301
|
Nutritional modulation of metabolic inflammation. Biochem Soc Trans 2017; 45:979-985. [PMID: 28710289 DOI: 10.1042/bst20160465] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023]
Abstract
Metabolic inflammation is a very topical area of research, wherein aberrations in metabolic and inflammatory pathways probably contribute to atherosclerosis, insulin resistance (IR) and type 2 diabetes. Metabolic insults arising from obesity promote inflammation, which in turn impedes insulin signalling and reverse cholesterol transport (RCT). Key cells in the process are metabolically activated macrophages, which up-regulate both pro- and anti-inflammatory pathways in response to lipid spillover from adipocytes. Peroxisome proliferator-activated receptors and AMP-activated protein kinase (AMPK) are regulators of cellular homeostasis that influence both inflammatory and metabolic pathways. Dietary fats, such as saturated fatty acids (SFAs), can differentially modulate metabolic inflammation. Palmitic acid, in particular, is a well-characterized nutrient that promotes metabolic inflammation via the NLRP3 (the nod-like receptor containing a pyrin domain) inflammasome, which is partly attributable to AMPK inhibition. Conversely, some unsaturated fatty acids are less potent agonists of metabolic inflammation. For example, monounsaturated fatty acid does not reduce AMPK as potently as SFA and n-3 polyunsaturated fatty acids actively resolve inflammation via resolvins and protectins. Nevertheless, the full extent to which nutritional state modulates metabolic inflammation requires greater clarification.
Collapse
|
302
|
Lu J, Wang QH, Huang LH, Dong HY, Lin LJ, Tan JM. Correlation of CDC42 Activity with Cell Proliferation and Palmitate-Mediated Cell Death in Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells. Stem Cells Dev 2017; 26:1283-1292. [PMID: 28548571 DOI: 10.1089/scd.2017.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RHO GTPases regulate cell migration, cell-cycle progression, and cell survival in response to extracellular stimuli. However, the regulatory effects of RHO GTPases in mesenchymal stromal cells (MSCs) are unclear. Herein, we show that CDC42 acts as an essential factor in regulating cell proliferation and also takes part in lipotoxic effects of palmitate in human umbilical cord Wharton's jelly derived MSCs (hWJ-MSCs). Cultured human bone marrow, adipose tissue, and hWJ-MSC derived cells had varying pro-inflammatory cytokine secretion levels and cell death rates when treated by palmitate. Strikingly, the proliferation rate of these types of MSCs correlated with their sensitivity to palmitate. A glutathione-S-transferase pull-down assay demonstrated that hWJ-MSCs had the highest activation of CDC42, which was increased by palmitate treatment in a time-dependent manner. We demonstrated that palmitate-induced synthesis of pro-inflammatory cytokines and cell death was attenuated by shRNA against CDC42. In CDC42 depleted hWJ-MSCs, population-doubling levels were notably decreased, and phosphorylation of ERK1/2 and p38 MAPK was reduced. Our data therefore suggest a mechanistic role for CDC42 activity in hWJ-MSC proliferation and identified CDC42 activity as a promising pharmacological target for ameliorating lipotoxic cell dysfunction and death.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Qing-Hua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Liang-Hu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Hui-Yue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Ling-Jing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Jian-Ming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| |
Collapse
|
303
|
Cândido FG, Valente FX, Grześkowiak ŁM, Moreira APB, Rocha DMUP, Alfenas RDCG. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr 2017; 69:125-143. [PMID: 28675945 DOI: 10.1080/09637486.2017.1343286] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary fat strongly affects human health by modulating gut microbiota composition and low-grade systemic inflammation. High-fat diets have been implicated in reduced gut microbiota richness, increased Firmicutes to Bacteroidetes ratio, and several changes at family, genus and species levels. Saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA) and conjugated linolenic fatty acids share important pathways of immune system activation/inhibition with gut microbes, modulating obesogenic and proinflammatory profiles. Mechanisms that link dietary fat, gut microbiota and obesity are mediated by increased intestinal permeability, systemic endotoxemia, and the activity of the endocannabinoid system. Although the probiotic therapy could be a complementary strategy to improve gut microbiota composition, it did not show permanent effects to treat fat-induced dysbiosis. Based upon evidence to date, we believe that high-fat diets and SFA consumption should be avoided, and MUFA and omega-3 PUFA intake should be encouraged in order to regulate gut microbiota and inflammation, promoting body weight/fat control.
Collapse
Affiliation(s)
- Flávia Galvão Cândido
- a Departamento de Nutrição e Saúde , Universidade Federal de Viçosa , Viçosa , Brazil
| | - Flávia Xavier Valente
- a Departamento de Nutrição e Saúde , Universidade Federal de Viçosa , Viçosa , Brazil
| | | | | | | | | |
Collapse
|
304
|
Melnik BC. Olumacostat Glasaretil, a Promising Topical Sebum-Suppressing Agent that Affects All Major Pathogenic Factors of Acne Vulgaris. J Invest Dermatol 2017; 137:1405-1408. [PMID: 28647025 DOI: 10.1016/j.jid.2017.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
Hunt et al. show that olumacostat glasaretil, an inhibitor of acetyl coenzyme A carboxylase, reduces saturated and monounsaturated fatty acyl chains in sebaceous lipids. Topical olumacostat glasaretil application decreases hamster ear sebaceous gland size and shows efficacy in treating patients with acne vulgaris. Olumacostat glasaretil-mediated sebum suppression may reduce Propionibacterium acnes growth and biofilm formation, comedogenesis, and inflammation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine, Health Theory, Faculty of Human Sciences, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
305
|
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 2017; 17:25. [PMID: 28421512 DOI: 10.1007/s11882-017-0694-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
306
|
Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-185. [PMID: 28179656 DOI: 10.1038/nature21363] [Citation(s) in RCA: 1520] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.
Collapse
|
307
|
Toll-like receptor 4 mediates Lewis lung carcinoma-induced muscle wasting via coordinate activation of protein degradation pathways. Sci Rep 2017; 7:2273. [PMID: 28536426 PMCID: PMC5442131 DOI: 10.1038/s41598-017-02347-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer-induced cachexia, characterized by muscle wasting, is a lethal metabolic syndrome with undefined etiology. Current consensus is that multiple factors contribute to cancer-induced muscle wasting, and therefore therapy requires combinational strategies. Here, we show that Toll-like receptor 4 (TLR4) mediates cancer-induced muscle wasting by directly activating muscle catabolism as well as stimulating an innate immune response in mice bearing Lewis lung carcinoma (LLC), and targeting TLR4 alone effectively abrogate muscle wasting. Utilizing specific siRNAs we observed that LLC cell-conditioned medium (LCM)-treated C2C12 myotubes underwent a rapid catabolic response in a TLR4-dependent manner, including activation of the p38 MAPK−C/EBPβ signaling pathway as well as the ubiquitin-proteasome and autophagy-lysosome pathways, resulting in myotube atrophy. Utilizing a reporter cell-line it was confirmed that LCM activated TLR4. These results suggest that LLC-released cachexins directly activate muscle catabolism via activating TLR4 on muscle cells independent of immune responses. Critically, LLC tumor-bearing TLR4−/− mice were spared from muscle wasting due to a blockade in muscle catabolic pathways. Further, tumor-induced elevation of circulating TNFα and interleukin-6 (IL-6) was abolished in TLR4−/− mice. These data suggest that TLR4 is a central mediator and therapeutic target of cancer-induced muscle wasting.
