain displays considerable plasticity, and motherhood is associated with changes in affective and cognitive function. Motherhood can alter the trajectory of brain aging, including modifications to neuroplasticity and cognition. Here, we investigated the short- and long-term effects of motherhood on hippocampal neurogenesis, microglial density and morphology, and circulating cytokines, domains known to be altered with age and implicated in cognition and mood. Female rats were bred then euthanized during gestation or at various postpartum time points, culminating in middle age, and nulliparous rats served as age-matched controls. Hippocampal neurogenesis was significantly suppressed during gestation and the postpartum period. Interestingly, neurogenesis declined significantly in middle-aged nulliparous rats but increased in primiparous rats across the same period. Transient postpartum adaptations to the neuroimmune environment of the hippocampus were evidenced, as Iba-1-immunoreactive microglia assumed a deramified morphology followed by increased density. Intriguingly, aging-related changes in circulating cytokines were dependent on parity. These adaptations in neurogenic and immune processes may have ramifications for maternal mood and cognition across the peripartum period and beyond.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Chaiton
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
315
|
Xu Y, Wei H, Wang J, Wang W, Gao J. Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities. Bioorg Med Chem 2019; 27:2209-2219. [DOI: 10.1016/j.bmc.2019.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
316
|
Sheppard O, Coleman MP, Durrant CS. Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. J Neuroinflammation 2019; 16:106. [PMID: 31103036 PMCID: PMC6525970 DOI: 10.1186/s12974-019-1490-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Systemic inflammation has been linked to synapse loss and cognitive decline in human patients and animal models. A role for microglial release of pro-inflammatory cytokines has been proposed based on in vivo and primary culture studies. However, mechanisms are hard to study in vivo as specific microglial ablation is challenging and the extracellular fluid cannot be sampled without invasive methods. Primary cultures have different limitations as the intricate multicellular architecture in the brain is not fully reproduced. It is essential to confirm proposed brain-specific mechanisms of inflammatory synapse loss directly in brain tissue. Organotypic hippocampal slice cultures (OHSCs) retain much of the in vivo neuronal architecture, synaptic connections and diversity of cell types whilst providing convenient access to manipulate and sample the culture medium and observe cellular reactions. METHODS OHSCs were generated from P6-P9 C57BL/6 mice. Inflammation was induced via addition of lipopolysaccharide (LPS), and cultures were analysed for changes in synaptic proteins, gene expression and protein secretion. Microglia were selectively depleted using clodronate, and the effect of IL1β was assessed using a specific neutralising monoclonal antibody. RESULTS LPS treatment induced loss of the presynaptic protein synaptophysin without altering PSD95 or Aβ protein levels. Depletion of microglia prior to LPS application prevented the loss of synaptophysin, whilst microglia depletion after the inflammatory insult was partially effective, although less so than pre-emptive treatment, indicating a time-critical window in which microglia can induce synaptic damage. IL1β protein and mRNA were increased after LPS addition, with these effects also prevented by microglia depletion. Direct application of IL1β to OHSCs resulted in synaptophysin loss whilst pre-treatment with IL1β neutralising antibody prior to LPS addition prevented a significant loss of synaptophysin but may also impact basal synaptic levels. CONCLUSIONS The loss of synaptophysin in this system confirms LPS can act directly within brain tissue to disrupt synapses, and we show that microglia are the relevant cellular target when all major CNS cell types are present. By overcoming limitations of primary culture and in vivo work, our study strengthens the evidence for a key role of microglia-derived IL1β in synaptic dysfunction after inflammatory insult.
Collapse
Affiliation(s)
- Olivia Sheppard
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Claire S Durrant
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK. .,Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
317
|
Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci 2019; 20:ijms20092293. [PMID: 31075861 PMCID: PMC6539529 DOI: 10.3390/ijms20092293] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.
Collapse
|
318
|
Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun 2019; 78:9-20. [PMID: 30641141 PMCID: PMC6488430 DOI: 10.1016/j.bbi.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
To date, there is no reliable biomarker for the assessment or determination of cognitive dysfunction in Alzheimer's disease and related dementia. Such a biomarker would not only aid in diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged that the hallmarks of Alzheimer's disease, namely, amyloid deposits and neurofibrillary tangles, as well as their precursors and metabolites, are poorly correlated with cognitive function and disease stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a critical step for the formation of memory. This set of processes is a prerequisite for the transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, recent work suggests that the expression of pCREB in peripheral blood mononuclear cells (PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer's patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of cognitive dysfunction, but also that the dysfunction of CREB signaling may not be limited to the brain in AD, and that a link may exist between the regulation of CREB in the blood and in the brain. In this review we consider the evidence suggesting a correlation between the level of CREB signals in the brain and blood, the current knowledge about CREB in PBMC and its association with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that may underlie this communication. This Review will discuss the possibility that peripheral dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
319
|
Liu W, Huang S, Li Y, Zhang K, Zheng X. Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway. Food Nutr Res 2019; 63:1516. [PMID: 31073286 PMCID: PMC6495270 DOI: 10.29219/fnr.v63.1516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Glycyrrhizinic acid (GA), a major active ingredient enriched in the roots of licorice, possesses well-confirmed anti-inflammatory effects. Objective To evaluate the underlying mechanisms of GA against lipopolysaccharide (LPS)-induced chronic neuroinflammation and memory impairment. Design We explored to investigate the effects of GA on neuroinflammation and memory impairment in an LPS-induced Alzheimer’s mouse model. Results Data of micro-PET/CT imaging and morris water maze test suggested that GA, when administrated orally, could reverse LPS-induced abnormalized glucose intake and metabolism in the brain and alleviate LPS-induced memory loss and cognitive defects in mice. Histological and immunohistochemical staining results revealed that GA treatment suppressed overexpressions of pro-inflammatory cytokines of IL-1 β and TNF-α in the brain of C57 mice by inhibiting toll-like receptor 4 (TLR4) signaling pathway activation. Conclusion Our findings suggest that GA may be a therapeutic agent for the treatment of neuroinflammation and cognitive impairment.
