301
|
Zuidscherwoude M, Göttfert F, Dunlock VME, Figdor CG, van den Bogaart G, van Spriel AB. The tetraspanin web revisited by super-resolution microscopy. Sci Rep 2015; 5:12201. [PMID: 26183063 PMCID: PMC4505338 DOI: 10.1038/srep12201] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022] Open
Abstract
The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called ‘tetraspanin-enriched microdomains (TEMs)’ via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fabian Göttfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vera Marie E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
302
|
de Winde CM, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor CG, van Spriel AB. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol 2015; 144:133-46. [PMID: 25952155 PMCID: PMC4522275 DOI: 10.1007/s00418-015-1326-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20+ cells in B cell follicles in human spleen and appendix. CD3+ T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.
Collapse
Affiliation(s)
- Charlotte M. de Winde
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Angela Vasaturo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
303
|
Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25:234-40. [PMID: 25572304 DOI: 10.1016/j.tcb.2014.12.006] [Citation(s) in RCA: 542] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
Interactions between cancer cells and their surroundings can trigger essential signaling cues that determine cell fate and influence the evolution of the malignant phenotype. As the primary receptors involved in cell-matrix adhesion, integrins present on the surface of tumor and stromal cells have a profound impact on the ability to survive in specific locations, but in some cases, these receptors can also function in the absence of ligand binding to promote stemness and survival in the presence of environmental and therapeutic stresses. Understanding how integrin expression and function is regulated in this context will enable the development of new therapeutic approaches to sensitize tumors to therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Laetitia Seguin
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jay S Desgrosellier
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara M Weis
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Cheresh
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
304
|
Thiede-Stan NK, Tews B, Albrecht D, Ristic Z, Ewers H, Schwab ME. Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. J Cell Sci 2015; 128:3583-96. [DOI: 10.1242/jcs.167981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
To ensure precision and specificity of ligand – receptor induced signaling, co-receptors and modulatory factors play important roles. The membrane bound ligand Nogo-A induces inhibition of neurite outgrowth, cell spreading, adhesion and migration via multi-subunit receptor complexes. Here, we identified the 4-transmembrane-spanning protein tetraspanin-3 (TSPAN3) as a new modulatory co-receptor for the Nogo-A inhibitory domain Nogo-A-Δ20. Single-molecule-tracking showed that TSPAN3 molecules in the cell membrane reacted with elevated mobility to Nogo-A binding, followed by association with the signal transducing Nogo-A receptor sphingosine-1-phosphate receptor 2 (S1PR2). Subsequently, TSPAN3 was co-internalized as part of the Nogo-A ligand – receptor complex into early endosomes, where it subsequently separated from Nogo-A and S1PR2 to be recycled to the cell surface. The functional importance of the Nogo-A – TSPAN3 interaction is shown by the fact that knockdown of TSPAN3 strongly reduced the Nogo-A-induced S1PR2 clustering, RhoA activation and cell spreading and neurite outgrowth inhibition. In addition to the modulatory functions of TSPAN3 on Nogo-A-S1PR2 signaling, these results illustrate the very dynamic spatiotemporal reorganizations of membrane proteins during ligand-induced receptor complex organizations.
Collapse
Affiliation(s)
- Nina K. Thiede-Stan
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Björn Tews
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - David Albrecht
- Institute of Biochemistry and Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Helge Ewers
- Institute of Biochemistry and Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich and Dept. of Health Sciences & Technology, ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
305
|
Murungi EK, Kariithi HM, Adunga V, Obonyo M, Christoffels A. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins. INSECTS 2014; 5:885-908. [PMID: 26462947 PMCID: PMC4592607 DOI: 10.3390/insects5040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 12/25/2022]
Abstract
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector.
Collapse
Affiliation(s)
- Edwin K Murungi
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 57811, Kaptagat Rd, Nairobi 00200, Kenya.
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Vincent Adunga
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Meshack Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|