Collapse
|
308
|
Li C, Takeo M, Matsuda M, Nagai H, Xizheng S, Hatanaka W, Kishimura A, Inoue H, Tani K, Mori T, Katayama Y. Facilitating the presentation of antigen peptides on dendritic cells for cancer immunotherapy using a polymer-based synthetic receptor. MEDCHEMCOMM 2017; 8:1207-1212. [PMID: 30108830 DOI: 10.1039/c7md00188f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022]
Abstract
The introduction of proteins into dendritic cells (DCs) ex vivo is a critical step for the DC-based immunotherapy of cancer. Here, we developed a biotin-modified polymer with multiple hydrophobic membrane anchors for cells that functions as a synthetic receptor for an antigen protein, ovalbumin (OVA), to introduce it efficiently into DCs compared with the conventional pulsing method. Our method showed significant advantages, including the rapid incorporation of OVA and the activation of antigen-specific T cells in a MHC-restricted manner. When mice were immunized by DCs treated with our method, tumor growth was completely suppressed, indicating that our method can be used to prepare adjuvant DCs.
Collapse
Affiliation(s)
- Cuicui Li
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850
| | - Masafumi Takeo
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850
| | - Masayoshi Matsuda
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850
| | - Hiroko Nagai
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850
| | - Sun Xizheng
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850
| | - Wataru Hatanaka
- Department of Applied Chemistry , Faculty of Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850.,Department of Applied Chemistry , Faculty of Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,Center for Advanced Medical Innovation , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,International Research Center for Molecular Systems , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Hiroyuki Inoue
- Division of Molecular and Clinical Genetics , Medical Institute of Bioregulation , Kyushu University , Fukuoka , Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics , Medical Institute of Bioregulation , Kyushu University , Fukuoka , Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850.,Department of Applied Chemistry , Faculty of Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,Center for Advanced Medical Innovation , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan . ; Tel: +81 092 802 2850.,Department of Applied Chemistry , Faculty of Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,Center for Advanced Medical Innovation , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,International Research Center for Molecular Systems , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,Center for Advanced Medical Innovation , Kyushu University , 744 Motooka, Nishi-Ku , Fukuoka 819-0395 , Japan.,Department of Biomedical Engineering , Chung Yuan Christian University , 200 Chung Pei Road, Chung Li District , Taoyuan 32023 , Taiwan
| |
Collapse
|
309
|
Zunino SJ, Keim NL, Kelley DS, Bonnel EL, Souza EC, Peerson JM. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns. Nutr Res 2017; 40:32-39. [PMID: 28473058 DOI: 10.1016/j.nutres.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
Recently, in a randomized, double-blind crossover study, we reported that consumption of grape powder by obese human subjects increased the production of the proinflammatory cytokines interleukin (IL)-1β and IL-6 by peripheral blood monocytes after ex vivo stimulation with bacterial lipopolysaccharide compared with the placebo treatment. We hypothesized that dietary grape powder increased the production of these cytokines by stimulated monocytes. To test this hypothesis, we used 24-hour dietary recall data to determine if differences in dietary patterns played a role in increased cytokine production. No differences in total energy, protein, carbohydrates, or fat intake in the diets were observed between the grape powder and placebo intervention periods. There were no differences observed in consumption of meats and poultry, eggs, fish, vegetables, grains, total dairy, or nuts and seeds by the participants between the 2 intervention periods. When participants received the grape powder, the recall data showed decreased intakes of butyric and capric acids (P<.05), and a possible trend toward decreased intake of cheese and total fruit (P<.1). Positive associations between the intakes of margaric acid, butter, total dairy, or whole grain and IL-6 production were observed (P<.05). However, path analysis showed that total energy, protein, carbohydrates, and fats, and individual fatty acids did not influence the production of cytokines by monocytes. The path analysis indicated that the increased cytokine production by lipopolysaccharide-stimulated monocytes from obese human subjects was caused by the grape powder and not mediated by differences in dietary intake.
Collapse
Affiliation(s)
- Susan J Zunino
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Nancy L Keim
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Darshan S Kelley
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Ellen L Bonnel
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Elaine C Souza
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Janet M Peerson
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
310
|
Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR, De Leon M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 2017; 12:e0176793. [PMID: 28463985 PMCID: PMC5413048 DOI: 10.1371/journal.pone.0176793] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1β. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Hung
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Shane Glasgow
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Aruni Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Juli Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Anatomy and Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Basic Sciences, Division of Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| |
Collapse
|
311
|
Agrawal A, Khan MJ, Graugnard DE, Vailati-Riboni M, Rodriguez-Zas SL, Osorio JS, Loor JJ. Prepartal Energy Intake Alters Blood Polymorphonuclear Leukocyte Transcriptome During the Peripartal Period in Holstein Cows. Bioinform Biol Insights 2017; 11:1177932217704667. [PMID: 28579762 PMCID: PMC5414586 DOI: 10.1177/1177932217704667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
In the dairy industry, cow health and farmer profits depend on the balance between diet (ie, nutrient composition, daily intake) and metabolism. This is especially true during the transition period, where dramatic physiological changes foster vulnerability to immunosuppression, negative energy balance, and clinical and subclinical disorders. Using an Agilent microarray platform, this study examined changes in the transcriptome of bovine polymorphonuclear leukocytes (PMNLs) due to prepartal dietary intake. Holstein cows were fed a high-straw, control-energy diet (CON; NEL = 1.34 Mcal/kg) or overfed a moderate-energy diet (OVE; NEL = 1.62 Mcal/kg) during the dry period. Blood for PMNL isolation and metabolite analysis was collected at −14 and +7 days relative to parturition. At an analysis of variance false discovery rate <0.05, energy intake (OVE vs CON) influenced 1806 genes. Dynamic Impact Approach bioinformatics analysis classified treatment effects on Kyoto Encyclopedia of Genes and Genomes pathways, including activated oxidative phosphorylation and biosynthesis of unsaturated fatty acids and inhibited RNA polymerase, proteasome, and toll-like receptor signaling pathway. This analysis indicates that processes critical for energy metabolism and cellular and immune function were affected with mixed results. However, overall interpretation of the transcriptome data agreed in part with literature documenting a potentially detrimental, chronic activation of PMNL in response to overfeeding. The widespread, transcriptome-level changes captured here confirm the importance of dietary energy adjustments around calving on the immune system.
Collapse
Affiliation(s)
- A Agrawal
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M J Khan
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D E Graugnard
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Vailati-Riboni
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - S L Rodriguez-Zas
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Osorio
- Department of Dairy Science, South Dakota State University, Brookings, SD, USA
| | - J J Loor
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
312
|
Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, Samuel D, Duclos-Vallée JC, Touboul D, Bertrand-Michel J, Brunelle A, Guettier C, Le Naour F. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep 2017; 7:46658. [PMID: 28436449 PMCID: PMC5402394 DOI: 10.1038/srep46658] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a condition which can progress to cirrhosis and hepatocellular carcinoma. Markers for NASH diagnosis are still lacking. We performed a comprehensive lipidomic analysis on human liver biopsies including normal liver, nonalcoholic fatty liver and NASH. Random forests-based machine learning approach allowed characterizing a signature of 32 lipids discriminating NASH with 100% sensitivity and specificity. Furthermore, we validated this signature in an independent group of NASH patients. Then, metabolism dysregulations were investigated in both patients and murine models. Alterations of elongase and desaturase activities were observed along the fatty acid synthesis pathway. The decreased activity of the desaturase FADS1 appeared as a bottleneck, leading upstream to an accumulation of fatty acids and downstream to a deficiency of long-chain fatty acids resulting to impaired phospholipid synthesis. In NASH, mass spectrometry imaging on tissue section revealed the spreading into the hepatic parenchyma of selectively accumulated fatty acids. Such lipids constituted a highly toxic mixture to human hepatocytes. In conclusion, this study characterized a specific and sensitive lipid signature of NASH and positioned FADS1 as a significant player in accumulating toxic lipids during NASH progression.