Collapse
Affiliation(s)
- Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthycare Innovation Institute, Jiangmen, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yonglian Li
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
320
|
Wagdy R, Abdelkader RM, El-Khatib AH, Linscheid MW, Hamdi N, Handoussa H. Neuromodulatory Activity of Dietary Phenolics Derived from Corchorus olitorius L. J Food Sci 2019; 84:1012-1022. [PMID: 31017668 DOI: 10.1111/1750-3841.14587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 11/30/2022]
Abstract
Dietary phenolics are known for their potent antioxidant and anti-inflammatory activities, making them promising candidates for protection against neuroinflammation and neurodegeneration. Hydroalcohol extract of Egyptian species of Corchorus olitorius L. (Co) leaves was investigated for its neuroprotective effects in a lipopolysaccharide-induced neuroinflammatory mouse model. Twenty five metabolites were characterized from the bioactive extract using high-performance liquid chromatography HPLC/PDA/HRESI/MSn , revealing 1,5-dicaffeoylquinic acid (Co11) as one of the major constituents (5.7%), which was isolated and its identity was confirmed by spectral data as first report. Co significantly protected microglia against H2 O2 -induced cytotoxicity and immunohistochemistry showed reduced expression of the astrocytic marker, glial fibrillary acidic protein, and the inflammatory marker, cyclooxygenase-2. These findings correlated with significant improvement of cognitive functions and reduction of LPS-induced neurodegeneration in Co-treated mice as revealed by histopathology. The current study shows promising effects of Co in limiting neurodegeneration and cognitive impairment caused by neuroinflammation and glial cell activation. PRACTICAL APPLICATION: Information presented here shed light on the promising effects of Corchorus olitorius (Co) for the modulation of neuroinflammatory pathways improving the neuroinflammation-related neurodegeneration and cognitive decline. This makes Co a promising candidate as a nutraceutical supplement to be used against neuroinflammation-related disorders.
Collapse
Affiliation(s)
- Reham Wagdy
- Faculty of Pharmacy and Biotechnology, Dept. of Pharmaceutical Biology, German Univ. in Cairo, Cairo, Egypt
| | - Reham M Abdelkader
- Faculty of Pharmacy and Biotechnology, Dept. of Pharmacology and Toxicology, German Univ. in Cairo, Cairo, Egypt
| | - Ahmed H El-Khatib
- Faculty of Pharmacy and Biotechnology, Dept. of Pharmaceutical Analytical Chemistry, Ain Shams Univ., Cairo, Egypt.,Dept. of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Nabila Hamdi
- Faculty of Pharmacy and Biotechnology, Dept. of Pharmacology and Toxicology, German Univ. in Cairo, Cairo, Egypt
| | - Heba Handoussa
- Faculty of Pharmacy and Biotechnology, Dept. of Pharmaceutical Biology, German Univ. in Cairo, Cairo, Egypt
| |
Collapse
|
321
|
Díaz-Zúñiga J, Muñoz Y, Melgar-Rodríguez S, More J, Bruna B, Lobos P, Monasterio G, Vernal R, Paula-Lima A. Serotype b of Aggregatibacter actinomycetemcomitans triggers pro-inflammatory responses and amyloid beta secretion in hippocampal cells: a novel link between periodontitis and Alzheimer´s disease? J Oral Microbiol 2019; 11:1586423. [PMID: 31044031 PMCID: PMC6484476 DOI: 10.1080/20002297.2019.1586423] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: Previous reports have proposed that Periodontal disease (PDis) predisposes to Alzheimer's disease (AD), both highly prevalent pathologies among the elderly. The bacteria Aggregatibacter actinomycetemcomitans (Aa), associated with the most aggressive forms of PDis, are classified in different serotypes with distinct virulence according to the antigenicity of their lipopolysaccharide (LPS). Methods: Here, we determined the effects of purified LPS, from serotypes a, b or c of Aa, on primary cultures of microglia or mixed hippocampal cells. Results: We found that both culture types exhibited higher levels of inflammatory cytokines (IL-1β, IL-6 and TNFα) when treated with serotype b-LPS, compared with controls, as quantified by qPCR and/or ELISA. Also, cultures treated with serotype a-LPS displayed increased mRNA levels of the modulatory cytokines IL-4 and IL-10. Mixed hippocampal cultures treated with serotype b-LPS exhibited severe neuronal morphological changes and displayed increased levels of secreted Aβ1-42 peptide. These results indicate that LPS from different Aa serotypes triggers discriminatory immune responses, which differentially affect primary hippocampal cells. Conclusion: Altogether, our results show that treatment with serotype b-LPS triggers the secretion of proinflammatory cytokines by microglia, induces neurite shrinking, and increases the extracellular Aβ1-42 levels, all features strongly associated with the etiology of AD.