Collapse
Affiliation(s)
- Franck Chiappini
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France
| | - Audrey Coilly
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Hanane Kadar
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Philippe Gual
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Albert Tran
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Christophe Desterke
- Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| | - Didier Samuel
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Jean-Charles Duclos-Vallée
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | | | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital du Kremlin-Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| |
Collapse
|
313
|
Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior. Trends Cogn Sci 2017; 21:372-384. [PMID: 28372879 DOI: 10.1016/j.tics.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
Recent work highlights the importance of genetic variants that influence brain structure and function in conferring risk for polygenic obesity. The neurotransmitter dopamine (DA) has a pivotal role in energy balance by integrating metabolic signals with circuits supporting cognitive, perceptual, and appetitive functions that guide feeding. It has also been established that diet and obesity alter DA signaling, leading to compulsive-like feeding and neurocognitive impairments. This raises the possibility that genetic variants that influence DA signaling and adaptation confer risk for overeating and cognitive decline. Here, we consider the role of two common gene variants, FTO and TaqIA rs1800497 in driving gene × environment interactions promoting obesity, metabolic dysfunction, and cognitive change via their influence on DA receptor subtype 2 (DRD2) signaling.
Collapse
Affiliation(s)
- Xue Sun
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA CNRS UMR 8251, Paris, France; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA; The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
314
|
Microglia activation due to obesity programs metabolic failure leading to type two diabetes. Nutr Diabetes 2017; 7:e254. [PMID: 28319103 PMCID: PMC5380893 DOI: 10.1038/nutd.2017.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/04/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes.
Collapse
|
315
|
Schmidt EA, Fee BE, Henry SC, Nichols AG, Shinohara ML, Rathmell JC, MacIver NJ, Coers J, Ilkayeva OR, Koves TR, Taylor GA. Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. J Biol Chem 2017; 292:4651-4662. [PMID: 28154172 PMCID: PMC5377780 DOI: 10.1074/jbc.m116.770735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.
Collapse
Affiliation(s)
| | - Brian E Fee
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Stanley C Henry
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Amanda G Nichols
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Mari L Shinohara
- From the Departments of Molecular Genetics and Microbiology
- the Department of Immunology
| | - Jeffrey C Rathmell
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, Tennessee 37232
| | - Nancie J MacIver
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Jörn Coers
- From the Departments of Molecular Genetics and Microbiology
| | | | - Timothy R Koves
- the Duke Molecular Physiology Institute, and
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| | - Gregory A Taylor
- From the Departments of Molecular Genetics and Microbiology,
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
- the Department of Immunology
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
316
|
Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 2017; 14:387-400. [PMID: 28300081 DOI: 10.1038/nrcardio.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. Monocytes and macrophages are involved in cardiovascular disease progression, and are associated with the development of unstable atherosclerotic plaques. Hyperlipidaemia can accelerate cardiovascular disease progression. However, monocyte responses to hyperlipidaemia are poorly understood. In the past decade, accumulating data describe the relationship between the dynamic blood lipid environment and the heterogeneous circulating monocyte pool, which might have profound consequences for cardiovascular disease. In this Review, we explore the updated view of monocytes in cardiovascular disease and their relationship with macrophages in promoting the homeostatic and inflammatory responses related to atherosclerosis. We describe the different definitions of dyslipidaemia, highlight current theories on the ontogeny of monocyte heterogeneity, discuss how dyslipidaemia might alter monocyte production, and explore the mechanistic interface linking dyslipidaemia with monocyte effector functions, such as migration and the inflammatory response. Finally, we discuss the role of dietary and endogenous lipid species in mediating dyslipidaemic responses, and the role of these lipids in promoting the risk of cardiovascular disease through modulation of monocyte behaviour.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Lab, Baker IDI Heart &Diabetes Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kevin J Woollard
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
317
|
Yamada H, Umemoto T, Kawano M, Kawakami M, Kakei M, Momomura SI, Ishikawa SE, Hara K. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2017; 484:403-408. [DOI: 10.1016/j.bbrc.2017.01.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
|
318
|
Norde MM, Oki E, Carioca AAF, Castro IA, Souza JMP, Marchioni DML, Fisberg RM, Rogero MM. Influence of toll-like receptor 4 gene variants and plasma fatty acid profile on systemic inflammation: A population-based cross-sectional study. Nutrition 2017; 35:106-111. [PMID: 28241976 DOI: 10.1016/j.nut.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the interaction of toll-like receptor 4 (TLR4) gene single nucleotide polymorphism (SNP) and plasma fatty acid (FA) profile in modulating risk for systemic inflammation. METHODS In all, 262 adult (19-59 y) participants of the Health Survey of São Paulo met the inclusion criteria. Anthropometric parameters, blood pressure, plasma inflammatory biomarker concentration, and fatty acid profile were measured and four SNPs of the TLR4 gene (rs4986790, rs4986791, rs11536889, and rs5030728) were genotyped. Multivariate cluster analysis was performed to stratify individuals based on levels of 11 plasma inflammatory biomarkers into two groups: inflammatory (INF) and noninflammatory (NINF). RESULTS No association was found between any of the SNPs studied and systemic inflammation. The INF cluster had higher palmitic acid levels (P = 0.039) and estimated stearoyl coenzyme A desaturase activity (P = 0.045) and lower polyunsaturated fatty acid (P = 0.011), ω-6 fatty acid (P = 0.018), arachidonic acid (P = 0.002) levels, and estimated δ-5 desaturase activity (P = 0.025) compared with the NINF cluster. Statistically significant interaction between rs11536889 and arachidonic acid/eicosapentaenoic acid (AA/EPA) ratio (P = 0.034) was found to increase the odds of belonging to the INF cluster when individuals had the variant allele C and were at the higher percentile of AA/EPA plasma ratio. CONCLUSION Plasma fatty acid profile modulated the odds of belonging to the INF cluster depending on genotypes of TRL4 gene polymorphisms.
Collapse
Affiliation(s)
| | - Erica Oki
- Nutrition Department, School of Public Health, University of São Paulo, Brazil
| | - Antonio A F Carioca
- Nutrition Department, School of Public Health, University of São Paulo, Brazil
| | - Inar A Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - José M P Souza
- Department of Epidemiology, School of Public Health, University of São Paulo, Brazil
| | - Dirce M L Marchioni
- Nutrition Department, School of Public Health, University of São Paulo, Brazil
| | - Regina M Fisberg
- Nutrition Department, School of Public Health, University of São Paulo, Brazil
| | - Marcelo M Rogero
- Nutrition Department, School of Public Health, University of São Paulo, Brazil.
| |
Collapse
|
319
|
Xiang DM, Song XZ, Zhou ZM, Liu Y, Dai XY, Huang XL, Hou FF, Zhou QG. Chronic kidney disease promotes chronic inflammation in visceral white adipose tissue. Am J Physiol Renal Physiol 2017; 312:F689-F701. [PMID: 28100503 DOI: 10.1152/ajprenal.00584.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/28/2016] [Accepted: 01/15/2017] [Indexed: 01/10/2023] Open
Abstract
White adipose tissue plays an important role in the development of metabolic disturbance, which is a common feature in patients with chronic kidney disease (CKD). The effect of CKD on white adipose tissue remains poorly appreciated. Here, we evaluated the inflammatory potential of visceral white adipose tissue in a rat model of CKD. The results showed that production of proinflammatory cytokines and infiltration of macrophage in the tissue were increased significantly in CKD rats compared with sham rats. Moreover, the primary adipocytes and stromal vascular fraction under the condition of CKD could trigger the inflammatory response in each other. Free fatty acid induced robust inflammatory response in ex vivo peritoneal-derived macrophages from CKD rats, which was associated with reduced activity of silent information regulator T1 (SIRT1). Improvement of SIRT1 activity by an activator could alleviate free fatty acid-induced inflammatory response in the macrophages and inflammation in the white adipose tissue. Moreover, oxidative stress occurred in the tissue and linked with the reduced activity of SIRT1 in macrophages and enhanced release of free fatty acid in the tissue. We thus identified CKD as a risk factor for chronic inflammation in white adipose tissue. These observations might open up new therapeutic strategies for metabolic disturbance in CKD via the modulation of adipose tissue-related pathways.
Collapse
Affiliation(s)
- Dong Mei Xiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Xiu Zhen Song
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Zhan Mei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Yang Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Xiao Yan Dai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Xiang Lan Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| | - Qiu Gen Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, China
| |
Collapse
|
320
|
RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death Dis 2017; 8:e2530. [PMID: 28055017 PMCID: PMC5386355 DOI: 10.1038/cddis.2016.429] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
Abstract
The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.
Collapse
|
321
|
Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, Fu W, Zhang Y, Xu Z, Li X, Liang G. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 2017; 8:13997. [PMID: 28045026 PMCID: PMC5216130 DOI: 10.1038/ncomms13997] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity increases the risk for a number of diseases including cardiovascular diseases and type 2 diabetes. Excess saturated fatty acids (SFAs) in obesity play a significant role in cardiovascular diseases by activating innate immunity responses. However, the mechanisms by which SFAs activate the innate immune system are not fully known. Here we report that palmitic acid (PA), the most abundant circulating SFA, induces myocardial inflammatory injury through the Toll-like receptor 4 (TLR4) accessory protein MD2 in mouse and cell culture experimental models. Md2 knockout mice are protected against PA- and high-fat diet-induced myocardial injury. Studies of cell surface binding, cell-free protein–protein interactions and molecular docking simulations indicate that PA directly binds to MD2, supporting a mechanism by which PA activates TLR4 and downstream inflammatory responses. We conclude that PA is a crucial contributor to obesity-associated myocardial injury, which is likely regulated via its direct binding to MD2. The free fatty acid-mediated inflammatory activities are regulated through TLR4. Here the authors show that palmitic acid binds to MD2, initiating complex formation with TLR4, recruitment of MyD88, and subsequent activation of pro-inflammatory molecules, and that MD2 blockade protects against diet-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weitao Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
322
|
Li J, Sapper TN, Mah E, Moller MV, Kim JB, Chitchumroonchokchai C, McDonald JD, Bruno RS. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2016; 41:34-41. [PMID: 28038359 DOI: 10.1016/j.jnutbio.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA; Biofortis, Inc., Addison, IL 60101, USA
| | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
323
|
Lipina C, Hundal HS. Is REDD1 a Metabolic Éminence Grise? Trends Endocrinol Metab 2016; 27:868-880. [PMID: 27613400 PMCID: PMC5119498 DOI: 10.1016/j.tem.2016.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
324
|
Jiang Q, Li X, Cheng S, Gu Y, Chen G, Shen Y, Xie Y, Cao Y. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:103-109. [PMID: 27770658 DOI: 10.1016/j.etap.2016.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
We have recently proposed that the interaction between food components and nanoparticles (NPs) should be considered when evaluating the toxicity of NPs. In the present study, we used THP-1 differentiated macrophages as a model for immune cells and investigated the combined toxicity of low levels of palmitate (PA; 10 or 50μM) and ZnO NPs. The results showed that PA especially at 50μM changed the size, Zeta potential and UV-vis spectra of ZnO NPs, indicating a possible coating effect. Up to 32μg/mL ZnO NPs did not significantly affect mitochondrial activity, intracellular reactive oxygen species (ROS) or release of interleukin 6 (IL-6), but significantly impaired lysosomal function as assessed by neutral red uptake assay and acridine orange staining. The presence of 50μM PA, but not 10μM PA, further promoted the toxic effects of ZnO NPs to lysosomes but did not significantly affect other endpoints. In addition, ZnO NPs dose-dependently increased intracellular Zn ions in THP-1 macrophages, which was not significantly affected by PA. Taken together, the results of the present study showed a combined toxicity of low levels of PA and ZnO NPs especially to lysosomes in THP-1 macrophages.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiyue Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Shanshan Cheng
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yuxiu Gu
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Gui Chen
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yuexin Shen
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
325
|
Van de Velde LA, Subramanian C, Smith AM, Barron L, Qualls JE, Neale G, Alfonso-Pecchio A, Jackowski S, Rock CO, Wynn TA, Murray PJ. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. J Biol Chem 2016; 292:15-30. [PMID: 27903651 DOI: 10.1074/jbc.m116.766238] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine.
Collapse
Affiliation(s)
| | | | - Amber M Smith
- From the Departments of Infectious Diseases.,Immunology, and
| | - Luke Barron
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Joseph E Qualls
- From the Departments of Infectious Diseases.,Immunology, and
| | - Geoffrey Neale
- Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 and
| | | | | | | | - Thomas A Wynn
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter J Murray
- From the Departments of Infectious Diseases, .,Immunology, and
| |
Collapse
|
326
|
Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study. Lipids Health Dis 2016; 15:186. [PMID: 27816052 PMCID: PMC5097840 DOI: 10.1186/s12944-016-0357-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022] Open
Abstract
Background High-fat diets may contribute to metabolic disease via postprandial changes in serum endotoxin and inflammation. It is unclear how dietary fat composition may alter these parameters. We hypothesized that a meal rich in n-3 (ω3) fatty acids would reduce endotoxemia and associated inflammation but a saturated or n-6 (ω6) fatty acid-rich meal would increase postprandial serum endotoxin concentrations and systemic inflammation in healthy adults. Methods Healthy adults (n = 20; mean age 25 ± 3.2 S.D. years) were enrolled in this single-blind, randomized, cross-over study. Participants were randomized to treatment and reported to the laboratory, after an overnight fast, on four occasions separated by at least one week. Participants were blinded to treatment meal and consumed one of four isoenergetic meals that provided: 1) 20 % fat (control; olive oil) or 35 % fat provided from 2) n-3 (ω3) (DHA = 500 mg; fish oil); 3) n-6 (ω6) (7.4 g; grapeseed oil) or 4) saturated fat (16 g; coconut oil). Baseline and postprandial blood samples were collected. Primary outcome was defined as the effect of treatment meal on postprandial endotoxemia. Serum was analyzed for metabolites, inflammatory markers, and endotoxin. Data from all 20 participants were analyzed using repeated-measures ANCOVA. Results Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p < 0.05). The n-6 meal did not effect a different outcome in participant postprandial serum endotoxin concentration from that of the control meal (p > 0.05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment meals. Conclusions Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo. Trial registration This study was retrospectively registered at clinicaltrials.gov as NCT02521779 on July 28, 2015.