Collapse
Affiliation(s)
- J Díaz-Zúñiga
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Y Muñoz
- Aging Cellular Laboratory, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - S Melgar-Rodríguez
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J More
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - B Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - G Monasterio
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - A Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
322
|
Dionisio-Santos DA, Olschowka JA, O'Banion MK. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. J Neuroinflammation 2019; 16:74. [PMID: 30953557 PMCID: PMC6449993 DOI: 10.1186/s12974-019-1453-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is considered one of the cardinal features of Alzheimer’s disease (AD). Neuritic plaques composed of amyloid β and neurofibrillary tangle-laden neurons are surrounded by reactive astrocytes and microglia. Exposure of microglia, the resident myeloid cell of the CNS, to amyloid β causes these cells to acquire an inflammatory phenotype. While these reactive microglia are important to contain and phagocytose amyloid plaques, their activated phenotype impacts CNS homeostasis. In rodent models, increased neuroinflammation promoted by overexpression of proinflammatory cytokines can cause an increase in hyperphosphorylated tau and a decrease in hippocampal function. The peripheral immune system can also play a detrimental or beneficial role in CNS inflammation. Systemic inflammation can increase the risk of developing AD dementia, and chemokines released directly by microglia or indirectly by endothelial cells can attract monocytes and T lymphocytes to the CNS. These peripheral immune cells can aid in amyloid β clearance or modulate microglia responses, depending on the cell type. As such, several groups have targeted the peripheral immune system to modulate chronic neuroinflammation. In this review, we focus on the interplay of immunomodulating factors and cell types that are being investigated as possible therapeutic targets for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Dawling A Dionisio-Santos
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
323
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
324
|
Fang X, Tian P, Zhao X, Jiang C, Chen T. Neuroprotective effects of an engineered commensal bacterium in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine Parkinson disease mouse model via producing glucagon‐like peptide‐1. J Neurochem 2019; 150:441-452. [PMID: 30851189 DOI: 10.1111/jnc.14694] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Fang
- Department of Neurology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Puyuan Tian
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| | - Xiaoxiao Zhao
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| | - Chunling Jiang
- Department of Radiation Oncology Jiangxi Cancer Hospital Nanchang Jiangxi PR China
| | - Tingtao Chen
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| |
Collapse
|
325
|
Neher JJ, Cunningham C. Priming Microglia for Innate Immune Memory in the Brain. Trends Immunol 2019; 40:358-374. [DOI: 10.1016/j.it.2019.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/16/2023]
|
326
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
327
|
Lin CC, Chiang TH, Sun YY, Lin MS. Protective Effects of CISD2 and Influence of Curcumin on CISD2 Expression in Aged Animals and Inflammatory Cell Model. Nutrients 2019; 11:E700. [PMID: 30934593 PMCID: PMC6470567 DOI: 10.3390/nu11030700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammation and mitochondrial dysfunction have been linked to trauma, neurodegeneration, and aging. Impairment of CISD2 expression may trigger the aforementioned pathological conditions in neural cells. We previously reported that curcumin attenuates the downregulation of CISD2 in animal models of spinal cord injury and lipopolysaccharide (LPS)-treated neuronal cells. In this study, we investigate (1) the role of CISD2 and (2) how curcumin regulates CISD2 in the aging process. MATERIALS AND METHODS The serial expression of CISD2 and the efficacy of curcumin treatment were evaluated in old (104 weeks) mice and long-term cultures of neural cells (35 days in vitro, DIV). LPS-challenged neural cells (with or without siCISD2 transfection) were used to verify the role of curcumin on CISD2 underlying mitochondrial dysfunction. RESULTS In the brain and spinal cord of mice aged P2, 8, 25, and 104 weeks, we observed a significant decrease in CISD2 expression with age. Curcumin treatment in vivo and in vitro was shown to upregulate CISD2 expression; attenuate inflammatory response in neural cells. Moreover, curcumin treatment elevated CISD2 expression levels and prevented mitochondrial dysfunction in LPS-challenged neural cells. The beneficial effects of curcumin in either non-stressed or LPS-challenged cells that underwent siCISD2 transfection were significantly lower than in respective groups of cells that underwent scrambled siRNA-transfection. CONCLUSIONS We hypothesize that the protective effects of curcumin treatment in reducing cellular inflammation associated trauma, degenerative, and aging processes can be partially attributed to elevated CISD2 expression. We observed a reduction in the protective effects of curcumin against injury-induced inflammation and mitochondrial dysfunction in cells where CISD2 expression was reduced by siCISD2.
Collapse
Affiliation(s)
- Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
| | - Tien-Huang Chiang
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
| | - Yu-Yo Sun
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan.
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan.
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan.
| |
Collapse
|
328
|
Kumar M, Kulshrestha R, Singh N, Jaggi AS. Expanding spectrum of anticancer drug, imatinib, in the disorders affecting brain and spinal cord. Pharmacol Res 2019; 143:86-96. [PMID: 30902661 DOI: 10.1016/j.phrs.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Imatinib is a tyrosine kinase inhibitor and is used as a first line drug in the treatment of Philadelphia-chromosome-positive chronic myeloid leukaemia and gastrointestinal stromal tumors. Being tyrosine kinase inhibitor, imatinib modulates the activities of Abelson gene (c-Abl), Abelson related gene (ARG), platelet-derived growth factor receptor (PDGFR), FMS-like tyrosine kinase 3 (FLT3), lymphocyte-specific protein (Lck), mitogen activated protein kinase (MAPK), amyloid precursor protein intracellular domain (AICD), α-synuclein and the stem-cell factor receptor (c-kit). Studies have shown the role of imatinib in modulating the pathophysiological state of a number of disorders affecting brain and spinal cord such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and spinal cord injury. The present review discusses the role of imatinib in the above described disorders and the possible mechanisms involved in these diseases.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