Collapse
|
327
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [PMID: 27796748 DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
328
|
Takakuwa S, Mizuno N, Takano T, Asakawa S, Sato T, Hiratsuka M, Hirasawa N. Down-regulation of Na +/H + exchanger 1 by Toll-like receptor stimulation in macrophages. Immunobiology 2016; 222:176-182. [PMID: 27771174 DOI: 10.1016/j.imbio.2016.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
The role of Na+/H+ exchanger 1 (NHE1) in various cell types, including inflammatory cells, has been extensively studied. However, regulation of NHE1 protein level in activated inflammatory cells is yet to be characterized. In this study, we investigated whether Toll-like receptor (TLR) ligands can regulate NHE1 protein level in the mouse macrophage-like RAW 264 cell line. We found that lipopolysaccharide (LPS), a TLR4 ligand, lowered NHE1 level and activity in RAW 264 cells and in primary murine macrophages. Other TLR ligands, such as zymosan A and poly(I:C), also displayed reduced NHE1 level. LPS promoted NHE1 ubiquitination and reduced the expression of calcineurin homologous protein 1 (CHP1), a regulator of NHE1 activity and stability. These responses were inhibited by c-Jun N-terminal kinase (JNK) inhibitor SP600125 and dexamethasone. A proteasome inhibitor, but not caspase-3 or lysosomal inhibitors, blocked the LPS-induced NHE1 down-regulation. These results suggested that LPS promotes the degranulation of NHE1 mediated by the ubiquitin-proteasome system and CHP1 downregulation resulting from activation of JNK.
Collapse
Affiliation(s)
- Shiho Takakuwa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Takano
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
329
|
Capó X, Martorell M, Sureda A, Riera J, Drobnic F, Tur JA, Pons A. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age. Nutrients 2016; 8:nu8100619. [PMID: 27735833 PMCID: PMC5084007 DOI: 10.3390/nu8100619] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
n-3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs). Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα) levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs), soluble Intercellular adhesion molecule 3 (sICAM3) and soluble L-selectin (sL-Selectin), and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group.
Collapse
Affiliation(s)
- Xavier Capó
- Research Groupon Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Crtra, Valldemossa, Palma de Mallorca 07122, Illes Balears, Spain.
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca 07122, Illes Balears, Spain.
| | - Miquel Martorell
- Research Groupon Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Crtra, Valldemossa, Palma de Mallorca 07122, Illes Balears, Spain.
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile.
| | - Antoni Sureda
- Research Groupon Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Crtra, Valldemossa, Palma de Mallorca 07122, Illes Balears, Spain.
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca 07122, Illes Balears, Spain.
| | - Joan Riera
- Sports Physiology Department CAR, Barcelona, 08174 Sant Cugat del Vallés, Spain.
| | - Franchek Drobnic
- Sports Physiology Department CAR, Barcelona, 08174 Sant Cugat del Vallés, Spain.
| | - Josep Antoni Tur
- Research Groupon Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Crtra, Valldemossa, Palma de Mallorca 07122, Illes Balears, Spain.
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca 07122, Illes Balears, Spain.
| | - Antoni Pons
- Research Groupon Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Crtra, Valldemossa, Palma de Mallorca 07122, Illes Balears, Spain.
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca 07122, Illes Balears, Spain.
| |
Collapse
|
330
|
Homoplantaginin Inhibits Palmitic Acid-induced Endothelial Cells Inflammation by Suppressing TLR4 and NLRP3 Inflammasome. J Cardiovasc Pharmacol 2016; 67:93-101. [PMID: 26355761 DOI: 10.1097/fjc.0000000000000318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Palmitic acid (PA)-induced vascular endothelial inflammation plays a pivotal role in the occurrence and development of vascular diseases. The present study was conducted to examine the effect of homoplantaginin, a main flavonoid from a traditional Chinese medicine Salvia plebeia R. Br., on PA-treated human umbilical vein endothelial cells inflammation and the underlying molecular mechanism. Firstly, we found that homoplantaginin (0.1, 1, 10 μM) dose-dependently reduced expression of toll-like receptor-4 evoked by PA (100 μM). The inhibitory effect of homoplantaginin was further confirmed under lipopolysaccharide challenge. In addition, downstream adapted proteins including myeloid differentiation primary response gene 88, toll/interleukin-1 receptor-domain containing adaptor-inducing interferon-β and tumor necrosis factors receptor associated factor-6 were successfully inhibited by homoplantaginin under PA treatment. Also, we found that homoplantaginin tightly controlled PA-induced reactive oxygen species to prevent nucleotide-binding domain-like receptor 3 (NLRP3) inflammasome activation by suppressing reactive oxygen species-sensitive thioredoxin-interacting protein, NLRP3, and caspase-1. Meanwhile, protein and mRNA levels of inflammatory mediators (interleukin-1β, intercellular cell adhesion molecule-1, and monocyte chemotactic protein-1) were decreased by homoplantaginin. Furthermore, homoplantaginin restored PA-impaired nitric oxide generation. Taken together, these results indicated that homoplantaginin protected endothelial cells from ameliorating PA-induced endothelial inflammation via suppressing toll-like receptor-4 and NLRP3 pathways, and restoring nitric oxide generation, suggesting it may be a potential candidate for further development in the prevention and treatment of vascular diseases.
Collapse
|
331
|
Sidahmed E, Sen A, Ren J, Patel A, Turgeon DK, Ruffin MT, Brenner DE, Djuric Z. Colonic Saturated Fatty Acid Concentrations and Expression of COX-1, but not Diet, Predict Prostaglandin E2 in Normal Human Colon Tissue. Nutr Cancer 2016; 68:1192-201. [PMID: 27548026 PMCID: PMC5061293 DOI: 10.1080/01635581.2016.1213866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostaglandin E2 (PGE2) in the colon is a pro-inflammatory mediator that is associated with increased risk of colon cancer. In this study, expression of genes in the PGE2 pathway were quantified in colon biopsies from a trial of a Mediterranean versus a Healthy Eating diet in 113 individuals at high risk for colon cancer. Colon biopsies were obtained before and after 6 months of intervention. Quantitative, real-time PCR was used to measure mRNA expression of prostaglandin H synthases (PTGS1 and 2), prostaglandin E synthases (PTGES1 and 3), prostaglandin dehydrogenase (HPGD), and PGE2 receptors (PTGER2, PTGER4). The most highly expressed genes were HPGD and PTGS1. In multivariate linear regression models of baseline data, both colon saturated fatty acid concentrations and PTGS1 expression were significant, positive predictors of colon PGE2 concentrations after controlling for nonsteroidal anti-inflammatory drug use, gender, age, and smoking status. The effects of dietary intervention on gene expression were minimal with small increases in expression noted for PTGES3 in both arms and in PTGER4 in the Mediterranean arm. These results indicate that short-term dietary change had little effect on enzymes in the prostaglandin pathway in the colon and other factors, such as differences in fatty acid metabolism, might be more influential.
Collapse
MESH Headings
- Biomarkers/metabolism
- Biopsy
- Colon/enzymology
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/epidemiology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Diet, Healthy
- Diet, Mediterranean
- Dinoprostone/metabolism
- Fatty Acids/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Intestinal Mucosa/enzymology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Male
- Michigan/epidemiology
- Middle Aged
- Prostaglandin-E Synthases/genetics
- Prostaglandin-E Synthases/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Risk Factors
Collapse
Affiliation(s)
- ElKhansa Sidahmed
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
- b Department of Environmental Health Sciences , University of Michigan , Ann Arbor , MI , USA
- c Department of Nutrition , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Ananda Sen
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
- d Department of Biostatistics , University of Michigan , Ann Arbor , MI , USA
| | - Jianwei Ren
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Arsh Patel
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
| | - D Kim Turgeon
- e Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Mack T Ruffin
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Dean E Brenner
- e Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Zora Djuric
- a Department of Family Medicine , University of Michigan , Ann Arbor , MI , USA
- b Department of Environmental Health Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
332
|
Ducheix S, Vegliante MC, Villani G, Napoli N, Sabbà C, Moschetta A. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β. Cell Mol Life Sci 2016; 73:3809-22. [PMID: 27522544 PMCID: PMC11108573 DOI: 10.1007/s00018-016-2331-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver diseases are the hepatic manifestation of metabolic syndrome. According to the classical pattern of NAFLD progression, de novo fatty acid synthesis has been incriminated in NAFLD progression. However, this hypothesis has been challenged by the re-evaluation of NAFLD development mechanisms together with the description of the role of lipogenic genes in NAFLD and with the recent observation that PGC-1β, a nuclear receptor/transcription factor coactivator involved in the transcriptional regulation of lipogenesis, displays protective effects against NAFLD/NASH progression. In this review, we focus on the implication of lipogenesis and triglycerides synthesis on the development of non-alcoholic fatty liver diseases and discuss the involvement of these pathways in the protective role of PGC-1β toward these hepatic manifestations.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy
| | - Maria Carmela Vegliante
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Nicola Napoli
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy.
| |
Collapse
|
333
|
Hirsova P, Ibrabim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 2016; 57:1758-1770. [PMID: 27049024 PMCID: PMC5036373 DOI: 10.1194/jlr.r066357] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
The accumulation of lipids is a histologic and biochemical hallmark of obesity-associated nonalcoholic fatty liver disease (NAFLD). A subset of NALFD patients develops progressive liver disease, termed nonalcoholic steatohepatitis, which is characterized by hepatocellular apoptosis and innate immune system-mediated inflammation. These responses are orchestrated by signaling pathways that can be activated by lipids, directly or indirectly. In this review, we discuss palmitate- and lysophosphatidylcholine (LPC)-induced upregulation of p53-upregulated modulator of apoptosis and cell-surface expression of the death receptor TNF-related apoptosis-inducing ligand receptor 2. Next, we review the activation of stress-induced kinases, mixed lineage kinase 3, and c-Jun N-terminal kinase, and the activation of endoplasmic reticulum stress response and its downstream proapoptotic effector, CAAT/enhancer binding homologous protein, by palmitate and LPC. Moreover, the activation of these stress signaling pathways is linked to the release of proinflammatory, proangiogenic, and profibrotic extracellular vesicles by stressed hepatocytes. This review discusses the signaling pathways induced by lethal and sublethal lipid overload that contribute to the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Petra Hirsova
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| | - Samar H Ibrabim
- Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gregory J Gores
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905.
| | - Harmeet Malhi
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
334
|
Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy. Vaccine 2016; 34:5677-5688. [PMID: 27693020 DOI: 10.1016/j.vaccine.2016.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterial cause of tuberculosis, is a leading infectious agent worldwide. The development of a new vaccine against Mtb is essential to control global spread of tuberculosis, since the current vaccine BCG is not very effective and antibiotic resistance is a serious, burgeoning problem. ESAT-6 is a secreted protein of Mtb, which is absent in BCG but has been implicated in inducing protective immunity against Mtb. Peptide based subunit vaccines are attractive due to their safety and high specificity in eliciting immune responses, but small synthetic peptides are usually not very immunogenic. We have designed a novel subunit vaccine for Mtb by using simple lipid (palmitic acid) modified derivatives of peptides from ESAT-6 protein corresponding to dominant human T cell epitopes and examined their ability to stimulate protective immunity against Mtb by intranasal and subcutaneous immunization in mice. We also investigated how individual TLR agonists as adjuvants (PolyI:C, MPL and GDQ) contribute to enhancing the induced immune responses and resulting protective efficacy of our vaccine. We observed that single C-terminal palmitoyl-lysine modified lipopeptides derived from ESAT-6 induce significant cellular immune responses on their own upon mucosal and subcutaneous immunizations. Intriguingly, a combination of immunogenic lipopeptides of ESAT-6 antigen exhibited local (pulmonary) and systemic immune responses along with efficient protective efficacy when administered intranasally or subcutaneously. Surprisingly, combination of ESAT-6 derived lipopeptides with a TLR-4 agonist (MPL) enhanced protection, whereas TLR-3 (Poly I:C) and TLR-7/8 agonists (gardiquimod, GDQ) led to reduced protection associated with specific local and systemic immune modulation. Our studies demonstrate the potential of ESAT-6 derived lipopeptides as a promising vaccine candidate against Mtb, and emphasize that selection of adjuvant is critical for the success of vaccines. These findings demonstrate the promise of synthetic lipopeptides as the basis of a subunit vaccine for TB.
Collapse
|
335
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
336
|
Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep 2016; 6:32111. [PMID: 27562249 PMCID: PMC4999824 DOI: 10.1038/srep32111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR.
Collapse
Affiliation(s)
- Marcel Boß
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Yvette Newbatt
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Sahil Gupta
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ian Collins
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| |
Collapse
|
337
|
Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 Axis Driven Inflammation in Non-Alcoholic Fatty Liver Disease Progression. Curr Drug Targets 2016; 16:1315-23. [PMID: 26028039 DOI: 10.2174/1389450116666150531153627] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/25/2015] [Indexed: 02/08/2023]
Abstract
Obesity is a primary risk factor for the development of non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common chronic liver disease in the world, represents a spectrum of disorders that range from steatosis (NAFL) to steatohepatitis (NASH) to cirrhosis. It is anticipated that NAFLD will soon surpass chronic hepatitis C infection as the leading cause for needing liver transplantation. Despite its clinical and public health significance no specific therapies are available. Although the etiology of NAFLD is multifactorial and remains largely enigmatic, it is well accepted that inflammation is a central component of NAFLD pathogenesis. Despite the significance, critical immune mediators, loci of immune activation, the immune signaling pathways and the mechanism(s) underlying disease progression remain incompletely understood. Recent findings have focused on the role of Interleukin 17 (IL-17) family of proinflammatory cytokines in obesity and pathogenesis of obesity-associated sequelae. Notably, obesity favors a Th17 bias and is associated with increased IL-17A expression in both humans and mice. Further, in mice, IL-17 axis has been implicated in regulation of both obesity and NAFLD pathogenesis. However, despite these recent advances several important questions require further evaluation including: the relevant cellular source of IL-17A production; the critical IL- 17RA-expressing cell type; the critical liver infiltrating immune cells; and the underlying cellular effector mechanisms. Addressing these questions may aid in the identification and development of novel therapeutic targets for prevention of inflammation- driven NAFLD progression.