329
|
Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci 2019; 20:6. [PMID: 30786875 PMCID: PMC6383264 DOI: 10.1186/s12868-019-0489-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic studies strongly suggest that the pathophysiology of late-onset Alzheimer disease (AD) versus early-onset AD has environmental rather than genetic causes, thus revealing potentially novel therapeutic targets to limit disease progression. Several studies supporting the “pathogen hypothesis” of AD demonstrate a strong association between pathogens and the production of β-amyloid, the pathologic hallmark of AD. Although the mechanism of pathogen-induced neurodegeneration of AD remains unclear, astrocytes, a key player of the CNS innate immune response and producer/metabolizer of β-amyloid, have been implicated. We hypothesized that Chlamydia pneumoniae infection of human astrocytes alters the expression of the amyloid precursor protein (APP)-processing secretases, ADAM10, BACE1, and PSEN1, to promote β-amyloid formation. Utilizing immunofluorescent microscopy, molecular, and biochemical approaches, these studies explore the role of an intracellular respiratory pathogen, Chlamydia pneumoniae, as an environmental trigger for AD pathology. Human astrocytoma cells in vitro were infected with Chlamydia pneumoniae over the course of 6–72 h. The gene and protein expression, as well as the enzymatic activity of non-amyloidogenic (ADAM10), and pro-amyloidogenic (BACE1 and PSEN1) secretases were qualitatively and quantitatively assessed. In addition, the formation of toxic amyloid products as an outcome of pro-amyloidogenic APP processing was evaluated through various modalities. Results Chlamydia pneumoniae infection of human astrocytoma cells promoted the transcriptional upregulation of numerous genes implicated in host neuroinflammation, lipid homeostasis, microtubule function, and APP processing. Relative to that of uninfected astrocytes, BACE1 and PSEN1 protein levels were enhanced by nearly twofold at 48–72 h post-Chlamydia pneumoniae infection. The processing of APP in Chlamydia pneumoniae-infected astrocytes favors the pro-amyloidogenic pathway, as demonstrated by an increase in enzymatic activity of BACE1, while that of ADAM10 was decreased. Fluorescence intensity of β-amyloid and ELISA-quantified levels of soluble-APP by products revealed temporally similar increases, confirming a BACE1/PSEN1-mediated processing of APP. Conclusions Our findings suggest that Chlamydia pneumoniae infection of human astrocytes promotes the pro-amyloidogenic pathway of APP processing through the upregulation of expression and activity of β-secretase, upregulated expression of γ-secretase, and decreased activity of α-secretase. These effects of astrocyte infection provide evidence for a direct link between Chlamydia pneumoniae and AD pathology. Electronic supplementary material The online version of this article (10.1186/s12868-019-0489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Danielle B Lopez
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
330
|
Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway. Mar Drugs 2019; 17:md17020123. [PMID: 30781690 PMCID: PMC6410230 DOI: 10.3390/md17020123] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Astaxanthin (AXT), a xanthophyll carotenoid compound, has potent antioxidant, anti-inflammatory and neuroprotective properties. Neuroinflammation and oxidative stress are significant in the pathogenesis and development of Alzheimer's disease (AD). Here, we studied whether AXT could alleviate neuroinflammation, oxidative stress and memory loss in lipopolysaccharide (LPS) administered mice model. Additionally, we investigated the anti-oxidant activity and the anti-neuroinflammatory response of AXT in LPS-treated BV-2 microglial cells. The AXT administration ameliorated LPS-induced memory loss. This effect was associated with the reduction of LPS-induced expression of inflammatory proteins, as well as the production of reactive oxygen species (ROS), nitric oxide (NO), cytokines and chemokines both in vivo and in vitro. AXT also reduced LPS-induced β-secretase and Aβ1⁻42 generation through the down-regulation of amyloidogenic proteins both in vivo and in vitro. Furthermore, AXT suppressed the DNA binding activities of the signal transducer and activator of transcription 3 (STAT3). We found that AXT directly bound to the DNA- binding domain (DBD) and linker domain (LD) domains of STAT3 using docking studies. The oxidative stress and inflammatory responses were not downregulated in BV-2 cells transfected with DBD-null STAT3 and LD-null STAT3. These results indicated AXT inhibits LPS-induced oxidant activity, neuroinflammatory response and amyloidogenesis via the blocking of STAT3 activity through direct binding.
Collapse
|
331
|
Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis 2019; 10:167. [PMID: 30778043 PMCID: PMC6379430 DOI: 10.1038/s41419-019-1416-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Sepsis is life-threatening and often leads to acute brain damage. Dexmedetomidine, an α2-adrenoceptor agonist, has been reported to possess neuroprotective effects against various brain injury but underlying mechanisms remain elusive. In this study, in vitro and in vivo models of sepsis were used to explore the effects of dexmedetomidine on the inflammasome activity and its associated glia pyroptosis and neuronal death. In vitro, inflammasome activation and pyroptosis were found in astrocytes following lipopolysaccharide (LPS) exposure. Dexmedetomidine significantly alleviated astrocyte pyroptosis and inhibited histone release induced by LPS. In vivo, LPS treatment in rats promoted caspase-1 immunoreactivity in astrocytes and caused an increase in the release of pro-inflammatory cytokines of IL-1β and IL-18, resulting in neuronal injury, which was attenuated by dexmedetomidine; this neuroprotective effect was abolished by α2-adrenoceptor antagonist atipamezole. Dexmedetomidine significantly reduced the high mortality rate caused by LPS challenge. Our data demonstrated that dexmedetomidine may protect glia cells via reducing pyroptosis and subsequently protect neurons, all of which may preserve brain function and ultimately improve the outcome in sepsis.
Collapse
Affiliation(s)
- Yi-Bing Sun
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Dong-Liang Mu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Wenwen Zhang
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.,Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiang Cui
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Lingzhi Wu
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
332
|
Ano Y, Yoshikawa M, Takaichi Y, Michikawa M, Uchida K, Nakayama H, Takashima A. Iso-α-Acids, Bitter Components in Beer, Suppress Inflammatory Responses and Attenuate Neural Hyperactivation in the Hippocampus. Front Pharmacol 2019; 10:81. [PMID: 30804789 PMCID: PMC6378368 DOI: 10.3389/fphar.2019.00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 11/19/2022] Open
Abstract
Due to the growth in aging populations worldwide, prevention and therapy for age-related cognitive decline and dementia are in great demand. We previously demonstrated that long-term intake of iso-α-acids, which are hop-derived bitter compounds found in beer, prevent Alzheimer’s pathology in a rodent model. On the other hand, the effects of iso-α-acids on neural activity in Alzheimer’s disease model mice have not been investigated. Here, we demonstrated that short-term intake of iso-α-acids suppresses inflammation in the hippocampus and improves memory impairment even after disease onset. Importantly, we demonstrated that short-term administration of iso-α-acids attenuated the neural hyperactivation in hippocampus. In 6-month-old 5 × FAD mice exhibiting hippocampus inflammation and memory impairment, oral administration of iso-α-acids for 7 days reduced inflammatory cytokines, including MIP-1α and soluble Aβ and improved object memory in the novel object recognition test. In 12-month-old J20 mice, intake of iso-α-acids for 7 days also suppressed inflammatory cytokines and soluble Aβ in the brain. Manganese-enhanced magnetic resonance imaging (MEMRI) of hippocampi of J20 mice showed increased manganese compared with wild type mice, but iso-α-acids canceled this increased MEMRI signal in J20 mice, particularly in the hippocampus CA1 and CA3 region. Taken together, these findings suggest that short-term intake of iso-α-acids can suppress hippocampus inflammation even after disease onset and improve hyper neural activity in Alzheimer’s disease model mice.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Kanagawa, Japan
| | - Misato Yoshikawa
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yuta Takaichi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Michikawa
- Department of Biochemistry, School of Medicine, Nagoya City University, Nagoya, Japan
| | - Kazuyuki Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiko Takashima
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan.,Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
333
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
334
|
Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer's. Metab Brain Dis 2019; 34:21-37. [PMID: 30443769 DOI: 10.1007/s11011-018-0343-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a fastest growing neurodegenerative condition with no standard treatment. There are growing evidence about the beneficial effects of exercise in brain health promotion and slowing the cognitive decline. The aim of this study was to review the protective mechanisms of treadmill exercise in different models of rodent memory deficits. Online literature database, including PubMed-Medline, Scopus, Google scholar were searched from 2003 till 2017. Original article with English language were chosen according to following key words in the title: (exercise OR physical activity) AND (memory OR learning). Ninety studies were finally included in the qualitative synthesis. The results of these studies showed the protective effects of exercise on AD induced neurodegerative and neuroinflammatory process. Neuroperotective effects of exercise on the hippocampus seem to be increasing in immediate-early gene c-Fos expression in dentate gyrus; enhancing the Wnt3 expression and inhibiting glycogen synthase kinase-3β expression; increasing the 5-bro-mo-2'-deoxyridine-positive and doublecortin-positive cells (dentate gyrus); increasing the level of astrocytes glial fibrillary acidic protein and decrease in S100B protein, increasing in blood brain barrier integrity; prevention of oxidative stress injury, inducing morphological changes in astrocytes in the stratum radiatum of cornu ammonis 1(CA1) area; increase in cell proliferation and suppress apoptosis in dentate gyrus; increase in brain-derived neurotrophic factor and tropomyosin receptor kinase B expressions; enhancing the glycogen levels and normalizing the monocarboxylate transporter 2 expression.
Collapse
Affiliation(s)
- Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
335
|
Wu X, Lv YG, Du YF, Hu M, Reed MN, Long Y, Suppiramaniam V, Hong H, Tang SS. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:360-374. [PMID: 30144494 DOI: 10.1016/j.pnpbp.2018.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/09/2023]
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease (AD) and memory impairment. Herein, we evaluated the neuroprotective effects of 6-ethyl-23(S)-methyl-cholic acid (INT-777), a specific G-protein coupled bile acid receptor 1 (TGR5) agonist, in the LPS-treated mouse model of acute neurotoxicity. Single intracerebroventricular (i.c.v.) injection of LPS remarkably induced mouse behavioral impairments in Morris water maze, novel object recognition, and Y-maze avoidance tests, which were ameliorated by INT-777 (1.5 or 3.0 μg/mouse, i.c.v.) treatment. Importantly, INT-777 treatment reversed LPS-induced TGR5 down-regulation, suppressed the increase of nuclear NF-κB p65, and mitigated neuroinflammation, evidenced by lower proinflammatory cytokines, less activation of microglia, and increased the ratio of p-CREB/CREB or mBDNF/proBDNF in the hippocampus and frontal cortex. In addition, INT-777 treatment also suppressed neuronal apoptosis, as indicated by the reduction of TUNEL-positive cells, decreased activation of caspase-3, increased the ratio of Bcl-2/Bax, and ameliorated synaptic dysfunction as evidenced by the upregulation of PSD95 and synaptophysin in the hippocampus and frontal cortex. Taken together, this study showed the potential neuroprotective effects of INT-777 against LPS-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yang-Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Feng Du
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mei Hu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Miranda N Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
336
|
Wisniewski T, Drummond E. Future horizons in Alzheimer's disease research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:223-241. [PMID: 31699317 DOI: 10.1016/bs.pmbts.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are growing genetic, transcriptomic and proteomic data pointing to the complexity of Alzheimer's disease (AD) pathogenesis. Unbiased "omics" approaches are essential for the future development of effective AD research, which will need to be combined and personalized, given that multiple distinct pathways can drive AD pathology. It is essential to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity, as well as the common presence of mixed pathologies. These nonmutually exclusive therapeutic approaches include the targeting of multiple toxic oligomeric species concurrently, targeting the apolipoprotein E/amyloid β interaction and the modulation of innate immunity, as well as more "out of the box" ideas such as targeting infectious agents that may play a role in AD.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States.
| | - Eleanor Drummond
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
337
|
Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:371-399. [DOI: 10.1016/bs.pmbts.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
338
|
Beheshti F, Hashemzehi M, Sabeti N, Hashemi Sadr S, Hosseini M. The effects of aminoguanidine on hippocampal cytokines, amyloid beta, brain-derived neurotrophic factor, memory and oxidative stress status in chronically lipopolysaccharide-treated rats. Cytokine 2019; 113:347-355. [PMID: 30327173 DOI: 10.1016/j.cyto.2018.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In the present study, the effects of aminoguanidine (AMG) on hippocampal cytokines, amyloid beta (Aβ), brain-derived neurotrophic factor, oxidative stress status and memory in chronically lipopolysaccharide (LPS) treated rats were investigated. METHODS The rats were divided into five groups and were treated: (1) Control (Saline), (2) LPS (1 mg/kg), (3-5) LPS- AMG50, LPS-AMG100, and LPS-AMG150 (AMG 50, 100 and 150 mg/kg 30 min before LPS injection). The treatment started five weeks prior to the behavioral experiments and continued during the behavioral tests (LPS injection two hours before each behavioral evaluation). Finally, the tissue was removed for biochemical measurements. RESULTS The escape latency in Morris water maze test and the latency to enter the dark compartment in passive avoidance test in LPS group were significantly greater than the control group (P < 0.001), while, in LPS-AMG 100 and LPS-AMG150 groups they were less than LPS group (P < 0.001). Malondialdehyde (MDA), NO metabolites of hippocampal and cortical tissues and interleukin-6 (IL-6), Aβ and tumor necrosis factor-α (TNFα) concentration in the hippocampus of LPS group were higher than control group (P < 0.001-P < 0.05). However, in LPS-AMG 100 and LPS-AMG150 group they were lower than LPS group (P < 0.001-P < 0.05). The thiol content and the activities of catalase (CAT) and superoxide dismutase (SOD) in both cortical and hippocampal tissues of LPS group were reduced compared to the control group (P < 0.001-P < 0.05). These factors enhanced in LPS-AMG 100 and LPS-AMG150 groups compared to LPS (P < 0.001-P < 0.05). The hippocampal content of brain-derived neurotrophic factor (BDNF) in LPS group was significantly lower compared to the control group (P < 0.001). All treated groups had higher BDNF content in comparison to LPS group (P < 0.01-P < 0.001). CONCLUSION The findings indicated that the protective effects of AMG against LPS-induced memory were accompanied by decreasing of inflammatory cytokines, Aβ, oxidative stress and increasing of anti-inflammatory mediators and BDNF.