Collapse
Affiliation(s)
| | | | - Senad Divanovic
- Division of Immunobiology Cincinnati Children's Hospital Medical Center TCHRF - Location S, Room #S.5.409 3333 Burnet Avenue Cincinnati, Ohio 45229-3039 U.S.A.
| |
Collapse
|
338
|
Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 2016; 785:50-58. [DOI: 10.1016/j.ejphar.2015.03.098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/26/2022]
|
339
|
Espiritu MM, Lin H, Foley E, Tsang V, Rhee E, Perlman J, Cunningham-Rundles S. Omega-3 fatty acids modulate neonatal cytokine response to endotoxin. J Perinat Med 2016; 44:711-21. [PMID: 26812855 DOI: 10.1515/jpm-2015-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
Neonatal immune response is characterized by an uncompensated pro-inflammatory response that can lead to inflammation-related morbidity and increased susceptibility to infection. We investigated the effects of long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) pre-treatment on cytokine secretion to low-concentration endotoxin (lipopolysaccharide, LPS) in THP-1 monocytes and neonatal cord blood (CB) from healthy full-term infants. Pre-treatment of THP-1 cells, with either n-3 PUFA at 25 or 100 μM significantly reduced IL-6, IL-10, and IL-12 secretion while DHA, but not EPA, reduced TNF-α response to LPS. DHA inhibition was stronger compared to EPA and effective at the low concentration. The same concentrations of n-3 PUFAs inhibited IL-12 but not IL-10 cytokine response in whole CB from 9 infants pre-treated for 24 h. To assess clinical relevance for acute response to LPS, the effects of low-concentration DHA at 25 μM or 12.5 μM were assessed before and after LPS exposure of isolated CB mononuclear cells from 20 infants for 1 h. When added before or after LPS, physiologic DHA treatment produced significant concentration-dependent inhibition of TNF-α, IL-6, IL-1β, and IL-8 secretion. The results demonstrate prophylactic and therapeutic modulation of neonatal cytokine response to LPS and provide proof-of-concept that low-concentration administration of n-3 PUFA could attenuate or resolve neonatal inflammatory response.
Collapse
|
340
|
McCarty MF, DiNicolantonio JJ. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. Open Heart 2016; 3:e000467. [PMID: 27547436 PMCID: PMC4975867 DOI: 10.1136/openhrt-2016-000467] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/09/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022] Open
Abstract
Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)-about 30%-have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to 'ectopic fat' metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6-C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate.
Collapse
|
341
|
Houben T, Brandsma E, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:416-429. [PMID: 27472963 DOI: 10.1016/j.bbalip.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- T Houben
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - E Brandsma
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - S M A Walenbergh
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - M H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands.
| |
Collapse
|
342
|
Abstract
Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology.
Collapse
Affiliation(s)
- Barry Sears
- a Inflammation Research Foundation , Marblehead , Massachusetts
| |
Collapse
|
343
|
Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, Lee JY, Rutledge JC, Hwang DH. Postprandial Inflammatory Responses and Free Fatty Acids in Plasma of Adults Who Consumed a Moderately High-Fat Breakfast with and without Blueberry Powder in a Randomized Placebo-Controlled Trial. J Nutr 2016; 146:1411-9. [PMID: 27306892 PMCID: PMC4926849 DOI: 10.3945/jn.115.223909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Saturated fatty acids (FAs) released from triglyceride-rich lipoproteins (TGRLs) activate Toll-like receptor 2 (TLR-2) and induce the expression of proinflammatory cytokines in monocytes. Certain plant polyphenols inhibit TLR-mediated signaling pathways. OBJECTIVE We determined whether plasma free FAs (FFAs) after a moderately high-fat (MHF, 40% kcal from fat) breakfast modulate the inflammatory status of postprandial blood, and whether blueberry intake suppresses FFA-induced inflammatory responses in healthy humans. METHODS Twenty-three volunteers with a mean ± SEM age and body mass index (in kg/m(2)) of 30 ± 3 y and 21.9 ± 0.4, respectively, consumed an MHF breakfast with either a placebo powder or 2 or 4 servings of blueberry powder in a randomized crossover design. The placebo powder was provided on the first test day and the blueberry powder doses were randomized with a 2-wk washout period. Plasma concentrations of lipids, glucose, and cytokines were determined. To determine whether FFAs derived from TGRL stimulate monocyte activation, and whether this is inhibited by blueberry intake, whole blood was treated with lipoprotein lipase (LPL). RESULTS The median concentrations of FFAs and cytokines [tumor necrosis factor-α, interleukin (IL)-6 and IL-8] in postprandial plasma (3.5 h) decreased compared with fasting plasma regardless of the blueberry intake (P < 0.001 for FFAs and P < 0.05 for cytokines). However, concentrations of FFAs and cytokines including IL-1β increased in LPL-treated whole blood compared with untreated blood samples from participants who consumed the placebo powder. Blueberry intake suppressed IL-1β and IL-6 production in LPL-treated postprandial blood compared with the placebo control when fasting changes were used as a covariate. CONCLUSIONS The plasma FFA concentration may be an important determinant affecting inflammatory cytokine production in blood. Supplementation with blueberry powder did not affect plasma FFA and cytokine concentrations; however, it attenuated the cytokine production induced by ex vivo treatment of whole blood with LPL. This trial was registered at clinicaltrials.gov as NCT01594008.
Collapse
Affiliation(s)
- Kikumi D Ono-Moore
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Ryan G Snodgrass
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Shurong Huang
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Shamsher Singh
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Tammy L Freytag
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Dustin J Burnett
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | | | - Leslie R Woodhouse
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA
| | - Susan J Zunino
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Janet M Peerson
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA;,Department of Nutrition and
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - John C Rutledge
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA; and
| | - Daniel H Hwang
- Western Human Nutrition Research Center, Agricultural Research Service/USDA, Davis, CA; Department of Nutrition and
| |
Collapse
|
344
|
Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell 2016; 19:23-37. [PMID: 27374788 DOI: 10.1016/j.stem.2016.06.001] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/22/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
Adipose tissue (AT) has previously been identified as an extra-medullary reservoir for normal hematopoietic stem cells (HSCs) and may promote tumor development. Here, we show that a subpopulation of leukemic stem cells (LSCs) can utilize gonadal adipose tissue (GAT) as a niche to support their metabolism and evade chemotherapy. In a mouse model of blast crisis chronic myeloid leukemia (CML), adipose-resident LSCs exhibit a pro-inflammatory phenotype and induce lipolysis in GAT. GAT lipolysis fuels fatty acid oxidation in LSCs, especially within a subpopulation expressing the fatty acid transporter CD36. CD36(+) LSCs have unique metabolic properties, are strikingly enriched in AT, and are protected from chemotherapy by the GAT microenvironment. CD36 also marks a fraction of human blast crisis CML and acute myeloid leukemia (AML) cells with similar biological properties. These findings suggest striking interplay between leukemic cells and AT to create a unique microenvironment that supports the metabolic demands and survival of a distinct LSC subpopulation.