Collapse
Affiliation(s)
- Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Milad Hashemzehi
- Iranshahr University of Medical Sciences, Iranshahr, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nona Sabeti
- Neurogenic Inflammation Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Hashemi Sadr
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
339
|
Pons V, Rivest S. New Therapeutic Avenues of mCSF for Brain Diseases and Injuries. Front Cell Neurosci 2018; 12:499. [PMID: 30618643 PMCID: PMC6306462 DOI: 10.3389/fncel.2018.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023] Open
Abstract
Macrophage colony-stimulating factor (mCSF) is a cytokine known to promote the recruitment of macrophages inducing the release of CCL2, a chemokine mobilizing monocytes to sites of inflammation. Additionally, it induces microglia/macrophage proliferation and the polarization of these cells towards a M2-like phenotype, impairing their ability to release pro-inflammatory factors and toxic mediators, while favoring the release of mediators promoting tissue repair. Another important player is the mCSF receptor CSFR1, which is highly expressed in monocytes, macrophages and microglia. Here, we discuss the new interesting therapeutic avenue of the mCSF/CSFR1 axis on brain diseases. More specifically, mCSF cascade might stimulate the survival/proliferation of oligodendrocytes, enhance the immune response as well as modulate the release of growth factors and the phagocytic activity of immune cells to remove myelin debris and toxic proteins from the brain.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
340
|
A standardised Andrographis paniculata Burm. Nees aqueous extract prevents Lipopolysaccharide-induced cognitive deficits through suppression of inflammatory cytokines and oxidative stress mediators. J Adv Res 2018; 16:87-97. [PMID: 30899592 PMCID: PMC6412812 DOI: 10.1016/j.jare.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced impairment of cognitive function. Andrographis paniculata aqueous extract (APAE) averted LPS-induced cognitive deficit. APAE pretreatment prevented LPS-induced hippocampal proinflammatory cytokine release. APAE pretreatment prevented LPS-induced hippocampal oxidative stress mediator release. Pretreatment with APAE inhibited LPS-induced hippocampal cholinesterase activity.
Substantial evidence has shown that most cases of memory impairment are associated with increased neuroinflammation and oxidative stress. In this study, the potential of a standardised Andrographis paniculata aqueous extract (APAE) to reverse neuroinflammation and cognitive impairment induced by lipopolysaccharide (LPS) was examined in vivo. Rats were treated with APAE (50, 100, 200, and 400 mg·kg−1, p.o.) for 7 consecutive days prior to LPS (1 mg·kg−1, i.p.)-induced neuroinflammation and cognitive impairment. Spatial learning and memory were evaluated using the Morris water maze (MWM) test, while neuroinflammation and oxidative stress were assessed through the measurement of specific mediators, namely, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, superoxide dismutase (SOD), catalase (CAT), antioxidant glutathione (GSH), reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also evaluated. LPS caused significant memory deficits in the 2-day MWM protocol, whereas pretreatment with standardised APAE dose-dependently improved performance in the MWM test. APAE treatment also blocked the LPS-induced hippocampal increase in the concentration and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and production of ROS and TBARS and enhanced the activities of AChE and BChE. Furthermore, APAE enhanced the decrease in the levels and expression of hippocampal antioxidant enzymes (SOD and CAT) following LPS-induced neuroinflammation and cognitive deficit. The findings from these studies suggested that standardised APAE improved memory and had potent neuroprotective effects against LPS-induced neurotoxicity.
Collapse
|
341
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
342
|
Gynther M, Puris E, Peltokangas S, Auriola S, Kanninen KM, Koistinaho J, Huttunen KM, Ruponen M, Vellonen KS. Alzheimer's Disease Phenotype or Inflammatory Insult Does Not Alter Function of L-Type Amino Acid Transporter 1 in Mouse Blood-Brain Barrier and Primary Astrocytes. Pharm Res 2018; 36:17. [PMID: 30488131 PMCID: PMC6267245 DOI: 10.1007/s11095-018-2546-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
Purpose The study aim was to evaluate the effect of Alzheimer’s disease (AD) and inflammatory insult on the function of L-type amino acid transporter 1 (Lat1) at the mouse blood-brain barrier (BBB) as well as Lat1 function and expression in mouse primary astrocytes. Methods The Lat1 function and expression was determined in wildtype astrocytes with and without lipopolysaccharide (LPS)-induced inflammation and in LPS treated AD APP/PS1 transgenic astrocytes. The function of Lat1 at the BBB was evaluated in wildtype mice with and without LPS-induced neuroinflammation and APP/PS1 transgenic mice by in situ brain perfusion. Results There were 2.1 and 1.6 -fold decreases in Lat1 mRNA and protein expression in LPS-treated wildtype astrocytes compared to vehicle-treated astrocytes. In contrast, Lat1 mRNA and protein expression were increased by 1.7 and 1.2 -fold (not statistically significant) in the transgenic cells. A similar trend was observed in the cell uptake of [14C]-L-leucine. There were no statistically significant differences in [14C]-L-leucine BBB permeation between the groups. Conclusions The results showed that neither LPS-induced inflammation or the presence of APP/PS1 mutations alters Lat1 function at the mouse BBB as well as Lat1 protein expression and function in mouse primary astrocytes.
Collapse
Affiliation(s)
- Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soile Peltokangas
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
343
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
344
|
Cope EC, Opendak M, LaMarca EA, Murthy S, Park CY, Olson LB, Martinez S, Leung JM, Graham AL, Gould E. The effects of living in an outdoor enclosure on hippocampal plasticity and anxiety-like behavior in response to nematode infection. Hippocampus 2018; 29:366-377. [PMID: 30252982 DOI: 10.1002/hipo.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
The hippocampus of rodents undergoes structural remodeling throughout adulthood, including the addition of new neurons. Adult neurogenesis is sensitive to environmental enrichment and stress. Microglia, the brain's resident immune cells, are involved in adult neurogenesis by engulfing dying new neurons. While previous studies using laboratory environmental enrichment have investigated alterations in brain structure and function, they do not provide an adequate reflection of living in the wild, in which stress and environmental instability are common. Here, we compared mice living in standard laboratory settings to mice living in outdoor enclosures to assess the complex interactions among environment, gut infection, and hippocampal plasticity. We infected mice with parasitic worms and studied their effects on adult neurogenesis, microglia, and functions associated with the hippocampus, including cognition and anxiety regulation. We found an increase in immature neuron numbers of mice living in outdoor enclosures regardless of infection. While outdoor living prevented increases in microglial reactivity induced by infection in both the dorsal and ventral hippocampus, outdoor mice with infection had fewer microglia and microglial processes in the ventral hippocampus. We observed no differences in cognitive performance on the hippocampus-dependent object location task between infected and uninfected mice living in either setting. However, we found that infection caused an increase in anxiety-like behavior in the open field test but only in outdoor mice. These findings suggest that living conditions, as well as gut infection, interact to produce complex effects on brain structure and function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Maya Opendak
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Elizabeth A LaMarca
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Sahana Murthy
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Christin Y Park
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Lyra B Olson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Susana Martinez
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
345
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
346
|
Thygesen C, Ilkjær L, Kempf SJ, Hemdrup AL, von Linstow CU, Babcock AA, Darvesh S, Larsen MR, Finsen B. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APP SWE/PS1 ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci 2018; 12:397. [PMID: 30459560 PMCID: PMC6232379 DOI: 10.3389/fncel.2018.00397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer’s disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the consequences of this exacerbation are largely unknown. Here, we mimicked systemic inflammation in AD with weekly intraperitoneal (i.p.) injections of APPSWE/PS1ΔE9 transgenic mice with E. coli lipopolysaccharide (LPS) from 9 to 12 months of age, corresponding to the period with the steepest increase in amyloid pathology. We found that the repeated LPS injections ameliorated amyloid pathology in the neocortex while increasing the neuroinflammatory reaction. To elucidate mechanisms, we analyzed the proteome of the hippocampus from the same mice as well as in unique samples of CNS myeloid cells. The repeated LPS injections stimulated protein pathways of the complement system, retinoid receptor activation and oxidative stress. CNS myeloid cells from transgenic mice showed enrichment in pathways of amyloid-beta clearance and elevated levels of the lysosomal protease cathepsin Z, as well as amyloid precursor protein, apolipoprotein E and clusterin. These proteins were found elevated in the proteome of both LPS and vehicle injected transgenics, and co-localized to CD11b+ microglia in transgenic mice and in primary murine microglia. Additionally, cathepsin Z, amyloid precursor protein, and apolipoprotein E appeared associated with amyloid plaques in neocortex of AD cases. Interestingly, cathepsin Z was expressed in microglial-like cells and co-localized to CD68+ microglial lysosomes in AD cases, and it was expressed in perivascular cells in AD and control cases. Taken together, our results implicate systemic LPS administration in ameliorating amyloid pathology in early-to-mid stage disease in the APPSWE/PS1ΔE9 mouse and attract attention to the potential disease involvement of cathepsin Z expressed in CNS myeloid cells in AD.
Collapse
Affiliation(s)
- Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Laura Ilkjær
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anne Louise Hemdrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Alicia A Babcock
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine) - Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
347
|
Hedayati Moghadam M, Rezaee SAR, Hosseini M, Niazmand S, Salmani H, Rafatpanah H, Asarzadegan Dezfuli M, Amel Zabihi N, Abareshi A, Mahmoudabady M. HTLV-1 infection-induced motor dysfunction, memory impairment, depression, and brain tissues oxidative damage in female BALB/c mice. Life Sci 2018; 212:9-19. [PMID: 30248348 DOI: 10.1016/j.lfs.2018.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
AIMS The HTLV-1 infection is associated with a neuro-inflammatory disease. In the present study, the behavioral consequences and brain oxidative damages were evaluated in HTLV-1-infected BALB/c mice. MATERIAL AND METHODS 20 female BALB/c mice were divided into two groups comprising control and HTLV-1-infected. The HTLV-1-infected group was inoculated with a 106 MT-2 HTLV-1-infected cell line. Two months later, the behavioral tests were conducted. Finally, oxidative stress was assessed in the cortex and hippocampus tissues. KEY FINDINGS In the HTLV-1-infected group, running time and latency to fall, travel distance and time spent in the peripheral zone, total crossing number and total traveled distance in open field test, the latency of entrance into the dark compartment in the passive avoidance test, the new object exploration percentage, and discrimination ratio were significantly lower than in the control group. The immobility time, time spent in the dark compartment in passive avoidance test, and total exploration time significantly increased in the HTLV-1-infected group compared to the control group. In the cortical tissue of the HTLV-1 group, the malondialdehyde levels were elevated while the total thiol levels decreased in comparison to the control group. The activity of superoxide dismutase in the cortical and hippocampal tissues, and catalase activity in cortical tissue significantly decreased in the HTLV-1 group in comparison to the control group. SIGNIFICANCE The HTLV-1 infection seems to induce depression-like behavior, motor dysfunction, disruption in working and fear memory and also oxidative stress in the cortex and hippocampus.