Collapse
|
345
|
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57:2099-2114. [PMID: 27330055 DOI: 10.1194/jlr.r066514] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Lipids encompass a wide variety of molecules such as fatty acids, sterols, phospholipids, and triglycerides. These molecules represent a highly efficient energy resource and can act as structural elements of membranes or as signaling molecules that regulate metabolic homeostasis through many mechanisms. Cells possess an integrated set of response systems to adapt to stresses such as those imposed by nutrient fluctuations during feeding-fasting cycles. While lipids are pivotal for these homeostatic processes, they can also contribute to detrimental metabolic outcomes. When metabolic stress becomes chronic and adaptive mechanisms are overwhelmed, as occurs during prolonged nutrient excess or obesity, lipid influx can exceed the adipose tissue storage capacity and result in accumulation of harmful lipid species at ectopic sites such as liver and muscle. As lipid metabolism and immune responses are highly integrated, accumulation of harmful lipids or generation of signaling intermediates can interfere with immune regulation in multiple tissues, causing a vicious cycle of immune-metabolic dysregulation. In this review, we summarize the role of lipotoxicity in metaflammation at the molecular and tissue level, describe the significance of anti-inflammatory lipids in metabolic homeostasis, and discuss the potential of therapeutic approaches targeting pathways at the intersection of lipid metabolism and immune function.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| |
Collapse
|
346
|
Stelzner K, Herbert D, Popkova Y, Lorz A, Schiller J, Gericke M, Klöting N, Blüher M, Franz S, Simon JC, Saalbach A. Free fatty acids sensitize dendritic cells to amplify TH1/TH17-immune responses. Eur J Immunol 2016; 46:2043-53. [PMID: 27214608 DOI: 10.1002/eji.201546263] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Obesity is associated with body fat gain and impaired glucose metabolism. Here, we identified both body fat gain in obesity and impaired glucose metabolism as two independent risk factors for increased serum levels of free fatty acids (FFAs). Since obesity is associated with increased and/or delayed resolution of inflammation observed in various chronic inflammatory diseases such as psoriasis, we investigated the impact of FFAs on human monocyte-derived and mouse bone marrow-derived dendritic cell (DCs) functions relevant for the pathogenesis of chronic inflammation. FFAs such as palmitic acid (PA) and oleic acid (OA) did not affect the pro-inflammatory immune response of DCs. In contrast, PA and OA sensitize DCs resulting in augmented secretion of TH1/TH17-instructive cytokines upon pro-inflammatory stimulation. Interestingly, obesity in mice worsened a TH1/TH17-driven psoriasis-like skin inflammation. Strong correlation of the amount of total FFA, PA, and OA in serum with the severity of skin inflammation points to a critical role of FFA in obesity-mediated exacerbation of skin inflammation. Our data suggest that increased levels of FFAs might be a predisposing factor promoting a TH1/TH17-mediated inflammation such as psoriasis in response to an inflammatory danger signal.
Collapse
Affiliation(s)
- Kristin Stelzner
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| | - Diana Herbert
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| | - Yulia Popkova
- Institute of Medical Physics and Biophysics, Medical Faculty of University of Leipzig, Germany
| | - Axel Lorz
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty of University of Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Medical Faculty of University of Leipzig, Germany
| | - Nora Klöting
- IFB Adiposity Diseases, University of Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Medical Faculty of University of Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Medical Faculty of University of Leipzig, Germany
| |
Collapse
|
347
|
Reproductive stage associated changes in plasma fatty acid profile and proinflammatory cytokine expression in rat mammary glands. ACTA ACUST UNITED AC 2016; 2:119-126. [PMID: 29767045 PMCID: PMC5941025 DOI: 10.1016/j.aninu.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 11/21/2022]
Abstract
Mastitis is a common disease for mammals all around the world. Figuring out why mastitis mainly occurs around parturition may be helpful for dealing with the disease. Lipolytic activity and oxidative stress take place around parturition, which may leads to alteration in fatty acids profile and proinflammatory cytokine expression. Thus, the aim of the present study was to further our understanding about the high incidence of mastitis around parturition by comparison of plasma fatty acid profile and mammary inflammation indicators at different reproductive stages. A total of 47 female rats were included in the present study. After mating, all the pregnant and non-pregnant rats began to receive the same experimental diet. Blood samples were collected at day 1 and 14 of gestation as well as day 3 postpartum. Mammary samples were collected at day 14 of gestation and day 3 postpartum from pregnant and non-pregnant rats. The results showed that rats at d 3 postpartum had greater (P < 0.05) plasma concentrations of non-esterified fatty acids (NEFA), arachidonic acid (ARA) and docosahexaenoic acid (DHA) as well as ARA: eicosapentaenoic acid (EPA) ratio than those at d 14 of gestation. The mRNA abundances of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-8 and xanthine oxidoreductase (XOR) in mammary of the pregnant rats were greater (P < 0.05) than those in age-matched non-pregnant rats. Rats at d 3 postpartum had higher (P < 0.05) protein expression levels of IL-1β and TNF-α as well as meloperoxidase (MPO) activity and polymorphonuclear neutrophils (PMN) prevalence than those at d 1 of gestation. The rats at d 3 postpartum also had greater (P < 0.05) IL-1β and MPO activity than those at d 14 of gestation. The results indicated that elevated mammary expression of proinflammatory cytokines and XOR as well as altered fatty acid profile around parturition might facilitate the recruitment of neutrophils into mammary glands.
Collapse
|
348
|
A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep 2016; 6:25955. [PMID: 27180624 PMCID: PMC4867620 DOI: 10.1038/srep25955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.
Collapse
|
349
|
Tran DQ, Ramos EH, Belsham DD. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. Mol Cell Endocrinol 2016; 426:125-35. [PMID: 26923440 DOI: 10.1016/j.mce.2016.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons coordinate reproduction. However, whether GnRH neurons directly sense free fatty acids (FFAs) is unknown. We investigated the individual effects of the FFAs docosahexaenoic acid (DHA), palmitate, palmitoleate, and oleate (100 μM each) on Gnrh mRNA expression in the mHypoA-GnRH/GFP neuronal cell model. We report that 2 h exposure to palmitate or DHA increases Gnrh transcription. Using the inhibitors AH7614, K252c, U0126, wortmannin, and LY294002, we demonstrate that the effect of DHA is mediated through GPR120 to downstream PKC/MAPK and PI3K signaling. Our results indicate that the effect of palmitate may depend on palmitoyl-coA synthesis and PI3K signaling. Finally, we demonstrate that both DHA and palmitate increase Gnrh enhancer-derived RNA levels. Overall, these studies provide evidence that GnRH neurons directly sense FFAs. This will advance our understanding of the mechanisms underlying FFA sensing in the brain and provides insight into the links between nutrition and reproductive function.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ernesto H Ramos
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
350
|
DeCoffe D, Quin C, Gill SK, Tasnim N, Brown K, Godovannyi A, Dai C, Abulizi N, Chan YK, Ghosh S, Gibson DL. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice. J Infect Dis 2016; 213:1846-56. [PMID: 27067195 DOI: 10.1093/infdis/jiw084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 12/19/2022] Open
Abstract
Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection.
Collapse
Affiliation(s)
- Daniella DeCoffe
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sandeep K Gill
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nishat Tasnim
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Artem Godovannyi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nijiati Abulizi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Yee Kwan Chan
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada
| |
Collapse
|