Collapse
Affiliation(s)
| | - S A Rahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenesis-inflammation Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Salmani
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Amel Zabihi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abareshi
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenesis-inflammation Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
348
|
Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3087475. [PMID: 30498753 PMCID: PMC6222241 DOI: 10.1155/2018/3087475] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023]
Abstract
Neuroinflammation has been observed in association with neurodegenerative diseases including Alzheimer's disease (AD). In particular, a positive correlation has been documented between neuroinflammatory cytokine release and the progression of the AD, which suggests these cytokines are involved in AD pathophysiology. A histological hallmark of the AD is the presence of beta-amyloid (Aβ) plaques and tau neurofibrillary tangles. Beta-amyloid is generated by the sequential cleavage of beta (β) and gamma (γ) sites in the amyloid precursor protein (APP) by β- and γ-secretase enzymes and its accumulation can result from either a decreased Aβ clearance or increased metabolism of APP. Previous studies reported that neuroinflammatory cytokines reduce the efflux transport of Aβ, leading to elevated Aβ concentrations in the brain. However, less is known about the effects of neuroinflammatory mediators on APP expression and metabolism. In this article, we review the modulatory role of neuroinflammatory cytokines on APP expression and metabolism, including their effects on β- and γ-secretase enzymes.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
349
|
Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The Effects of Acorus calamus L. in Preventing Memory Loss, Anxiety, and Oxidative Stress on Lipopolysaccharide-induced Neuroinflammation Rat Models. Int J Prev Med 2018; 9:85. [PMID: 30450168 PMCID: PMC6202774 DOI: 10.4103/ijpvm.ijpvm_75_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/07/2018] [Indexed: 11/04/2022] Open
Abstract
Objective Several factors lead to memory loss, the most important of which is brain aging that is caused mostly by neuroinflammation and oxidative stress. The need of finding preventive treatments of memory impairment in elderly encouraged authors to assess the effect of Acorus calamus on memory loss, anxiety, and antioxidant indices on neuroinflammation rat models. Materials and Methods Different fractions of A. calamus were prepared. The subject rats were grouped in 11 groups of 10 each. In the nine treated groups, the extract gavage began 1 week before intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) and continued for 2 weeks after the last injection of LPS. Behavioral tests, including passive avoidance and elevated plus-maze (EPM) tests, were run on days 24, 25, and 26 and the subjects were sacrificed on the day after the last behavioral test, and their hippocampus was isolated to measure the oxidative stress markers. Results Assessment of oxidative stress markers in hippocampus samples revealed that the amounts of endogenous antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and total antioxidant activity) in the groups that received different fractions were less than their equivalent figures in LPS-control group, and levels of malondialdehyde (MDA) in treatment groups were less than MDA level in LPS-control group. Moreover, the treatment groups with different fractions of A. calamus revealed better performance compared to LPS-control group in shuttle-box test. In EPM test, the groups with different fractions revealed lower stress level in comparison with LPS-control group. The best performance in memory test and the lowest level of stress in EPM was observed in the group with aqueous fraction at 600 mg/kg dose, and the least figures of oxidative stress markers were of the group with aqueous fraction at 600 mg/kg dose. Conclusion The oral administration of different fractions of A. calamus, especially aqueous fraction, prevented from memory deficits and stress through controlling oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Ebrahim Esfandiari
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Mokhtarian
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir M Vatankhah
- Drug Applied Research Center, Tabriz Medical University, Tabriz, Iran
| |
Collapse
|
350
|
Mohammadi G, Dargahi L, Peymani A, Mirzanejad Y, Alizadeh SA, Naserpour T, Nassiri-Asl M. The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J Am Coll Nutr 2018; 38:209-217. [PMID: 30307792 DOI: 10.1080/07315724.2018.1487346] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The role of gut microbiota in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease (AD), via the gut-brain axis has recently been demonstrated; hence, modification of the intestinal microbiota composition by probiotic biotherapy could be a therapeutic target for these conditions. The aim of this study was to assess the effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on inflammatory and memory processes in lipopolysaccharide (LPS)-induced rats, one of the animal models used in peripherally induced neuroinflammation and neurodegeneration. METHODS Rats were randomly divided into four groups (Control, LPS, Probiotic + LPS, and Probiotic). All experimental groups were orally administrated maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 14 consecutive days and then were injected with saline or LPS (1 mg/kg, intraperitoneally [i.p.], single dose) 20 hours later. Memory retention ability and systemic and neuroinflammatory markers were assessed 4 hours after the injections. RESULTS Systemic exposure to LPS resulted in significant elevation of both the circulating and hippocampal levels of proinflammatory cytokines, which decreased remarkably following probiotic pretreatment. Oral bacteriotherapy with a combination of L. helveticus R0052 and B. longum R0175 also attenuated the decremental effect of LPS on memory through brain-derived neurotrophic factor (BDNF) expression at the molecular level; however, this effect was not significant in the passive avoidance test at the behavioral level. CONCLUSIONS These results suggest that the management of gut microbiota with this probiotic formulation could be a promising intervention to improve neuroinflammation-associated disorders such as AD.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- a Department of Molecular Medicine , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Leila Dargahi
- b NeuroBiology Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Peymani
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Yazdan Mirzanejad
- d Division of Infectious Diseases , University of British Columbia , Vancouver , Canada
| | - Safar Ali Alizadeh
- c Medical Microbiology Research Center , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Taghi Naserpour
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| | - Marjan Nassiri-Asl
- e Cellular and Molecular Research Center, Department of Pharmacology , Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|